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Abstract

The Unique Coverage problem, given a universe V of elements and a collection E of sub-
sets of V , asks to find S ⊆V to maximize the number of e ∈ E that intersects S in exactly one
element. When each e ∈ E has cardinality at most k, it is also known as 1-in-k Hitting Set, and
admits a simple Ω( 1

logk )-approximation algorithm.

For constant k, we prove that 1-in-k Hitting Set is NP-hard to approximate within a factor
O( 1

logk ). This improves the result of Guruswami and Zhou [SODA’11, ToC’12], who proved
the same result assuming the Unique Games Conjecture. For Unique Coverage, we prove that
it is hard to approximate within a factor O( 1

log1−ε n
) for any ε > 0, unless NP admits quasipoly-

nomial time algorithms. This improves the results of Demaine et al. [SODA’06, SICOMP’08],
including their ≈ 1/ log1/3 n inapproximability factor which was proven under the Random
3SAT Hypothesis. Our simple proof combines ideas from two classical inapproximability
results for Set Cover and Constraint Satisfaction Problem, made efficient by various deran-
domization methods based on bounded independence.
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1 Introduction
Given a universe V of n elements and a collection E of m subsets of V , the Unique Coverage
problem asks to find S ⊆ V to maximize the number of e ∈ E that intersects S in exactly one
element. When each e ∈ E has size at most k, this problem is also known as 1-in-k Hitting Set
(abbreviated as 1-in-k HS).

Unique Coverage models numerous practical situations where each element represents a ser-
vice and each subset represents a customer interested in services it contains. We want to activate
some services to satisfy customers, but customers want exactly one service from her list to be ac-
tivated because more than one service may lead to confusion or high cost. These natural scenarios
have been studied in many fields including wireless networks, radio broadcast, and envy-free pric-
ing. We refer the reader to the work of Guruswami and Trevisan [6] and Demaine et al. [3] for
a more detailed list of applications. Chalermsook et al. [2] showed an approximation-preserving
reduction from Unique Coverage to a special case of envy-free pricing called the Tollbooth Pricing
problem, so our result improves the hardness of Tollbooth Pricing as well.

There is a simple Ω( 1
logk)-approximation algorithm for 1-in-k HS. First, consider the case

where each subset e has the same cardinality k (also known as 1-in-Ek HS). Independently adding
each v ∈ V to S with probability 1

k will ensure that each set e ∈ E will intersect S in exactly one
element with probability (1− 1

k )
k−1, which approaches 1

e as k grows. For the general case where
each subset has cardinality at most k (assume k is a power of 2), randomly choosing a value
l ∈ {2,4,8, . . . ,k} first and independently adding each v ∈ V to S with probability 1

l will give an
Ω( 1

logk)-approximation algorithm. If there exists S ⊆V that intersects every subset in exactly one
element, solving the standard LP relaxation and independently rounding with the resulting solution
will guarantee a factor 1/e-approximation even if the subsets have different sizes [6].

These approximation algorithms highlight interesting theoretical aspects of this problem. 1-in-
k HS can be naturally interpreted as a Constraint Satisfaction Problem (CSP) where each element
v ∈ V becomes a variable taking a value from {0,1} (v ← 1 corresponds to v ∈ S), and each
subset becomes a constraint. Each constraint e = (v1, . . . ,vl) is satisfied by an assignment σ :
V → {0,1} if and only if σ(v1)+ · · ·+σ(vl) = 1. An Ω(1)-approximation for 1-in-Ek HS and
an Ω( 1

logk)-approximation for 1-in-k HS exhibit an example where mixing predicates of different
arities decreases the best approximation ratio significantly. The second Ω(1)-approximation when
every subset can be intersected exactly once shows a rare example where perfect completeness of a
CSP allows a much better approximation. When k is a growing function of n, as pointed out in [3],
Unique Coverage is one of few natural maximization problems for which the tight approximation
threshold is (semi)-logarithmic.

There are even more theoretically interesting developments from the hardness side. Demaine,
Feige, Hajiaghayi, and Salavatipour [3] showed it is hard to approximate Unique Coverage within
a factor of Ω( 1

logε n) for some constant ε > 0 depending on δ , assuming that NP 6⊆ BPTIME(2nδ

)

for some constant δ > 0. Their second result proved that the inapproximability can be strengthened
to Ω( 1

log1/3−ε n
) for any ε > 0 assuming Feige’s Random 3SAT Hypothesis [5]. For 1-in-k HS for

constant k, Guruswami and Zhou [7] recently proved that the Ω( 1
logk)-approximation is optimal,

assuming Khot’s Unique Games Conjecture [8]. As many other problems whose strong inapprox-
imabilities are known only under one of Feige’s or Khot’s conjecture, it was open whether we were

1



able to bypass these conjectures to show almost optimal inapproximability only assuming P 6= NP
or NP 6⊆ QP.

Our main contribution in this work is a positive answer to this question. For 1-in-k HS for
constant k, we prove the following theorem.

Theorem 1.1. Assuming P 6= NP, for large enough constant k, there is no polynomial time algo-
rithm that approximates 1-in-k HS within a factor better than O( 1

logk).

This result bypasses the Unique Games Conjecture to show that the simple Ω( 1
logk)-approximation

algorithm is the best polynomial time algorithm up to a constant factor. For Unique Coverage, we
prove that following theorem. Recall that QP= ∪c∈NDTIME(2logc n).

Theorem 1.2. Assuming NP 6⊆ QP, for any ε > 0, there is no polynomial time algorithm that
approximates Unique Coverage within a factor better than 1

log1−ε n
.

Compared to the first result of Demaine et al., we replace their assumption NP 6⊆BPTIME(2nδ

)
for some δ by a much weaker assumption NP 6⊆ QP and at the same time show an improved (and
near-optimal) inapproximability factor, which is near-optimal and also improves their second result
conditioned on the Random 3SAT Hypothesis.

Besides these improvements, our proof is also significantly simpler than previous works. The
result of Guruswami and Zhou for constant k is obtained by constructing a gap instance for a
semidefinite programming (SDP) relaxation for the problem, and using the sophisticated result
of Raghavendra [12] that converts a SDP gap to a Unique Games hardness. Demaine et al. first
showed a reduction from Unique Coverage to an intermediate problem called Balanced Bipartite
Independent Set (BBIS), and uses the Random 3SAT Hypothesis or Khot’s Quasirandom PCP [9]
to prove hardness of BBIS. Our two theorems are corollaries of one simple reduction from the
basic Label Cover, whose hardness relies only on the PCP theorem and the Parallel Repetition
Theorem.

1.1 Techniques

While Unique Coverage can be interpreted as a CSP, it also seems similar to the Max k-Coverage
problem, where given a set system (V,E), we want to find a subset S⊆V with |S|= k that intersects
as many e ∈ E as possible.1 Max k-Coverage is tightly related to the more famous Set Cover
problem, and admits an e−1

e -approximation algorithm which is proved to be tight [11, 4]. It can
be also interpreted as a variant of CSPs where each element becomes a variable taking a value
from {0,1}, and each subset becomes a constraint that is satisfied if at least one of its variables is
assigned 1, and we additionally require that at most k variables have to be assigned 1.

A weaker but simple inapproximability of Max k-Coverage can be proved via the Label Cover
problem. An instance of Label Cover consists of a biregular bipartite graph G = (UG ∪VG,EG)
where each edge e = (u,v) is associated with a projection πe : [R] 7→ [L] for some positive integers
R and L, and we look for a labeling l : UG ∪VG 7→ [R] that satisfies as many e ∈ EG as possible

1Max k-Coverage is usually stated in terms of the dual set system, where we want to find a subcollection E ′ ⊆ E
of subsets with |E ′|= k that maximizes the number of elements covered.

2



(e = (u,v) is satisfied when πe(l(v)) = l(u)). Given an instance of Label Cover, the reduction to
Max k-Coverage makes every (vertex, label)-pair of Label Cover as an element of the set system,
and for each projection e = (u,v) ∈ EG and b ∈ {0,1}L, there is a subset corresponding to (e,b)
containing {(u, j) : b j = 0}∪{(v, j) : bπe( j) = 1}. It is a simple but useful exercise to check that if
a labeling l satisfies every projection, its canonical set {(v, l(v)) : v ∈UG∪VG} will intersect every
subset exactly once. However, it is also easy to see that for any labeling l, its canonical set will
intersect at least half of subsets exactly once.

To prove a stronger inapproximability result, we have a subset for each tuple (e1, . . . ,eq,b)
for various values of q where e1, . . . ,eq share an endpoint in UG. If l satisfies all e1, . . . ,eq, its
canonical set will intersect (e1, . . . ,eq,b) in exactly one element for many (but not all) b, but if l
does not even approximately satisfy e1, . . . ,eq, there is no way to intersect many subsets in exactly
one element. Even though our technique is different from traditional hardness results for Max-
CSPs (e.g., no long code consisting of variables), the idea of probabilistic checking (i.e., subsets
have weights summing up to 1, and the instance is interpreted as a probabilistic procedure where
we sample a subset e according to weights and check |S∩e|= 1) conceptually simplifies the proof,
and technically makes the reduction efficient by appealing to various derandomization methods
based on bounded independence.

1.2 Preliminaries

An instance of Unique Coverage is simply a set system. We view the set system as a hypergraph
H = (VH ,EH) where VH is the universe of elements and EH is a collection of hyperedges. Unless
stated otherwise, every log in this work indicates a logarithm base 2. We use a ∼ D to indicate
that a random variable a is sampled from a distribution D . When a random variable a is sampled
uniformly from a set A, we write a ∈ A. For a positive integer m, we denote [m] := {1,2, . . . ,m}.

2 Reduction from Label Cover

Our main reduction is from Label Cover. An instance of Label Cover consists of a biregular
bipartite graph G = (UG∪VG,EG) where each edge e = (u,v) is associated with a projection πe :
[R] 7→ [L] for some positive integers R and L. For u ∈ UG, let N(u) denote its neighbors and
D := |N(u)| be the left degree. We additionally require that every projection πe is d-regular, i.e.,
R = dL and for every l ∈ [L], |π−1

e (l)| = d. A labeling l : UG∪VG 7→ [R] satisfies e = (u,v) when
πe(l(v)) = l(u). The standard application of PCP Theorem, Parallel Repetition Theorem, and the
trick of Wenner [13] to make each projection d-regular2, implies the following theorem.

Theorem 2.1. There exists an absolute constant τ < 1 such that the following is true. For any
positive integer r > 0, there is a reduction that given an instance φ of 3SAT with n variables,
outputs an instance of Label Cover (G,{πe}e) with |UG|, |VG|= nO(r), R = 10r,L = 2r,d = D = 5r

in time nO(r), and satisfies the following.

• Completeness: If φ is satisfiable, there exists a labeling that satisfies every projection.
2The basic 2-prover game based on 3SAT does not make the projections d-regular, but a simple trick allows us to

assume this without loss of generality. See Theorem 1.17 of Wenner [13] for the formal proof.
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• Soundness: If φ is not satisfiable, every labeling satisfies at most τr fraction of projections.

Given an instance of Label Cover G = (UG∪VG,EG) with projections {πe}e∈EG with parame-
ters R,L,D,d, we produce an instance H = (VH ,EH) of Unique Coverage. The set of vertices VH is
defined to be VG× [R]. In the following, we describe a probabilistic procedure to sample a hyper-
edge e. EH is defined to be the set of hyperedges with nonzero probability, with these probabilities
as weights. We abuse notation and let EH also denote the distribution. There are three distributions
used to describe the entire procedure.

1. Let Q be a positive integer to be determined later. We will take Q to be a power of 2 and
Q < D. Let D be a uniform distribution on {2,4,8, . . . ,Q}.

2. For each u ∈UG, let Du,Q be a uniform pairwise independent distribution on (v1, . . . ,vQ) ∈
N(u)Q such that

Pr
(v1,...,vQ)∼Du,Q

[vi = v,v j = v′] =
1

D2 for all i 6= j ∈ [Q] and v,v′ ∈ N(u),

and its support has size D2. Note that it implies that Pr[vi = v] = 1
D for all i ∈ [Q] and

v ∈ N(u).

Claim 2.2. Such a distribution Du,Q exists.

Proof. Du,Q can be described by the following standard procedure. Fix a bijection f from
N(u) to the finite field FD (recall D is a power of 5), another injective mapping g from [Q]
to a subset of FD, sample a,b ∈ FD independnetly, and output vi← f−1(a ·g(i)+b). It is a
standard fact that this distribution is uniform pairwise independent.

3. Let DL be a uniform 4-wise independent distribution on (c1, . . . ,cL) ∈ {0,1}L such that

Pr
(c1,...,cL)∼DL

[c ji = bi for 16 i6 4] =
1
24 ∀ ( j1, j2, j3, j4)∈

(
[L]
4

)
and (b1,b2,b3,b4)∈{0,1}4,

and its support has size 2L2.

Claim 2.3. Such a distribution DL exists.

Proof. DL can be described by the following standard procedure. Fix a bijection f from [L]
to the finite field FL (recall L is a power of 2). Sample a,b ∈ FL and d ∈ F2 independently,
and output ci← Tr(a · f (i)3 + b · f (i))+ d where Tr is the Trace map from FL to F2. This
distribution is uniform over codewords of a dual BCH code (the dual of the extended form
of the BCH code of designed distance 5 to be precise). It is well known that this distribution
is uniform 4-wise independent (eg. see the monograph of Luby and Wigderson [10]).

Given these distributions, a random hyperedge e is sampled by the following procedure.

• Sample u ∈UG.
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• Sample q∼D .

• Sample (v1, . . . ,vQ)∼Du,Q. Note that only v1, . . . ,vq are used in the reduction. This slightly
redundant sampling reduces the number of distributions involved and simplifies our analysis.

• Sample (c1, . . . ,cL)∼DL.

• For j ∈ [L], consider a block of vertices ∪q
i=1({vi}×π

−1
(u,vi)

( j)). Every block has cardinality
at most qd. It has exactly qd vertices when v1, . . . ,vQ are pairwise distinct.

– If c j = 0, add d vertices in {v1}×π
−1
(u,v1)

( j) to e.

– If c j = 1, add the entire block to e.

Note that the maximum cardinality of any hyperedge is RQ. Also note that |VH |= |VG| ·R and the
total number of hyperedges with nonzero probability is bounded by |UG| · logQ ·D2 ·2L2.

2.1 Completeness

Lemma 2.4. If the instance (G,{πe}e) of Label Cover admits a labeling l that satisfies every
projection, there exists S⊆VH such that Pre∼EH [|e∩S|= 1]> 1

2 .

Proof. Given a labeling l : UG∪VG 7→ [R], let S := ∪v∈VG{(v, l(v))}. From the above probabilistic
procedure to sample a hyperedge e, every choice of u, q, v1, . . . ,vq satisfies π(u,v1)(l(v1)) = · · · =
π(u,vq)(l(vq)). In particular, S and ∪q

i=1({vi}× [R]) intersect in exactly one block corresponding to
l(u) ∈ [L]. Therefore, if cl(u) = 0, which happens with probability 1

2 , (v1, l(v1)) is the only element
in S∩ e.

2.2 Soundness

For soundness, we prove that if the Label Cover instance (G,{πe}) does not admit a good labeling,
the Unique Coverage instance H does not have a good solution either.

Lemma 2.5. If every labeling l : UG∪VG 7→ [R] satisfies at most ε fraction of projections, for every
S⊆VH , Pre∼EH [|e∩S|= 1]6 2Q

√
ε + Q2

D +O
( 1

logQ

)
.

Proof. Fix S ⊆ VH . We construct a partial labeling l : VG 7→ [R] as follows. For each v ∈ VG and
j ∈ [R], we say that v picks j if (v, j) ∈ S. If v picked at least one label, we choose an arbitrary
picked label j and set l(v) = j. Otherwise, we set l(v) = /0, which means that every projection
including v will not be satisfied. Note that we have not defined labels for UG yet.

For q ∈ {2,4,8, . . . ,Q}, u ∈ UG, and v1, . . . ,vq ∈ N(u), we say that (u,v1, . . . ,vq) is weakly
satisfied by a partial labeling to VG if there exist 1 6 i < j 6 q such that l(vi) 6= /0, l(v j) 6= /0, and
π(u,vi)(l(vi)) = π(u,v j)(l(v j)). Note that if the Label Cover instance admitted a labeling l∗ that satis-
fied every projection, every tuple (u,v1, . . . ,vq) with v1, . . . ,vq ∈N(u) would satisfy π(u,v1)(l

∗(v1))=
· · ·= π(u,vq)(l

∗(vq)). The following claim shows that since the Label Cover instance does not admit
a good labeling, if we sample u,v1, . . . ,vQ as in the reduction, (u,v1, . . . ,vQ) is unlikely to be even
weakly satisfied.
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Claim 2.6. Suppose we sample u∈UG and (v1, . . . ,vQ)∼Du,Q. The probability that (u,v1, . . . ,vQ)
is weakly satisfied is at most Q2ε .

Proof. Fix 16 i< j 6Q. By uniform pairwise independence of Du,Q, the probability that π(u,vi)(l(vi))=
π(u,v j)(l(v j)) is equal to the expected fraction of satisfied projections of the randomized exten-
sion to the current labeling l where each u ∈ UG picks a random neighbor v ∈ N(u) and set
l(u)← π(u,v)(l(v)). Since every labeling satisfies at most ε fraction of constraints, the proba-
bility that π(u,vi)(l(vi)) = π(u,v j)(l(v j)) is at most ε . The claim follows by taking union bound over(Q

2

)
pairs.

By an averaging argument, the fraction of u ∈UG such that

Pr
(v1,...,vQ)∼Du,Q

[(u,v1, . . . ,vQ) is weakly satisfied]> Q
√

ε

is at most Q
√

ε . Call these u bad, and fix a good u. Since the probability that vi = v j is exactly 1
D

for fixed i 6= j,

Pr
(v1,...,vQ)∼Du,Q

[∃i 6= j s.t. vi = v j]6

(
Q
2

)
1
D

6
Q2

D
. (1)

Fix q ∈ {2,4,8, . . . ,Q}. For fixed u, by the definition of weak satisfaction, the probability of
weak satisfaction decreases as the number of considered neighbors q decreases, i.e.,

Pr
(v1,...,vQ)∼Du,Q

[(u,v1, . . . ,vq) is weakly satisfied]

6 Pr
(v1,...,vQ)∼Du,Q

[(u,v1, . . . ,vQ) is weakly satisfied]

6Q
√

ε. (2)

Fix v1, . . . ,vq ∈ N(u) such that (u,v1, . . . ,vq) is not weakly satisfied and v1, . . . ,vq are pairwise
distinct. Let p := |{i ∈ [q] : l(vi) 6= /0}|. The fact that (u,v1, . . . ,vq) is not weakly satisfied implies
that for at least p values of j ∈ [L], the corresponding block ∪q

i=1({vi}× π
−1
(u,vi)

( j)) intersects S.
Consider the probabilistic procedure to sample a hyperedge e as in the reduction.

Claim 2.7. Given u, q, v1, . . . ,vq, and p satisfying the conditions above, the probability that |e∩
S|= 1 is at most 

0 p = 0
1 1 6 p 6 4
O
( 1

p2

)
p > 4.

Proof. The above upper bounds are clear when p = 0 or 1 6 p 6 4. For p > 5, note that if at least 2
of p different blocks see c j = 1 and decide to add the whole block to e, |e∩S|> 2. Therefore, if we
let {i∈ [q] : l(vi) 6= /0}= {i1, . . . , ip}, Pr[|e∩S|= 1] is at most the probability that ci1 + · · ·+cip 6 1
when (c1, . . . ,cL) ∼ DL. We use the following concentration inequality for the sum of k-wise
independent random variables by Bellare and Rompel [1].
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Theorem 2.8 ([1]). Let k be an even integer, and let X be the sum of n k-wise independent random
variables taking values in [0,1]. Let µ = E[X ] and a > 0. Then we have

Pr[|X−µ|> a]< 1.1
(

nk
a2

)k/2

.

Applying the above theorem with n← p,µ = p/2,k← 4,a← p/4 gives

Pr[ci1 + · · ·+ cip 6 1]< 1.1
(

64
p

)2

= O
(

1
p2

)
.

Let α := α(u) be the fraction of v ∈ N(u) such that l(v) 6= /0. For 1 6 i 6 q, let bi ∈ {0,1}
be the random variable such that bi = 1 if and only if l(vi) 6= /0. By pairwise independence of
{v1, . . . ,vq}, {b1, . . . ,bq} are also pairwise independent, and Pr[bi = 1] = α for each i. Let Bu,q,α
be the distribution on b1+ · · ·+bq. By (1), (2), and Claim 2.7, for fixed good u and q, Pre[|e∩S|=
1 |u,q] is at most

Q
√

ε +
Q2

D
+

q

∑
p=1

Pr
X∼Bu,q,α

[X = p] ·O
(

1
p2

)
. (3)

We now consider the expected value of (3) over q∼D , with u still fixed.

Claim 2.9.

E
q∼D

[ q

∑
p=1

Pr
X∼Bu,q,α

[X = p] ·O
(

1
p2

)]
= O(

1
logQ

).

Proof. Since PrX∼Bu,q,α [X = p] = 0 when p > q,

E
q∼D

[ q

∑
p=1

Pr
X∼Bu,q,α

[X = p] ·O
(

1
p2

)]
= E

q∼D

[ Q

∑
p=1

Pr
X∼Bu,q,α

[X = p] ·O
(

1
p2

)]

=
Q

∑
p=1

O
(

1
p2

)
E

q∼D

[
Pr

X∼Bu,q,α
[X = p]

]
.

Since ∑
Q
p=1 O

(
1
p2

)
= O(1), it suffices to prove that for any 1 6 p 6 Q,

E
q∼D

[
Pr

X∼Bu,q,α
[X = p]

]
= O

( 1
logQ

)
. (4)

We analyze it by considering how Pr[X = p] changes as q gets smaller or larger. For the lower
tail where qα 6 p

2 , let y be the biggest integer such that 2y ∈ [2,Q] and α2y 6 p
2 . For every

x = y,y−1, . . . ,1, by Markov’s inequality,

Pr
X∼Bu,2x,α

[X = p]6 Pr
X∼Bu,2x,α

[X > p]6
α2x

p
.
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By our choice of y, when x = y, α2x

p 6 1
2 , and it decreases by a factor of 2 as we decrease x by

1. Therefore,

E
q

[
Pr

X∼Bu,q,α
[X = p]

∣∣∣∣qα 6
p
2

]
Pr
q

[
qα 6

p
2

]
6

1
logQ

1

∑
x=y

(
α2x

p
)6 O

( 1
logQ

)
. (5)

For the upper tail where qα > 2p, let y be the smallest integer such that 2y ∈ [2,Q] and α2y >
2p. For every x = y,y+ 1, . . . , logQ, let X be a random variable sampled from X ∼Bu,2x,α . By
pairwise independence of (b1, . . . ,bq), Var[X ]6 E[X ] = α2x. By Chebyshev’s inequality,

Pr
X∼Bu,2x,α

[X = p]6 Pr
X∼Bu,2x,α

[X 6 p]6 Pr
X∼Bu,2x,α

[|X−E[X ]|> |E[X ]− p|]6 α2x

(α2x− p)2 .

By our choice of y, for any x > y, α2x

(α2x−p)2 6 α2x

(α2x
2 )2 = 4

α2x , and it is decreased by a factor of 2

as we increase x by 1. Therefore,

E
q

[
Pr

X∼Bu,q,α
[X = p]

∣∣∣∣qα > 2p
]

Pr
q

[
qα > 2p

]
6

1
logQ

logQ

∑
x=y

4
α2x 6 O

( 1
logQ

)
. (6)

Finally,

Pr[
p
2
6 q 6 2p]6 O

( 1
logQ

)
. (7)

Equations (5), (6), (7) imply (4), which completes the proof of the claim.

Therefore, for a good u, Pre[|e∩S|= 1 |u] is at most

Q
√

ε +
Q2

D
+O

( 1
logQ

)
,

and the overall probability Pre[|e∩S|= 1] is at most

2Q
√

ε +
Q2

D
+O

( 1
logQ

)
, (8)

as desired in the Lemma.

3 Main Results

We compose our reduction from Label Cover to Unique Coverage with the standard reduction
from 3SAT to Label Cover. We restate Theorem 2.1 that shows the properties of the reduction
from 3SAT to Label Cover.

Theorem 3.1 (Restatement of Theorem 2.1). There exists an absolute constant τ < 1 such that
the following is true. For any positive integer r > 0, there is a reduction that given an instance φ

of 3SAT with n variables, outputs an instance of Label Cover (G,{πe}e) with |UG|, |VG| = nO(r),
R = 10r,L = 2r,d = D = 5r in time nO(r), and satisfies the following.
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• Completeness: If φ is satisfiable, there exists a labeling that satisfies every projection.

• Soundness: If φ is not satisfiable, every labeling satisfies at most τr fraction of projections.

Let γ > 1 be an absolute constant such that γτ1/2 < 1
γ

and γ2

5 < 1
γ
, and for each r, let Q=Q(r) be

the largest power of 2 at most γr. We run our reduction given the Label Cover instance (G,{πe}e)
to produce an instance of Unique Coverage H = (VH ,EH). Recall that |VH |= |VG| ·R = nO(r), and
|EH |= |UG| · logQ ·D2 ·2L2 = nO(r), and the cardinality of each hyperedge is at most RQ.

If φ is satisfiable, (G,{πe}e) admits a labeling that satisfies every constraint, so by Lemma 2.4,
there exists S ⊆ VH such that the total weight of the hyperedges intersecting S in exactly one
element is at least 1

2 . If φ is not satisfiable, every labeling of (G,{πe}e) satisfies at most ε =
τr fraction of projections, and by Lemma 2.5, for any S ⊆ VH , the total weight of hyperedges
intersecting S in exactly one element is at most

2Q
√

ε +
Q2

D
+O

( 1
logQ

)
.

As r increases, (8) becomes

2Q
√

ε+
Q2

D
+O
( 1

logQ

)
6 2(γτ

1/2)r+
(γ2

5
)r
+O(

1
logQ

)6
3
Q
+O(

1
logQ

)=O(
1

logQ
)=O(

1
log(RQ)

),

using the fact that log(RQ) = Θ(logQ).

3.1 1-in-k Hitting Set for Constant k

We set parameters to show inapproximability of 1-in-k for constant k, proving Theorem 1.1. Given
a large constant k, take the largest r such that k

20 6 RQ 6 k (R is always a power of 10 and Q is a
power of 2). Since r is a constant, the combined reduction from 3SAT to 1-in-k HS runs in time
polynomial in n. Therefore, if we approximate 1-in-k HS within a factor better than O( 1

log(RQ)) =

O( 1
logk) in polynomial time in |VH |, we can decide whether a given formula φ is satisfiable or not

in time polynomial in n.

3.2 Unique Coverage

We set parameters to show inapproximability of Unique Coverage, proving Theorem 1.2. Given
ε > 0, let r = log1/ε n. For some absolute constant α > 1, the combined reduction from 3SAT in
Unique Coverage runs in time nα log1/ε n = 2α log1/ε+1 n, which is quasipolynomial in n. Note that
|VH |6 2α log1/ε+1 n and RQ > 2β r = 2β log1/ε n for another absolute constant β > 0. Therefore,

logRQ > β log1/ε n = β ·α−
1

1+ε · (α log1/ε+1 n)
1

1+ε = Ω(log
1

1+ε |VH |),

so if we approximate Unique Coverage within a factor better than O( 1
log1−ε |VH |

) in time polynomial
in |VH |, we can decide whether a given formula φ is satisfiable or not in quasipolynomial time in
n.
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