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Abstract

Compared with classical block codes, efficient list decoding of rank-metric codes seems more diffi-
cult. The evidences to support this view include: (i) so far people have not found polynomial time list
decoding algorithms of rank-metric codes with decoding radius beyond (1 − R)/2 (where R is the rate
of code) if ratio of the number of rows over the number of columns is constant, but not very small; (ii)
the Johnson bound for rank-metric codes does not exist as opposed to classical codes; (iii) the Gabidulin
codes can not be list decoded beyond half of minimum distance. Although the list decodability of ran-
dom rank-metric codes and limits to list decodability have been completely determined, little work on
efficient list decoding rank-metric codes has been done. The only known efficient list decoding of rank-
metric codes C gives decoding radius up to the Singleton bound 1−R−εwith positive rateR when ρ(C)
is extremely small, i.e., Θ(ε2) , where ρ(C) denotes the ratio of the number of rows over the number of
columns of C [17, STOC2013]. It is commonly believed that list decoding of rank-metric codes C with
not small constant ratio ρ(C) is hard.

The main purpose of the present paper is to explicitly construct a class of rank-metric codes C with not
small constant ratio ρ(C) and efficiently list decode these codes with decoding radius beyond (1−R)/2.
Specifically speaking, let r be a prime power and let c be an integer between 1 and r − 1. Let ε > 0 be
a small real. Let q = r` with gcd(r − 1, `n) = 1. Then there exists an explicit rank-metric code C in
Mn×(r−1)n(Fq) with rateR that is (τ,O(exp(1/ε2)))-list decodable with τ = c

c+1

(
1− r−1

r−c ×R− ε
)

.
Furthermore, encoding and list-decoding algorithms are in polynomial time poly(n, exp(1/ε)). The list
size can be reduced to O(1/ε) by randomizing the algorithm. Note that the ratio ρ(C) for our code C is
1/(r− 1). Our key idea is to employ two-variable polynomials f(x, y), where f is linearized in variable
x and the variable y is used to “fold” the code. In other words, rows are used to correct rank errors
and columns are used to “fold” the code to enlarge decoding radius. Apart from the above algebraic
technique, we have to prune down the list. The algebraic idea enables us to pin down the messages
into a structured subspace of dimension linear in the number n of columns. This “periodic” structure
allows us to pre-encoding the messages to prune down the list. More precisely, we use subspace design
introduced in [17, STOC2013] to get a deterministic algorithm with a larger constant list size and employ
hierarchical subspace-evasive sets introduced in [16, STOC2012] to obtain a randomized algorithm with
a smaller constant list size.
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1 Introduction

Rank-metric codes were first introduced by Delsarte in [1] and have found applications in network cod-
ing [18] and public-key cryptography [9, 23]. These codes are closely related to space-time codes over finite
fields [19, 17]. Unique decoding algorithms for rank-metric codes within half minimum distance have been
extensively studied [6, 18]. However, efficient list decoding of rank-metric codes seems more difficult than
that of classical block codes. There are several evidences to support this view. Firstly, people have not
found polynomial-time list decoding algorithms with decoding radius beyond (1 − R)/2 (where R is the
rate of code) if ratio of the number of rows over the number of columns is a constant, but not very small.
Secondly, the Johnson bound does not exist as opposed to classical codes [20]. Thirdly, an important class
of rank-metric codes introduced by Gabidulin [7] that are similar to Reed-Solomon codes can not be list
decoded beyond half of minimum distance [20]. The purpose of this paper to design polynomial time list
decoding algorithms for rank-metric codes with decoding radius beyond (1−R)/2.

Before introducing known results and our main results in this paper, we first define list decodability of a
rank-metric code. A rank-metric code over finite filed Fq is subset of Mn×t(Fq), where Mn×t(Fq) denotes
the set of n× t matrices over Fq. Without loss of generality, we always assume t > n for a rank-metric code
in Mn×t(Fq).

Definition 1. The rank-metric ball of center M ∈ Mn×t(Fq) and radius d is defined to be the set {X ∈
Mn×t(Fq) : rank(X −M) 6 d}. A rank-metric code C is called (τ, L)-list decodable if, for every matrix
M ∈Mn×t(Fq), there is at most L codewords of C in the rank-metric ball of center M of radius τn.

1.1 Known results

Unlike list decoding classical codes, there are very few results in literature for efficient list decoding of
rank-metric codes. The only known efficient list decoding of rank-metric codes in the asymptotic sense
gives decoding radius up to the Singleton bound 1 − R − ε when ratio of the number of rows over the
number of columns is Θ(ε2) [17, STOC2013]. On the other hand, list decodability of random rank-metric
codes and limits on list decodability of rank-metric codes are completely known [2, 22]. More precisely, we
have the following result .

Proposition 1.1. (see [2]) Let n/t tend to a fixed constant ρ. Then for any real R ∈ (0, 1), a rank-metric
code C ⊆Mn×t(Fq) of rateR that is (τ, L)-list decodable withL = poly(n) must obeyR 6 (1−τ)(1−ρτ).
On the other hand, with high probability a random rank-metric code of rate R in Mn×t(Fq) is (τ,O(1/ε))-
list decodable with R = (1 − τ)(1 − ρτ) − ε for any small real ε > 0. In particular, if n/t tends to
a fixed small constant ε, then with high probability a random rank-metric code of rate R in Mn×t(Fq) is
(1−R− ε,O(1/ε))-list decodable.

The above result tells that R = (1− τ)(1−ρτ) is the limit to the list decoding of rank-metric codes and
moreover most random codes can achieve this limit. The question is how to explicitly construct these codes
and efficiently list decode them. It is natural to start with the Gabidulin codes because they are very similar
to the classical Reed-Solomon codes. Both of these two classes of codes are constructed from evaluations
of polynomials. As the Reed-Solomon codes can be list decoded up to the Johnson bound [13], people
hoped to list decode the Gabidulin codes at least beyond half of the minimum distance, i.e., τ > (1−R)/2.
Unfortunately, it was first shown in [22] that list decodability of the square Gabidulin codes does not exceed
the bound τ = 1 −

√
R and recently it was shown in [20] that list decodability of the square Gabidulin
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codes does not exceed half of the minimum distance, i.e., (1−R)/2 for a certain family of parameters. This
implies that decoding radius of list decoding the square Gabidulin codes is not better than unique decoding.

Inspired by good list decodability of the folded Reed-Solomon codes [12], people started to consider list
decoding of folded Gabidulin codes [19]. However, the rate of the folded Gabidulin code in [19] tends to
0. In 2013, Guruswami and Xing [17] considered subcodes of the Gabidulin codes via point evaluation in a
subfield and showed that list decodability of subcodes of the Gabidulin codes achieves the Singleton bound
τ = 1−R. However, the ratio ρ = n/t of the rank-metric code C ⊆ Mn×t(Fq) constructed by Guruswami
and Xing [17] is Θ(ε2). This is slightly weaker than random rank-metric codes where the ratio ρ = n/t can
achieve Θ(ε). So it is still an open problem to explicitly construct rank-metric codes in Mn×t(Fq) with ratio
ρ = n/t = Θ(ε) and decoding radius τ = 1−R− ε and efficiently list decode them.

There has been no much progress on a more interesting case where the ratio ρ = n/t is not too small.
Hence, an even more important open problem in the topic of list decoding rank-metric codes is the following

Open Problem. For a given constant ratio ρ = n/t ∈ (0, 1) (not very small), explicitly
construct rank-metric codes of rate R in Mn×t(Fq) with decoding radius τ > (1 − R)/2 and
efficiently list decode them.

1.2 Our results

The present paper moves the first step towards solving the above Open Problem. We first construct explicit
rank-metric codes and then consider list decoding of these rank-metric codes. As a result, we present two
decoding algorithms, one deterministic algorithm and one Monte Carlo algorithm. Both the algorithms give
the same decoding radius that is bigger than (1−R)/2. More precisely, we have the followings.

Theorem 1.2. (Main Theorem) Let r be a prime power and let c be an integer between 1 and r − 1. Let
ε > 0 be a small real. Let q = r` with gcd(r − 1, `n) = 1.

(i) There exists an explicit rank-metric code in Mn×(r−1)n(Fq) with rate R that is (τ,O(exp(1/ε2)))-list

decodable with τ = c
c+1

(
1− r−1

r−c ×R− ε
)

. Furthermore, encoding and list-decoding algorithms
are in polynomial time poly(n, exp(1/ε)).

(ii) With high probability one can randomly sample a rank-metric code in Mn×(r−1)n(Fq) with rate R

that is (τ,O(1/ε))-list decodable with τ = c
c+1

(
1− r−1

r−c ×R− ε
)

. Furthermore, encoding and
list-decoding algorithms are in polynomial time poly(n, exp(1/ε)).

Remark 1. (i) In the above main theorem, if we fix r and c with 2 6 c 6 r − 1, then

c

c+ 1

(
1− r − 1

r − c
×R

)
>

1

2
(1−R)

for any 0 6 R < r−c
r+c . This means that our decoding radius breaks the unique decoding radius for

R ∈
[
0, r−cr+c

)
. For instance, taking r = 3 and c = 2 gives a rank-metric code C ⊆Mn×2n(Fq) of rate

R and decoding radius τ = 2
3(1 − 2R) which is bigger than 1

2(1 − R) for R < 1
5 . In this case, the

ratio ρ = n/t is 1/2.
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(ii) By Proposition 1.1, a rank-metric code C ⊆ Mn×t(Fq) of rate R that is (τ, L)-list decodable with
L = poly(n) must obey R 6 (1 − τ)(1 − ρτ), where ρ is the ratio n/t. In our case, the ratio
ρ = n/t = 1/(r−1). Thus, we must haveR 6 (1−τ)

(
1− τ

r−1

)
. The decoding radius in the above

theorem gives R ≈ r−c
r−1

(
1− c+1

c × τ
)

and indeed, one can easily check that

r − c
r − 1

(
1− c+ 1

c
× τ
)
< (1− τ)

(
1− τ

r − 1

)
.

(iii) Unfortunately, our main theorem does not improve the unique decoding bound for square rank-metric
codes. To get square matrices, r has to be 2. In this case, we can only take c = 1. Then the decoding
radius in the above main theorem gives τ = 1

2(1 − R) which is the same as the unique decoding
radius.

In the above theorem, setting r = Θ
(

1
ε2

)
and c = Θ

(
1
ε

)
gives the following corollary.

Corollary 1.3. Let ε > 0 be a small real. Let r = Θ
(

1
ε2

)
and q = r` with gcd(r − 1, `n) = 1.

(i) There exists an explicit rank-metric code in Mn×(r−1)n(Fq) with rate R that is (τ, (1/ε)O(exp(1/ε4)))-
list decodable with τ = 1 − R − ε. Furthermore, encoding and list-decoding algorithms are in
polynomial time poly(n, exp(1/ε)).

(ii) With high probability one can randomly sample a rank-metric code in Mn×(r−1)n(Fq) with rate R
that is (τ,O((1/ε))). Furthermore, encoding and list-decoding algorithms are in polynomial time
poly(n, (exp(1/ε)).

Remark 2. (i) See Remarks 5 and 6 for discussion of the list sizes in Corollary 1.3.

(ii) The ratio in the above corollary is ρ = n/t = 1/(r− 1) = Θ(ε2). This ratio is the same as the one in
[17, STOC2013]. Thus, the above corollary matches the result of [17, STOC2013].

1.3 Our techniques

It was shown in [20] that list decodability of a Gabidulin codes is not beyond the unique decoding bound
τ = (1−R)/2. In the classical case of Reed-Solomon codes, the decoding radius can be enlarged by folding
Reed-Solomon codes. The question is how to properly fold Gabidulin codes to enlarge decoding radius. At
the same time, we have to make use of linearized polynomials in order to correct rank errors. Our key idea
is to employ two-variable polynomials f(x, y), where f is linearized in variable x and the variable y is used
to fold the code. In other words, rows are used to correct rank errors and columns are used to fold the code
to enlarge decoding radius.

The algebraic idea enables us to pin down the messages into a structured subspace of dimension linear
in the number n of columns and this “periodic” structure allows us to pre-encode the messages to prune
down the list. Two approaches are employed to pin down our list, namely subspace design introduced in
[17, STOC2013] and hierarchical subspace-evasive (h.s.e. for short) sets introduced in [16, STOC2012].
The coefficients of polynomials in the list form a “periodic” subspace. After pre-encoding with subspace
design or h.s.e., the new list becomes a constant.
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1.4 Organization

The paper is organized as follows. In Section 2, we provide a new construction of “folded” rank-metric
codes and discuss their parameters. Section 3 devotes to list decoding of the rank-metric codes in Section
2, including establishment of interpolation polynomial, solving of certain equations for list and discussion
of decoding radius. In the last section, we make use of subspace design and hierarchical subspace-evasive
sets to pre-encode the messages and pin down the list. The algorithm from subspace design is deterministic,
while the algorithm from hierarchical subspace-evasive sets is Monte Carlo.

2 Construction of rank-metric codes

2.1 Rank-metric codes

Before introducing our construction, we review some basic facts and results on rank-metric code.
Let q be a prime power and denote by Mn×t(Fq) the set of n × t matrices over Fq. One can define the

rank distance between two matricesA,B ∈Mn×t(Fq) to be the rank ofA−B, i.e., d(A,B) = rank(A−B).
Indeed this defines a distance [7]. A rank-metric code C is a subset of Mn×t(Fq) with rate and distance given
by

R(C) =
logq |C|
nt

and d(C) = min
A 6=B∈C

{d(A,B)}.

Without loss of generality, from now on we may assume that n 6 t (otherwise, we can consider transpose
of matrices). As in the classical case, one has the following Singleton bound (see [7])

d(C) 6 n−R(C)n+ 1. (1)

A code archiving the above Singleton bound is called Maximal Rank Distance (or MRD for short) code. The
most famous MRD codes are Gabidulin codes which are defined by using polynomial evaluations. Recently,
some MRD codes other than Gabidulin codes have been constructed [21].

To better understand our codes, we briefly review the construction of Gabidulin codes [7]. A polynomial
of the form f(x) =

∑`
i=0 aix

qi is called q-linearized, where coefficients ai belong to the algebraic closure
of Fq. The q-degree of f(x), denoted by degq(f), is defined to be ` if a` 6= 0.

Let 0 < k ≤ n ≤ t be integers, and choose Fq-linearly independent elements α1, . . . , αn ∈ Fqt . For
every q-linearized polynomial f ∈ Fqt [X] of q-degree at most k− 1, we can encode f by the column vector
Af =

(
f(α1), . . . , f(αn)

)T over Fqt . By fixing a basis of Fqt over Fq, we can also think of Af as an n× t
matrix over Fq. This yields the Gabidulin code

CG(q, n, t, k) := {Af ∈Mn×t(Fq) : f ∈ Fqt [x] is q-linearized and degq(f) ≤ k − 1}.

The Gabidulin codes are similar to the classical Reed-Solomon codes. However, if applying Sudan’s list
decoding idea to decoding of the Gabidulin codes, we get only unique decoding (see [18]).

In order to enlarge list decoding radius of the Gabidulin codes, Mahdavifar and Vardy [19] considered
folded Gabidulin codes. As a result, the rate tends to 0. In the next subsection, we consider evaluations of
two-variable polynomials to obtain rank-metric codes with good list decodabiity.
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2.2 Construction

Let us fix some notations at the beginning. Let n,m be positive integers with m 6 n (m and n are
propositional and both tend to∞). Let r be a prime power and choose a positive integer k with k 6 r − 1
(both r and k are constant and independent of n,m). Put q = r` for some ` with gcd(r − 1, n`) = 1 (` is a
constant and hence q is a constant as well). Fix a primitive element γ of F∗r .

We have the following facts:

• xr−1− γ is irreducible over Fr, and hence it is irreducible over Fqn as well since gcd(r− 1, n`) = 1.

• xr ≡ γx mod xr−1 − γ.

Consider the two-variable polynomial space over Fqn

Pq(n, k,m)[x, y] :=

{
m−1∑
i=0

fi(x)yq
i

: fi(x) ∈ Fqn [x] and deg(fi(x)) 6 k − 1 for all 0 6 i 6 m− 1

}
.

Let {α1, α2, . . . , αn} be an Fq-basis of Fqn . For each polynomial f =
∑m−1

i=0 fi(x)yq
i ∈ Pq(n, k,m)[x, y],

we define a matrix

Mf :=


f(1, α1) f(γ, α1) f(γ2, α1) · · · f(γr−2, α1)
f(1, α2) f(γ, α2) f(γ2, α2) · · · f(γr−2, α2)
· · · · · · · · · · · · · · ·

f(1, αn) f(γ, αn) f(γ2, αn) · · · f(γr−2, αn)


Each entry in the above matrix is viewed as a row vector of Fnq . Thus, Mf is an n× ((r − 1)n) matrix over
Fq. Set t = (r − 1)n. Let Cq(n, k,m, r) be the collection of Mf for all f ∈ Pq(n, k,m)[x, y].

Lemma 2.1. The distance and rate of Cq(n, k,m, r) satisfy

d(Cq(n, k,m, r)) > n−m+ 1 and R(Cq(n, k,m, r)) :=
logq q

nkm

(r − 1)n2
=

k

r − 1
× m

n
,

respectively.

Proof. The size ofPq(n, k,m)[x, y] is qnkm. Furthermore, it is easy to see that Cq(n, k,m, r) is an Fq-linear
space. Hence it is sufficient to show that the rank of Mf is at least n−m+ 1 for every nonzero polynomial
f(x, y) ∈ Pq(n, k,m)[x, y].

Let f =
∑m−1

i=0 fi(x)yq
i

in Pq(n, k,m)[x, y] be a nonzero polynomial. Suppose that Mf has rank less
than n−m+ 1. Then the solution space U ⊆ Fnq of zMf = 0 has dimension at least m. Let V be the Fq-
subspace of Fqn given by V = {

∑n
i=1 uiαi : (u1, u2, . . . , un) ∈ U}. Then dimFq(V ) = dimFq(U) > m.

For each 0 6 j 6 r − 2, Let gj(y) = f(γj , y). Then, every α in V is a root of the polynomial
gj(y). Since deg(gj(y)) ≤ m − 1, the polynomial f(γj , y) = gj(y) is identical to 0. This means that the
coefficients fi(γj) of gj(y) are zero for any 0 6 i 6 m − 1. As the degree of fi(x) is at most k − 1, we
conclude that fi(x) are the zero polynomials for all 0 6 i 6 m− 1. This is a contradiction and the proof is
completed.

Remark 3. The code Cq(n, k,m, r) is an MRD code if and only if k = r − 1.
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3 List decoding

Suppose that a codeword Mf is transmitted and Y = (yi,j)16i6n;06j6r−2 is received with at most e errors,
i.e., rank(Mf −Y ) 6 e. Our goal in this section is to recover Mf , or equivalently the polynomial f(x, y) ∈
Pq(n, k,m)[x, y]. First we prove a lemma on rank of matrices.

Lemma 3.1. Let X,Z ∈ Mn×t(Fq) with rank(X − Z) 6 e. Then dimFq(〈X〉 ∩ 〈Z〉) > dimFq(〈X〉)− e,
where 〈X〉 stands for the row space of X over Fq.

Proof. It is easy to see that the two Fq-spaces 〈X〉+ 〈Z〉 and 〈X − Z〉+ 〈Z〉 are equal. Thus,

dimFq(〈X〉)+dimFq(〈Z〉)−dimFq(〈X〉∩〈Z〉) = dimFq(〈X−Z〉)+dimFq(〈Z〉)−dimFq(〈X−Z〉∩〈Z〉).

This gives

dimFq(〈X〉 ∩ 〈Z〉) = dimFq(〈X〉)− dimFq(〈X − Z〉) + dimFq(〈X − Z〉 ∩ 〈Z〉) > dimFq(〈X〉)− e.

The proof is completed.

3.1 Interpolation polynomials

We fix a parameter s with 1 6 s 6 r − 1.

Definition 2 (Space of interpolation polynomials). Let L be the space of polynomials Q ∈ Fqn [x, y, z1, z2,
. . . , zs] of the form Q(x, y, z1, z2, . . . , zs) = A0(x, y) + A1(x, z1) + A2(x, z2) + · · · + As(x, zs), with
A0(x, y) ∈ Pq(n, r−1, n−e)[x, y] and eachAi(x, zi) ∈ Pq(n, r−k, n−e−m+1)[x, zi] for i = 1, 2, . . . , s.

Lemma 3.2. If e < s(r−k)(n−m+1)
r−1+s(r−k)) , then there exists a nonzero polynomial Q ∈ L such that Q(γj , αi, yi,j ,

yi,j+1, . . . , yi,j+s−1) = 0 for i = 1, 2, . . . , n and j = 0, 1, 2, . . . , r − 2. Note that if j + s − 1 is bigger
than r− 2, we replace yi,j+s−1 by yi,j+s−1 mod r−1. Furthermore, such a polynomial Q can be found using
O(n4) operations over Fqn .

Proof. Note that L is an Fqn-vector space of dimension (r − 1)(n − e) + s(r − k)(n − e −m + 1). This
dimension is bigger than n(r − 1) by our choice of m and k. The conditions to be satisfied in the Lemma
give rise to n(r − 1) homogeneous linear conditions on Q. Since n(r − 1) < (r − 1)(n − e) + s(r −
k)(n− e−m+ 1) in our setting, there must exist a nonzero Q ∈ L that meets the interpolation conditions
Q(γj , αi, yi,j , yi,j+1, yi,j+2, · · · , yi,j+s−1) = 0 for i = 1, 2, . . . , n and j = 0, 1, . . . , r − 2. Finding such
a polynomial Q amounts to solving a homogeneous linear system over Fqn with n(r − 1) constraints and
dimFqn

(L) = (r− 1)(n− e) + s(r− k)(n− e−m+ 1) unknowns, which can be done in O(n4) time.

Lemma 3.3. Let f ∈ Pq(n, k,m)[x, y] be a polynomial. Suppose that the codeword Mf is transmitted and
Y = (yi,j)n×(r−1) (yi,j ∈ Fqn) is received with at most e errors. Assume that e < s(r−k)(n−m+1)

r−1+s(r−k) and let
Q(x, y, z1, z2, . . . , zs) be the interpolation polynomial given in Lemma 3.2. Then

Q(γj , y, f(γj , y), f(γj+1, y), f(γj+2, y), · · · , f(γj+s−1, y)) ≡ 0 (2)

for all j = 0, 1, 2, . . . , r − 2. The above ≡ means that the polynomial on the left is identical to 0.
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Proof. Note that e < s(r−k)(n−m+1)
r−1+s(r−k)) < n − m + 1. Since e and n − m are both integers, we have

e ≤ n − m. The polynomial Q(γj , y, f(γj , y), f(γj+1, y), f(γj+2, y), · · · , f(γj+s−1, y)) has degree at
most qm−1, moreover it is q-linearized. Denote by A and B the n × rn matrices ((α1, α2, . . . , αn)T ,Mf )
and ((α1, α2, . . . , αn)T , Y ) over Fq, respectively.

It is clear that rank(A−B) = rank(Mf−Y ) 6 e and rank(A) = n. Thus, by Lemma 3.1 dimFq(〈A〉∩
〈B〉) > n − e ≥ m. This implies that exists an Fq-subspace U of span{α1, α2, . . . , αn} of dimension at
least m such that, for every α =

∑n
i=1 ciαi ∈ U with ci ∈ Fq, one has

n∑
i=1

ciyi,j+u−1 =

n∑
i=1

cif(γj+u−1, αi) = f

(
γj+u−1,

n∑
i=1

ciαi

)
= f(γj+u−1, α)

for u = 1, 2, . . . , s. Hence,

0 =
n∑
i=1

ciQ(γj , αi, yi,j , yi,j+1, · · · , yi,j+s−1)

=
n∑
i=1

(
ciA0(γj , αi) +

s∑
u=1

ciAu(γj , yi,j+u−1)

)

= A0

(
γj ,

n∑
i=1

ciαi

)
+

s∑
u=1

Au

(
γj ,

n∑
i=1

ciyi,j+u−1

)

= A0

(
γj , α

)
+

s∑
u=1

Au
(
γj , f(γj+u−1, α)

)
= Q(γj , α, f(γj , α), f(γj+1, α), f(γj+2, α), · · · , f(γj+s−1, α)).

As the degree of Q(γj , y, f(γj , y), f(γj+1, y), f(γj+2, y), · · · , f(γj+s−1, y)) is at most qm−1. The desired
result follows.

Lemma 3.4. Let f =
∑m−1

i=0 fi(x)yq
i ∈ Pq(n, k,m)[x, y] be a polynomial. Suppose that the codeword

Mf is transmitted and Y is received with at most e errors. Assume that e < s(r−k)(n−m+1)
r−1+s(r−k) and let

Q(x, y, z1, z2, . . . , zs) = A0(x, y) + A1(x, z1) + A2(x, z2) + · · · + As(x, zs) be the interpolation poly-
nomial given in Lemma 3.2. Write A0(x, y) =

∑n−e−1
i=0 A0,i(x)yq

i
and Aw(x, z) =

∑n−e−m
i=0 Aw,i(x)zq

i

for 1 6 w 6 s. Then we have

A0,u(x) +
s∑

w=1

∑
i+v=u

Aw,i(x)f (i)
v (γw−1x) ≡ 0 (3)

for all 0 6 u 6 n−e−1, where g(j)(x) stands for
∑N

i=0 g
qj

i x
i for a polynomial g(x) =

∑N
i=0 gix

i ∈ Fqn [x].
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Proof. By Lemma 3.3, we have

0 ≡ Q(γj , y, f(γj , y), f(γj+1, y), f(γj+2, y), · · · , f(γj+s−1, y))

=
n−e−1∑
u=0

A0,u(γj)yq
u

+
s∑

w=1

n−e−m∑
i=0

Aw,i(γ
j)

(
m−1∑
v=0

fv(γ
w+j−1)yq

v

)qi

=
n−e−1∑
u=0

A0,u(γj)yq
u

+
n−e−1∑
u=0

(
s∑

w=1

∑
i+v=u

Aw,i(γ
j)f (i)

v (γw+j−1)

)
yq

u

This gives

A0,u(γj) +
s∑

w=1

∑
i+v=u

Aw,i(γ
j)f (i)

v (γw+j−1) = 0

for all 0 6 u 6 n− e− 1 and 0 6 j 6 r − 2. This implies that the polynomial

A0,u(x) +
s∑

w=1

∑
i+v=u

Aw,i(x)f (i)
v (γw−1x)

has at least r − 1 roots. On the other hand, this polynomial has degree at most k − 1 6 r − 2. The desired
result follows.

3.2 Analysis of list and list size

Before discussing the list, let us introduce periodic subspaces that were defined in [16]. For a vector a =
(a1, a2, . . . , aN ) ∈ FNr and positive integers t1 6 t2 6 m, we denote by proj[t1,t2](a) ∈ Ft2−t1+1

q its
projection onto coordinates t1 through t2, i.e., proj[t1,t2](a) = (at1 , at1+1, . . . , at2). When t1 = 1, we
use projt(a) to denote proj[1,t](a). These notions are extended to subsets of strings in the obvious way:
proj[t1,t2](S) = {proj[t1,t2](x) : x ∈ S}.

Definition 3 (Periodic subspaces). For positive integers u, b,Λ and κ := bΛ, an affine subspace H ⊂ Fκr is
said to be (u,Λ, b)r-periodic if there exists a subspace W ⊆ FΛ

r of dimension at most u such that for every
j = 1, 2, . . . , b, and every “prefix” a ∈ F(j−1)Λ

q , the projected affine subspace of FΛ
r defined as

{proj[(j−1)Λ+1,jΛ](x) : x ∈ H and proj(j−1)Λ(x) = a}

is contained in an affine subspace of FΛ
r given by W + va for some vector va ∈ FΛ dependent on a.

Now we return to finding list of polynomial candidates.

Lemma 3.5. Let f =
∑m−1

i=0 fi(x)yq
i ∈ Pq(n, k,m)[x, y] be a polynomial. Suppose that the codeword Mf

is transmitted and Y is received with at most e errors. Assume that e < s(r−k)(n−m+1)
r−1+s(r−k) . Then solutions of

(3) form an (s− 1, `n(r − 1),m)r-periodic subspace of size at most rm(s−1).

Proof. Note that for u ∈ [0, n− e− 1], the solutions of (3) give the list of the candidates.
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Let us start with u = 0. Then (3) gives the equation

A0,0(x) +

s∑
w=1

Aw,0(x)f
(0)
0 (γw−1x) = 0 (4)

Note that f (0)
0 (x) = f0(x). In the residue ring Fqn [x]/(xr−1 − γ), the equation (4) becomes

A0,0(x) +
s∑

w=1

Aw,0(x)(f0(x))r
w−1 ≡ 0 mod xr−1 − γ. (5)

Since xr−1 − γ is an irreducible polynomial over Fqn , the residue ring Fqn [x]/(xr−1 − γ) ' Fqn(r−1) is
a field. Because the degree of f0(x) is at most r − 2, all solutions of f0(x) in the equation (5) form an
affine space W + v1 for some v1 ∈ Fqn [x]/(xr−1 − γ) ' F`n(r−1)

r , where W is the solution space of the
Fr-linearized polynomial

s∑
w=1

Aw,0(x)zr
w−1 ≡ 0 mod xr−1 − γ (6)

and therefore it has dimension at most s− 1 over Fr.
Note that once f0(x) is recovered, all f (j)

0 are recovered as well for j > 0.
By induction, assume that all fi(x) have been recovered for 0 6 i 6 a − 1. Next, we want to recover

fa(x) from the following equation

A0,a(x) +

s∑
w=1

∑
i+v=a

Aw,i(x)(f (i)
v (x))r

w−1 ≡ 0 mod xr−1 − γ.

Rewrite the above equation into the following

A0,a(x) +

s∑
w=1

a−1∑
v=1

Aw,a−v(x)(f (a−v)
v (x))r

w−1
+

s∑
w=1

Aw,0(x)(f (0)
a (x))r

w−1 ≡ 0 mod xr−1 − γ (7)

By the similar arguments, one can show that all solutions of f (0)
a (x) = fa(x) in the equation (7) for-

m an affine space W + va for some va ∈ Fqn [x]/(xr−1 − γ) ' F`n(r−1)
r . Apparently, all possible

(f0(x), f1(x), . . . , fm−1(x)) in the list form an (s− 1, `n(r − 1),m)r-periodic subspace.
To compute the list size, we note that each fi(x) has at most rs−1 solutions. Thus, the list size is bounded

by rm(s−1).

As m is promotional to n, the list size rm(s−1) in Lemma 3.5 becomes exponential. We will prune down
the list size by pre-encoding through the special structure of periodic subspace.

Remark 4. Each fi(x) is a solution of (7). As deg(fi(x)) 6 k − 1, there exist an g(x) ∈ Fqn [x] with
deg(g(x)) 6 k− 1 such that f(x) ∈ g(x) +W ′, where W ′ = W ∩{h(x) ∈ Fqn [x] : deg(h) 6 k− 1} and
W is the solution space of (6). This implies that our message f(x) actually belongs to an (s− 1, `nk,m)r-
periodic subspace of size at most rm(s−1).
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3.3 Decoding radius

Finally, let us compute the decoding radius from the list decoding in this section.

Put e =
⌊
s(r−k)(n−m+1)
r−1+s(r−k))

⌋
− 1 and τ = e/n, then we have

τ ≈
s(r − k)

r − 1 + s(r − k)

(
1− m

n

)
=

s(r − k)

r − 1 + s(r − k)

(
1−R× r − 1

k

)
. (8)

If we take s = r − 1 and k = r − c for some 1 6 c 6 r − 1, then we get

τ =
c

c+ 1

(
1− r − 1

r − c
×R

)
. (9)

4 Pruning list size

In this section, we prune list via subspace design and h.s.e. The subspace design provides a deterministic
algorithm with a constant list size, while h.s.e provides a randomized algorithm with a smaller constant list
size.

4.1 A deterministic algorithm

The subspace design was first introduced in [17] to pin down list.

Definition 4. A collection S of Fr-subspaces H1, . . . ,HM ⊆ FΛ
r is called a (v,A,Λ)r-subspace design if

for every Fr-linear space W ⊂ FΛ
r of dimension v,

M∑
i=1

dimFr(Hi ∩W ) ≤ A.

In order to pin down the list to a constant size, one has to consider intersection with subspace evasive
set introduced in [14].

Definition 5. A subset S of FΛ
r is called a (v,A,Λ)r-subspace evasive if for any subspace W of FΛ

r of
dimension v, the intersection S ∩W has size at most A.

The following result tells that one can obtain a small list from intersection of a periodic subspace with a
suitable subspace design .

Lemma 4.1. ([17, 15]) Let H be a (v,Λ, b)r-periodic subspace, and let {H1, H2, . . . ,Hb} be a (v,A,Λ)r-
subspace design. Then H ∩ (H1 × · · · ×Hb) is an affine subspace over Fr of dimension at most A.

Assume that Λ has a divisor λ ≈ 2 logr Λ for some c > 1 and thus we have rλ > Λ. Let q1 = rλ and
Λ′ = Λ/λ.

Lemma 4.2 ([3]). Let ε > 0 be a small real. Let v be a positive integer and set h ≈ v/ε to be a positive
integer. Assume that q1 > h and let γ1, . . . , γh be distinct nonzero elements of Fq1 . Let d1 > d2 > · · · >
dh ≥ 1 be integers. Define f1, . . . , fv ∈ Fq1 [x1, . . . , xh] as follows:

fi(x1, . . . , xh) =

h∑
j=1

γijx
dj
j . (10)
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Then:

• The variety V = {x ∈ Fhq1 | f1(x) = · · · = fv(x) = 0} satisfies |V ∩H| ≤ (d1)v for all v-

dimensional affine subspaces H ⊂ Fhq1 .

• If at least v of the degrees di are relatively prime to q1 − 1, then
∣∣V ∩ Fhq1

∣∣ = qh−v1 .

• The product set (V ∩ Fhq1)Λ′/h ⊆ FΛ′
q1 is (a, (d1)a,Λ′)q1-subspace evasive for all a ≤ v.

The below statement follows immediately from Lemma 4.2 and the fact that when the dj’s are powers
of r, the polynomials fi defined in (10) are Fr-linearized polynomials.

Corollary 4.3. Let ε > 0 be a small real. Let v be a positive integer and set h ≈ v/ε to be a positive integer.
Assume that q1 > h. By setting d1 = rh−1, d2 = rh−2, . . . , dh = 1 in Lemma 4.2, one obtains an explicit
(a, ra(h−1),Λ′)q1-subspace evasive set S of size q(1−ε)Λ′

1 for all 1 ≤ a ≤ v. Furthermore, S is an Fr-linear
space of dimension (1− ε)λΛ′ = (1− ε)Λ and a basis of S can be computed in time poly(Λ, log r).

Guruswami and Kopparty [10] gives an explicit subspace design based on Wronskian determinant. Their
construction implies the following fact.

Lemma 4.4. For ε ∈ (0, 1), positive integer v with v < εΛ′/4, there is an explicit collection of M =

q
Ω(εΛ′/v)
1 subspaces in FΛ′

q1 , each of codimension at most εΛ′ and form a (v, 2v/ε,Λ′)q1-subspace design.
Moreover, bases for N 6M elements of this collection can be computed in time poly(N,Λ, r).

It is required in Lemma 4.4 that q1 > Λ′ (see [10]). This condition is satisfied by our choice of parame-
ters since q1 = rλ > Λ.

Combined Lemma 4.4 with Corollary 4.3, one can prove the following result.

Proposition 4.5. For a positive integer v ≤ εΛ′/4, there exists an explicit (v, 2v(h − 1)/ε,Λ)r-subspace
design {H1, H2, . . . ,HN} with N = q

Ω(εΛ′/v)
1 and Hi ⊆ FΛ′

q1 = FΛ
r of codimension at most 2εΛ .

Proof. The proof of this proposition can be found in [15, Theorem 3.6] except for adjustment of parame-
ters. To convince the reader of that our parameters work properly, we give a complete proof here. From
Lemma 4.4, we can construct M = q

Ω(εΛ′/s)
1 subspaces V1, V2, . . . , VM with codimension at most εΛ′ over

Fq1 . By Corollary 4.3, we know that there exists an explicit Fr-linear space S of size q(1−ε)Λ′
1 in FΛ′

q1 which
is (a, ha(`−1),Λ′)q1-subspace evasive for a ≤ v. Put Hi = Vi ∩ S. Since both Vi and S has codimension
at most εΛ′ in FΛ′

q1 , the intersection Hi has codimension at most 2εΛ′ in FΛ′
q1 , i.e., Hi has codimension at

most 2εΛ in FΛ
r . Let W be a v-dimensional Fr-linear subspace in FΛ′

q1 . Then one can find a v-dimensional
Fq1-linear subspace W1 in FΛ′

q1 such that W ⊆W1.

The subspace design of {Vi}Mi=1 implies that

M∑
i=1

dimFq1
(Vi ∩W1) ≤ 2v/ε (11)

Denote by vi the dimension dimFq1
(Vi ∩W1). As dimFq1

(W1) ≤ v, we have that vi ≤ v. Since S is a
(vi, r

vi(h−1),Λ′)q1-subspace evasive set, we have |S ∩ (Vi ∩W1)| 6 rvi(h−1). Hence, dimFr(Hi ∩W1) 6
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vi(h− 1) = (h− 1) dimFq1
(Vi ∩W1). Summing all dimensions up gives

M∑
i=1

dimFr(Hi ∩W ) 6
M∑
i=1

dimFr(Hi ∩W1) 6 (h− 1)
M∑
i=1

dimFq1
(Vi ∩W1) ≤ 2v(h− 1)/ε.

The proof is completed.

Theorem 4.6. [Part (i) of Main Theorem] Let r be a prime power and let c be an integer between 1
and r − 1. Let ε̃ > 0 be a small real. Let q = r` with gcd(r − 1, `n) = 1. Then there exists an
explicit rank-metric code in Mn×(r−1)n(Fq) with rate R̃ that is (τ̃ , O(exp(1/ε̃2)))-list decodable with

τ̃ = c
c+1

(
1− r−1

r−c × R̃− ε̃
)

. Furthermore, encoding and list-decoding algorithms are in polynomial time
poly(n, exp(1/ε̃)).

Proof. In Proposition 4.5, we set v = s− 1, Λ = n`(r − 1) and h ≈ (s− 1)/ε. Each Hi can be viewed as
an Fr-subspace of the polynomial space {g(x) ∈ Fqn [x] : deg(g(x)) 6 r − 1}.

We consider the polynomial set

P̃q(n, k,m)[x, y] :=

{
m−1∑
i=0

fi(x)yq
i

: fi(x) ∈ Hi and deg(fi(x)) 6 k − 1 for all 0 6 i 6 m− 1

}
.

and the code C̃q(n, k,m, r) = {Mf : f ∈ P̃q(n, k,m)[x, y]}. It is clear that C̃q(n, k,m, r) is Fr -linear and
it is a subcode of our original code Cq(n, k,m, r). It is easy to see that

dimFr(P̃q(n, k,m)[x, y]) >
m−1∑
i=0

dimFr(Hi ∩ {fi(x) ∈ Fqn [x] : deg(fi) 6 k − 1}) > m(n`k − 2εΛ).

(12)
By (12), the rate R̃ of C̃q(n, k,m, r) is lower bounded by

R̃ =
logq |P̃q(n, k,m)[x, y]|

(r − 1)n2
>

k

r − 1
× m

n
− 2ε× m

n
> R− 2ε. (13)

Suppose a codewordMf with f ∈ P̃q(n, k,m)[x, y] was transmitted and Y is received with at most e errors,
where e < s(r−k)(n−m)

r−1+s(r−k) . Then all list belong to the solution spaceH of (3) which is an (s−1, `n(r−1),m)r-

periodic subspace. By Lemma 4.1 and Proposition 4.5, the list size for the code C̃q(n, k,m, r) is rO(s2/ε2) =
exp(O(s2/ε2)) = exp(O(1/ε2)).

The decoding radius of C̃q(n, k,m, r) is equal to those of Cq(n, k,m, r). By (9), we have

τ̃ = τ ≈ c

c+ 1

(
1− r − 1

r − c
×R

)
>

c

c+ 1

(
1− r − 1

r − c
× R̃− r − 1

r − c
× 2ε

)
for 1 6 c 6 r − 2. Setting ε̃ = r−1

r−c × 2ε gives the desired result.

Remark 5. In the code C̃q(n, k,m, r), if we set s ≈ 4/ε2, r ≈ 4/ε2 and k/(r − 1) = ε/2, then one gets
the list decoding radius τ̃ ≈ 1− R̃ − ε̃. In this case, the list size is becomes (1/ε̃)O(exp(1/ε̃4)). This proves
Corollary 1.3(i).
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4.2 A Monte Carlo algorithm

We first define subspace evasive for a particular famyly of affine spaces.

Definition 6. [17] Let F be a family of affine subspace of Fκr and each of subspace in F has dimension at
most v. A subset S ⊂ Fκr is called (F , v, κ, L)r-evasive if |S ∩W | 6 L for every W ∈ F .

Now we are able to state our randomized result. The HSE map below is actually defined from hierar-
chical subspace-evasive sets (see [16, 17]).

Proposition 4.7. Suppose b,Λ, v, α are positive integers and ζ satisfies the conditions b ≥ (α + 1)/ζ

and Λ > 2s(α+2)
ζ . Let F be a family of (v,Λ, b)-periodic subspaces of Fκr with |F| ≤ rακ, where

κ = bΛ. Then there exists a randomized construction of an injective map HSE: F(1−2ζ)κ
r → Fκr in time

poly(mΛ, 1/ζ, log r, v) such that with probability at least 1−2Ω(bΛ), the image of HSE is an (F , bv, κ, α+1
ζ )-

subspace evasive set. Further, given a (v,Λ, b)-periodic subspace H ∈ F , one can compute the set
{x ∈ F(1−2ζ)κ

r : HSE(x) ∈ H} of size at most α+1
ζ in deterministic poly(mΛ, rv, 1/ζ) time.

Theorem 4.8. [Part (ii) of Main Theorem ] Let r be a prime power and let c be an integer between 1 and
r − 1. Let ε̂ > 0 be a small real. Let q = r` with gcd(r − 1, `n) = 1. Then with high probability one can
randomly sample a rank-metric code in Mn×(r−1)n(Fq) with rate R̂ that is (τ̂ , O(1/ε̂))-list decodable with

τ̂ = c
c+1

(
1− r−1

r−c × R̂− ε̂
)

. Furthermore, encoding and list-decoding algorithms are in polynomial time
poly(n, exp(1/ε̂)).

Proof. In Proposition 4.7, set v = s − 1, b = m and Λ = n`k. Let F be the set of all (s − 1, n`k,m)r-
periodic subspaces in Fmn`kr . A periodic subspace H ⊆ Fmn`kr consists of a fixed subspace W ⊆ FΛ

r of
dimension at most s−1 and affine space proj[(j−1)Λ+1,jΛ](H) = W+vj with vj ∈ Fkqn for j = 1, 2, . . . ,m.
Thus, there are at most Ns × rmΛ periodic subspaces in F , where Ns denotes the number of subspaces in
FΛ
r of dimension less than or equal to s− 1. As m tends to∞ and s is a constant, one clearly has

Ns =
s−1∑
i=0

[
Λ

i

]
r

6 s

[
Λ

s− 1

]
r

6 (s− 1)r(s−1)Λ 6 rmΛ,

where
[
Λ
i

]
r

denotes the Gaussian binomial coefficients that is equal to the number of subspaces of FΛ
r of

dimension i. Thus, in total we have |F| 6 r2mΛ.

In Proposition 4.7, we set α = 2. Let HSE be the injective map given in Proposition 4.7: F(1−2ζ)mΛ
r →

FmΛ
r . As FmΛ

r ' Pq(n, k,m)[x, y], we can identify these two spaces under a fixed basis and hence HSE(x)
can be viewed as a polynomial in Pq(n, k,m)[x, y]. Now our encoding becomes

F(1−2ζ)mΛ
r → FmΛ

r ' Pq(n, k,m)[x, y]→Mn×(r−1)n(Fq); x 7→ HSE(x) 7→MHSE(x).

Denote by Ĉq(n, k,m, r) the image of the above map. Thus the rate of the code Ĉq(n, k,m, r) is

R̂ =
logq r

(1−2ζ)mΛ

n2(r − 1)
= (1− 2ζ)× k

r − 1
× m

n
= (1− 2ζ)R > R− 2ζ, (14)

where R is the rate of Cq(n, k,m, r).
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Suppose a codeword MHSE(x) was transmitted and Y is received with at most e errors, where e <
s(r−k)(n−m)
r−1+s(r−k) . By Remark 4, HSE(x) belongs to an (s − 1,Λ,m)r-periodic subspace. By Proposition

4.7, we obtain a list of solutions of size O(1/ζ). Furthermore, by [16] the list can be computed in time
poly(n, rζ).

The decoding radius of Ĉq(n, k,m, r) is the same as the one of Cq(n, k,m, r). By (9), we have

τ̂ = τ ≈ c

c+ 1

(
1− r − 1

r − c
×R

)
>

c

c+ 1

(
1− r − 1

r − c
× R̂− r − 1

r − c
× 2ζ

)
for 1 6 c 6 r − 2. Setting ε̂ = r−1

r−c × 2ζ gives the desired result.

Remark 6. In the code Ĉq(n, k,m, r), if we set s ≈ 4/ε2, r ≈ 4/ε2 and k/(r − 1) = ε/2, then one gets the
list decoding radius τ̂ ≈ 1− R̂− ε̂. The list size is O(1/ζ) = O(1/ε̂). This proves Corollary 1.3(ii).
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