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Abstract

A probability distribution over an ordered universe [n] = {1, . . . , n} is said to be a k-histogram if it
can be represented as a piecewise-constant function over at most k contiguous intervals. We study the
following question: given samples from an arbitrary distribution D over [n], one must decide whether D
is a k-histogram, or is far in `1 distance from any such succinct representation. We obtain a sample and
time-efficient algorithm for this problem, complemented by a nearly-matching information-theoretic lower
bound on the number of samples required for this task. Our results significantly improve on the previous
state-of-the-art, due to Indyk, Levi, and Rubinfeld [ILR12] and Canonne, Diakonikolas, Gouleakis, and
Rubinfeld [CDGR16].

1 Introduction

1.1 Motivation and background

Large datasets have become the norm over recent decades, a trend that if anything has been hastening
lately – and most likely will for the foreseeable future. This rapid increase in the amount of information
to store, analyze, and process comes with many challenges; and in particular calls for succinct ways of
representing the data, as well as (very) fast algorithms to operate on it.

One of the oldest and most widely used representations is that of histograms, where the range of possible
values the data can take is divided into groups, or “bins” [Pea95]. The number of records from the dataset
falling in each bin is then recorded, and serves as summary of the records themselves. Whenever the
dataset can be well-approximated by histograms with few bins, this provides a space-efficient and flexible
way of storing, querying, and analyzing the data and its distribution; specifically, whenever the number
of bins k is much smaller than the size n of the universe. For these reasons, the study of histograms and
algorithms that operate on them has received significant interest in databases [Koo80, PIHS96, GMP97,
CMN98, JKM+98, WJLY04, XZX+13] and many other fields, such as statistics [Sco79, FD81, Bir87],
streaming [GGI+02, TGIK02, GKS06], and learning theory [ILR12, CDSS13, CDSS14, GSW04, ADH+15]
(see also [Ioa03] for a survey).

In this work we will be concerned with the framework of property testing of distributions, as first
introduced in the seminal work of Batu et al. [BFR+00] (see also [Ron08, Ron10, Can15] for surveys on
property and distribution testing). In this setting, access to the data is provided via random samples drawn
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independently from the dataset (that is, from the probability distribution that underlies it).1 The algorithm
must then decide, after looking at as a few samples as possible, whether this probability distribution satisfies
some fixed property of interest – e.g., if the records are uniformly distributed. This setting is particularly
relevant when confronted to massive datasets, whose sheer size makes the perspective of reading the whole
input impractical, or even impossible. In this case, a standard approach to meet the memory and computational
constraints is by random sampling of the data, which enables one to instead only perform computations on a
small representative portion of the dataset. In view of this, we consider here the following testing question:
given some input parameters k and ε, can the distribution of the data be represented as a histogram on at most
k bins, or is it significantly different (at distance at least ε) from any such “k-histogram” representation?

An efficient primitive answering this question could then be used to represent or sketch the dataset as
compactly as possible, when invoked as a subroutine to perform model selection. In more detail, given a
bound ε on the desired approximation error, one can iteratively run such an algorithm (e.g., by doubling
search) to look for the “smallest corresponding k,” that is the smallest number of bins needed to accurately
capture the statistical properties of the dataset (within error ε). Once this parameter identified, calling an
agnostic learning algorithm as that of e.g. [ADLS15] with this k will yield a succinct approximation of the
dataset, achieving an optimal tradeoff between accuracy and conciseness. (The efficiency of the testing
procedure, notably the number of samples required, is in this case crucial. Indeed, this approach is only
advantageous as long as the subroutine only takes o(n) samples – if not, then the overhead it brings completely
eclipses the savings made in the learning stage, as one can always approximate the whole dataset and compute
the closest histogram “offline” from O(n) data points.)

1.2 Our results

We obtain an efficient algorithm, complemented by a nearly matching lower bound, that together settle the
question of testing whether an unknown probability distribution can be represented as a k-histogram, for any
k in the range of interest (with regard to the size of the universe Ω = {1, . . . , n}). Specifically, we prove the
following theorems:

Theorem 1.1 (Upper Bound). For any 1 ≤ k ≤ n, there exists an efficient testing algorithm for the class of
k-histograms with sample complexity O

(√
n
ε2 log k + k

ε3 log2 k
)

.

Theorem 1.2 (Lower Bound). For any 1 ≤ k ≤ n
120 , any (non-necessarily efficient) testing algorithm for the

class of k-histograms must have sample complexity Ω
(√

n
ε2 + 1

ε
k

log k

)
.

Indeed, this essentially resolves the sample complexity of testing k-histograms, up to polylogarithmic factors
in k and the dependence on ε of the second term. Moreover, we note that the proof of Theorem 1.2 implies the
same lower bound on the sample complexity of testing k-modal distributions, that is the class of distributions
whose probability mass function is allowed to go “up and down” or “down and up” at most k times.

Comparison with previous work. Our results significantly improve upon the previous algorithmic results
of Indyk, Levi, and Rubinfeld [ILR12], which required O

(√
kn
ε5 logn

)
samples; as well as on later work by

Canonne, Diakonikolas, Gouleakis, and Rubinfeld [CDGR16], where this upper bound is brought down to
O
(√

kn
ε3 logn

)
. Moreover, these results crucially left open the question of the interplay between the domain

size n and the parameter k of the class to be tested.
1See Section 2 for the formal definition of the model.
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At a high level, our results (almost) answer this question, by “decoupling” these two parameters. In
particular, ignoring ε in the statement of Theorem 1.1 one can see the first term as capturing the (sublinear)
dependence on the domain size, while the other second only depends on the complexity of the class to be
tested.

Turning to the negative results, prior to our work the best lower bounds for this question were due to
Paninski [Pan08], who establishes an Ω

(√
n/ε2) sample lower bound for testing uniformity (that is, the case

k = 1), and to Indyk, Levi, and Rubinfeld [ILR12] where a lower bound of Ω
(√

kn
)

samples is proven for
k ≤ 1/ε. Theorem 1.2 unifies and extends both results, obtaining a nearly-tight lower bound featuring the
same decoupling between n and k as in our upper bound.

Importantly, the question we consider is the setting where one does not know beforehand the decomposi-
tion of the domain in k intervals on which the unknown distribution D “should be piecewise-constant,” but
instead must decide if such a decomposition exists. The (easier) problem of testing, given as input an explicit
partition Π of the domain in k intervals, if D is indeed a histogram with regard to this specific Π has been
recently considered in [DK16], where the authors obtain tight upper and lower bounds on the question.

1.3 Techniques

Upper bound. To obtain our algorithmic result, we follow an approach similar to that of Acharya,
Daskalakis, and Kamath [ADK15], who show how to apply the “testing by learning” paradigm to the
setting of distribution testing. At a high-level, the idea is to first learn an approximation of the unknown
distribution as if it satisfied the property of interest (which can usually be achieved with relatively few
samples); before verifying that the output of this learning stage is both (a) close to having the property and (b)
close to the unknown distribution. While standard in property testing of functions, this method was believed
to inherently fail in the case of probability distributions, due to the hardness of efficiently estimating the
distance between distributions from samples [VV10] – as required for (b). Namely, the result of [VV10]
implies that this last step would by itself cost a prohibitive number of samples, almost linear in the domain
size n. The main idea of [ADK15] is to circumvent this impossibility result by first choosing to learn the
unknown distribution not with regard to the total variation, but instead in χ2 distance; and showing that the
corresponding variant of distance estimation (deciding whether two distributions are close in χ2 distance,
versus far in total variation) can be achieved with only

√
n samples.2

In order to establish Theorem 1.1, we adapt the above approach, with several crucial modifications.
Namely, applying the ideas of [ADK15] out-of-the-box would require an efficient algorithm to learn the class
of k-histograms in χ2 distance, i.e. one with sample complexity poly(k, 1/ε) (independent of n). To the
best of our knowledge, such learning algorithm does not appear in the literature, and it is not clear whether
one can even exist. Instead, we settle for a weaker guarantee: that of learning a good approximation of an
unknown k-histogram except on a small (but unknown) portion of the domain, where the accuracy can be
arbitrarily poor. To handle this, we then need to adapt the second stage (testing in χ2 vs. total variation) to
identify and discard this small portion of the domain. This is done by iteratively applying (a modification of)
the testing algorithm of [ADK15] several times, removing “bad chunks of the domain” one at a time. The
challenge here is to do this in a careful and controlled manner, in order to keep the number of such iterations
(and therefore samples) as small as possible. (Intuitively, this is where the log k factor in the first term of the
sample complexity stems from – a union bound over k outcomes of the testing subroutine.)

2The use and analysis of a χ2-based statistic to obtain optimal testing algorithms already appears in [CDVV14], where the
authors consider the (related) question of distinguishing whether two distributions are equal vs. far in total variation distance.

3



Lower bound. Turning now to the converse result, we split the proof of Theorem 1.2 in two parts,
establishing separately each term of the lower bound. The first one, Ω

(√
n/ε2), is essentially a direct

modification of the lower bound of Paninski on testing uniformity (i.e., 1-histograms). The second term,
however, proves to be much less straightforward: the main ingredient in our Ω(k/ log k) bound is a reduction
from a seemingly unrelated question, that of estimating the support size [VV10]. A key aspect of this
reduction is to lift the corresponding lower bound of Valiant and Valiant – which heavily relies on the support
size to be a symmetric property,3 to our setting – a property that is clearly not symmetric, and thus at first
glance intrinsically different. Perhaps surprisingly, we manage to connect these two questions in a black-box
and conceptually simple way; moreover, we believe our reduction to be of independent interest, and applicable
to other properties as well.

1.4 Organization

After introducing the required definitions and notations in Section 2, we establish our algorithmic result, The-
orem 1.1, in Section 3. Finally, Section 4 contains the details of our lower bound, Theorem 1.2.

2 Notations and Preliminaries

All throughout this paper, we denote by [n] the set {1, . . . , n}, and by log the logarithm in base 2. We write
∆([n]) for the set of discrete probability distributions over domain [n], i.e. the set of all real-valued functions
D : [n] → [0, 1] such that

∑n
i=1D(i) = 1. A property of distributions over [n] is a subset P ⊆ ∆([n]),

consisting of all distributions that have the property.
For any fixed 1 ≤ k ≤ n, we let Hk ⊆ ∆([n]) denote the class of k-histograms, i.e. the property of

being piecewise-constant with at most k “pieces.” Formally, D ∈ Hk if and only if there exists a partition
I = (I1, . . . , Ik) of [n] into k intervals such that D is constant on each Ij .

In this work, we will measure the distance between two distributionsD1, D2 on [n] by their total variation
distance

dTV(D1, D2) def= 1
2‖D1 −D2‖1 = max

S⊆[n]
(D1(S)−D2(S))

which takes value in [0, 1]. (Note that this metric, sometimes referred to as statistical distance and equivalent
to the `1 distance, is one of the most stringent ones and the standard distance measure in distribution testing.)
To prove some of our results, we will also require as a tool the definition of the (asymmetric) χ2-distance
between two distributions D1, D2 ∈ ∆([n]),

dχ2(D1 || D2) =
n∑
i=1

(D1(i)−D2(i))2

D2(i) = −1 +
n∑
i=1

D1(i)2

D2(i) .

Finally, recall that a testing algorithm for a fixed property P is a randomized algorithm TESTER which
takes as input n, ε ∈ (0, 1], and is granted access to independent samples from an unknown distribution D:

(i) if D ∈ P , the algorithm outputs accept with probability at least 2/3;

(ii) if dTV(D,D′) ≥ ε for every D′ ∈ P , it outputs reject with probability at least 2/3.
That is, TESTER must accept if the unknown distribution has the property, and reject if it is ε-far from having
it. The sample complexity of the algorithm is the number of samples it draws from the distribution in the
worst case.

3That is, a property invariant to relabeling of the domain elements: D has a property if and only if, for every permutation σ of the
domain, D ◦ σ has the property.
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Poissonization. We hereafter follow, for our upper bounds, the standard “Poissonization trick”: specifically,
we assume that instead of drawing a fixed number m of samples from a distribution D, the algorithms
instead randomly select m′ ∼ Poisson(m), and then draw m′ independent samples from D. While greatly
simplifying the analysis by making the number of times different domain elements appear in the samples
independent, this can be achieved at only a negligible cost in both the sample complexity and the probability
of error, due to the tight concentration of the Poisson distribution around its mean.

On discrete domains. Although the setting we consider is that of discrete domains, our techniques can
be easily extended to continuous ones by suitably gridding the range of values. This approach may not in
general be optimal, and will depend on the step chosen for the discretization; however, it is not clear how to
even phrase distribution testing questions in a continuous setting without either additional assumptions on the
unknown distribution or changing the metric.

3 Upper bound: an efficient testing algorithm

In this section, we prove our upper bound, Theorem 1.1. More specifically, we establish the following, more
detailed, result:

Theorem 3.1. For any k ≥ 1, there exists a testing algorithm forHk with sample complexity

O

(√
n

ε2 log k + k

ε3 log k + k

ε
log2 k

ε

)
.

Moreover, its running time is
√
n poly(log k, 1/ε) + poly(k, 1/ε).

We first state in the next subsection some results from the literature we shall rely upon, before delving into
the proof of the theorem.

3.1 Tools from previous work

Our starting point will be a recent result of Acharya, Daskalakis, and Kamath, which shows how to efficiently
perform a specific relaxation of tolerant identity testing,4 with regard to a χ2 guarantee:

Theorem 3.2 ([ADK15], Rephrased). There exists an algorithm TESTER that, on input n, ε ∈ (0, 1] as
well as the explicit description of a distribution D∗ ∈ ∆([n]), takes O

(√
n/ε2) samples from an unknown

distribution D ∈ ∆([n]) and satisfies the following.

(i) If dχ2(D || D∗) ≤ ε2

500 , then TESTER outputs accept with probability at least 2/3;

(ii) If dTV(D,D∗) ≥ ε, then TESTER outputs reject with probability at least 2/3.
Moreover, TESTER runs in time O

(√
n/ε2).

For our purpose, instead of invoking this result as a blackbox we will rely on the following refinement
(which already appears in the section of [ADK15] dealing with unimodality):5 given an explicit partition of
[n] on K intervals I1, . . . , IK and a fully specified distribution D∗, the algorithm from Theorem 3.2 takes

4In tolerant identity testing, the goal is, provided the full description of a distribution D∗ and samples from an unknown
distribution D, to distinguish between dTV(D,D∗) ≤ ε and dTV(D,D∗) ≥ 2ε. Valiant and Valiant [VV10] showed that even in
the case of D∗ being the uniform distribution, Ω

(
n

logn

)
samples were required for this task.

5See Appendix D of the full version of [ADK15].
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(Poisson)m = O
(√
n/ε2) samples fromD, and computes theK (independent) statistics Z1, . . . , ZK defined

as

Zj =
∑

i∈Ij∩Aε

(Ni −mD∗(i))2 −Ni

mD∗(i)

where Aε =
{
i ∈ [n] : D∗(i) ≥ ε

50n
}

and Ni is the number of occurrences of i ∈ [n] among the samples
drawn from D. Observing that Ni is distributed according to Poisson(mD(i)), standard computations yield
that EZj = m

∑
i∈Ij∩Aε

(D(i)−D∗(i))2

D∗(i) . Letting Z =
∑K
j=1 Zj , we get the quantity analyzed by Acharya,

Daskalakis, and Kamath, for which they show the following:

Proposition 3.3 ([ADK15, Lemmata 1 and 2]). The statistic Z above has the following guarantees, provided
that m ≥ 20000

√
n/ε2.

• If dχ2(D || D∗) ≤ ε2

500 , then EZ ≤ mε2

500 , which implies VarZ ≤ m2ε4

500000 .

• If dTV(D,D∗) ≥ ε, then EZ ≥ mε2

5 , which implies VarZ ≤ E[Z]2
100 .

Moreover, for any j ∈ [K] such that EZj ≥ mε2

5 , we have VarZj ≤ E[Zj ]2
100 (as per the second item).

We will also leverage another characteristic of the tester of Theorem 3.2; specifically, that it also works
for subdistributions (i.e., considering only a portion of the domain, on which the two distributions do not
necessarily sum to one nor to the same value), considering the natural restrictions of χ2 and total variation to
intervals (the latter as half the `1 norm, as defined above).6

Finally, we will make use of the fact below, which can be shown by a standard application of Chernoff
bounds.

Proposition 3.4 ([ADK15, Claim 1 (Full version)]). There exists an algorithm APPROXPART that, given a
parameter b > 1, takes O(b log b) samples from a distribution D and, with probability at least 9/10, outputs
a partition of [n] in K ≤ 2b+ 2 intervals I1, . . . , IK such that the following holds:

(i) For each i ∈ [n] such that D(i) ≥ 1/b, there exists ` ∈ [K] such that I` = {i};
(ii) There are at most two intervals I such that D(I) < 1/(2b);

(iii) Every other interval is such that D(I) ∈ [1/(2b), 2/b].
Moreover, the algorithm runs in time O(b log b).

3.2 Proof of Theorem 3.1

As described in Section 1.3, our algorithm relies on two main components: the first is an (almost) learning
procedure for k-histograms which outputs an approximation D̂ of an unknown distribution D, with the
guarantee that if D ∈ Hk, then D̂ is close to D in χ2 distance except possibly on a small but unknown
portion S of the domain. The second is a testing procedure, inspired by the work of [ADK15], which takes
this D̂ as input and iteratively “sieves” the domain, in order to discard a set S′ (the algorithm’s “guess” for
S); and eventually checks if D̂ and D are indeed close in χ2 distance on the sieved domain [n] \ S′.

A learning lemma. Let I be a partition of [n] into intervals. For a subset of intervals J ⊆ I define D̃J

as follows. For every i /∈ ∪J∈J J , D̃J (i) = D(i) and otherwise D̃J (i) = D(I)/ |I| where I is such that
I ∈ I and i ∈ I . Given a histogram D ∈ Hk, we say that i ∈ [n] is a breakpoint of D if D(i) 6= D(i+ 1).

6Namely, for an interval I define dIχ2 (D1 || D2) =
∑

i∈I
(D1(i)−D2(i))2

D2(i) and dITV(D1, D2) = 1
2
∑

i∈I |D1(i)−D2(i)|.
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Algorithm 1
Require: Parameters k and ε ∈ (0, 1]; sample access to a distribution D over [n]

1: Set b def= 20k log k
ε , and ε′ def= 13ε

30 .
2: Learning
3: Run APPROXPART (from Proposition 3.4) with parameter b; let I be the partition of [n] into K

intervals it outputs.
4: Run LEARNER (from Lemma 3.5) with parameters K, ε

60 , and I; let D̂ ∈ HK be its output.
5:

6: Sieving
7: Identify O(k log k) intervals from I to discard (with regard to D, D̂), as detailed in Section 3.2.1.

Let I ′ ⊆ I be the set of remaining intervals, and G = ∪I∈I′I .
8:

9: Checking
10: Check there exists D∗ ∈ Hk such that dGTV

(
D̂,D∗

)
≤ ε

60 ; otherwise, return reject. . Can be done
in time poly(k, 1/ε) by dynamic programming, as in [CDGR16, Lemma 4.11]

11:

12: Testing
13: Run TESTER (from Theorem 3.2) on D with parameters n, ε′, and D̂, restricted to the subdomain G;

if the tester rejects, return reject.
14: return accept

Similarly, an interval I ∈ I is a breakpoint interval of D (with respect to I) if it contains a breakpoint of D.
(Note that there can be at most k − 1 such breakpoints and breakpoint intervals).

Lemma 3.5. There exists an algorithm LEARNER that, on input n, a partition of [n] into ` intervals
I = {I1, . . . , I`} and ε ∈ (0, 1], takes O

(
`/ε2) samples from an unknown distribution D ∈ ∆([n])

and outputs (the succinct description of) a distribution D̂ ∈ H` that satisfies the following. For every
k ≤ `, if D ∈ Hk and J = {J1, . . . , Jr−1} ⊆ I (with r ≤ k) are the breakpoints intervals of D, then
dχ2

(
D̃J || D̂

)
≤ ε2 with probability at least 9/10. Moreover, the algorithm runs in time O

(
`/ε2).

Proof. We follow the analysis of the Laplace estimator from [KOPS15], first defining a modified estimator
(from m independent samples s1, . . . , sm from a distribution D on [n]) by

D̂(j) def= mIi + 1
m+ `

· 1
|Ii|

, i ∈ [`], j ∈ Ii

where mIi
def=
∑
j∈Iimj and mi

def= |{ j ∈ [m] : sj = i }|.
Suppose D is a k-histogram. The expected value of dχ2

(
D̃J || D̂

)
, over the draws of the m samples,

can be written

E
[
dχ2

(
D̃J || D̂

)]
= −1 +

∑
I∈I
|I| · E


(
D(I)
|I|

)2

mI+1
m+` ·

1
|I|

 = −1 +
∑
I∈I

E
[
D(I)2(m+ `)

mI + 1

]

Now, for a fixed I ∈ I, we have

E
[ 1
mI + 1

]
=

m∑
s=0

1
s+ 1

(
m

s

)
D(I)s (1−D(I))m−s ≤ 1

D(I)(m+ 1) .
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Plugging it back, this implies

E
[
dχ2

(
D̃J || D̂

)]
≤ −1 +

∑
I∈I

D(I)(m+ `)
m+ 1 ≤ `

m

Letting m ≥ c · `
ε2 (where c > 0 is an absolute constant), this together with Markov’s inequality yields the

result.

Outline and correctness. The idea is to first run the algorithm APPROXPART of Proposition 3.4 on D
with parameter b set to (20k log k)/ε, getting K = O((k log k)/ε) intervals I1, . . . , IK (meeting the stated
guarantee with probability at least 9/10), after taking O(K logK) samples. We then run the χ2 learner
of Lemma 3.5 with parameter ε

60 (which requires O
(
K
ε2

)
samples from D) to output a histogram D̂ on this

partition.

• In the completeness case, D ∈ Hk: meaning that there exists a fixed and fully determined, albeit
unknown, subset B of at most k intervals among theK which contain the “breakpoints intervals” for the
piecewise-constant D. (Note that the only possible intervals that can be “bad” must be non-singletons.)
Conditioning on the learning algorithm to meet its guarantees on G def=

⋃
j∈[K]\B Ij (which happens

with probability at least 9/10), we obtain that dGχ2

(
D || D̂

)
≤ ε2

3600 .

• In the soundness case, dTV(D,Hk) ≥ ε. Since D(I) ≤ 2
b for any non-singleton interval, this implies

that no matter which set B of at most k log k intervals we discard, it amounts for no more than ε
10

total probability weight under D, and we can safely ignore it in the rest of the procedure. Indeed, for
any such B and the corresponding remaining domain G =

⋃
j∈[K]\B Ij , dGTV(D,D′) ≥ 9ε

20 for any
D′ ∈ Hk.

The goal is therefore to remove k log k (non-singleton) intervals, out of the K intervals, which together
contribute the maximum amount to Z; that is, to remove Zi1 , . . . , Zik such that

∑k
`=1 EZi` is maximized

(call this stage (‡)). Indeed, assuming this has been done (which corresponds to identifying a good restricted
domain G), the two items above together ensure correctness of Algorithm 1, conditioning on all subroutines
meeting their specification (which by a union bound happens with probability at least 2/3). In more detail,
assuming the sieving stage to have gone through, the algorithm will check that (a) D̂ is ε

60 -close in “total
variation restricted to G” to some k-histogram D′ (as it should if D ∈ Hk); and then (b) run the tester
of Theorem 3.2 on D, D̂ (on G) with parameter ε′ def= 13ε

30 .

Completeness. if D ∈ Hk then the learning algorithm of Step 4 outputs D̂ such that dGχ2

(
D || D̂

)
≤ ε2

3600 ,

so that TESTER will accept in Step 13; and as this also implies dGTV

(
D̂,D

)
≤ ε

60 , Step 10 accepts as
well.

Soundness. Conversely, suppose dTV(D,Hk) ≥ ε and the algorithm accepts in Step 10 there is a D∗ ∈ Hk
such that dGTV

(
D̂,D∗

)
≤ ε

60 . But by the above discussion we must have dGTV(D,D∗) ≥ 9ε
20 , and from

the triangle inequality dGTV

(
D, D̂

)
≥ dGTV(D,D∗)− dGTV

(
D̂,D∗

)
≥ 13ε

30 : the algorithm will output
reject in Step 13.

The correctness having been established, the main question is therefore how to perform the “sieving stage” (‡),
which we detail next.
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3.2.1 Sieving: removing up to k log k possible bad intervals.

In what follows, we will compute the statistics Zj from Proposition 3.3 several times, computed independently
each time. Furthermore, by standard arguments (repeating the test, and taking the median value), we can
assume the probability of success/correctness of this test to be 1− δ, at the price of an extra log 1

δ factor in
the sample complexity. (In particular, we shall take δ to depend on k, in order to apply a union bound over
many tests.)

For simplicity, we deal with the following scenario (where the constants have been changed): among the
K indices, there is a fixed but unknown subset B = {i1, . . . , ik} of k indices such that

1.
∑
j /∈B EZj ≤ mα2;

2.
∑
j∈B EZj > 100mα2

and we want to remove a subset B′ of 2k indices such that
∑
j /∈B′ EZj ≤ 100mα2. (This will deal with the

completeness case, and setting α = ε
C for some big enough constant C in the learning stage will give us what

we want.)

Discarding the heavy ones: Let B+ ⊆ B be the indices such that EZj ≥ 100mα2. By assumption,∣∣B+∣∣ ≤ k, and this is a fixed (albeit unknown) set of indices fully determined by D. In particular, if we
compute the statistics as in Proposition 3.3 with failure probability δ = 1

10(k+1) , by a union bound we
can condition on (i) each Zj , j ∈ B+ behaving as expected: Zj > 10mα2, and (ii) the fixed set [K] \B
also behaving as expected, so that

∑
j /∈B Zj ≤ 10mα2. By removing all j’s such that Zj > 10mα2,

and outputting reject if there are more than k, we thus have filtered all intervals from B+ (with success
probability at least 9/10), and no other. Let `′ be the number of elements removed, and k′ = k − ` the
number of “possible remaining bad elements.”

Iteratively removing the rest: we therefore can now assume we have at most k′ indices to remove (call this
set B−), such that for each EZj < 100mα2. In particular,

∑
j∈B− EZj < 100mkα2. We repeat the

following at most log k times, until either the test accepts at some step, or we performed more than
O(log k) such steps (in which cases we proceed to the last stage, the sieving part being over); or we
removed more than k′ indices in total (in the latter case, we output reject and stop)

• compute the statistics Zj for all remaining indices, and check the value of their sum Z.
• if Z < 10mα2, accept.
• otherwise, sort the Zj’s by decreasing order, and remove the first ` indices, where ` ≤ k′ is the

smallest integer such that
∑
j>` Zj ≤ 2mα2.

Define B−rem ⊆ B− as the set of bad indices remaining at the current step. By a conditioning on the two
subsets of indices B−rem and [K] \ B, we have that

∑
j /∈B Zj ≤ 2mα2, and if

∑
j∈B−rem

EZj > 100mα2

then
∑
j∈B−rem

Zj >
1
2
∑
j∈B−rem

EZj .

By assumption, we remove at least 1
2
∑
j∈B−rem

EZj − 2mα2 > 1
3
∑
j∈B−rem

EZj of the “bad weight”
as long as

∑
j∈B−rem

EZj > 100mα2 and we know that at the beginning
∑
j∈B− EZj < 100mkα2.

This implies that after O(log k) such steps, we have that the sum of EZj for the remaining Zj’s is at
most 101mα2 (from what remains in the “bad” intervals, and the contribution of the “good” ones).
Moreover, in total we removed at most O(log k) · k′ = O(k log k) intervals, and ran O(log k) “tests”
with δ = Θ

(
1

log k

)
(which costs O

(√
n

α2 log log k
)

samples).

Overall, over these two stages we end up paying O
(√

n
α2 log k

)
+O

(√
n

α2 log log k
)

= O
(√

n
α2 log k

)
samples,
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and perform the “sieving” (‡). This concludes the proof of Theorem 3.1: the total sample complexity is

O

(√
n

ε2 log k
)

+O
(
k

ε3 log k
)

+O
(
k log k
ε

log k log k
ε

)
= O

(√
n

ε2 log k
)

+O
(
k

ε3 log k
)

+O
(
k

ε
log2 k

ε

)
as stated. The running time of the overall algorithm is easily seen to be as claimed, as each of the learning
and testing subroutines runs in time linear in the number of samples.

4 An information-theoretic lower bound

In this section, we prove Theorem 1.2, that is both an Ω
(√
n/ε2) and an Ω(k/(ε log k)) lower bound on

testing k-histograms (the latter for k = ω(1)):

Proposition 4.1. There exists an absolute constant ε0 > 0 such that the following holds. For any 1 ≤ k < n
3

and ε ∈ (0, ε0], any (non-necessarily efficient) testing algorithm forHk must take Ω
(√

n
ε2

)
samples.

Proposition 4.2. There exists an absolute constant ε1 > 0 such that the following holds. For any large
enough k ≤ n

120 and ε ∈ (0, ε1], any (non-necessarily efficient) testing algorithm forHk must take Ω
(

1
ε

k
log k

)
samples.

As mentioned earlier, the first lower bound builds on a proof of Paninski [Pan08] on testing uniformity;
while our argument for the second will rely on a result of Valiant and Valiant [VV10], namely a lower bound
on estimating a symmetric property: support size. WhileHk is clearly not a symmetric class (i.e., it is not
invariant by permutation of the support), we show how one can still leverage this lower bound for our purpose.

4.1 Proof of Proposition 4.1

The result follows from adapting the proof of [Pan08], intended for the case of uniformity testing, or
equivalentlyH1. In this argument, Paninski defines a family of distributions Q, parameterized as follows. A
distribution D ∈ Qε is defined by n

2 bits z1, . . . , zn/2 ∈ {0, 1}, and

D(2i) = 1 + (−1)zi · cε
n

, D(2i− 1) = 1− (−1)zi · cε
n

for i ∈ [n/2], where c > 0 is a suitably chosen constant. The result then follows from observing that any
distribution in Qε is ε-far from uniform, and yet that Ω

(√
n/ε2) samples are necessary to distinguish a

uniformly chosen D ∼ Qε from the uniform distribution with probability at least 2/3.
To apply this argument to our case, it is sufficient to observe that for k < n

3 (and the right choice of the
constant c), a random D ∼ Qε will be ε-far fromHk as well. To see why, fix D ∈ Qε, and let D∗ ∈ Hk be a
k-histogram minimizing dTV(D,D∗). Define S ⊆ [n/2] as the set of indices such thatD∗(2i−1) = D∗(2i);
note that by the triangle inequality, for all i ∈ S we have |D(2i− 1)−D∗(2i− 1)|+ |D(2i)−D∗(2i)| ≥
|D(2i)−D(2i− 1)| = 2cε

n . Since one must have |S| ≥ n
2 − k + 1 > n

6 as D∗ ∈ Hk, this implies that

2dTV(D,D∗) =
n
2∑
i=1

(|D(2i− 1)−D∗(2i− 1)|+ |D(2i)−D∗(2i)|)

≥
∑
i∈S

(|D(2i− 1)−D∗(2i− 1)|+ |D(2i)−D∗(2i)|)

≥ n

6 ·
2cε
n

= cε

3
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so that taking c ≥ 6 (and ε0 ≤ 1/c) yields the result.

Remark 4.3. We observe that a simpler proof of this lower bound, albeit restricted to the range k = o(
√
n),

can be obtained by applying the framework of [CDGR16]. Specifically, one can invoke [CDGR16, Theorem
6.1], using as a blackbox the uniformity testing lower bound of Paninski along with the fact that k-histograms
can be learned agnostically from O

(
k/ε2) samples ([ADLS15]).

4.2 Proof of Proposition 4.2

Outline. We start by considering a scalar symmetric property, support size. The corresponding problem
SUPPSIZEm is as follows: given sample access to an unknown distribution D ∈ ∆([m]) with the promise
that D(i) ∈ {0} ∪ [ 1

m , 1] for all i ∈ [m],7 one must distinguish between (i) supp(D) ≤ 2m
3 + 1 and (ii)

supp(D) ≥ 7m
8 . This problem is known to require c · m

logm samples, where c > 0 is an absolute constant, for
m sufficiently large ([VV10, Theorem 1]).

We then argue that any tester for the property of being a k-histogram can be used to solve this problem,
with only a constant factor blowup in the sample complexity. Indeed, if TESTER is a bona fide q(n, k, ε)-
sample tester for testing k-histograms (with probability of success 2/3), then it can be converted to a
symmetric tester TESTER′ for the weak support size problem as follows: first, “enlarge” the domain [m]
of D by embedding it in [n], for some n > m (that is, setting D(i) = 0 for all m + 1 ≤ i ≤ n). Second,
pick uniformly at random a permutation σ ∈ Sn of the “enlarged domain”, where Sn denote the set of all
permutations of [n]. Then, given samples of a distribution D it remains to feed TESTER with q samples
from a distribution Dσ = D ◦ σ−1 (“re-building” the identity of the samples according to σ: for i ∈ [n],
Dσ(i) = D(σ−1(i))). The key point is to argue that with high constant probability over the choice of σ:

• If D has support size at most m3 , then Dσ is a k-histogram for k def= 2 · m3 + 1 (with probability one);
• IfD has support size in [7m

8 ,m], thenDσ is far from any k-histogram, as with high constant probability
its support is “sprinkled” over many isolated points – say at least 3m

4 . Whenever this happens, Dσ

needs at least 6m
4 − 1 intervals to be a histogram, and incurs constant distance ε1 (where ε1 =(

3
4m− k + 1

)
1

2m = 1
24 ) from any k-histogram, from a similar argument as in Proposition 4.1 and the

lower bound 1/m on any non-zero probability.

Independently repeating a constant number of times this procedure (that is, drawing a new permutation σ,
and applying TESTER on Dσ using fresh samples from D) and taking the majority vote then allows the test
to succeed with probability at least 5/9. But this in turn implies a lower bound on q, as otherwise it would
contradict the lower bound on the number of samples required to tolerantly test the symmetric property
SUPPSIZEm.

The last piece we need in our reduction is the guarantee that, when permuting the domain at random, (a) a
distribution with support size at most ` will be a (2`+ 1) histogram (this point is obvious); but also (b) with
high probability over the permutation, a distribution with support size `� n will keep its support “sprinkled”
over the domain, and therefore need much more than (2`+ 1) pieces to be represented as a histogram. The
following lemma makes this intuition precise, showing that for reasonable values of ` a random permutation
will keep the points of the support isolated with constant probability:

Lemma 4.4. Let ` ≤ n
70 . For any set S ⊆ [n], define s = cover(S) as the minimum number of disjoint

intervals I1, . . . , Is ⊆ S necessary to cover S. (That is, cover(S) is the number of disjoint “chunks” S

7That is, 1/m is a lower bound on the probability weight of any element in the support.
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induces in [n]). Then, fixing S ⊆ [n] of size `, we have

Pr
σ∼Sn

[
cover(σ(S)) ≤ 6`

7

]
≤ 7`

n
≤ 1

10

where the probability is taken over a uniform choice of permutation σ ∈ Sn.

Proof. Let X1, . . . , Xn−1 be the n − 1 (identically distributed, but non-independent) indicator random
variables defined as follows. Xi is 1 if σ−1(i) ≤ `, but σ−1(i+ 1) > ` (that is, one of the ` “good” points
ends up on i, but one of the n− ` “bad points” ends up on i+ 1).

Let X =
∑n−1
i=1 Xi be their sum: note that X is a lower bound on the number of clusters, up to an

additive one (X counts the number of "right borders," and may only be off if the last cluster-interval ends at
n). Moreover,

EXi = `

n
· n− `
n− 1

so that EX = ` · n−`n = `
(
1− `

n

)
by linearity. Define Y = ` − X ≥ 0 (with EY = `2

n ); by Markov’s
inequality

Pr
[
X ≤ 6`

7

]
= Pr

[
Y ≥ `

7

]
≤ EY
`/7 = `/n

1/7 = 7`
n
.

Now, this in particular imply that for m ≤ n
70 , a distribution D with support size in [7m

8 ,m] will, after a
random permutation σ of the larger domain [n], have at least 6

7 ·
7m
8 = 3m

4 isolated “chunks.” But that also
implies that Dσ /∈ H 3m

4 −2 (i.e., needs a partition of at least 3m
4 − 1 intervals to be a histogram).

Details. We can now make precise the reduction outlined above: assume we have a tester TESTER for the
property of being a histogram, which takes as input n, k, ε as well as q(n, k, ε) independent samples from an
unknown distribution D; and distinguishes with success probability at least 2/3 between (a) D ∈ Hk and (b)
`1(D,Hk) > ε1.

Given sufficiently large integer n, and k satisfying k ≤ n
120 , we define m def=

⌈
3
2(k − 1)

⌉
≤ n

70 . Now,
we can embed any instance D′ of SUPPSIZEm (i.e., a distribution D′ ∈ ∆([m]) meeting the promise of the
problem) by seeing it as a distribution on [n], and use TESTER to solve SUPPSIZEm as follows:

1. Draw uniformly a random a permutation σ ∈ Sn;

2. Run TESTER on D′σ ∈ ∆([n]) with parameters n, k, and ε1
def= 1

24 ;

3. accept if and only if TESTER accepted.
By the foregoing discussion and Lemma 4.4, the above test succeeds in solving SUPPSIZEm with probability
at least 1− 1

10 −
1
3 = 17

30 ; repeating constantly many times independently and taking a majority vote brings
this success probability to 2/3. The overall sample complexity being O(q(n, k)), the lower bound of [VV10,
Theorem 1] implies that, for some absolute constant c > 0 and k large enough, q(n, k, ε1) ≥ c · k

log k , as
claimed.

Finally, using a standard “trick” (embedding the hard instance by adding an extra element with weight
1− ε

ε1
), this yields an Ω

(
1
ε

k
log k

)
lower bound on testingHk, for any ε ≤ ε1.
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