
Why the Concept of Computational Complexity is
Hard for Verifiable Mathematics

Juraj Hromkovič

Department of Computer Science
ETH Zürich

Universitätstrasse 6, 8092 Zürich, Switzerland
juraj.hromkovic@inf.ethz.ch

September 28, 2015

Abstract
Mathematics was developed as a strong research instrument with fully verifiable argumentations.
We call any formal theory based on syntactic rules that enables to algorithmically verify for any
given text whether it is a proof or not algorithmically verifiable mathematics (AV-mathematics
for short). We say that a decision problem L ⊆ Σ∗ is almost everywhere solvable if for all but
finitely many inputs x ∈ Σ∗ one can prove either “x ∈ L” or “x 6∈ L” in AV-mathematics.

First, we prove Rice’s theorem for unprovability, claiming that each nontrivial semantic problem
about programs is not almost everywhere solvable in AV-mathematics. Using this, we show that
there are infinitely many algorithms (programs that are provably algorithms) for which there do
not exist proofs that they work in polynomial time or that they do not work in polynomial time.
We can prove the same also for linear time or any time-constructible function. This explains
why proving superlinear lower bounds on the time complexity of concrete problems may be really
hard. Moreover, we prove that there are infinitely many algorithms for which one cannot decide
in AV-mathematics whether they solve SATISFIABILITY or not.

Note that, if P 6= NP is provable in AV-mathematics, then for each algorithm A it is provable
that “A does not solve SATISFIABILITY or A does not work in polynomial time.” Interestingly,
we finally show that there exist algorithms for which it is neither provable that they do not work
in polynomial time, nor that they do not solve SATISFIABILITY. Moreover, there is an algorithm
solving SATISFIABILITY for which one cannot prove in AV-mathematics that it does not work
in polynomial time.

Furthermore, we show that P = NP implies the existence of algorithms X for which the claim
“X solves SATISFIABILITY in polynomial time” is not provable in AV-mathematics. Analogously,
if the multiplication of two decimal numbers is solvable in linear time, one cannot decide in
AV-mathematics for infinitely many algorithms X whether “X solves multiplication in linear
time.”

1 Introduction
Mathematics was developed as a special language in which each word and thus each sentence
has a clear, unambiguous meaning, at least for anybody who mastered this language. The
goal was not only to communicate with unambiguous interpretations, but to create a powerful
research instrument that enables everybody to verify any claim formulated in this language.

This way, experiments and mathematics became the main tools for discovering the world
and for creating our technical world. The dream of Leibniz was to develop such a formal

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 159 (2015)

language, in which almost every problem can be formulated and successfully analyzed by a
powerful calculus (thus his famous words “Let us calculate, without further ado, to see who is
right.”). After introducing logic as a calculus for verifying the validity of claims and proofs,
there was hope to create mathematics as a perfect research instrument (see, for instance,
Hilbert [7]). In 1930, Gödel [6] showed that mathematics will never be perfect, that is, that
the process of increasing the power of mathematics as a research instrument is infinite. An
important fact is that, in each nontrivial mathematics based on finitely many axioms, one can
formulate claims in the language of mathematics whose validity cannot be verified inside the
same mathematics.

Since the introduction of the concept of computational complexity in informatics, computer
scientists were not able to prove nontrivial lower bounds on the complexity of concrete problems.
For instance, we are unable to prove that the multiplication of two decimal numbers cannot
be computed in linear time, that matrix multiplication cannot be computed in O(n2) time, or
that reachability cannot be solved in logarithmic space. In this paper, we strive to give an
explanation for this trouble by showing that the concept of computational complexity may
be too complex for being successfully mastered by mathematics. In particular, this means
that open problems like P vs. NP or DLOG vs. NLOG can be too hard to be investigated
inside of current mathematics. In fact, we strive to prove results about the unprovability
of some mathematical claims like Gödel [6] did. However, the difference is that we do not
focus on meta-statements about mathematics itself, but on concrete fundamental problems of
complexity theory that are open for more than 40 years. Interesting, fundamental contributions
in this direction were made by Baker et al. [2], who showed that proof techniques that are
sensible to relativization cannot help to solve the P vs. NP problem, and by Razborov and
Rudich [10], who showed that natural proofs covering all proof techniques used in complexity
theory cannot help to prove P 6= NP. Aaronson gives an excellent survey on this topic [1]. Here,
we prove first that there are infinitely many algorithms whose asymptotic time complexity or
space complexity cannot be analyzed in mathematics. Our results pose the right questions.
How can one prove a superlinear lower bound on multiplication of two decimal numbers (that
is, the nonexistence of linear time algorithms for multiplication) if there exist algorithms for
which mathematics cannot find out whether they work in linear time or not, or even recognize
what they really do? Similarly, we can discuss SATISFIABILITY and polynomial time, or
REACHABILITY and logarithmic space.

At this point, one has to be careful with formulating what we really prove here. First, we
formulate two hypotheses as possible expectations on mathematics.

H(1) There exists an algorithm for checking whether a given text is a mathematical proof of a
given claim.

H(2) The mathematical community can always unambiguously agree in finite time whether a
given text is a valid proof of a given claim or not.

For the part of mathematics (given a finite set of axioms) for which H(1) holds, we
speak about “automatically verifiable mathematics” or “algorithmically verifiable mathematics”
(AV-mathematics).

We assume that H(2) is a must for mathematics and simply speak about mathematics
instead of introducing a new name.

In what follows, we focus on the unprovability of theorems in AV-mathematics. First, we
extends Rice’s theorem [11] about the undecidability of nontrivial semantic problems about

2

programs (Turing machines) to unprovability. More precisely, we say that a decision problem
L ⊆ Σ∗ is almost everywhere solvable in AV-mathematics if, for all but finitely many inputs
x ∈ Σ∗, one can prove either “x ∈ L” or “x 6∈ L” in AV-mathematics. Here, we prove that
each nontrivial semantic problem about programs is not almost everywhere solvable. This
means, for instance, that there exist infinitely many programs for which one cannot prove
whether they compute a constant function or not. Note that this has a deep consequence for
our judgement about undecidability. Originally one was allowed to see the existence of an
algorithm as a reduction of the infinity of the problem (given by its infinite set of problem
instances) to finiteness (given by the finite description of the algorithm). In this sense, one
can view the undecidability of a problem as the impossibility to reduce the infinite variety of a
problem to a finite size. Here, we see another reason. If, for particular problem instances, one
cannot discover in AV-mathematics what the correct output is, then, for sure, there does not
exist any algorithm for the problem.

We use Rice’s theorem on unprovability as the first step for establishing the hardness of
the analysis of computational complexity in AV-mathematics. We will succeed to switch from
programs to algorithms as inputs,1 and ask which questions about algorithms are not solvable
almost everywhere. We prove results such as

(i) for each time-constructible function f(n) ≥ n, the problem whether a given algorithm
works in time O(f(n)) is not almost everywhere solvable in AV-mathematics, and

(ii) the problem whether a given algorithm solves SATISFIABILITY (REACHABILITY, mul-
tiplication of decimal numbers, etc.) is not almost everywhere solvable in AV-mathematics.

Particularly, this also means that there are infinitely many algorithms for which one cannot
distinguish in AV-mathematics whether they work in polynomial time or not. Note that this
is essential because, if P 6= NP is provable in AV-mathematics, then, for each algorithm A, the
statement

“A does not work in polynomial time or A does not solve SATISFIABILITY” (∗)

would be provable in AV-mathematics.
In this paper, we show that there exist algorithms, for which it is neither provable that they

do not work in polynomial time nor that they do not recognize SATISFIABILITY. Moreover,
we show that if P = NP, then there would exist algorithms for which (∗) is not provable.

We do not present the shortest way of proving that the complexity of some algorithms
cannot be analyzed in AV-mathematics. We present here the genesis of our ideas to reach this
goal. This is not only better for a deeper understanding of the results and proofs, but also for
deriving several interesting byproducts of interest.

2 Rice’s Theorem on Unprovability
The starting point for our unprovability results is the famous theorem of Chaitin [5], stating
that one can discover the Kolmogorov complexity2 for at most finitely many binary strings.
1 This means that one has a guarantee that a given program is an algorithm, or even a proof that the given
program is an algorithm may be part of the input.

2 Recall that the Kolmogorov complexity of a binary string w is the length of the binary code of the shortest
program (in some fixed programming language with a compiler) generating w [8, 9].

3

Let, for each binary string w ∈ {0, 1}∗, K(w) denote the Kolmogorov complexity of w. As the
technique is repeatedly used in this paper, we prefer to present our version of this theorem as
well as a specific proof. Let, in what follows, Σmath be an alphabet in which any mathematical
proof can be written. Furthermore, let λ denote the empty word.

Theorem 1 (Chaitin [5]). There exists d ∈ N such that, for all n ≥ d and all x ∈ {0, 1}∗,
there does not exist any proof in AV-mathematics of the fact “K(x) ≥ n.”

Proof. Let us prove Theorem 1 by contradiction. Let there exist an infinite sequence of
natural numbers {ni}∞i=1 with ni < ni+1 for i = 1, . . . ,∞ such that there exists a proof in
AV-mathematics of the claim

“K(wi) ≥ ni”

for some wi ∈ {0, 1}∗. If, for some i, there exist several such proofs for different wi’s, let wi be
the word with the property that the proof of “K(wi) ≥ ni” is the first one with respect to the
canonical order of the proofs. Then we design an infinite sequence {Ai}∞i=1 of algorithms as
follows:

Ai: Input: ni
Output: wi
begin
x := λ;
T := 0;
while T = 0 begin
x := successor of x in Σ∗math in the canonical order;
verify algorithmically whether x is a proof of “K(w) ≥ ni” for
some w ∈ {0, 1}∗;
if x is a proof of “K(w) ≥ ni” then T := 1;

end
output(w);

end

Obviously, Ai generates wi. All the algorithms Ai are identical except for the number ni.
Hence, there exists a constant c such that each Ai can be described by

c+ dlog2(ni + 1)e

bits. This way we get, for all i ∈ N, that

ni ≤ K(wi) ≤ c+ dlog2(ni + 1)e. (1)

However, (1) can clearly hold for at most finitely many different i ∈ N, and so we got a
contradiction. �

Alternatively, we can use H(2) as a basis for our arguments. Let Q be any finite object,
typically a string over some alphabet. Let MC(Q) be the shortest binary description of Q
that is unambiguous for every member of the mathematical community. This means, each
mathematician is able to unambiguously generate Q from MC(Q). Let lmc(Q) be the binary
length of MC(Q).

4

Theorem 2. There exists a constant dmc ∈ N such that, for all n ≥ dmc and all words
w ∈ {0, 1}∗, there does not exist any valid proof of the fact

lmc(w) ≥ n.

Proof. Again, we prove the theorem by contradiction. Let there exist an infinite growing
sequence {ni}∞i=1 of positive integers such that, for each i ∈ N, there exists a mathematical
proof of “lmc(wi) ≥ ni” for some wi ∈ {0, 1}∗. Let wi be such a word that the proof of
“lmc(wi) ≥ ni” is the first proof in the canonical order among the proofs of “lmc(y) ≥ ni” for
any y ∈ {0, 1}∗.

Now, we design an infinite sequence {Pi}∞i=1 of mathematical procedures such that Pi
unambiguously produces wi, and hence Pi is an unambiguous description of wi.

Pi: Input: ni
Output: wi
begin
t := λ;
T := 0;
while T = 0 begin
t := successor of t in Σ∗math with respect to the canonical order;
the mathematical community agrees in finite time whether t is a
proof of “lmc(y) ≥ ni” or not for some y ∈ {0, 1}∗;
if t is a proof of “lmc(yi) ≥ ni” then T := 1;

end
output(y);

end

Since all the procedures Pi differ only in their inputs ni, and Pi unambiguously generates
wi, we obtain

ni ≤ lmc(wi) ≤ dmc + dlog2(ni + 1)e

for all i ∈ N, where dmc is the description size of the common part of all Pi’s. Since this cannot
be true for infinitely many different ni’s, we have a contradiction. �

Corollary 1. One cannot consider to determine K(w) or lmc(w) in mathematics for more
than finitely many w ∈ {0, 1}∗.

In what follows, we use the terms “program” and “Turing machine” (TM) as synonyms.
Likewise, we use the terms “algorithm” and “Turing machine that always halts” as synonyms.
The language of a TM M is denoted by L(M). Let c(M) denote the string representation of a
TM M for a fixed coding of TMs. Obviously,

code-TM = {c(M) |M is a TM}

is a recursive set, and this remains true if we exchange TMs by programs in any programming
language possessing a compiler.

5

Now consider

HALTλ = {c(M) |M is a TM (a program) and M halts on λ}.

If a program (a TM) M halts on λ, there is always a proof of this fact. To generate a proof
one can simply let run M on λ, and the finite computation of M on λ is a proof that M halts
on λ.

Theorem 3. There exists a program P that does not halt on λ, and there is no proof in
AV-mathematics of this fact.

Proof. Assume the opposite, that is, for each program there exists a proof that the program
halts or does not halt on λ. Then one can compute K(w) for each w ∈ {0, 1}∗ as follows.

begin
Generate in the canonical order all programs P1, P2, . . . until you find the
first program that generates the given word w in the following way.
The binary length of this program is K(w).
For each Pi one searches in all mathematical proofs (words over Σmath) in the
canonical order in order to find a proof of either “Pi halts on λ”
or “Pi does not halt on λ.”
Following our assumption such a proof must exist and thus one finds it in finite time.
If Pi does not halt on λ, continue with Pi+1.
If Pi halts on λ, simulate Pi on λ.
If Pi generates w, the binary length of Pi is K(w).
If Pi does not generate w, continue with Pi+1.

end

Following Theorem 1, one can estimate K(w) for at most finitely many w’s and so we have
a contradiction. �

Theorem 4. There exist infinitely many TMs (programs) A that do not halt on λ, and for
which there is no proof in AV-mathematics for any of them that A does not halt on λ.

Proof. Following Theorem 3 there exists a program P such that “P does not halt on λ” and
there is no proof about this fact in AV-mathematics. There are several ways how to construct
infinitely many programs P ′ such that there is a proof that “P does not halt on λ” iff there is
a proof that “P ′ does not halt on λ.”

For instance, we present the following two ways:

(i) Take an arbitrary program P0 that halts on λ. Modify P to P ′ by taking the simulation of
P at the beginning and if the simulation finishes, P ′ continues with the proper computation
of P0.

(ii) For each line of P containing end, insert some finite sequence of dummy operations before
end. �

Following Rice [11], a set A ⊆ code-TM is a semantically nontrivial decision problem on
TMs if

6

(i) A 6= ∅,

(ii) A 6= code-TM, and

(iii) if c(M) ∈ A for some TM M , then c(M ′) ∈ A for each TM M ′ with L(M ′) = L(M).

Let A = code-TM−A for any A ⊆ code-TM.

Observation 1. The following is true for any A ⊆ code-TM. If, for each TM M , there exists
a proof in AV-mathematics of either “c(M) ∈ A” or “c(M) 6∈ A,” then, for each TM M ′, there
exists a proof in AV-mathematics of either “c(M ′) 6∈ A” or “c(M ′) ∈ A.”

Proof. A proof of “c(M) ∈ A” is simultaneously a proof of “c(M) 6∈ A.” A proof of “c(M) 6∈ A”
is simultaneously a proof of “c(M) ∈ A.” �

Theorem 5 (Rice’s Theorem on Unprovability). For each semantically nontrivial deci-
sion problem A, there exist infinitely many TMs M ′ such that there is no proof of “c(M ′) ∈ A”
and no proof of “c(M ′) 6∈ A,” that is, one cannot investigate in AV-mathematics whether c(M ′)
is in A or not.

Proof. Let A be a semantically nontrivial decision problem. The scheme of the proof is
depicted in Figure 1. According to property (iii), either for all D with L(D) = ∅ we have
c(D) ∈ A or for all such D we have c(D) /∈ A. Following Observation 1, we assume without
loss of generality that c(D) 6∈ A for all D with L(D) = ∅. Let M∅ be a fixed, simple TM with
the property L(M∅) = ∅, and thus c(M∅) 6∈ A. Let M be a TM such that c(M) ∈ A.

We prove Theorem 5 by contradiction. For all but finitely many TMs M ′ let there exist a
proof of either “c(M ′) ∈ A” or “c(M ′) 6∈ A.” Then we prove that, for all but finitely many TMs
M there exists a proof of either “M halts on λ” or “M does not halt on λ,” which contradicts
Theorem 4.

Let M be an arbitrary TM. We describe an algorithm that produces either the proof of
“M does not halt on λ” if M does not halt on λ or the proof of “M halts on λ” if M halts
on λ. First we apply the procedure A (Figure 1) that transforms M into a TM M ′A with the
following properties:

(1.1) L(M ′A) = ∅ (and thus c(M ′) 6∈ A) ⇐⇒ M does not halt on λ,

(1.2) L(M ′A) = L(M) (and thus c(M ′A) ∈ A) ⇐⇒ M halts on λ.

This is achieved by constructing M ′A in such a way that M ′A starts to simulate the work of
M on λ without reading its proper input. If the simulation finishes, M ′A continues to simulate
the work of M on its proper input. This way, if M does not halt on λ, M ′A simulates the work
ofM on λ infinitely long and does not accept any input. IfM halts on λ, then L(M ′A) = L(M),
because M ′A simulates the work of M on each of its inputs.

After that, one algorithmically searches for a proof of “c(M ′A) ∈ A” or of “c(M ′A) 6∈ A” by
constructing all words over Σmath in canonical order and algorithmically checking for each text
whether it is a proof of “c(M ′A) 6∈ A” or of “c(M ′A) ∈ A.” If such a proof exists, one will find it
in finite time. Due to (1.1) and (1.2), this proof can be viewed as (or modified to) a proof of
that “M does not halt on λ” or of that “M halts on λ.”

7

c(M) for a TM M

A: Construct c(M ′A)
M ′A simulates M on λ
if M finishes the work on λ in finite time,
then M simulates the work of M
on its proper input

c(M ′A)

c(M ′A)

L(M ′A) = ∅ = L(M∅)
iff M does not halt on λ

L(M ′A) = L(M)
iff M halts on λ

Canonical search for a proof of
“c(M ′A) ∈ A” or “c(M ′A) 6∈ A”

Proof “c(M ′A) 6∈ A” Proof “c(M ′A) ∈ A”

Proof
“M does not halt on λ”

Proof
“M halts on λ”

Figure 1. The idea of the proof of Theorem 5

8

The construction of M ′A from M done by A is an injective mapping. As a consequence, if
there exists a proof of “c(B) ∈ A” or of “c(B) 6∈ A” for all but finitely many TMs B, then
there exist proofs of “M halts on λ” or “M does not halt on λ” for all but finitely many TMs
M . This contradicts Theorem 4. �

Using concrete choices for A and for M , one can obtain a number of corollaries, such as
the following ones.

Corollary 2. For infinitely many TMs M , one cannot prove in AV-mathematics whether
L(M) is in P or not.

Proof. Choose A = {c(M) | L(M) ∈ P} in Theorem 5. �

Corollary 3. For infinitely many TMs, one cannot prove in AV-mathematics whether they
accept SATISFIABILITY or not.

Proof. Choose A = {c(M) | L(M) is a TM and L(M) = SATISFIABILITY} in Theorem 5.�

Corollary 4. For infinitely many TMs M , one cannot prove in AV-mathematics whether M
is an algorithm working in polynomial time or not.

Proof. Choose M to be a polynomial time algorithm in the proof of Theorem 5, and ask
whether there is a proof “M ′A runs in polynomial time” or of “M ′A does not run in polynomial
time.” �

Still, we are not satisfied with the results formulated above. One can argue that the
specification of languages (decision problems) by TMs can be so crazy that, as a consequence,
one cannot recognize what they really do. Therefore we strive to prove the unprovability of
claims about algorithms, preferably for algorithms for we which we even have a proof that they
indeed are algorithms. This is much closer to the common specifications of NP-hard problems
that usually can be expressed by algorithms solving them.

3 Hardness of Complexity Analysis of Concrete Algorithms
Among others, we prove here that, for each time-constructible function f , there exist infinitely
many algorithms working in time f(n) +O(1) for which there is no proof in AV-mathematics
that they do. To this end, we construct an algorithm XA,B,f (M) for given

(i) algorithm A working in TimeA(n) and SpaceA(n),

(ii) algorithm B working in TimeB(n) and SpaceB(n),

(iii) time-constructible function f with f(n) ≥ n (or some other “nice” unbounded, nonde-
creasing function f), and

(iv) TM M .

9

Here, A, B, and f are considered to be fixed by an appropriate choice, and XA,B,f (M) is
examined for all possible TMs M . The algorithm XA,B,f (M) works as follows.

Input: w
begin
1. Simulate at most f(|w|) steps of M on λ;
2. if M halts on λ during this simulation then simulate A on w;

else simulate B on w;
end

We say that two languages L1 and L2 are almost everywhere equal, L1 =∞ L2 for short, if
the symmetric difference of L1 and L2 is finite. We say that M almost everywhere accepts L
if L(M) =∞ L.

Claim 1. If M halts on λ, then L(XA,B,f (M)) =∞ L(A) and XA,B,f (M) works in time
TimeA(n) +O(1) and space SpaceA(n) +O(1).

Claim 2. If M does not halt on λ, then L(XA,B,f (M)) = L(B) and XA,B,f (M) works in time
TimeB(n) + f(n) and space SpaceB(n) + f(n).

If L(A) and L(B) are not almost everywhere equal, then one can exchange the implications
in Claims 1 and 2 by equivalences. Moreover, XA,B,f (M) is an algorithm for each TM M ,
and if it is provable that A and B are algorithms, it is also provable that XA,B,f (M) is an
algorithm.

Let us now present a few applications of the construction of XA,B,f (M). Choose A and B
in such a way that L(A) = L(B) and that TimeB(n) grows asymptotically slower or faster
than TimeA(n). Let f(n) = n. Then LA,B,f (M) = L(A) and

• M halts on λ ⇐⇒ XA,B,f (M) works in TimeA(n) +O(1),

• M does not halt on λ ⇐⇒ XA,B,f (M) works in TimeB(n) + n.

Corollary 5. There are infinitely many algorithms for which one cannot distinguish in AV-
mathematics whether they run in O(TimeA(n)) or in O(TimeB(n)).

Proof. Consider the case that TimeB(n) grows asymptotically faster than TimeA(n). If one
can prove “XA,B,f works in TimeA(n) +O(1),” then we have a proof that “M halts on λ.” If
there exists a proof of “XA,B,f (M) works in TimeB(n) +n, but not in TimeA(n) +O(1),” then
there exists a proof that M does not halt on λ. �

Choosing TimeA(n) as a polynomial function and TimeB(n) as an exponential function,
and once more vice versa, implies the following statement.

Theorem 6. There exist infinitely many algorithms working in polynomial time, but for which
this fact is not provable in AV-mathematics. There exist infinitely many algorithms working in
exponential time, but it is not provable in AV-mathematics that they do not work in polynomial
time.

10

Proof. Take f(n) = n. Note that, for a TM that halts on λ, “M halts on λ” is always provable,
but for a TM M that does not halt on λ, the claim “M does not halt on λ” is not provable for
infinitely many TMs M (as shown in Theorem 4.) Let M1 be a TM that does not halt on λ,
but for which this fact is not provable in AV-mathematics. Taking A as a polynomial-time
algorithm and B as an algorithm running in superpolynomial time, the algorithm XA,B,f (M1)
does not run in polynomial time, but the claim “XA,B,f (M1) does not run in polynomial time”
is not provable in AV-mathematics.

Now, if one takes A as a superpolynomial time algorithm and B as a polyomial time
algorithm, then “M does not halt on λ” iff “XA,B,f runs in polynomial time,” but this fact
is not provable in AV-mathematics, because otherwise “M1 does not halt on λ” would be
provable as well. �

Theorem 6 shows how complex it may be to prove that some problem is not solvable in
polynomial time since there are algorithms for which it is not provable whether they work in
polynomial time or not. But if one takes TimeA(n) ∈ O(n) and TimeB(n) ∈ Ω(n2), then we
even realize that there are algorithms for which it is not provable whether they work in linear
time or not. This could indicate why proving superlinear lower bounds on any problem in
NP is hard. We are not able to analyze the complexity of some concrete algorithms for any
problem, and the complexity of a problem should be something like the complexity of the
“best” algorithm for that problem.

Similarly, one can look at the semantics of algorithms. Assume B solves SATISFIABILITY,
A solves something else, and both A and B work in time smaller than f(n) = 1000 · nn (or
any sufficiently large time-constructible function f). In that case, XA,B,f (M) works in time
O(nn), and it solves SATISFIABILITY iff M does not halt on λ. One can also exchange the
role of A and B in order to get that XA,B,f (M) solves SATISFIABILITY almost everywhere
iff M halts on λ.

Theorem 7. There are infinitely many algorithms for which it is not provable in AV-
mathematics that they do not solve SATISFIABILITY.

What is clear from Theorems 6 and 7 is that one cannot start with the set of all polynomial-
time algorithms and try to show that none of them solves SATISIFIABILITY, because one
cannot decide in AV-mathematics for all algorithms whether they are in the set of polynomial-
time algorithms or not. Analogously, one cannot start with the set of all algorithms solving
SATISFIABILITY and then to try to show that their complexity is superpolynomial, because
the set of all algorithms solving SATISFIABILITY is also not exactly determinable in AV-
mathematics.

In our considerations, one can exchange SATISFIABILITY for any other NP-hard problem
or for FACTORIZATION in order to see that proving that these problems are not in P may
be very hard.

Let us look at the problem from another point of view. If P 6= NP is provable in AV-
mathematics, then, as already stated, for each algorithm A, the following statement is provable
in AV-mathematics:

“A does not work in polynomial time or A does not solve SATISFIABILITY.” (∗)

On the other hand, if P = NP, then one can take f(n) = n, and A as a polynomial-
time algorithm solving SATISFIABILITY and B as a superpolynomial algorithm computing
something else, and consequently get the following theorem.

11

Theorem 8. If P = NP, then there exist infinitely many algorithms X for which one can-
not prove or disprove in AV-mathematics the statement3 “X solves SATISFIABILITY in
polynomial time.”

One can play the same game for investigating the computational complexity of the multi-
plication of two decimal numbers.

Theorem 9. If multiplication of two decimal numbers is doable in linear time, then there
exist infinitely many algorithms X, for which one cannot decide in AV-mathematics whether
“X solves multiplication in linear time,” or “X does not solve multiplication or does not work
in linear time.”

Proof. Take A as an algorithm for multiplication with TimeA(n) = Θ(n2), and B as a linear-
time algorithm for multiplication. Let f(n) = n. Then XA,B,f (M) solves multiplication in
linear time iff “M does not halt on λ.” Hence, if “XA,B,f (M) solves multiplication in linear
time” is provable in AV-mathematics,” then “M does not halt on λ” is provable as well. �

Similarly, one can consider space complexity, look at DLOG vs. NLOG with respect to
REACHABILITY, and prove similar versions of Theorems 6 to 9. One only needs to modify
our scheme by taking a reasonable, unbounded, non-decreasing function g that bounds the
space complexity of the simulation of M on λ.

The previous results look promising, but we still did not prove the unprovability of “P 6= NP”
in AV-mathematics. This is because we only proved for some algorithms that it is not provable
they “do not work in polynomial time,” and maybe for some other ones that it is not provable
that “they do not solve SATISFIABILITY.” We now prove that the intersection of these two
sets of algorithms is not empty, i. e., that there exists an algorithm X for which it is neither
provable that “X does not solve SATISFIABILITY,” nor provable that “X does not work in
polynomial time.” To do that, we use the following construction.

Construction of the Algorithm X1

Let M1 be a TM that does not halt on λ, and for which this fact is not provable in AV-
mathematics (such TMs exist due to Theorem 4). Let C be an algorithm that provably solves
SATISFIABILITY in exponential time, and works in exponential time on every input. We
define, for each TM M , an algorithm XC(M) as follows.

XC(M): Input: w
begin
1. Simulate at most |w| steps of the work of M on λ;
2. if M halts on λ within |w| steps then reject w;

else simulate the work of C on w;
end

The following statements are true.

• M halts on λ ⇐⇒ XC(M) accepts almost everywhere the empty set ⇐⇒ XC(M)
works in in polynomial time (even in linear time).

3 that is, statement (∗)

12

• M does not halt on λ ⇐⇒ XC(M) solves SATISFIABILITY ⇐⇒ XC(M) works in
exponential time (and does not work in polynomial time).

If, for each TM M , there exists either a proof of “XC(M) works in polynomial time,” or a
proof of “XC(M) does not work in polynomial time,” then correspondingly “M halts on λ” or
“M does not halt on λ” would be provable for each M in AV-mathematics. Analogously, if, for
each TM M , there exists a proof of “XC(M) recognizes SATISFIABILITY” or “XC(M) does
not recognize SATISFIABILITY,” it is also provable whether M halts on λ or not.

Since M1 does not halt on λ, and this fact is not provable in AV-mathematics, we have

X1 := XC(M1) solves SATISFIABILITY, but it is neither provable that
“X1 does not work in polynomial time” nor that “X1 solves SATISFIABILITY.”

Hence, we have the following theorem.

Theorem 10. There exists an algorithm X1, for which it is neither decidable whether X1
recognizes SATISFIABILITY nor decidable whether X1 works in polynomial time or not.

Unfortunately, this is not a proof of the fact that (∗) for X1, i. e.,

“X1 does not work in polynomial time or X1 does not solve SATISFIABILITY”

is not provable in AV-mathematics (i. e., we did not prove this way that “P 6= NP” is not
provable in AV-mathematics). Even the opposite is true. From the construction of XC(M), we
see that, for each TM M , the statement (∗) is provable for XC(M). Hence, we have something
like an uncertainty principle about properties of algorithms. There is a proof of the statement
“α(X1) ∨ β(X1)” for the algorithm X1, but there does neither exist a proof of “α(X1)” nor a
proof of “β(X1).”

Again, note that we can do the same as in Theorem 10, due to the construction of XC(M),
for

1. any NP-hard problem or for FACTORIZATION by exchanging SATISFIABILITY by
one of these in the construction of X1,

2. the multiplication of two decimal numbers by taking C as an algorithm that computes
multiplication in superlinear time.

Acknowledgment

I would like to thank Hans-Joachim Böckenhauer, Dennis Komm, Rastislav Královič, and
Richard Královič for interesting discussions related to the first verification of the proofs
presented here. Essential progress was made during the at least 40th Mountain Workshop on
Algorithms organized by Xavier Muñoz from UPC Barcelona that offered optimal conditions
for research work.

References
[1] S. Aaronson: Is P versus NP formally independent? Bulletin of the EATCS 81, 2003,

pp. 109–136.

13

[2] Th. P. Baker, J. Gill, and R. Solovay: Relativizations of the P =? NP question. SIAM
Journal on Computing 4(4), 1975, pp. 431–442.

[3] G. Chaitin: On the lengths of programs for computing finite binary sequences. Journal
of the ACM 13(4), 1966, pp. 547–569.

[4] G. Chaitin: On the simplicity and speed of programs for computing definite sets of natural
numbers. Journal of the ACM 16(3), 1969, pp. 407–412.

[5] G. Chaitin: Information-theoretic limitations of formal systems. Journal of the ACM
21(3), 1974, pp. 403–424.

[6] K. Gödel: Über formal unentscheibare Sätze der Principia Mathematica und verwandte
Systeme. Monatshefte für Mathematik und Physik 28, 1931, pp. 173–198.

[7] D. Hilbert: Die logischen Grundlagen der Mathematik. Mathematische Annalen 88, 1923,
pp. 151–165.

[8] A. Kolmogorov: Three approaches for defining the concept of information quantity. Probl.
Information Transmission 1, 1965, pp. 1–7.

[9] A. Kolmogorov: Logical basis for information theory and probability theory. IEEE
Transition on Information Theory 14, 1968, pp. 662–664.

[10] A. A. Razborov and S. Rudich: Natural Proofs. Journal of Computer and System Sciences
55(1), 1997, pp. 24–35.

[11] H. Rice: Classes of recursively enumerable sets and their decision problems. Transaction
of ASM 89, 1953, pp. 25-59.

[12] A. Turing: On computable numbers with an application to the Entscheidungsproblem.
In: Proceeding of London Mathematical Society 42, 1936, pp. 230–265.

14

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

