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Abstract. The groundbreaking paper ‘Short proofs are narrow – resolution made simple’ by
Ben-Sasson and Wigderson (J. ACM 2001) introduces what is today arguably the main technique
to obtain resolution lower bounds: to show a lower bound for the width of proofs. Another
important measure for resolution is space, and in their fundamental work, Atserias and Dalmau
(J. Comput. Syst. Sci. 2008) show that lower bounds for space again can be obtained via lower
bounds for width.
In this paper we assess whether similar techniques are effective for resolution calculi for quantified
Boolean formulas (QBF). A mixed picture emerges. Our main results show that both the relations
between size and width as well as between space and width drastically fail in Q-resolution, even
in its weaker tree-like version. On the other hand, we obtain positive results for the expansion-
based resolution systems ∀Exp+Res and IR-calc, however only in the weak tree-like models.
Technically, our negative results rely on showing width lower bounds together with simultaneous
upper bounds for size and space. For our positive results we exhibit space and width-preserving
simulations between QBF resolution calculi.

1 Introduction

The main objective in proof complexity is to obtain precise bounds on the size of proofs in
various formal systems; and this objective is closely linked to and motivated by foundational
questions in computational complexity (Cook’s programme), first-order logic (separating the-
ories of bounded arithmetic), and SAT solving. In particular, resolution is one of the best
studied and most important propositional proof systems, as it forms the backbone of mod-
ern SAT solvers based on conflict-driven clause learning (CDCL). Complexity bounds for
resolution proofs directly translate into bounds on the performance of SAT solvers.

What is arguably even more important than showing the actual bounds is to develop
general techniques that can be applied to obtain lower bounds for important proof systems.
A number of ingenious techniques have been designed to show lower bounds for the size
of resolution proofs, among them feasible interpolation [21], which applies to many further
systems. In their pioneering paper [6], Ben-Sasson and Wigderson showed that resolution size
lower bounds can be elegantly obtained by showing lower bounds to the width of resolution
proofs. Indeed, the discovery of this relation between width and size of resolution proofs was
a milestone in our understanding of resolution, and today many if not most lower bounds for
resolution are obtained via the size-width technique.

Another important measure for resolution is space [17], as it corresponds to memory
requirements of solvers in the same way as resolution size relates to their running time. In
their fundamental work [1], Atserias and Dalmau demonstrated that also space is tightly
related to width. Indeed, showing lower bounds for width serves again as the primary method
to obtain space lower bounds. Since these discoveries the relations between resolution size,
width, and space have been subject to intense research (cf. [13]), and in particular sharp
trade-off results between the measures have been obtained (cf. e.g. [4, 5, 24]).
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In this paper we initiate the study of width and space in resolution calculi for quantified
Boolean formulas (QBF) and address the question whether similar relations between size,
width and space as for classical resolution hold in QBF. Before explaining our results we
sketch recent developments in QBF proof complexity.

QBF proof complexity is a relatively young field studying proof systems for quantified
Boolean logic. Similarly as in the propositional case, one of the main motivations for the field
comes via its intimate connection to solving. Although QBF solving is at an earlier state than
SAT solving, due to its PSPACE completeness, QBF even applies to further fields such as
formal verification or planning [7, 16, 25]. Each successful run of a solver on an unsatisfiable
instance can be interpreted as a proof of unsatisfiability; and this connection turns proof
complexity into the main theoretical tool to understand the performance of solving. As in
SAT, QBF solvers are known to correspond to the resolution proof system and its variants.

However, compared to SAT, the QBF picture is more complex as there exist two main
solving approaches utilising CDCL and expansion-based solving. To model the strength of
these QBF solvers, a number of resolution-based QBF proof systems have been developed.
Q-resolution (Q-Res) by Kleine Büning, Karpinski, and Flögel [20] forms the core of the CDCL-
based systems. To capture further ideas from CDCL solving, Q-Res has been augmented to
long-distance resolution [2], universal resolution [27], and their combinations [3]. Powerful
proof systems for expansion-based solving were recently developed in the form of ∀Exp+Res
[19], and the stronger IR-calc and IRM-calc [9].

In this paper we concentrate on the three QBF resolution systems Q-Res, ∀Exp+Res, and
IR-calc. This choice is motivated by the fact that Q-Res and ∀Exp+Res form the base systems
for CDCL and expansion-based solving, respectively, and IR-calc unifies both approaches in a
natural way, as it simulates both Q-Res and ∀Exp+Res [9]. Recent findings show that CDCL
and expansion are indeed orthogonal paradigms as Q-Res and ∀Exp+Res are incomparable
with respect to simulations [10].

Understanding which lower bound techniques are effective in QBF proof complexity is
of paramount importance for progress in the field. In [11] it was shown that the feasible
interpolation technique applies to all QBF resolution systems. Another successful transfer of
a classical technique was obtained in [12] for a game-theoretic characterisation of proof size
in tree-like Q-Res.

Our contributions

The central question we address here is whether lower bound techniques via width, which have
revolutionised classical proof complexity, are also effective for QBF resolution systems.

Though space and width have not been considered in QBF before, these notions straight-
forwardly apply to QBF resolution systems. However, due to the ∀-reduction rule in Q-Res
handling universal variables, it is relatively easy to enforce that universal literals accumulate
in clauses of Q-Res proofs, thus always leading to large width, irrespective of size and space
requirements (Lemma 5). This prompts us to consider existential width — counting only ex-
istential literals — as an appropriate width measure in QBF. This definition aligns both with
Q-Res, resolving only on existential variables, as well as with ∀Exp+Res and IR-calc, which
like all expansion systems only operate on existential literals.

1. Negative results. Our main results show that the size-width relation of [6] as well as
the space-width relation of [1] dramatically fail for Q-Res, even when considering the tighter
existential width. We first notice that the proof establishing the size-width result in [6] almost
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fully goes through, except for some very inconspicuous step that fails in QBF (Proposition 6).
But not only the technique fails: we prove that Tseitin transformations of formulas expressing
a natural completion principle from [19] have small size and space, but require large existential
width in tree-like Q-Res (Theorem 7). As the formulas for the completion principle have O(n2)
variables, they do not rule out size-width relations in general dag-like Q-Res. However, we show
that different formulas, hard for tree-like Q-Res [19], provide counterexamples for size-width
and space-width relations in full Q-Res (Theorem 8).

Technically, our main contributions are width lower bounds for the above formulas, which
we show by careful counting arguments. We complement these results by existential width
lower bounds for parity-formulas from [10], providing an optimal width separation between
Q-Res and ∀Exp+Res (Theorem 15).

2. Positive results and width-space-preserving simulations. Though the negative
picture above prevails, we prove some positive results for size-width-space relations for tree-like
versions of the expansion resolution systems ∀Exp+Res and IR-calc. Proofs in ∀Exp+Res can
be decomposed into two clearly separated parts: an expansion phase followed by a classical
resolution phase. This makes it easy to transfer almost the full spectrum of the classical
relations to ∀Exp+Res (Theorem 16).

To lift these results to IR-calc (Theorem 17), we show a series of careful space and width-
preserving simulations between tree-like Q-Res, ∀Exp+Res, and IR-calc. In particular, we show
the surprising result that tree-like ∀Exp+Res and tree-like IR-calc are equivalent (Lemma 12),
thus providing a rare example of two proof systems that coincide in the tree-like, but are
separated in the dag-like model [10]. In addition, our simulations provide a simpler proof
for the simulation of tree-like Q-Res by ∀Exp+Res (Corollary 14), shown in [19] via a more
involved argument.

Our last positive result is a size-space relation in tree-like Q-Res (Theorem 17), which we
show by a pebbling game analogous to the classical relation in [17]. Not surprisingly, this only
positive result for Q-Res avoids any reference to the notion of width.

As the bottom line we can say that QBF proof complexity is not just a replication of
classical proof complexity: it shows quite different and interesting effects as we demonstrate
here. Especially for lower bounds it requires new ideas and techniques. We remark that in
this direction, a new and ‘genuine QBF technique’ based on strategy extraction was recently
developed, showing lower bounds for Q-Res [10] and indeed much stronger systems [8].

Organisation of the paper

The remainder of this paper is organised as follows. We start by reviewing background in-
formation on classical and QBF resolution systems (Section 2), including definitions of size,
space, and width together with their main classical relations (Section 3). In Section 4 we
prove our main negative results on the failure of the transfer of the classical size-width and
space-width results to QBF. Section 5 contains the simulations between tree-like versions of
Q-Res, ∀Exp+Res, and IR-calc, paying special attention to width and space. This enables us
to show in Section 6 the positive results for relations between size, width, and space in these
systems. We conclude in Section 7 with a discussion and directions for future research.
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2 Notations and Preliminaries

Quantified Boolean Formulas. A (closed prenex) Quantified Boolean Formula (QBF) is a
formula in quantified propositional logic where each variable is quantified at the beginning of
the formula, using either an existential or universal quantifier. We denote such formulas as
Q .φ, where φ is a propositional Boolean formula in Conjunctive Normal Form (CNF), called
matrix, and Q is its quantifier prefix.

Given a variable y, either existentially quantified or universally quantified in Q .φ, the
quantification level of y in Q .φ, lv(y), is the number of alternations of quantifiers y has on its
left in the quantifier prefix of Q .φ. Given a variable y, we will sometimes refer to the variables
with quantification level lower than lv(y) as variables left of y; analogously the variables with
quantification lever higher than lv(y) will be right of y.

Resolution Calculi

Resolution (Res), introduced by Blake [14] and Robinson [26], is a refutational proof system
manipulating unsatisfiable CNFs as sets of clauses. The only inference rule is

C ∨ x D ∨ ¬x (Res)
C ∪D

where C,D denote clauses and x is a variable. A Res refutation derives the empty clause �.
If we only allow proofs in form of a tree, i.e., each derived clause can be used at most once,
we speak of tree-like resolution, denoted ResT.

QBF resolution calculi. Q-resolution (Q-Res) [20] is a resolution-like calculus that operates
on QBFs in prenex form where the matrix is a CNF. It uses the propositional resolution rule
(Res) with the side conditions that variable x is existential and if z ∈ C, then ¬z /∈ D. In
addition Q-Res has a universal reduction rule

C ∨ u (∀-Red)
C

where variable u is universal and all other existential variables x ∈ C are left of u in the
quantifier prefix.

In addition to Q-Res we consider two further QBF resolution calculi that have been in-
troduced to model expansion-based QBF solving. These calculi are based on instantiation of
universal variables: ∀Exp+Res [19], and IR-calc [9]. Both calculi operate on clauses that com-
prise only existential variables from the original QBF, which are additionally annotated by
a substitution to some universal variables, e.g. ¬xu/0,v/1. For any annotated literal lσ, the
substitution σ must not make assignments to variables right of l, i.e. if u ∈ dom(σ), then u
is universal and lv(u) < lv(l). To preserve this invariant, we use the auxiliary notation l[σ],
which for an existential literal l and an assignment σ to the universal variables filters out all
assignments that are not permitted, i.e. l[σ] = l{u/c∈σ | lv(u)<lv(l)}. We say that an assignment
is complete if its domain is all universal variables. Likewise, we say that a literal xτ is fully
annotated if all universal variables u with lv(u) < lv(x) in the QBF are in dom(τ), and a
clause is fully annotated if all its literals are fully annotated.

The calculus ∀Exp+Res from [19] works with fully annotated clauses on which resolution
is performed. The rules of ∀Exp+Res are shown in Figure 1.
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(Ax){
l[τ ] | l ∈ C, l exist.

}
∪{τ(l) | l ∈ C, l univ.}

C is a clause from the matrix and τ is an assignment to all universal variables.

C1 ∨ xτ C2 ∨ ¬xτ (Res)
C1 ∪ C2

Fig. 1. The rules of ∀Exp+Res [19]

In contrast, the system IR-calc from [9] is more flexible. It uses ‘delayed’ expansion and
can mix instantiation with resolution steps. Formally, IR-calc works with partial assignments
on which we use auxiliary operations of completion and instantiation. For assignments τ and
µ, we write τ Y µ for the assignment σ defined as σ(x) = τ(x) if x ∈ dom(τ), otherwise
σ(x) = µ(x) if x ∈ dom(µ). The operation τ Y µ is called completion as µ provides values
for variables not defined in τ . For an assignment τ and an annotated clause C, the function
inst(τ, C) returns the annotated clause

{
l[σ Y τ ] | lσ ∈ C

}
. The system IR-calc uses the rules

depicted in Figure 2.

(Ax){
x[τ ] | x ∈ C, x is existential

}
C is a non-tautological clause from the matrix.
τ = {u/0 | u is universal in C}, where the notation u/0 for literals u is shorthand for x/0
if u = x and x/1 if u = ¬x.

xτ ∨ C1 ¬xτ ∨ C2 (Res)
C1 ∪C2

C (Instantiation)
inst(τ, C)

τ is a (partial) assignment to universal variables.

Fig. 2. The rules of IR-calc [9]

Simulations. Given two proof systems P and Q for the same language (TAUT or QBF), P
p-simulates Q (denoted Q ≤p P ) if each Q-proof can be transformed in polynomial time into
a P -proof of the same formula. Two systems are called p-equivalent if they p-simulate each
other. In [9] it was shown that IR-calc p-simulates both Q-Res and ∀Exp+Res, while [10] shows
that Q-Res and ∀Exp+Res are incomparable, i.e., IR-calc is exponentially stronger than both
Q-Res and ∀Exp+Res. However, ∀Exp+Res can p-simulate Q-ResT [19].

3 Size, width and space in resolution calculi

The purpose of the section is twofold: first to review the measures size, width, and space and
their relations in classical resolution; and second to explain how to apply these measures to
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QBF resolution systems. While this is straightforward for size and space, we need a more
elaborate discussion on what constitutes a good notion of width for QBF resolution systems.

3.1 Defining size, width, and space for resolution

For a CNF F , |F | denotes the number of clauses in it, and w(F ) denotes the maximum
number of literals in any clause of F , and we extend the same notation to QBFs with a CNF
matrix.

For S one of the resolution calculi Res, Q-Res, ∀Exp+Res, IR-calc, let π S F (resp. π ST
F )

denote that π is an S-proof (tree-like S-proof, respectively), of the formula F . For a proof π
of F in system S, its size |π| is defined as the number of clauses in π. The size complexity
S( S F ) of deriving F in S is defined as min {|π| : π S F}. The tree-like size complexity,
denoted S( ST

F ), is min {|π| : π ST
F}.

A second complexity measure is the minimal width. The width of a clause C is the number
of literals in C, denoted w(C). The width of a CNF F , denoted w(F ), is the maximum width
of a clause in F ; w(F ) = max{w(C) : C ∈ F}. The width w(π) of a proof π is defined as the
maximum width of any clause appearing in π, i.e, w(π) = max{w(C) : C ∈ π}. The width
w( S F ) of refuting a CNF F in S is defined as min{w(π) : π S F}. Again the same notation
extends to quantified CNFs.

Note that for width in any calculus, whether the proof is tree-like or not is immaterial,
since a proof can always be made tree-like by duplication without increasing the width. We
therefore drop the T subscript when talking about proof width.

The third complexity measure for resolution calculi is space. For classical resolution, this
measure3 was first defined by Esteban and Torán in [17]. Informally, it is the minimal number
of clauses that must be kept simultaneously to refute a formula. Instead of viewing a proof as
a DAG, we view it as a sequence of CNF formulas F0, F1, . . . , Fs, where F0 = ∅, � ∈ Fs, and
each Fi+1 is obtained from Fi by either erasing some clause, or by downloading an axiom,
or by adding a resolvent of clauses in Fi. In the latter case, one of the clauses used in the
resolution may also simultaneously be deleted. The space used by this proof is the maximum
number of clauses in any Fi, maxi∈[s]{|Fi|}. The space to refute F is the minimum, over all
proofs σ, of the space used by σ. We can directly adapt this definition to QBF resolution
calculi as well.

Definition 1 (Space-oriented proof sequences). A false QBF sentence F can be refuted
in system S within space k if there is a sequence σ of QBFs F0,F1, . . . ,Fs, all having the
same quantifier prefix as F , and with matrix F0, F1, . . . , Fs, respectively, such that F0 = ∅,
F1 contains a subset of clauses obtained from the corresponding axiom download in the proof
system S, Fs = {�} (the empty clause), each Fi has at most k clauses, and for each i < s,
Fi+1 is obtained from Fi by one of the following rules:

1. Erase: Fi+1 = Fi \ {C} for some clause C ∈ Fi.
2. Inference: Fi+1 ⊆ Fi ∪ {C} for C obtained by applying any inference rule of the proof

system S. In this step, one of the hypotheses used in the inference rule may be erased.

3. Axiom Download: Fi+1 = Fi ∪ {C} for some clause C obtained by applying the axiom
download rule of the proof system S.

3 Also called clause space, to distinguish it from variable space or total space. We consider only clause space
in this paper, and so we call it just space.
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For a proof written as a sequence σ as above, the clause space of σ, denoted by Space(σ),
is maxi∈[s]{|Fi|}. The clause space needed to refute a QBF F in the S-proof system, denoted
by Space( S F), is the minimum Space(σ) over all sequences σ refuting F .

If we modify the inference step above so that the clause(s) used to obtain the inference
are erased in the same step, then any clause D can be used at most once and we obtain a
tree-like space-oriented S-proof. Correspondingly we can define Space( ST

F) as the minimum
space used by any tree-like proof sequence refuting F .

3.2 Relations in classical resolution

We now state some of the main relations between size, width, and space for classical resolution.
We start with the foundational size-width relation of Ben-Sasson and Wigderson [6].

Theorem 2 (Ben-Sasson, Wigderson [6]). For all unsatisfiable CNFs F the following

relations hold: S( ResT
F ) ≥ 2

w
(

Res F
)
−w(F )

and S( Res F ) = exp

(
Ω

((
w
(

Res F
)
−w(F )

)2

n

))
.

Space complexity was introduced in [17] and relations between space, size and width are
explored (cf. also [13,22]).

Theorem 3 (Esteban, Torán [17]). For all unsatisfiable CNFs F the following relation

holds: S( ResT
F ) ≥ 2

Space
(

ResT
F
)
− 1.

The fundamental relation between space and width was obtained in [1]; a more direct
proof was given recently in [18].

Theorem 4 (Atserias, Dalmau [1]). For all unsatisfiable CNFs F the following relation
holds: w( Res F ) ≤ Space( Res F ) + w(F )− 1.

3.3 Existential width: What is the right width notion for QBF?

We wish to explore the possibility of a similar approach as used in [6] to prove an ana-
logue of Theorem 2 when dealing with QBFs. The following simple example shows that the
relationships in Theorem 2 and Theorem 4 do not carry over for the system Q-Res.

Consider the following false QBF Fn over 2n variables:

Fn =∀u1 . . . un∃e0∃e1 . . . en.
C0 : (e0) ∧

For i ∈ [n], Di : (ēi−1 ∨ ui ∨ ei) ∧
Dn+1 : (ēn)

Lemma 5. S( Q-ResT
Fn) ∈ O(n) and Space( Q-ResT

Fn) ∈ O(1), but w( Q-Res Fn) ∈ Ω(n).

Proof. For the upper bounds consider the following proof. For i ∈ [n], let Ci = (u1∨· · ·∨ui∨ei).
For i ∈ [n] in sequence, resolving Ci−1 and Di on variable ei+1 gives Ci. Resolving Cn and
Dn+1 on variable en gives the clause U = (u1∨· · ·∨un). Finally, applying ∀-Red on the clause
U yields the empty clause in n more steps.
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This is a tree-like proof of size O(n). Further, each resolution step involves an axiom
clause, so at each step we need to hold just two clauses, and so the space requirement is O(1).

Concerning the width lower bound, by the order of quantification in Fn, every existential
literal in Fn blocks any ∀-reduction. Therefore, in any refutation, when a ∀-reduction is first
used, the clause C has only universal variables. At this point, the empty clause is derivable
from C by a series of ∀ reductions. Note that if any clause is dropped from Fn, the resulting
sentence is no longer false. Thus any refutation must use all clauses. Hence C must have all
universal variables in it; it must be (u1 ∨ · · · ∨ un) as all ui variables have been accumulated,
without being reduced. Then clause C has width n. ut

Noting that w(Fn) = 3, Lemma 5 implies that the relationships from Theorem 2 and
Theorem 4 do not hold for Q-Res and Q-ResT.

As the above example illustrates, it is easy to enforce that universal variables are ac-
cumulated in a clause, thus leading to large width. Hence the following question naturally
arises: can we obtain size-width or space-width relations by using the tighter measure of only
counting existential variables?

This aligns with the situation in the expansion systems ∀Exp+Res and IR-calc, where
clauses contain only existential variables. In this respect, it is worth noting that the above
example indeed does not demonstrate the failure of the size-width relationship in expansion-
based calculi. For instance, in ∀Exp+Res, a tree-like refutation could download the existential
variables of axioms annotated with ui/0 for i ∈ [n], and generate the empty clause in O(n)
steps with width just 2 at the leaves and 1 at the internal nodes.

Thus, to get a consistent and interesting width measure for QBF calculi, we consider the
notion of existential width that just counts the number of existential literals. This approach
is justified also for Q-Res as the calculus can only resolve on existential variables, and rules
out the easy counterexamples above. Formally, we define the existential width of a clause C
to be the number of existential literals in C, and denote it by w∃(C). Using w∃ instead of
w everywhere, we obtain the existential width of a formula w∃(F ), of a proof w∃(π), and of
refuting a false sentence w∃( S F).

For the expansion systems ∀Exp+Res and IR-calc the notions of existential width and
width coincide. (In particular, distinct annotations of the same existential variable in a single
clause are counted as distinct literals.) Hence we can drop the ∃ subscript in width of proofs
in these systems. For the width of the sentence itself, there is still a difference between w and
w∃.

4 Negative results: Size-width and space-width relations fail in Q-Res

In this section we show that in the Q-Res proof system, even replacing width by existential
width, the relations to size or space as in classical resolution (Theorems 2 and 4) no longer
hold for both tree-like and general proofs.

Firstly, we point out where the technique of [6] fails. A crucial ingredient of their proof is
the following statement: if a clause A can be derived from F |x=1 in width w, then the clause
A ∨ ¬x can be derived from F in width w + 1 (possibly using a weakening rule at the end).
We show that the statement no longer holds in Q-Res.

Proposition 6. There are false sentences ψn, with an existential literal b quantified at the
innermost level, such that the sentence ψn|b=1 is false and has a small existential-width proof,
but ψn itself needs large existential width to refute in Q-Res.
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Proof. The sentence ψn is constructed by taking the conjunction of two sentences with distinct
variables. The first sentence is a very simple one: ∃a∀u∃b (a ∨ u ∨ b̄) ∧ (ā). It is a true
sentence, but if b is set to 1, it becomes false. The second sentence is a false sentence of the
form ∃xGn(x), where Gn is any unsatisfiable CNF formula over the x variables, such that
Gn needs large width in classical resolution. One such example is the CNF formula described
by Bonet and Galesi [15], that we denote as BGn. BGn is an unsatisfiable 3-CNF formula
over O(n2) variables with w(` BGn) = Ω(n). Now define ψn as:

∃x∃a∀u∃b (a ∨ u ∨ b̄) ∧ (ā) ∧BGn(x).

Note that the clauses (a ∨ u ∨ b̄) ∧ (ā) contain a contradiction if and only if b = 1. Thus
ψn|b=1 can be refuted with existential width 1 using just these two clauses: a ∀-Red on (a∨u)
yields a which can be resolved with ā. On the other hand, to refute ψn, the contradiction in
BGn must be exposed. Since all the variables involved are existential, Q-Res degenerates to
classical resolution, requiring (existential) width Ω(n). ut

The example in the proof of Proposition 6 can be made ‘less degenerate’ by interleaving
more existential and universal variables disjoint from x and putting them in the first sentence.
All we need is that b is quantified existentially at the end, the first sentence is true as a whole
but false if b = 1, and this latter sentence can be refuted in Q-Res with small existential
width.

We now show that it is not just the technique of [6] that fails for Q-Res. No other technique
will work either, because the relation from Theorem 2 between size and existential width itself
fails to hold. The same example also shows that the relation from Theorem 4 between space
and existential width also fails to hold.

We first give an example where the relation for tree-like proofs fails.

Theorem 7. There is a family of false QBF sentences CR′n over O(n2) variables, such that
S( Q-ResT

CR′n) = nO(1), w∃(CR′n) = 3, Space( Q-ResT
CR′n) = O(1), and w∃( Q-ResT

CR′n) =
Ω(n).

Proof. Consider the following formulas CRn, introduced by Janota and Marques-Silva [19]:

CRn = ∃x1,1 . . . xn,n ∀z ∃a1 . . . an∃b1 . . . bn.
(Ci,j) (xi,j ∨ z ∨ ai), i, j ∈ [n]

(Di,j) (x̄i,j ∨ z̄ ∨ bj), i, j ∈ [n]

(A)
∨
i∈[n]

āi

(B)
∨
i∈[n]

b̄i.

CRn is constructed from a principle called the completion principle. Consider two sets A =
{a1, . . . , an} and B = {b1, . . . , bn}, and depict their cross product A×B as in the table below.

a1 a1 . . . a1 a2 a2 . . . a2 . . . . . . an an . . . an
b1 b2 . . . bn b1 b2 . . . bn . . . . . . b1 b2 . . . bn

The following two-player game is played on the above table. In the first round, player 1
deletes exactly one cell from each column. In the second round, player 2 chooses one of the
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two rows. Player 2 wins if the chosen row contains either the complete set A or the set B;
otherwise player 1 wins. The completion principle states that player 2 has a winning strategy.
The false sentence CRn expresses the notion that player 1 has a winning strategy. For each

column

[
ai
bj

]
of the table (denote this the (i, j)th column), there is a boolean variable xi,j . Let

xi,j = 0 denote that player 1 ‘deletes bj ’ (i.e, keeps ai) from the (i, j)th column, and xi,j = 1
denotes that player 1 keeps bj in the (i, j)th column. There is a variable z to denote the choice
of player 2: z = 0 means ‘choose top row’. The Boolean variables ai, bj , for i, j ∈ [n] encode
that for the chosen values of all the xk,`, and the row chosen via z, at least one copy of the
element ai and bj respectively is kept. (eg. (xi,j ∧ z)⇒ bj).

It is known that CRn has O(n2) proofs in Q-Res, and even in Q-ResT [23]. However CRn

has large existential width, and in order to prove Theorem 7, we need a formula with constant
initial existential width. To achieve this we proceed similarly as in the Tseitin transformations,
i.e., we introduce 2n+2 new existential variables (i.e, y,p) at the innermost level in CRn, and
replace the two large clauses in CRn by any CNF formula which preserves their satisfiability.
Let CR′n denote the modified formula

CR′n = ∃x1,1 . . . xn,n ∀z ∃a1 . . . an∃b1 . . . bn∃y0 . . . yn∃p0 . . . pn.
(Ci,j) (xi,j ∨ z ∨ ai), i, j ∈ [n] (1)

(Di,j) (x̄i,j ∨ z̄ ∨ bj), i, j ∈ [n] (2)

ȳ0 ∧
∧
i∈[n]

(yi−1 ∨ āi ∨ ȳi) ∧ yn (3)

p̄0 ∧
∧
i∈[n]

(pi−1 ∨ b̄i ∨ p̄i) ∧ pn. (4)

Note that w∃(CR′n) = 3.
It is clear that from the type-(3) clauses of CR′n, we can derive the large clause

∧
i∈[n] āi of

CRn in n+ 1 resolution steps. Similarly we can derive the large clause
∧
i∈[n] b̄i of CRn from

the type (4) clauses in n+ 1 steps. The proof refuting CRn uses each of these large clauses n
times; see below. Thus S( Q-ResT

CR′n) ≤ S( Q-ResT
CRn) +O(n2) = O(n2).

We briefly sketch the refutation of CRn from [23] to analyse its space requirement. The
fragment Wj starts with clause A, successively resolves it with clauses from C∗,j to get z∨x1,j∨
. . . ∨ xn,j , eliminates z through a ∀-reduction, then successively resolves it with clauses from
D∗,j to get Wj = z̄∨bj . It is easy to see that O(1) space suffices to construct this fragment. The
overall proof starts with the clause B, successively resolves it with W1,W2, . . . ,Wn (reusing
the space to construct successive Wj ’s), and finally gets z̄ which is eliminated through a
∀-reduction. Again O(1) space suffices.

Finally, we show that CR′n needs large existential width.
Let π be a proof in Q-Res, π Q-Res CR′n. List the clauses of π in sequence, π = {D0, D1, . . . , Ds =

�}, where each clause in the sequence is either a clause from CR′n, or is derived from clause(s)
preceding it in the sequence using resolution or ∀-Red. There must be at least one universal
reduction step in π, since all the initial clauses are necessary for refuting CR′n, some of them
contain universal variables, and the only way to remove a universal variable in Q-Res is by
∀-Red. Let t be the least index such that in the clause Dt, a ∀-Red step has been performed on
the only universal variable. Without loss of generality, let the universal literal be the positive
literal z; the argument for z̄ is identical. As the existential variables, a, b,y, and p all block
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the universal variable z, none of them is present in the clause Dt. We use this fact to show
that w∃(Dt) = Ω(n). Our strategy is to associate some set with each clause in π in a specific
way, and use the set size to bound existential width.

We associate the following sets with the literals of CR′n and the clauses of π.

σ(z) = ∅ = σ(z̄)
∀i ∈ [n] σ(ai) = [n] \ {i} = {1, . . . , n} \ {i}
∀i ∈ [n] σ(xi,j) = σ(āi) = {i}
∀i ∈ [n] σ(ȳi) = [n] \ [i] = {i+ 1, . . . , n}
∀i ∈ [n] σ(yi) = [i] = {1, . . . , i}
∀j ∈ [n] σ(bj) = [n] \ {j} = {1, . . . , n} \ {j}
∀j ∈ [n] σ(x̄i,j) = σ(b̄j) = {j}
∀j ∈ [n] σ(p̄j) = [n] \ [j] = {j + 1, . . . , n}
∀j ∈ [n] σ(pj) = [j] = {1, . . . , j}
∀D ∈ π σ(D) =

⋃
l∈D

σ(l).

Note that for variables v in a, b, p, y, the sets σ(v) and σ(v̄) form a partition of [n].
For D ∈ π, let πD be the sub-DAG of π, rooted at D. Consider the sub-DAG πDt of π.

We have the following observations:

Observation 1. πDt contains at least one type-(1) clause as a source; this is because z ∈ Dt,
and the only initial clauses containing z are the type-(1) clauses.

Observation 2. πDt does not contain any clause of type (2): as z ∈ Dt, we know that z̄ /∈ Dt.
Therefore if some type-(2) clause is present in this sub-DAG, the only way to remove z̄
is via ∀-Red. This reduction will take place before the reduction on Dt, contradicting our
choice of index t. We also conclude that the literal z̄ cannot appear anywhere in πDt .

Observation 3. πDt does not contain any type-(4) clause: we know that Dt does not contain
p and b variables (because they block z). Any use of type (4) clauses introduces p variables
and possibly b̄ literals. Removing p variables introduces b̄ literals. But b̄ can be removed
only by resolving with b, which is only in type-(2) clauses. We have already seen that
type-(2) clauses are not present in πDt .

Observation 4. No clause in πDt contains a literal x̄i,j , since x̄i,j are introduced only in type
(2) clauses.

Observation 5. For any clause C derived solely from type (3) clauses, σ(C) = [n]. This is
true for type-(3) clauses by definition of σ. Using only these clauses, the only resolution
step possible is with a y variable as pivot. The claim can be verified by induction on depth:
Since σ(yi) and σ(ȳi) partition [n], [n] \ σ(yi) and [n] \ σ(ȳi) also partition [n].

We show that all clauses in πDt that are descendants of some type-(1) clause have large
sets associated with them. In particular, we show:

Claim. Every clause D in πDt such that πD contains a type-(1) clause has σ(D) = [n].

Deferring the proof briefly, we continue with our argument. From the Claim we conclude
that σ(Dt) = [n]. Recall that the variables a, b,y,p and the literals x̄i,j ’s are not present in
Dt. The only literals left are positive xi,j ’s. These literals are associated with singleton sets,
and the variables xi,j for different values of j give the same singleton set. So we conclude that
for each i ∈ [n], there must be some xi,j ∈ Dt. Hence w∃(Dt) = Ω(n).

It remains to establish the claimed set size.
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Proof (of claim). We proceed by induction on the depth of descendants of type-(1) clauses in
πDt . The base case is a type-(1) clause itself and follows from the definition of σ.

For the inductive step, let D be obtained by resolving (E ∨ r) and (F ∨ r̄). There are two
cases to consider: both are descendants of some type-(1) clauses, or only one of them, say
(E ∨ r), is a descendant of a type-(1) clause. In the former case, by the induction hypothesis,
σ(E ∨ r) = [n] and σ(F ∨ r̄) = [n]. In the latter case, σ(E ∨ r) = [n] by induction hypothesis,
and σ(F ∨ r̄) = [n] from the observations above. ((F ∨ r̄) is not a descendant of any type (1)
clause. But it belongs to πDt which has only type-(1) and type-(3) clauses. So it must be a
descendant of only type (3) clauses, and hence has [n] associated with it.)

Thus in both cases, we have σ(E ∨ r) = σ(F ∨ r̄) = [n]. So we have σ(E) ⊇ [n] \ σ(r) and
σ(F ) ⊇ [n] \ σ(r̄). Observe that the pivot variable r can only be either an a or a y variable.
Thus σ(r) and σ(r̄) are disjoint, and hence σ(E)∪σ(F ) = [n]. Thus σ(D) = σ(E)∪σ(F ) = [n]
as claimed. ut

This completes the proof of the Theorem. ut

Since tree-like space is at least as large as space, Theorem 7 also rules out the space-width
relation for general dag-like Q-Res proofs. However, observe that Theorem 7 cannot be used
to show that the size-existential-width relationship for general dag-like proofs fails in Q-Res,
because the sentences CR′n have O(n2) variables. However, we show via another example that
the relation fails to hold in Q-Res as well. This example cannot be used for proving Theorem 7
because it is known to be hard for Q-ResT [19]. (In [19] the hardness for ∀Exp+Res is shown,
which implies hardness for Q-ResT, as ∀Exp+Res p-simulates Q-ResT.)

Theorem 8. There is a family of false QBFs φ′n in O(n) variables such that S( Q-Res φ
′
n) =

nO(1), w∃(φ
′
n) = 3, and w∃( Q-Res φ

′
n) = Ω(n).

Proof. Consider the following formulas φn, also introduced by Janota and Marques-Silva [19]:

φn = ∃e1∀u1∃c1c2 . . . ∃en∀un∃c2n−1c2n∧
i∈[n]

(
(ēi ∨ c2i−1) ∧ (ūi ∨ c2i−1) ∧ (ei ∨ c2i) ∧ (ui ∨ c2i)

)
∧

( ∨
i∈[2n]

c̄i
)
.

We know from [19], that φn have polynomial-size proofs in Q-Res (but require exponential-
size proofs in Q-ResT). However, in order to prove Theorem 8, we need a formula with constant
initial width. To achieve this we consider quantified Tseitin transformations of φn, i.e. we
introduce 2n+ 1 new existential variables xi at the innermost quantification level in φn, and
replace the only large clause in φn by any CNF formula that preserves satisfiability. Let φ′n
denote the modified formula:

φ′n = ∃e1∀u1∃c1c2 . . . ∃en∀un∃c2n−1c2n∃x0 . . . x2n∧
i∈[n]

(
(ēi ∨ c2i−1) ∧ (ūi ∨ c2i−1) ∧ (ei ∨ c2i) ∧ (ui ∨ c2i)

)
∧ (5)

x̄0 ∧
∧
i∈[2n]

(xi−1 ∨ c̄i ∨ x̄i) ∧ x2n. (6)
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Note that w∃(φ
′
n) = 3.

We refer to the clauses in (6) as x-clauses. It is clear that from the x-clauses, we can
derive the large clause of φn in 2n+ 1 resolution steps and get back φn. Thus S( Q-Res φ

′
n) ≤

S( Q-Res φn) + 2n+ 1 ∈ nO(1).

We now show that φ′n needs large existential width. We follow the same strategy used in
proving Theorem 7.

Let π be a proof in Q-Res, π Q-Res φ
′
n. List the clauses of π in sequence, π = {D0, D1, . . . , Ds =

�}, where each clause in the sequence is either a clause from φ′n, or is derived from clause(s)
preceding it in the sequence using resolution or ∀-Red. There must be at least one universal
reduction step in π, since all the initial clauses are necessary for refuting φ′n, some of them
contain universal variables, and the only way to remove a universal variable in Q-Res is by
∀-Red. Let i be the least index such that the clause Di is obtained by ∀-Red on Dj for some
0 < i. Since all x variables block all u variables, Dj and Di cannot contain any x variables.
We use this fact to show that w∃(Di) = Ω(n). Our strategy is to associate some set with each
clause in π in a specific way, and use the set size to bound existential width.

We associate the following sets with the literals of φ′n and the clauses of π.

σ(x0) = ∅
∀i ∈ [2n] σ(xi) = [i] = {1, 2, . . . , i}

σ(x̄0) = [2n]
∀i ∈ [2n] σ(x̄i) = [2n] \ [i] = {i+ 1, . . . , 2n}
∀i ∈ [n] σ(ei) = σ(ui) = σ(c̄2i) = σ(c2i−1) = {2i}
∀i ∈ [n] σ(ēi) = σ(ūi) = σ(c̄2i−1) = σ(c2i) = {2i− 1}
∀D ∈ π σ(D) =

⋃
l∈D

σ(l).

Note that for any literal `, σ(`) and σ(¯̀) are disjoint.

For D ∈ π, let πD be the sub-DAG of π, rooted at D.

Claim. πDi contains at least one x-clause (axiom clause of type (6)).

Proof. The child Dj of node Di contains a universal variable which is then removed through
∀-Red to get Di. The universal variables appear only in clauses of type (5), but are blocked
by the c-variables in every clause where they appear. Thus, before a reduction is permitted,
a c variable must be eliminated by resolution. Since all c variables appear only positively in
type (5) clauses, some x-clause must be used in the resolution. ut

We show that all clauses in πDi that are descendants of some x-clause have large sets
associated with them. In particular, we show:

Claim. Every clause D in πDi such that πD contains an x-clause has σ(D) = [2n].

Deferring the proof briefly, we continue with our argument. From the Claim we conclude that
σ(Di) = [2n]. Recall that none of the x variables belongs to Di. All other literals are associated
with singleton sets, so Di must contains at least 2n literals in order to be associated with the
complete set [2n]. Since Q-Res proofs prohibit a variable and its negation in the same clause,
at most n of the literals in Di can be universal variables. Thus Di has at least n existential
literals, hence w∃(Di) = Ω(n).

It remains to establish the claimed set size.
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Proof (of claim). We proceed by induction on the depth of descendants of x-clauses in πDi .
The base case is an x-clause itself and follows from the definition of σ.

For the inductive step, let D be obtained by resolving (E ∨ z) and (F ∨ z̄). There are two
cases to consider:

Case 1: Both (E ∨ z) and (F ∨ z̄) are descendants of x-clauses (not necessarily the same
x-clause). Then by induction, σ(E ∨ z) = σ(F ∨ z̄) = [2n]. So σ(E) ⊇ [2n] \ σ(z) and
σ(F ) ⊇ [2n] \ σ(z̄). Since σ(z) and σ(z̄) are disjoint, σ(E) ∪ σ(F ) = [2n]. Thus σ(D) =
σ(E) ∪ σ(F ) = [2n] as claimed.

Case 2: Exactly one of (E ∨ z) and (F ∨ z̄) is a descendant of an x-clause. Without loss of
generality, let F ∨ z̄ be the descendant. Then E ∨ z is either a type-(5) clause or is derived
solely from type-(5) clauses using resolution. However, observe that the only clauses derivable
solely from type-(5) clauses via resolution, without creating tautologies as mandated in Q-Res,
are of the form (c2i−1 ∨ c2i) for some i. It follows that z is not an x variable. Hence σ(z) and
σ(z̄) are distinct singleton sets. Further, z cannot be a u variable either, since resolution on
universal variables is not permitted in Q-Res.

Now note that for any type-(5) clause C, σ(C) = {2i−1, 2i} for the appropriate i. Similarly,
σ(c2i−1 ∨ c2i) = {2i− 1, 2i}. So if E ∨ z is one of these clauses, then σ(E ∨ z) = σ(z) ∪ σ(z̄)
and σ(E) = σ(z̄). Further, as in Case 1, by induction we know that σ(F ∨ z̄) = [2n] and
σ(F ) ⊇ [2n] \ σ(z̄). Hence, σ(E ∨ F ) = [2n] as claimed.

This completes the proof of the claim, and of the theorem. ut

The above counterexamples are provided by formulas that require small size, but large
existential width. We will now illustrate via another example that also large size and large
width can occur. These examples are very natural formulas based on the parity function, which
have recently been used in [10] to show exponential size lower bounds for Q-Res, and indeed
a separation between Q-Res and ∀Exp+Res. We will later use these formulas in Section 5 to
also show a separation for width between Q-Res and ∀Exp+Res.

Let xor(o1, o2, o) be the set of clauses expressing o ≡ o1⊕o2; that is, {¬o1∨¬o2∨¬o, o1∨
o2 ∨ ¬o, ¬o1 ∨ o2 ∨ o, o1 ∨ ¬o2 ∨ o}. In [10], the sentence QParityn is defined as follows:

∃x1, . . . , xn ∀z ∃t2, . . . , tn. xor(x1, x2, t2) ∪
⋃n

i=3
xor(ti−1, xi, ti) ∪ {z ∨ tn,¬z ∨ ¬tn}.

The xi variables act as the input for the parity function, and the ti variables are defined
inductively to calculate Parity(x1, . . . , xi).

We now complement the exponential size lower bound from [10] by a width lower bound.

Theorem 9. w∃( Q-Res QParityn) ≥ n.

Proof. Observe that the contradiction occurs semantically because of z ∨ tn, ¬z ∨ ¬tn. In
response to the existential player’s choice of x1, . . . , xn the universal player has to play z as
x1 ⊕ · · · ⊕ xn in order to win. In Q-Res we cannot reduce z while any of the t variables are
present; and due to the restrictions in Q-Res we cannot resolve the descendants of z ∨ tn with
descendants of ¬z ∨ ¬tn until there is at least one ∀-reduction.

We will assume without loss of generality that this happens on the positive literal z.
Therefore before this ∀-reduction step we have essentially a resolution proof π from Γ =
xor(x1, x2, t2)∪

⋃n
i=3 xor(ti−1, xi, ti)∪{tn}, where we can ignore the z literal in z∨ tn because

it does not restrict any resolution steps in this part of the proof.
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The clause D that occurs in π immediately before the ∀-reduction must only contain
variables from {x1, . . . , xn}, else the reduction is blocked.

We now use the following observation.

Claim. Suppose x1⊕· · ·⊕xn � C with C a clause, then C is either a tautology or C contains
all variables x1, . . . , xn.

Proof. Suppose the clause C is not a tautology, but the variables xi, i ∈ I 6= ∅, do not appear
in C. Since C is a non-tautological clause, there is exactly one partial assignment α falsifying
C. By setting the variables xi, i ∈ I, appropriately, we can increase α to an assignment
satisfying x1 ⊕ · · · ⊕ xn, but still falsifying C. Hence x1 ⊕ · · · ⊕ xn 2 C. ut

Γ introduces new variables, but these variables are definitions: given an assignment to the
x variables they have exactly one satisfying assignment. Furthermore, the theory of Γ is a
conservative extension of the theory of x1⊕· · ·⊕xn. This and the previous lemma mean that
∀i ∈ [n], xi ∈ var(D), and therefore D has existential width n. ut

5 Simulations: Preserving size, width, and space across calculi

After these strong negative results, ruling out size-width and space-width relations in Q-Res
and Q-ResT, we aim to determine whether any positive results hold in the expansion systems
∀Exp+Res and IR-calc. Before we can do this we need to relate the measures of size, width,
and space across the three calculi Q-Res, ∀Exp+Res, IR-calc. Of course, such a comparison in
terms of refined simulations is also interesting in its own as it determines the relative strength
of the different proof systems. As size corresponds to running time, and space to memory
consumption of QBF solvers, such a comparison yields interesting insights into the power of
QBF solvers using CDCL vs. expansion techniques.

It is known that IR-calc p-simulates ∀Exp+Res and Q-Res [9], and that ∀Exp+Res p-
simulates Q-ResT [19]. We revisit these proofs, with special attention to the width parameter,
and also obtain simulating proofs that are tree-like if the original proof is tree-like. The
relationships we establish are stated in the following theorem:

Theorem 10. For all false QBFs F , the following relations hold:

1. 1
2S( IRT-calc

F) ≤ S( ∀Exp+ResT
F) ≤ S( IRT-calc

F) ≤ 3S( Q-ResT
F).

2. w( IR-calc F) = w( ∀Exp+Res F) ≤ w∃( Q-Res F).

3. Space( ∀Exp+ResT
F) = Space( IRT-calc

F) ≤ Space( Q-ResT
F).

These results follow from Proposition 11 and Lemmas 12, 13 that are stated and established
below.

Proposition 11 ( [9]). Any proof in ∀Exp+Res of size S, width W , and space C can be
efficiently converted into a proof in IR-calc of size at most 2S, width W , and space C. If the
proof in ∀Exp+Res is tree-like, so is the resulting IR-calc proof.

Proof. In IR-calc, when an axiom is downloaded, the existential literals in it are annotated
partially. However in ∀Exp+Res, the annotations are complete; all universal variables at a
lower level than a literal appear in its annotation. To convert a proof π in ∀Exp+Res to one
in IR-calc, all that is needed is to follow up each axiom-download with an instantiation that
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completes the annotations as in π. This introduces at most one extra step per leaf but does
not increase width. Also observe that the space required has not changed: to instantiate a
clause we can reuse the same space. ut

Lemma 12. ∀Exp+ResT p-simulates IRT-calc while preserving its width, size, and space.

Proof. Recall the main reason why IRT-calc proofs differ from those in ∀Exp+ResT: axioms are
downloaded with partial rather than complete annotations, and annotations can be extended
at any stage by the inst operation.

The idea is to systematically transform an IRT-calc proof, proceeding downwards from the
top where we have the empty clause, and modifying annotations as we go down, so that when
all leaves have been modified the resulting proof is in fact an ∀Exp+ResT proof. This crucially
requires that we start with a tree-like proof; if the underlying graph is not a tree, we cannot
always find a way of modifying the annotations that will work for all descendants.

Let π be an IRT-calc proof of a false QBF F . Without loss of generality, we can assume
that every resolution node has, as parent, an instantiation node. (If it does not, we introduce
the dummy inst(∅, ∗) node between it and its parent.) Since the proof is tree-like, we can also
collapse contiguous instantiation nodes into a single instantiation node. Thus, as we move
down a path from the root, nodes are alternately instantiation and resolution nodes. We
consider each resolution node and its parent instantiation node to be at the same level.

Starting from the top, which we call level zero, we transform π to another proof π′ in
IRT-calc maintaining the following invariants: after the ith step, all the instantiated clauses
up to level i are fully annotated and the instantiating assignments are complete. Thus the
instantiation steps become redundant. This further implies that after the last level (when we
reach the axiom farthest from the top), the resulting proof is in fact a ∀Exp+ResT proof.

– At level 0: The node at this level must be a resolution producing the empty clause,
followed by a dummy instantiation with the empty assignment. Thus the clauses at this
level are already fully annotated, but the instantiating assignment is far from complete.
Pick an arbitrary complete assignment, say σ, and instantiate the empty clause with σ.
Clearly the invariants hold now.

– Assume that the invariants holds after processing all nodes at level i− 1.
– At level i: Let D be an instantiated clause at level i − 1, obtained by instantiating

some clause C by an assignment σ. That is, D = inst(C, σ). By the induction hypothesis,
D is fully annotated and σ is complete. Let C be obtained by resolving E = (G ∨ xτ )
and F = (H ∨ ¬xτ ). We need to make E and F fully annotated. Let E = inst(I, β1) and
F = inst(J, β2) in π. Replace E by E′ = inst(I, β1 Y σ) and F by F ′ = inst(J, β2 Y σ). As
σ is complete, both β1 Y σ and β2 Y σ are complete, and hence both E′ and F ′ are fully
annotated. The resolution step is now performed on xτ

′
, where τ ′ = τ Y σ is the resulting

annotation on x. It is easy to see that the resolvent of E′ and F ′ is D, so the intermediate
instantiation step going from C to D becomes redundant.

It is clear that the simulation preserves width. It also does not increase size: we may intro-
duce dummy instantiation nodes to make the proof ‘alternating’, but after the transformation,
all instantiations — dummy and actual — are eliminated completely. It is also clear that the
simulation preserves the space needed, since the structure of the proof is preserved. ut

The simulation in Lemma 12 exhibits an interesting phenomenon: while it shows that the
tree-like versions of ∀Exp+Res and IR-calc are p-equivalent, it was shown in [10] that in the
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dag-like versions, IR-calc is exponentially stronger than ∀Exp+Res. Thus ∀Exp+Res and IR-
calc provide a rare example in proof complexity of two systems that coincide in the tree-like
model, but are separated in the dag-like model.

Lemma 13. IRT-calc p-simulates Q-ResT while preserving space and existential width ex-
actly and size upto a factor of 3. That is, S( IRT-calc

F) ≤ 3S( Q-ResT
F), Space( IRT-calc

F) ≤
Space( Q-ResT

F), and w( IR-calc F) ≤ w∃( Q-Res F).

Proof. We use the same simulation as given in [9]. This simulation was originally for dag-like
proof systems, but here we check that it also works for tree-like systems, and we observe that
space and existential width are preserved.

Let C1, . . . , Ck be a Q-ResT proof. We translate the clauses into clauses D1, . . . , Dk, which
will form the skeleton of a proof in IR-calc.

– For an axiom Ci in Q-ResT we introduce the same clause Di by the axiom rule of IR-calc,
i.e., we remove all universal variables and add annotations.

– If Ci is obtained via ∀-reduction from Cj , then Di = Dj ; we make no change.

– Consider now the case that Ci is derived by resolving Cj and Ck with pivot variable x.
Then Dj = xτ ∨Kj and Dk = x̄σ ∨Kk. It is shown in [9] that the annotations τ and σ
are not contradictory; in fact, no annotations in the two clauses are contradictory. So if
we define D′j = inst(σ,Dj) and D′k = inst(τ,Dk), then the annotations of x in D′j and x̄
in D′k match, and we can resolve on this literal. Define D′i as the resolvent of D′j and D′k.
We can perform a further instantiation to obtain Di = inst(η,Di), where η is the set of
all assignments to universal variables appearing anywhere in D′i. Di has no more literals
than Ci. For details, see [9].

Note that to complete this skeleton into a proof, we only add instantiation rules. Thus, if the
original proof was tree-like, so is the new proof. If the original proof has size S, the new proof
has size at most 4S, since each resolution may now be preceded by two instantiations and
followed by one instantiation. However, this is an overcount, since we are counting two instan-
tiations per edge, one from the parent and one from the child, and contiguous instantiations
can be collapsed. That is, every instantiation following a resolution step can be merged with
the instantiation preceding the next resolution and need not be counted separately. The only
exception is at the root, where there is nothing to collapse it with. However, at the root, the
instantiation itself is redundant and can be discarded. Thus we obtain a new proof of size at
most 3S.

Further, if the original proof had existential width w, then the new proof has width w
since each Di has at most (annotated versions of) the existential literals of Ci.

Regarding space, observe that simulating axiom download and ∀-Red do not require ad-
ditional space. At the resolution step, the simulation first performs additional instantiations.
But instantiation does not need additional space. So the space bound remains the same. ut

As a by-product, these simulations enable us to give an easy and elementary proof of
the simulation of Q-ResT by ∀Exp+Res, shown in [19] via a more involved argument. In fact,
our result improves upon the simulation from [19] as we show that even tree-like ∀Exp+Res
suffices to p-simulate Q-ResT.

Corollary 14 (Janota, Marques-Silva [19]). ∀Exp+ResT p-simulates Q-ResT.
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Proof. By Lemma 12, ∀Exp+ResT p-simulates IRT-calc, which in turn p-simulates Q-ResT by
Lemma 13. ut

Using again the width lower bound for QParityn (Theorem 9) we can show that item 2
of Theorem 10 cannot be improved, i.e. we obtain an optimal width separation between Q-Res
and ∀Exp+Res.

Theorem 15. There exist false QBFs ψn with w∃( Q-Res ψn) = Ω(n), but w( ∀Exp+Res ψn) =
O(1).

Proof. We use the QParityn formulas, which by Theorem 9 require existential width n in
Q-Res. To get the separation it remains to show w( ∀Exp+Res QParityn) = O(1). For this we
use the following ∀Exp+Res proofs of QParityn from [10]: the formulas QParityn have
exactly one universal variable z, which we expand in both polarities 0 and 1. This does not

affect the xi variables, but creates different copies t
z/0
i and t

z/1
i of the existential variables

right of z. Using the clauses of xor(ti−1, xi, ti), we can inductively derive clauses representing

t
z/0
i = t

z/1
i . This lets us derive a contradiction using the clauses t

z/0
n and ¬tz/1n .

Clearly, this proof only contains clauses of constant width, giving the result. ut

6 Positive results: Size, width, and space in tree-like QBF calculi

We are now in a position to show some positive results on size-width and size-space relations
for QBF resolution calculi. However, most of these results only apply to rather weak tree-like
proof systems.

6.1 Relations in the expansion calculi ∀Exp+Res and IR-calc

We first observe that for ∀Exp+Res almost the full spectrum of relations from classical reso-
lution remains valid.

Theorem 16. For all false QBFs F , the following relations hold:

1. S( ∀Exp+ResT
F) ≥ 2

(w( ∀Exp+Res F))−w∃(F)).

2. S( ∀Exp+ResT
F) ≥ 2

Space( ∀Exp+ResT
F) − 1.

3. Space( ∀Exp+ResT
F) ≥ Space( ∀Exp+Res F) ≥ w( ∀Exp+Res F)− w∃(F) + 1.

Proof. This theorem follows from the analogous statements for classical resolution. We just
describe how to apply those results to ∀Exp+Res.

We know that in ∀Exp+ResT proofs, leaves corresponds to the expanded clauses from F .
The expanded clauses contain only existential (annotated) literals and no universal literals.
Let G be the QBF obtained after expanding F based on all possible assignments of universal
variables. Clearly, G contains no universal variables and hence can be treated as a propositional
CNF formula (all variables are only existentially quantified). That is, if G is the matrix of
clauses in G, then G asserts that G is satisfiable. Also, w(G) = w(G) = w∃(F).

Refutations of F in ∀Exp+Res (respectively, ∀Exp+ResT) are precisely refutations (resp.
tree-like refutations) ofG in classical resolution; the size, space and width are exactly the same,
by definition. That is, S( ResT

G) = S( ∀Exp+ResT
F), w( Res G) = w( ∀Exp+Res F), Space( Res G) =

Space( ∀Exp+Res F), and Space( ResT
G) = Space( ∀Exp+ResT

F). Now the Theorem follows by ap-
plying Theorems 2, 3, and 4, on G. ut
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By the equivalence of ∀Exp+ResT and IRT-calc with respect to all the three measures size,
width, and space (Theorem 10) we can immediately transfer all results from Theorem 16 to
IRT-calc.

Theorem 17. For all false QBFs F , the following relations hold:

1. S( IRT-calc
F) ≥ 2(w( IR-calc F))−w∃(F)).

2. S( IRT-calc
F) ≥ 2Space( IRT-calc

F) − 1.
3. Space( IRT-calc

F) ≥ w( IR-calc F)− w∃(F) + 1.

6.2 The size-space relation in tree-like Q-resolution

We finally return to Q-Res. Most relations were already ruled out in Section 4 for both Q-Res
and Q-ResT. The only relation that we can still show to hold is the classical size-space relation
(Theorem 3), which we transfer from ResT to Q-ResT.

In classical resolution, this relationship was obtained using pebbling games [17]. We ob-
serve that the same holds for Q-ResT as well, giving the analogous relationship. That is, we
show:

Theorem 18. For a false QBF sentence F ,

S( Q-ResT
F) ≥ 2

Space
(

Q-ResT
F
)
− 1.

Before getting into the proof, we describe the pebbling game.

Definition 19. (Pebbling Game) Let G = (V,E) be a connected directed acyclic graph with
a unique sink s, where every vertex of G has fan-in at most 2. The aim of the game is to put
a pebble on the sink of the graph following this set of rules:

1. A pebble can be placed on any source vertex, that is, on a vertex with no predecessors.
2. A pebble can be removed from any vertex.
3. A pebble can be placed on an internal vertex provided all of its children are pebbled. In

this case, instead of placing a new pebble on it, one can shift a pebble from a child to the
vertex.

The minimum number of pebbles needed to pebble the unique sink following the above rules is
said to be the pebbling number of G.

Consider the proof graph Gπ corresponding to a Q-Res proof π of a false QBF F . In Gπ
clauses are the vertices and edges go from the hypotheses to the conclusion of inference rules
(i.e, ∀-Red, resolution steps). Clearly Gπ is a DAG with initial clauses as sources and the
empty clause as the unique sink. Also the in-degree of each vertex in Gπ is at most 2. Hence
the pebbling game is well defined in Gπ.

We now show that the space required to refute a false QBF sentence F (as per Definition 1)
coincides with the minimum number of pebbles needed to play the pebble game on the graph
of a Q-Res proof of F . The relation holds for tree-like proofs as well.

Lemma 20. Let F be a false QBF in prenex form. Then the following holds:

1. Space( Q-Res F) = min{k : ∃ Q-Res proof π of F , Gπ can be pebbled with k pebbles };
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2. Space( Q-ResT
F) = min{k : ∃ Q-ResT proof π of F , Gπ can be pebbled with k pebbles}.

Proof (Sketch). The proof is exactly the same as in classical resolution.
Let π be a Q-Res proof whose proof graph Gπ can be pebbled with k pebbles. (If π is

treelike, then Gπ is a tree.) Note that the vertices of Gπ are clauses in the proof. The space-
oriented Q-Res (respectively Q-ResT) proof sequence with clause space k is constructed by
maintaining at each stage exactly the pebbled clauses. By the rules of the pebbling game,
adding a clause to the current set is valid because the added clause is either at a source node
and hence an axiom, or it has all predecessors pebbled and hence can be inferred. Further, if
π is tree-like, then it can be shown that there is a k-pebble sequence where no node is pebbled
more than once (once a node is pebbled, no predecessor of the node need be pebbled again).
So the above construction will yield a tree-like space-k proof sequence.

In the other direction, given a space-k proof as a sequence σ, we can construct a corre-
sponding DAG G with nodes for each clause appearing anywhere in σ, and edges reflecting
how the clauses are used for inference in σ. Thus we obtain a proof π with Gπ = G (it is
the same proof as σ, just represented differently). We can pebble G with k pebbles by main-
taining the invariant that at each stage, pebbles are placed on exactly the clauses present in
the corresponding formula in the sequence σ. If σ is a tree-like space-k proof, we construct a
corresponding tree with a distinct node for every copy of a clause introduced at some stage
in σ, and then pebble it as above. We omit the details. ut

We can now prove Theorem 18.

Proof (of Theorem 18). This proof too is almost identical to the proof for classical resolution
[17]. We give a brief sketch.

Let S( Q-ResT
F) = s. Consider a tree-like Q-ResT proof π of F (i.e, π Q-ResT

F), of size s,
and let T be the underlying proof-tree.

In contrast to classical resolution, a proof graph in Q-Res may have unary nodes corre-
sponding to ∀-reductions. In particular, for a proof in Q-ResT, there may be paths corre-
sponding to series of ∀-reductions. Once the lower end of such a path is pebbled, the same
pebble can be slid up to the top of the path; no additional pebbles are needed. So without loss
of generality we work with the tree T ′ obtained by shortcutting all paths containing unary
nodes.

Let dc(T ) be the depth of the biggest complete binary tree that can be embedded in T ′

or in T . (We say that a graph G1 is embeddable in a graph G2 if a graph isomorphic to G2

can be obtained from G1 by adding vertices and edges or subdividing edges of G1.) Clearly,
2dc(T )+1 − 1 ≤ s.

By induction on |T ′|, we can show that dc(T ) + 1 pebbles suffice to pebble T ′. Hence, by
the argument given above, dc(T )+1 pebbles suffice to pebble T as well. Now, using Lemma 20,
we obtain Space( Q-ResT

F) ≤ dc(T ) + 1. Hence

2
Space( Q-ResT

F) − 1 ≤ 2dc(T )+1 − 1 ≤ s = S( Q-ResT
F)

as claimed. ut

7 Conclusion

Our results show that the success story of width in resolution needs to be rethought when
moving to QBF. Indeed, the question arises: is width a central parameter in QBF resolution?
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Is there another parameter that plays a similar role as classical width for understanding QBF
resolution size and space?

Our findings almost completely uncover the picture for size, space, and width for the
most basic and arguably most important QBF resolution systems Q-Res, ∀Exp+Res, and IR-
calc. The most immediate open question arising from our investigation is whether size-width
relations hold for general dag-like ∀Exp+Res or IR-calc proofs. The issue here is that in the
classical size-width relation of [6] the number of variables enters the formula in a crucial way.
For the instantiation calculi it is not clear what should qualify as the right count for this as
different annotations of the same existential variable are formally treated as distinct variables
(which is also clearly justified by the semantic meaning of expansions).

For further research it will also be interesting whether size-width or space-width relations
apply to any of the stronger QBF resolution systems QU-Res [27], LD-Q-Res [2], or IRM-calc [9].
However, we conjecture that the negative picture also prevails for these systems.
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10. Olaf Beyersdorff, Leroy Chew, and Mikoláš Janota. Proof complexity of resolution-based QBF calculi. In
Proc. Symposium on Theoretical Aspects of Computer Science, pages 76–89. LIPIcs series, 2015.

11. Olaf Beyersdorff, Leroy Chew, Meena Mahajan, and Anil Shukla. Feasible interpolation for QBF resolution
calculi. In Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015, pages
180–192, 2015.

12. Olaf Beyersdorff, Leroy Chew, and Karteek Sreenivasaiah. A game characterisation of tree-like Q-resolution
size. In Proc. 9th International Conference on Language and Automata Theory and Applications, volume
8977 of Lecture Notes in Computer Science, pages 486–498. Springer-Verlag, Berlin Heidelberg, 2015.

13. Olaf Beyersdorff and Oliver Kullmann. Unified characterisations of resolution hardness measures. In SAT,
pages 170–187, 2014.

14. Archie Blake. Canonical expressions in boolean algebra. PhD thesis, University of Chicago, 1937.
15. Maria Luisa Bonet and Nicola Galesi. A study of proof search algorithms for resolution and polynomial

calculus. In Proceedings 40th Annual Symposium on Foundations of Computer Science, IEEE, 1999.

21



16. Uwe Egly, Martin Kronegger, Florian Lonsing, and Andreas Pfandler. Conformant planning as a case
study of incremental QBF solving. In Artificial Intelligence and Symbolic Computation AISC 2014, pages
120–131, 2014.

17. Juan Luis Esteban and Jacobo Torán. Space bounds for resolution. Information and Computation,
171(1):84–97, 2001.

18. Yuval Filmus, Massimo Lauria, Mladen Miksa, Jakob Nordström, and Marc Vinyals. From small space to
small width in resolution. In 31st International Symposium on Theoretical Aspects of Computer Science,
STACS 2014, pages 300–311, 2014.

19. Mikolás Janota and Joao Marques-Silva. Expansion-based QBF solving versus Q-resolution. Theor.
Comput. Sci., 577:25–42, 2015.

20. Hans Kleine Büning, Marek Karpinski, and Andreas Flögel. Resolution for quantified Boolean formulas.
Inf. Comput., 117(1):12–18, 1995.
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