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Abstract. A symmetric representation for a set of objects requires the
same amount of space for the set as for its complement. Complexity
classifications that are based on the length of the input can depend on
whether the representation is symmetric. In this article we describe a
symmetric representation scheme for graphs and show that published pa-
rameterized algorithms for Vertex Cover do not provide a representation-
independent proof that Vertex Cover is Fixed Parameter Tractable. In
response to this challenge, a simple specialized backtracking algorithm is
given for Vertex Cover that maintains f(|y|)·|x| complexity even if the in-
put x is a symmetric representation of length O((lg n)2) for a very sparse
or very dense graph with n vertices. The algorithm is then generalized
to solve the Weighted Monotone q-Satisfiability problem, constituting
representation-independent proof that these two problems are in FPT.
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1 A Classic Trio of Problems

Vertex Cover (VC), Clique (CL), and Independent Set (IS) comprise a classic
trio of closely related graph problems. They lie at the core of the class of NP-
Complete problems [4]. There are well-known, direct reductions between Vertex
Cover and Independent Set, and between Independent Set and Clique, both in-
volving the complement of an edge set or a vertex set [6]. The largest independent
set of vertices in a graph is the complement of the smallest vertex cover, and the
largest clique in a graph is the largest independent set of vertices in the comple-
ment graph. It is immediate that we can also define a direct reduction between
Clique and Vertex Cover: the largest clique in a graph is the complement of
the smallest vertex cover for the complement graph. While these three problems
are very closely related, there are studies in both classical and parameterized
complexity that find major complexity differences among them.
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1.1 The Power Index Distinction in Classical Complexity

We can define the power index of a problem to be the smallest value of i for
which the problem has a deterministic algorithm that operates in time 2O(ni).
The classical complexity literature contains a study that classifies Clique at
power index 1/2 while Independent Set and Vertex Cover remain at power index
1 [9]. The analysis is based on a recursive backtracking algorithm for Clique and
an inductive proof that the number of activations of the code is 2O(

√
e), where

e is the size of the graph’s edge set. If the graph is represented as an edge list
x of length O(e lg n), the resulting complexity with respect to input length is
2O(
√
|x|). Independent Set and Vertex Cover remain at power index 1 because the

reduction from either problem to Clique requires construction of the complement
graph, which may have quadratically more edges that the original graph.

1.2 The Tractability Distinction in Parameterized Complexity

In classical complexity, the input for a decision algorithm is just the problem
instance, and the bit length of the input is the parameter for the algorithm’s
time function. In parameterized complexity, the parameter is paired with the
problem instance as part of the input to an algorithm. Using definitions from
[5], a parameterized problem L is a set of pairs of strings (x, y) where x is
the representation of a problem instance and y is some semantically meaningful
complexity parameter. L is categorized as Fixed Parameter Tractable (FPT)
if membership of (x, y) in L is decided by some algorithm with running time
f(|y|) · |x|O(1) for arbitrary function f . The idea is apparently that if deciding
the problem becomes tractable when the parameter y is fixed, the algorithm
might be well suited for certain application domains where the parameter y is
bounded.

When FPT becomes the basis for a general complexity theory, the choice
of the parameter is obviously very important. If the parameter is the length of
the problem instance, every problem is trivially in FPT. So we find that all NP-
complete problems are classified as tractable when the parameter is input length.
Membership of a hard problem in FPT is more interesting if the parameter does
not constitute an upper bound on the length of the problem instance. In that
case, an algorithm exists that will make the problem tractable with a fixed
parameter, even for arbitrarily large instances.

The distinction among VC/CL/IS in the literature of parameterized com-
plexity is much different from the one found in classical complexity: it separates
Vertex Cover, rather than Clique, from the other two problems. It also postu-
lates a larger complexity gap. The power index distinction between Clique and IS
contrasts strongly sub-exponential time 2O(

√
|x|) with exponential time 2O(|x|),

where x is the representation of the input graph. In parameterized complexity,
the distinction is tractable vs. intractable: the Vertex Cover problem is classified
as Fixed Parameter Tractable, while CL/IS remain in a higher class of problems
considered to be intractable.



Vertex Cover is classified as FPT in [5] when the parameter is the size k of
the cover, while k-Clique and k-Independent Set are in the presumably higher
complexity class W [1], which also contains weighted q-CNF Satisfiability for all
q. This distinction is based on algorithms such as those described in [1], [2],
and [3], with complexities of O(kn+ 2kk2k+2), O(kn+ 1.2745kk4), and O(kn+
1.2738k) respectively. Each of these complexities has the form O(kn+f(k)), thus
satisfying the FPT definition under the assumption that input length is Ω(n). No
algorithms have been discovered for k-Clique or IS of size k with time 2O(k)nO(1),
so these problems remain in W [1]. In fact, they are classified as W [1]-complete.

The classifications of parameterized complexity theory are, by definition,
parameter-specific. VC/CL/IS are closely tied by logical duality, so we might
expect them to show similar complexities for corresponding parameters. Clique
is the dual image of Independent Set with respect to the edge set; Vertex Cover
is the dual image of Independent Set with respect to the vertex set; and Vertex
Cover is the dual image of Clique with respect to both the vertex set and the
edge set. If we consider the parameter d = n−k, the number of vertices that are
not in the solution, we would expect to find that k-Clique and k-IS are in FPT
for the parameter d, and that k-Vertex Cover is W [1]-complete.

Putting comments about parameter-dependent distinctions aside, however,
the goal of this study is to determine whether the classification of Vertex Cover
as FPT is representation dependent. In the sections below we examine whether
the classification is valid for all regions of the problem space when space-efficient
symmetric representation is used for the graph.

2 Symmetric Representation

Symmetric representation is described as a tool for complexity analysis in [7] and
[8]. We provide an overview of that discussion here. Symmetric representation
can have an impact on any complexity classification where input length plays a
role in the analysis. This includes both classical and parameterized complexity
theory.

The list of elements is a natural representation for a set of objects. If the
set is nearly full with reference to some universal set, however, it may be more
efficient to maintain a list of elements that are not in the set. We will call a
representation scheme r for subsets S of a universal set U symmetric if the
representation of a set is the same length as the representation of the set’s
complement, i.e. |r(S)| = |r(S̄)|.

2.1 Flip List Representation

A flip list is an example of a variable-length symmetric representation scheme. It
stores the list of elements in a set or the list of elements in a set’s complement –
whichever is shorter. It has a polarity to indicate how it is to be interpreted. We
note that the variable-length symmetric schemes are space efficient. A flip list
never exceeds half the length of a conventional list. The basic operations on flip



lists are designed to take time proportional to the length of the representation,
which may be significantly smaller than the actual size of the set. In order to
accomplish this, the universe must be enumerable.

Definition 1. An enumerable universe is an ordered set of elements in which
each element can be represented as a string of symbols over some finite alphabet.
It provides the operations listed below. The notation |e| is understood to refer to
the length of the string representation for element e.

first() returns the first element e0 of the set in time O(|e0|).
last() returns the last element emax of the set in time O(|emax|) (needed only

for a finite universe).
successor(e) returns the successor of element e in time O(|e|).
predecessor(e) returns the predecessor of element e in time O(|e|).
The flip list scheme implements a subset of an enumerable universe.

Definition 2. A flip list F± = (µ, c, l, p) is a list representation for a finite
subset S of a finite enumerable universe U with the following components and
properties:

A meta-data string µ which defines a finite enumerable universe U of possible
elements. An alphabet and maximum string length would be adequate for a
set of strings, or a maximum value for a set of natural numbers. The length
of the meta-data string is constrained to be O(|e|) where e is the largest single
element of U .

A count c of the number of elements in the set. c = |S|.
An iterable list of elements l whose length does not exceed half the size of

the universal set. |l| ≤ |U |/2.
A polarity p in {+,−}. Positive polarity indicates the list l contains the ele-

ments in S. Negative polarity indicates the list l contains elements in S̄.

As a notational convention, F± indicates a flip list whose polarity is unspecified,
F+ indicates a flip list known to be positive, and F− indicates a flip list known
to be negative.

The standard operations on the flip list are implemented in time O(|l|·|emax|)
(where |l| may be smaller than |S| or |U |). Search, insertion, and deletion are
implemented by traversal of F±.l. For negative lists, the search result is negated,
insertion is implemented as deletion, and vice versa. When the length of the list l
becomes greater than |U |/2 during insertion or deletion of an element, l is rebuilt
in a traversal of the universal set U . This operation takes time O(|U | · |emax|),
which in this case is also O(|l| · |emax|). We can also build an iterator for the
set S that can be used to enumerate the elements of S in time O(|S| · |emax|).
This is implemented by iterating l if the list is positive, or by iterating U and
l simultaneously if the list is negative. In either case, an amortized analysis of
the enumeration shows that each element is retrieved in O(|emax|) time. When
the list is negative, |S| > |U |/2, so |U | is Θ(|S|). Finally, we note that the
complement operation is achieved in constant time by flipping the polarity of
the list, and that the cost of converting a conventional list to a flip list is at most
linear.



2.2 A Compound Flip List Scheme for Graphs

A graph G = (V,E) can be implemented as a pair of flip lists with a single
universe. We can number the vertices 1, 2, . . . , n and use this set as the universe
for vertices. One flip list indicates which vertices are in the graph. It is initially
full – with negative polarity and an empty element list, indicating that there are
no missing vertices. The other flip list keeps track of the edges, which are vertex
pairs. The implicit universe for the edges is V × V , and the successor function
for the edge universe relies on the successor function for the vertex universe. For
a graph with n vertices, the storage requirement for a complete graph or a graph
with no edges is O(lg n). If the number of edges or the number of missing edges
is O(lg n), then the size of the representation is O((lg n)2). The maximum space
requirement for a graph is Θ(n2 lg n).

3 Applying Symmetric Representation to Vertex Cover

The complexity distinction between Clique and IS/VC in classical complexity
theory disappears when a flip list is used to represent a graph’s edge list. With
flip lists, the representations of the edge set and its complement have exactly the
same length, and the complement operation requires only constant time. This
argument is fully developed in [8]. Using symmetric representation, Clique, IS,
and VC all have power index 1. Any algorithm for one of the problems can be
used for the other two without additional cost. When the complexity parameter
is input length, all three problems have the same worst-case time complexity.

3.1 Using Symmetric Representation with Previous Algorithms

We now consider whether the parameterized complexity distinctions for Ver-
tex Cover/Clique/Independent Set survive the test of symmetric representation.
Assume we have a graph G = (V,E) with |V | = n and |E| = e. When the
length of the graph representation is Ω(n), any of the algorithms from [3, 1, 2] is
sufficient to establish that Vertex Cover is in FPT for parameter k. Under sym-
metric representation, however, there are regions of the problem space where the
graph representation will have length O((lg n)2). This happens when either |E|
is O(lg n) or |Ē| is O(lg n). This is problematic for the algorithms cited above,
whose time functions have a factor n. To meet the FPT requirement, the run-
ning time would need to be f(k) · |x|O(1) where x is the representation of the
problem instance. If |x| is O((lg n)2), then a factor of n in the running time is
O(2
√
|x|), not |x|O(1). Thus, it appears that the algorithms cited above provide

only representation-dependent evidence that Vertex Cover is in FPT.

3.2 A Backtracking Algorithm Adapted to Symmetric
Representation

Representation-independent classification of Vertex Cover in FPT thus depends
on our ability to design a decision algorithm that operates in time f(k)·((lg n)2)O(1) =



Algorithm kCover(V ±, E±, k) // Given flip lists for a non-empty vertex
// set and edge set for graph G = (V, E),
// return whether G has a vertex cover of size k.

1) if k < 0 or k > |V | // k out of bounds
2) return false
3) else if k ≥ |E| or E± is positive and empty // few or no edges
4) return true
5) else if E± is negative and empty // no missing edges
6) return k ≥ |V | − 1

7) else if k < |V | − d
√
|V |(|V | − 1)− 2|E|e

8) return false
9) q := a vertex from V
10) d := degree(q, E±)

// Compute a smallest cover with q:
11) V ±1 := V ± − {q}
12) E±1 := E± − {(v, w)| v = q or w = q} // restrict E± to V ± − {q}
13) if kCover(V ±1 , E±1 , k − 1)
14) return true
15) else if k < d
16) return false

// Compute a smallest cover without q:
17) else
18) N := neighbors(q, V ±, E±)
19) V ±2 := V ±1 −N
20) E±2 := E±1 − {(v, w)| v ∈ N or w ∈ N} // remove edges covered by N
21) return kCover(V ±2 , E±2 , k − d)

Fig. 1. A backtracking algorithm for Vertex Cover, adapted to flip lists

f(k) · (lg n)O(1) for symmetrically represented instances with O(lg n) edges or all
but O(lg n) edges. We offer the kCover algorithm in Figure 1 as a candidate.
It operates on the principle that if a vertex q is not in the cover, then all of q’s
neighbors must be in the cover. First we observe that the number of recursive
activations of kCover cannot exceed 2k. There are two recursive calls for each
activation of the procedure, with a smaller value for the parameter k in each
call. So the depth of recursion cannot exceed k, and every node in the activation
tree has at most two children.

To complete the analysis, we must confirm that no operation in the code
exceeds time proportional to the length of the representation. This poses a po-
tential problem when either |E| or |Ē| is O(lg n), implying that |x| is O((lg n)2).
If |E| is O(lg n), for example, the graph is very sparse and most nodes have
degree 0. Such nodes will not be needed for any smallest vertex cover. The tech-
nical challenge is to eliminate these nodes without explicitly processing them.
We need to verify that no operation within a single activation will require Ω(n)
time.



Tests based on k, |V |, |E| (lines 1-8) The counts |V | and |E| are explicitly
stored as fields in the flip list representation, so the relational and arithmetic
expressions can be calculated in time lg(max(|V |, |E|) = O(lg n).

Choose a vertex q (line 9) A vertex is chosen by accessing the first edge from
the edge list E± and selecting either of its endpoints. This operation is
O(lg n) for a positive edge list and O(|E−.l| · lg n) for a negative edge list.

Compute the degree of q (line 10) If the list of edges is positive, traverse
E+, counting occurrences of q. If the edge list is negative, traverse E− incre-
menting a counter d for each occurrence of q, and return n−d. O(|E±.l|·lg n).

Remove q from V (line 11) The deletion of q from the negative list V − is
implemented as the insertion of q into V −.l. The length of V −.l cannot
exceed the depth of recursion k, so the operation count is O(k lg n).

Remove q’s edges from E (line 12) Whether the edge list is positive or neg-
ative, this step is accomplished by traversing the list and removing edges that
mention q, which is no longer in the graph. O(|E±.l| · lg n).

Remove all neighbors of q from V1 (lines 18-19) Following the execution
of line 15, it must be true that d ≤ k, and the length of V −1 also does not
exceed k. O(k2(lg n)).

Remove all edges of q’s neighbors from E1 (line 20) Since both vertices
and edges are being removed for neighbors of q, the edge list E1 will be
shortened whether it is positive or negative, and |E1| < |E|. Since there are
no more than k neighbors the total operation count is O(k · |E±.l| · lg n).

In examining the operation counts for each line of the code as described above,
we observe that the number of operations per recursive activation of kCover
is O(k lg n · max(k, |E±.l|)). Line 3 eliminates cases where k ≥ |E|, but there
are non-trivial instances with k ≥ |Ē|. So we consider both k ≥ |E±.l| and
k < |E±.l|, deriving total operation counts of k22k lg n and k · 2k · |E±.l| lg n
respectively. Since |x| = O(|E±.l| · lg n) both possible complexities satisfy the
definition of FPT.

4 The Weighted Monotone Satisfiability Problem

The Weighted Monotone q-Satisfiability problem is the same as the Weighted
q-Satisfiability problem, except that all literals in the Boolean expression are
positive. The input to the problem is a monotone Boolean expression in con-
junctive normal form and a parameter k. The expression is a conjunction of
clauses over n variables, and each clause in the expression is a disjunction of
exactly q distinct variable names. The task is to determine whether all clauses
in the expression can be satisfied by assigning the value true to at most k vari-
ables. The Weighted q-Satisfiability problem is categorized as W [1]-complete in
[5], but the monotone version of the problem is not classified.

Weighted Monotone q-Satisfiability is a generalization of Vertex Cover, and
the algorithm of Figure 1 can be both generalized and simplified to solve it. We
can also generalize the flip list of section 2.2 to represent a Boolean expression.



Algorithm MonoSat(V ±, C±, k) // Given flip lists for a non-empty
// variable set V and a set of clauses C
// for a CNF Boolean expression B,
// return whether B is satisfied by a
// truth assignment with at most
// k true variables.

1) if k < 0 or k > |V | // k out of bounds
2) return false
3) else if k ≥ |C| or C± is positive and empty // few or no clauses
4) return true
5) else if C± is negative and empty // no missing clauses
6) return k ≥ |V | − q + 1
7) c := a clause from C
8) for each variable x in c
9) V ±1 := V ± − {x}
10) C±1 := C± − {c ∈ C± | c contains x} // remove satisfied clauses
11) if MonoSat(V ±1 , C±1 , k − 1)
12) return true
13) return false

Fig. 2. An algorithm for Monotone Satisfiability, adapted to flip lists

We define a Boolean expression B = (V,C) to be a set of clauses C over a
set of variables V . The variables are numbered 1, 2, . . . , n and stored in flip
list v±. The clauses are q-tuples of variable numbers stored in the flip list C±.
The variable set defines the universe for iteration of a negative clause list. The
variable list is initially full, with negative polarity and an empty element list. For
a q-CNF expression with n variables, the storage requirement for an expression
with no clauses or no missing clauses is O(lg n). If the number of clauses or
missing clauses is O(lg n), then the size of the representation is O((lg n)2). The
maximum space requirement for an expression is Θ(nq lg n).

The MonoSat algorithm is shown in Figure 2. It operates on the simple
principle that for each clause, at least one of its variables must be assigned true.
It selects a clause and makes q recursive calls, one for each variable in the clause.
The parameter k is decremented to k − 1 for the recursive calls (line 11), and
the code returns false if k becomes negative (lines 1-2). The computation can
therefore be modeled as a tree with degree q and height k, and it is immediately
apparent that the total number of recursive code activations cannot exceed qk,
which is a function of k when q is constant. As with the Vertex Cover algorithm,
it remains to show that no operation in the code exceeds time proportional to
the length of the representation.

Tests based on k, |V |, |C| (lines 1-6) The counts |V | and |C| are stored as
fields in the flip list representation, so the relational and arithmetic expres-
sions can be calculated in time lg(max(|V |, |C|) = O(lg n).



Choose a clause c (line 7) A clause is chosen by accessing the first clause
from the clause list C±. This operation is O(lg n) for a positive clause list
and O(|C−.l| · lg n) for a negative clause list.

Loop iterations (lines 8-12) The body of the loop executes at most q times.
Remove x from V (line 9) The deletion of x from the negative list V − is

implemented as the insertion of x into V −.l. The length of V −.l cannot
exceed the depth of recursion k, so the operation count is O(k lg n).

Remove x’s clauses from C (line 10) Whether the clause list is positive or
negative, this step is accomplished by traversing the list and removing clauses
that mention x, which has been removed from the expression. O(|C±.l|·lg n).

The sum of the operation counts, as specified above, for a single activation
MonoSat is O(lg n·max(k, |C±.l|)). Considering both k ≥ |C±.l| and k < |C±.l|,
we derive total operation counts of k2k lg n and 2k · |C±.l| lg n respectively. Since
|x| = O(|C±.l| · lg n) both complexities satisfy the definition of FPT.

5 Conclusion

While parameterized complexity is less sensitive to input representation than
classical complexity, some parameterized complexity classifications are represen-
tation dependent as well as parameter dependent. Symmetric representation for
very dense or very sparse problem instances can have length O((lg n)2), and
algorithms whose time functions have a factor of nO(1) may not be sufficient
to establish that a problem is in FPT. The Vertex Cover problem provides an
example of this phenomenon. It is possible, however, to design algorithms that
have complexity f(|y|) · |x|O(k) for both Vertex Cover and Weighted Monotone q-
Satisfiability, even when |x| is O(lg n). These algorithms provide representation-
independent evidence that both problems belong in FPT when the parameters
are cover size and the number of true variables, respectively.
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