
Graph Isomorphism and Circuit Size

Eric Allender∗, Joshua A. Grochow†, and Cristopher Moore‡

October 5, 2015

Abstract

We show that the Graph Automorphism problem is ZPP-reducible to MKTP, the
problem of minimizing time-bounded Kolmogorov complexity. MKTP has previously
been studied in connection with the Minimum Circuit Size Problem (MCSP) and is
often viewed as essentially a different encoding of MCSP. All prior reductions to MCSP
have applied equally well to MKTP, and vice-versa, and all such reductions have relied
on the fact that functions computable in polynomial time can be inverted with high
probability relative to MCSP and MKTP. Our reduction uses a different approach, and
consequently yields the first example of a problem in ZPPMKTP that is not known to lie
in NP ∩ coNP. We also show that this approach can be used to provide a reduction of
the Graph Isomorphism problem to MKTP.

1 Introduction

Graph Isomorphism (GI)—determining if two given graphs are isomorphic—and the Min-
imum Circuit-Size Problem (MCSP)—determining if a given truth table can be computed
by a circuit of a given size—are not only natural and interesting computational problems in
their own right, but are some of the best-known examples of potentially “NP-intermediate”
problems. In fact, they are among the problems that motivated many of the researchers orig-
inally studying NP and NP-completeness (see, e. g., [AD14, AKRR10, Tra84] for some of the
history). Both of these problems are well-studied [KC00, MW15, AD14, AHK15, ABK+06],
and have applications both in theory (e.g., [KST93] and references therein) and outside of
computer science (see [Irn05, p. 3] for an overview and further references). Despite the fact
that interest in these problems goes back to the foundations of computational complex-
ity [Tra84], only very recently was any direct relationship realized between them: namely,
GI ∈ RPMCSP [AD14].

We give a new, direct reduction from GI to a variant of MCSP called MKTP: the problem
of minimizing a form of time-bounded Kolmogorov complexity. More specifically, we show
that Graph Automorphism (GA) is in ZPPMKTP, giving the first ZPP-style reduction from
a problem closely related to GI to MKTP, as asked for in [AD14]. As a consequence,
Graph Isomorphism is in BPPMKTP; this is weaker than the inclusion GI ∈ RPMKTP shown
in [AD14], but the reduction is quite different than earlier reductions to MKTP.

Our understanding of the complexity of MCSP has been crippled by the fact that—until
now—all reductions of supposedly-intractable problems to MCSP have proceeded along the

∗Department of Computer Science, Rutgers University, Piscataway, NJ, USA, allender@cs.rutgers.edu
†Santa Fe Institute, Santa Fe, NM, USA, jgrochow@santafe.edu
‡Santa Fe Institute, Santa Fe, NM, USA, moore@santafe.edu

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 162 (2015)

same well-trodden path. Namely, MCSP is used as an efficient statistical test to distinguish
random distributions from pseudorandom distributions. Thus, as in [HILL99], MCSP can
be used in a subroutine to invert a polynomial-time-computable function f on a significant
portion of its range. Note that any ZPP-reduction that relies on finding elements in f−1(z)
for various strings z necessarily results in an NP∩ coNP upper bound for the problem being
reduced to MCSP, since a zero-error probabilistic algorithm can never receive assurance that
z is not in the range of f ; the only reliable answers that it can receive from an inversion
subroutine take the form of strings x such that f(x) = z. If one then simulates the ZPP
reduction and merely guesses such strings x, this yields a NP ∩ coNP algorithm. Thus this
“traditional” approach cannot be used in order to ZPP-reduce GA to MCSP without first
putting GA in coNP.

One of the main contributions of this work is that we present a fundamentally different
way to use problems like MCSP as an oracle to solve natural problems. We say “problems
like MCSP”, because our techniques do not seem to apply directly to MCSP itself. Rather,
we make use of a related problem, called MKTP: for a given string, decide if its time-
bounded Kolmogorov complexity (specifically, a measure KT defined in [ABK+06]) is at
most a given number. Because of the close connection between KT and circuit size, MKTP
and MCSP have often been studied in tandem [AD14, AHK15, ABK+06], and MKTP is
often regarded as a mere reformulation of MCSP. Indeed, in all cases except ours, theorems
that apply to MCSP have applied immediately to MKTP and vice versa, even though no
efficient reduction is known in either direction between MCSP and MKTP. Although we
believe that GA is in ZPPMCSP, our proof does not carry over to MCSP; we discuss the
obstacles in Section 6.

2 Preliminaries

2.1 Promise problems and their complexity classes

A promise problem consists of a pair of disjoint subsets Y,N ⊆ Σ∗ where, as usual, Σ is a
finite alphabet. A Turing machine M solves a promise problem if M accepts all instances
in Y and rejects all instances in N ; M can have arbitrary output for instances that are
neither in Y nor N . A promise problem (Y,N) is in Promise-ZPP if there is a probabilistic
Turing machine M such that M solves the promise problem (Y,N), and furthermore on all
inputs in Y ∪N , M runs in expected polynomial time, where the expectation is taken over
the coin flips of M ; on inputs outside of Y ∪ N , M need not run in expected polynomial
time. In contrast, we say that a promise problem (Y,N) “has a solution in ZPP”, if there is
a probabilistic Turing machine M that solves (Y,N) and runs in expected polynomial time
on all inputs. These definitions relativize in the natural way; our result for rigid graphs
uses Promise-ZPPMKTP. As with their non-promise variants, Promise-ZPP = Promise-RP ∩
Promise-coRP, and this result relativizes.

2.2 Graphs, automorphism groups, and isomorphism-style problems

A graph for us is a simple, undirected graph (though our results are easily adapted to most
standard variants of graphs), that is, a vertex set V (G), and a set E(G) of unordered pairs
of vertices. An isomorphism between two graphs G,H is a bijection π : V (G)→ V (H) that
preserves both edges and non-edges: (v, w) ∈ E(G) if and only if (π(v), π(w)) ∈ E(H). An
isomorphism from a graph to itself is an automorphism; the set of all automorphisms of a

2

given graph G form a group under composition, denoted Aut(G). A graph is rigid if it has
no nontrivial automorphisms, i.e., none other than the identity.

Graph Isomorphism (GI) is the computational problem of deciding whether two graphs,
given as input, are isomorphic. Rigid Graph Isomorphism (Rigid GI) is a promise version of
GI: namely, to decide whether two graphs are isomorphic, given the promise that they are
rigid. Thus an algorithm that solves Rigid GI can have arbitrary output if one of its inputs
is not rigid. Graph Automorphism (GA) is the problem of deciding whether a graph given
as input has any nontrivial automorphisms, that is, whether it is not rigid. It is well-known
that GA ≤pm GI but the converse is not known.

By the Orbit–Stabilizer Theorem, there is a natural bijection between the set of (labeled)
graphs isomorphic to a given n-vertex graph G, and the set of cosets of Aut(G) in Sn. Thus
there are n!/|Aut(G)| such graphs.

A permutation group is a subgroup of the symmetric group Sn for some n. For us,
permutation groups will always be given by a set of generating permutations, i.e., given a
list of permutations π1, . . . , πk ∈ Sn, we write Γ = 〈π1, . . . , πk〉 ≤ Sn for the subgroup they
generate. (We use “≤” between groups to denote “is a subgroup of”). Given a permutation
group Γ ≤ Sn and a point i ∈ [n], the Γ-orbit of i is Γi = {g(i) : g ∈ Γ} and the Γ-stabilizer
of i is the subgroup StabΓ(i) = {g ∈ Γ : g(i) = i} ≤ Γ.

2.3 Circuit size and Kolmogorov (KT) complexity

We provide only a very brief introduction to Kolmogorov complexity here. The reader
should refer to some of the excellent in-depth treatments of the subject (such as [LV08,
DH10]) or to some of the informal introductions to the topic (such as [For01]) if more
background is required.

The (plain) Kolmogorov complexity of a string x relative to a Turing machine U is
denoted CU (x), and it is defined as the length of the shortest “description” d such that
U(d) = x. We pick one so-called “universal” machine U : then for every machine U ′ there
is a constant cU ′ such that, for all x,

CU (x) ≤ CU ′(x) + cU ′ .

The (plain) Kolmogorov complexity of x is denoted C(x), and it is defined to be CU (x) for
this choice of universal Turing machine.

The Kolmogorov complexity is not computable, precisely because it is defined without
regard to computational resources. There have been many definitions of different types of
time-bounded Kolmogorov complexity, which require that x be obtained “efficiently” from
the description d. The particular version of time-bounded Kolmogorov complexity that will
concern us here is the KT measure defined and studied in [ABK+06], where connections
were drawn between KT and MCSP.

Definition 1 (KT). Let U be a Turing machine. For each string x, define KTU (x) to be

KTU (x) = min{ |d|+ t : ∀b ∈ {0, 1, ∗} ∀i ≤ |x|+ 1, the machine Ud(i, b)

accepts in t steps iff xi = b }.

We define xi = ∗ if i > |x|; thus, for i = |x|+ 1 the machine accepts iff b = ∗. The notation
Ud indicates that the machine U has “oracle access” to the description d, which essentially
means that the Turing machine has random access to the bits of d.

3

As for the plain Kolmogorov complexity, KT(x) is defined to be equal to KTU (x) for
a fixed choice of universal Turing machine U . However, due to the overhead with which
Turing machines simulate each other, KT(x) and KTU (x) generally differ by more than an
additive constant: we only are able to guarantee that for every machine U ′ there exists a
constant cU ′ such that for every x, KT(x) ≤ cU ′KTU ′(x) log KTU ′(x).

We refer the reader to [ABK+06] for more about the history of other approaches to
defining time-bounded Kolmogorov complexity, and the considerations that motivate this
particular definition. One of these considerations is the connection between KT and circuit
size. It is noted in [ABK+06] that if x is a string of length m representing the truth table
of a function f with minimum circuit size s, then it holds that(

s

logm

)1/4

≤ KT(x) ≤ O(s2(log s+ log logm)).

We can now present the definition of MKTP:

Definition 2. MKTP = {(x, k) | KT(x) ≤ k} .

For completeness, we also give a more complete definition of the minimum circuit size
problem MCSP:

Definition 3. If f is a string of length 2m encoding the entire truth-table of some Boolean
function of m variables, then MCSP ={(f, s) | f has circuits of size ≤ s} .

We decline to specify precisely the type of circuits that we consider, as well as the precise
size measure—such as counting the number of wires or the number of gates, etc. Theorems
that are proved using one variant usually carry over to any other reasonable variant, even
though it is not known whether these variants are efficiently reducible to one another.

3 The result for rigid graphs

Define the Rigid Graph Nonisomorphism Promise Problem to be the promise problem de-
fined by the set Y of “yes-instances” and the set N of “no-instances”:

Y = {(G,H) : G and H are rigid, and G is not isomorphic to H}.
N = {(G,H) : G is isomorphic to H}.
It might seem more natural to restrict the set N to only consist of pairs of rigid matrices,

but our reduction to MKTP actually works for the larger set, with the same proof. This extra
generality allows us to apply the following result to Graph Automorphism (Corollary 1).

Theorem 1. The Rigid Graph Nonisomorphism Promise Problem is in Promise-ZPPMKTP.

Proof outline and intuition. It is shown in [AD14] that Graph Isomorphism is in RPMCSP.
The same proof suffices to show that Graph Isomorphism is in RPMKTP; in particular this
shows that the Rigid Graph Nonisomorphism Problem has a solution in coRPMKTP. Thus it
suffices to show that the Rigid Graph Nonisomorphism Problem is also in Promise-RPMKTP.

That is, we need to present a probabilistic oracle Turing machine M with an oracle
for MKTP, so that, M accepts with high probability any pair (G,H) ∈ Y , and M always
rejects any pair (G,H) ∈ N .

Our reduction is easy to present. The probabilistic machine M , given two n-vertex
graphs G0 and G1, will flip t = 3n5 coins, obtaining the bit string w = w1w2 · · ·wt. It then

4

chooses t random permutations π1, π2, . . . , πt, and produces the string x = π1(Gw1)π2(Gw2) . . . πt(Gwt).
M will append some extra 0’s or 1’s—whichever is different from the last bit of x—to obtain
a string x′ of length 2m for some m, which can thus be viewed as the truth table of some
m-variate Boolean function. Next M computes a threshold θ (specified below), and accepts
iff the string (x′, θ) 6∈ MKTP, i.e., iff KT(x′) > θ.

The intuition for why this reduction should work is also easy to present. If G0 and G1

are rigid and are not isomorphic, then the string x contains all of the information about
the random string w and the t random permutations π1, . . . , πt. Letting s = log n!, we thus
have (with high probability over the choice of random bits) that w contains about t + st
bits of information. On the other hand, if G0 ≡ G1, then w can be described by G0 and
the t permutations, which should be about n2 + ts bits of information, which with some
luck should correspond to KT-complexity around n2 + ts. Since we have chosen t to be
sufficiently large, it will follow that n2 + ts will be much less than t(s+1), and we can select
the threshold θ to be t(s+ 1)− 4n log n so that it separates the two cases.

Proof details. The proof begins as above; we now provide the details needed to fill in the
preceding informal argument.

First, we consider the case when G0 and G1 are both rigid, and are not isomorphic. Let
C(z) denote the Kolmogorov complexity of the string z. We claim that C(w, π1, π2, . . . , πt) ≤
C(x)+2n log n+2 log n. This is because, given a description d of x (having length C(x)) and
given the encodings of two permutations π−1

1 , ρ (having length at most 2n log n) and with
an additional log n + 2 log log n + O(1) < 2 log n bits (to describe the boundaries between
these information fields and how to use them), one can construct the tuple (w, π1, . . . , πt)
as follows:

1. Use d to construct x, which is a string of the form H1H2 . . . Ht for some sequence of
n-vertex graphs H1, . . . ,Ht.

2. Apply π−1
1 to H1 to obtain one of {G0, G1}. (Assume for the moment that H1 =

π1(G0); equivalently, assume for the moment that the first bit of w is 0. The other
case is handled similarly.)

3. Find the first i > 1 such that Hi is not isomorphic to G0; apply ρ to Hi to obtain G1.

4. For each j, find the unique ij ∈ {0, 1} such that Hj is isomorphic to Gij , and obtain
the unique permutation πj such that πj(Gij) = Hj . (The permutation is unique
because both G0 and G1 are rigid.)

5. The j-th bit of w is equal to ij .

The machine M chooses the elements (w, π1, π2, . . . , πt) uniformly at random from a set of
size 2t(n!)t, and thus with probability greater than 99%, C(w, π1, π2, . . . , πt) ≥ log 2t(n!)t−
6 = t+ ts−6 (recall that s = log(n!)). Hence C(x) ≥ t+ ts−6−2n log n−2 log n. Observe
that C(x′) = C(x)±O(1). Hence KT(x′) ≥ C(x′) ≥ t(s+ 1)− 3n log n > θ.

Suppose, conversely, that G0 and G1 are isomorphic. Let d be a description containing
all of the information about G0 and the permutations π1, π2, . . . , πt. Since we need to be
careful about the length of this description, it will be necessary to give some details about
the way this is encoded. Let t = bt′; we will divide the sequence π1, π2, . . . , πt into t′ “blocks”
consisting of b permutations each.

A block of b permutations will be encoded (in binary) as a number B between zero
and (n!)b − 1. To obtain the j-th permutation in a block, first obtain the j-th digit of B

5

in (n!)-ary notation; this digit is a number between 0 and (n! − 1), and as such can be
efficiently decoded as a representation of a permutation π using the well-known “Lehmer
code”. Each block requires dlog(n!)be ≤ bs+ 1 bits. Given a number j, and an encoding of
a block B, a Turing machine can obtain an encoding of the permutation π in time easily
bounded by (bs)3.

The description d will have the form (b, t′, G0, B1 . . . Bt′), of length less than 2n2+t′(bs+
1) = 2n2 + ts+ t′.

In order to obtain a bound on KT(x′), we need to bound not only the length of d, but
also the time required by a Turing machine that takes as input the number i (in binary),
and computes the i-th bit of x′, given random access to the description d.

Our machine will first read the initial bits of d, to determine the numbers b and t′.
This enables us to compute t, which in turn determines n. All of this takes time at most
O(log2 n). (At this time, we can also determine if i > |x|, and we can compute |x′|. The
discussion below deals with the most interesting case, when i ≤ |x|. If i > |x|, then the
machine should compute the last bit of x, and return the complement of that bit as the i-th
bit of x′. If i > |x′|, then the machine should return ∗.)

Given the numbers i and n, it is easy to compute the numbers j and ` such that the
i-th bit of x′ corresponds to the `-th bit of the adjacency matrix of πj(G0). It is also easy
to compute the numbers k1 and k2 such that πj is encoded as permutation number k1 in
block Bk2 of d. Again, this computation takes time at most O(log2 n).

With random access to the input, we can obtain the encoding of block k2 using time
O(bs + 1), and then an additional (bs)3 steps suffice to obtain the encoding of πj . The
i-th bit of x′ corresponds to the `-th bit of the adjacency matrix of πj(G0). Time O(n3) is
sufficient to determine the entry of matrix G0 that corresponds to the `-th bit of πj(G0),
and to query that bit of G0, which determines the i-th bit of x′.

Thus the entire computation takes time bounded by O(log2 n)+(bs)3 +O(n3). KT(x′) is
the sum of this running time and the length of d. Thus KT(x′) ≤ 2n2 + ts+ t′+O(log2 n)+
(bs)3 +O(n3) < ts+O(n3) + t/b+ b3(n log n)3.

Picking the block size b = 3, and recalling that t = 3n5, we thus have, for all large
inputs, KT(x′) ≤ ts+ t/3 + n4 < θ = ts+ t− 4n log n.

Corollary 1. Graph Automorphism is in ZPPMKTP.

A related result (reducing Graph Automorphism to a somewhat different promise prob-
lem) is presented as Theorem 1.31 in [KST94]. Our proof is patterned after the proof
presented there.

Proof. Let G be an n-vertex graph that is input to the Graph Automorphism problem. G
has a non-trivial automorphism if and only if there is an automorphism that sends some
vertex i to a vertex j 6= i. Any automorphism fixes some (possibly empty) set of vertices.

Using the notation of [KST94], let G
(i−1)
[j] be the graph (easy to construct in polynomial

time, as presented in [KST94, pages 8 and 31]) with distinct labels on vertices {1, . . . , i−1}
(so that no automorphism can move any of those vertices), and a distinguishing label on
vertex j.

Let i be the largest index for which some automorphism exists that fixes vertices

{1, 2, . . . , i− 1}, and sends i to some j 6= i. Then G
(i−1)
[i] and G

(i−1)
[j] are isomorphic, and for

all k > i,G
(k−1)
[`] and G

(k−1)
[m] are rigid and non-isomorphic for every ` 6= m.

6

Thus if we use our Promise-ZPPMKTP algorithm for the Rigid Graph Nonisomorphism

Problem on queries of the form (G
(i−1)
[i] , G

(i−1)
[j]) (for j ∈ {i+ 1, . . . , n}) we get reliable “non-

isomorphic” answers for all large values of i, (starting with i = n − 1), since all of those
graphs are rigid and non-isomorphic, until we encounter the first pair (i, j) such that the

graphs (G
(i−1)
[i] , G

(i−1)
[j]) are isomorphic, in which case we also get a reliable answer, because

in the definition of Rigid Graph Nonisomorphism we had N = {(G,H)|G ∼= H}, with no
restriction on their rigidity. (If all queries are determined to be non-isomorphic, then this
is a proof that G has no nontrivial automorphism.)

This algorithm works correctly on all inputs, and thus it is a ZPPMKTP algorithm; there
is no need to invoke any promise (of rigidity or otherwise).

Similarly, the “promise” notation can be removed from a weaker version of Theorem 1,
as follows. By the “Graph Isomorphism Problem restricted to rigid graphs”, we mean the
promise problem with the following Yes and No instances:

Y = {(G,H) : G and H are rigid, and G is isomorphic to H}.
N = {(G,H) : G and H are rigid, and G is not isomorphic to H}.

Corollary 2. The Graph Isomorphism Problem restricted to rigid graphs has a solution in
ZPPMKTP.

Proof. We need to present a ZPPMKTP algorithm that has ZPP-like behavior on all inputs—
not merely the inputs that lie in Y or N . Thus, consider an input (G,H) that lies outside
of Y ∪ N . This means that at least one of {G,H} has a non-trivial automorphism. But
testing if one of {G,H} has a non-trivial automorphism can be determined in ZPPMKTP,
by the preceding corollary.

Thus the algorithm is as follows: On input (G,H) determine (in ZPPMKTP) whether G
and H are rigid.

If both are rigid, run the Promise-ZPPMKTP algorithm to determine whether they are
isomorphic or not. The promise is satisfied, so the probability of success is guaranteed to
be high

Otherwise, reject. Note that, on all inputs, we terminate with high probability, with
either a proof of non-rigidity, or a proof of isomorphism or non-isomorphism.

4 The result for general graphs

Theorem 2. Graph Isomorphism is in BPPMKTP.

Proof outline and intuition. The basic idea of the proof is similar to that of Theorem 1,
but we now must handle nontrivial automorphisms of the graphs. The reduction is in fact
more or less the same. To recall: Given two graphs G0, G1 on n vertices, we choose t
random bits w1, . . . , wt and t random permutations π1, . . . , πt ∈ Sn (for sufficiently large
t to be chosen later, still bounded by a polynomial in n). We construct the string x =
π1(Gw1)π2(Gw2) · · ·πt(Gwt), and extend x trivially, as in Theorem 1, to x′ that has length
a power of 2. We would then like to choose an appropriate threshold θ (a different value
from the rigid case), and accept iff KT(x′) > θ; this latter part will turn out to not quite
work, but can be fixed, as we explain below.

The intuition is similar to before: if G0 and G1 are not isomorphic, then the string x
contains all the information about t. Now, however, it does not contain all the information

7

about the permutations π1, . . . , πt, but only that information not captured by the automor-
phism groups of the Gi. That is, x contains the information of which coset of Aut(Gi) the
permutation πi is in, for each 1 ≤ i ≤ t. Let si = log(n!/Aut(Gi)), for i = 0, 1. With high
probability, x thus contains about t+s1t1 +s0t0 bits of information, where ti is the number
of bits of w that are i. On the other hand, if G0 and G1 are isomorphic, then w can be
described by the t cosets of Aut(G0), along with some some extra information about G0 of
size n4—or approximately n4 + ts0 bits. As before, by choosing t sufficiently large, (s0 + 1)t
will be larger than n4 + ts0, so there is a threshold θ in between the two.

The first new idea here is used, in the isomorphic case, to describe x in a time-efficient
manner using fewer than n4 + ts0 bits. We cannot naively describe the t permutations,
because that would result in n2 + t log(n!) bits, which could be significantly larger than
n2+t(log(n!)−log |Aut(G0)|), throwing off the whole argument. (Note, in both the preceding
argument and here, how important it is for the coefficients of t in the upper and lower bounds
to match nearly exactly.) This is achieved in Lemma 1 below.

The second new idea here is needed because the natural threshold θ seems to depend
on s0, but knowing s0 is equivalent to knowing |Aut(G0)|, and computing the size of the
automorphism group of a graph is equivalent to GI in the first place. We get around this by
estimating the KT complexity in two different cases, as follows. For each of the following
three strings, compute the KT complexity exactly (using binary search and the MKTP
oracle):

1. A sequence of randomly permuted graphs consisting of both G0 and G1, where which
graph is used is determined by the random string w of length t,

2. A sequence of t randomly permuted copies of G0, and

3. A sequence of t randomly permuted copies of G1.

Do this several times with independent randomness, and for each of (1)–(3), report the
maximum seen as our estimate of the KT complexity of such a construction. If G0 and G1

are isomorphic, with high probability there will be only a difference of O(1) between these
three. If G0 and G1 are not isomorphic, the true difference in KT complexity is at least
t − n4 − 3n log n − 2 log n − 6 ≥ t/2 for t sufficiently large, and the estimated difference
should only be O(1) off from this, with high probability. Thus, if the difference is at least
t/2 for appropriately chosen value of t, we report that the graphs are not isomorphic, and
otherwise we report that they are isomorphic.

The argument relies on the following technical lemma, which may be of independent
interest. It essentially says that, given some side information about a graph G, there is
a “compressed” description pπ of any isomorphic copy π(G) of G, whose size is exactly
the information-theoretic minimum log(n!/|Aut(G)|), and from which π(G) can be recon-
structed efficiently.

Lemma 1. There is a polynomial-time “decoder” algorithm D such that for every graph G
on n vertices, there is an auxiliary string auxG of length O(n3 log n), such that for every
permutation π ∈ Sn there is a number pπ ∈ {1, . . . , n!/|Aut(G)|} such that D(auxG, pπ) =
π(G).1

1The input pπ to D is given in binary; we only specify that pπ ∈ [n!/|Aut(G)|] to show how exactly this
matches the information-theoretic lower bound, which is essentially necessary for its use in Theorem 2.

8

First, we make use of the technical lemma in order to turn our informal argument for
Theorem 2 into a proof. We will prove the technical lemma in Section 5.

Detailed proof of Theorem 2. Recall the basic outline from above. Let s = log(n!), ai =
|Aut(Gi)|, and si = s− ai = log(n!/|Aut(Gi)|).

First, we consider the case when G0 and G1 are not isomorphic. Choose a random string
w of length t (specified below). For b = 0, 1, let tb be the number of bits of w that are equal
to b. We will give a lower bound on C(x) (the Kolmogorov complexity of x), which is in
turn a lower bound on KT(x′). We claim that

C(w, π1, . . . , πt) ≤ C(x) + 2n log n+ 2 log n,

where the πi are each the lexicographically least element in their Aut(Gwi)-coset. To es-
tablish the claim, we will show how to take as input a description d of x (having length
C(x)), and permutations π−1

1 and ρ (having length at most 2n log n), along with an addi-
tional log(n) + 2 log log(n) +O(1) < 2 log n bits (to describe the boundaries between these
information fields and how to use them), and then construct (w, π1, . . . , πt). Note that
this construction need not be efficient: since we are only bounding C(x), it need only be
computable.

1. Use d to construct x, which is a string of the form H1, . . . ,Ht for some sequence of
n-vertex graphs H1, . . . ,Ht.

2. Apply π−1
1 toH1 to obtain one of {G0, G1}. Assume for the moment thatH1 = π1(G0),

that is, that w1 = 0. The other case is handled similarly.

3. Find the first i > 1 such that Hi is not isomorphic to G0. Apply ρ to Hi to obtain
G1.

4. For each j in order, find the unique bj ∈ {0, 1} such that Hj is isomorphic to Gbj , and
find the lexicographically least permutation πj such that πj(Gbj) = Hj .

5. The j-th bit of w is equal to bj .

We have chosen w uniformly at random from a set of size 2t, and then the sequence

(πi : wi = 0) is chosen uniformly at random from a set of size
(

n!
|Aut(G0)|

)t0
and similarly the

remaining πi uniformly at random from a set of size
(

n!
|Aut(G1)|

)t1
. Suppose s0 ≤ s1. (The

other case is dealt with below.) Then with probability greater than 99%, C(w, π1, . . . , πt) ≥
t+ t1s1 + t0s0 − 6 ≥ t+ t1s0 + t0s0 − 6 = t(1 + s0). Hence

C(x) ≥ t(1 + s0)− 6− 2n log n− 2 log n

Conversely, if G0 and G1 are isomorphic, then we can use Lemma 1, together with the
“blocking” trick for encoding a sequence of numbers in [n!/|Aut(G0)|] from the second half
of the proof of Theorem 1 to get a description of x of length at most |auxG0 |+ ts0 + t/b ≤
n4 + t(s0 + 1/b) (using block size b = O(1)), from which x can be constructed in polynomial
time, say time ≤ nc for some c ≥ 4. Thus KT(x) ≤ 2nc + t(s0 + 1/b).

We choose t to be nc+1. Recall this part of the informal discussion of our reduction: For
each of the following three strings, we compute the KT complexity exactly:

9

1. A sequence of randomly permuted graphs consisting of both G0 and G1, where which
graph is used is determined by the random string w of length t,

2. A sequence of t randomly permuted copies of G0, and

3. A sequence of t randomly permuted copies of G1.

Do this several times with independent randomness, and for each of (1)–(3), report the
maximum seen as our estimate of the KT complexity of such a construction.

If G0 and G1 are isomorphic, with high probability there will be only a difference of
O(1) between these three.

If G0 and G1 are not isomorphic, then in the case s0 ≤ s1, the analysis above shows
that (with high probability) the difference between the first and the second value is at least
t(1 + s0)− 6− 2n log n− 2 log n− 2nc − t(s0 + 1/b) = t(1− 1

b)−O(nc) ≥ n for all large n.
(If s0 ≥ s1, then a large difference will be noticeable between the first and third value.)

The last step—needed because we cannot choose the threshold without knowing |Aut(G0)|—
is the only source of two-sided error in this reduction.2

5 Main Technical Lemma

This section is devoted to a proof of Lemma 1. The intuitive idea of the proof should be
made clear from the following examples; making it precise unfortunately seems to require
notation that makes the proof more unwieldy than we would like, so we start with the
examples.

Example 1 (Rigid graphs). For rigid graphs, there is no choice but to describe π(i) for
every individual vertex i, which is the same as describing π itself, so pπ is a number between
1 and n! = n!/|Aut(G)|.

Example 2 (Cycles). The automorphism group of an n-cycle is the dihedral group of order
2n, so we want to describe an isomorphic copy of the cycle using a number in [(n− 1)!/2].
Suppose our initial graph G is the n-cycle with vertex set [n] and edges (i, i + 1) for all
i = 1, . . . , n− 1 and the edge (n, 1). Let π be any permutation. Without loss of generality,
we may assume that π(1) = 1: There is always an automorphism of G that sends any vertex
to any other vertex, and in particular there is some ρ ∈ Aut(G) that sends 1 to π−1(1),
and taking π′ = π ◦ ρ we have π′(G) = π(ρ(G)) = π(G), since ρ is an automorphism,
and π′(1) = π(ρ(1)) = π(π−1(1)) = 1; replace π by π′. To describe π(G), we then need
to know where the neighbors of 1, namely 2 and n, get mapped to. But because there is
an automorphism that swaps 2 and n and fixes 1, we don’t need to know their individual
images (which would take a number between 1 and 2

(
n−1

2

)
to describe), but rather just their

image as a set, which only requires a number in [
(
n−1

2

)
] to describe. Next, as before, by

2One can get a ZPP reduction from a different promise version of GI that generalizes Rigid GI. Namely, the
inputs consist of pairs ((G0, a0), (G1, a1)), with the promise that ai = |Aut(Gi)| for each i, the yes-instances
are those where G0 and G1 are isomorphic, and the no instances are where they are not isomorphic. Note
that when a0 = a1 = 1 this is exactly Rigid GI. Although this problem might at first seem trivial because
computing |Aut(G)| is equivalent to GI, on further reflection it is not clear what the relationship is between
this promise problem and GI; for example, how does knowing |Aut(Gi)| help to determine isomorphism, if
we cannot compute Aut(G) for general graphs G? The same techniques in this paper can be used to show
that this promise problem is in Promise-ZPPMKTP.

10

pre-composing with an automorphism of G that fixes 1 and swaps 2 ↔ n if needed, we
may assume that π(n) is the larger of π(2) and π(n), and that π(2) is the smaller. After
this, we need to describe the image of every vertex remaining, for there are no nontrivial
automorphisms that fix 1, 2, and n. But this can now be described by a permutation of n−3
elements, together with our previous knowledge of π(1), π(2), π(n). So in total, we’ve used
a number between 1 and

(
n−1

2

)
× (n− 3)! = (n− 1)!/2 to describe a copy of the n-cycle.

Example 3 (Dumbell graph). Let n ≥ 6 be congruent to 2 (mod 4) and consider the
“dumbbell graph,” consisting of 2 n/2-cycles (one on {1, . . . , n/2}, and one on {n/2 +
1, . . . , n}) together with an edge between them, say (1, n/2 + 1). The automorphism group
here has size 8, generated by reflecting the first cycle around 1 and by swapping the two
cycles, so our goal is to describe any isomorphic copy using a number in [n!/8], rather
than [n!]. Unlike the previous example, the graph is not vertex-transitive (there is not an
automorphism sending any one vertex to any other vertex). So we start by describing the
π-images of the orbits under the automorphism group; the vertices 1 and n/2 + 1 form one
“central” orbit, and the remaining vertices form (n−2)/4 orbits of size 4 (two vertices from
each cycle). Describing the π-images of these sets uses a number in [

(
n
2

)(
n−2

4

)(
n−6

4

)
· · ·

(
4
4

)
] =

[n!/(2·(4!)(n−2)/4)]. By the same argument as before, we may assume that π(n/2+1) > π(1).
We then, for each orbit of size 4, specify which pair of elements is in the cycle containing

1 and which is in the cycle containing n/2 + 1, for a total of
(

4
2

)(n−2)/4
. (These sets

are the non-singleton orbits of the stabilizer of 1 and n/2 + 1.) Next, without loss of
generality, within the orbits adjacent to 1 and n/2 + 1, we may assume that the smaller
element gets mapped by π to the smaller element. At this point, we can consider that we are
working in the pointwise stabilizer of 1, 2, n/2 + 1, and n/2 + 2; the non-singleton orbits
at this point are the 2(n − 6)/4 sets that resulted by partitioning the original orbits of size
four into two equal-size subsets. In each of these 2(n − 6)/4 orbits of size two, we must
describe the order, using another 22(n−6)/4. In total, we’ve thus used a number between 1

and n!
2·(4!)(n−2)/4 ×

(
4!

2!2!

)(n−2)/4 × 22(n−6)/4 = n!/8, as desired.

Proof of Proposition 1. We first describe auxG, pπ, and the decoding algorithm, and then
we analyze their sizes and running times. Let A = Aut(G), and for any i ∈ {1, . . . , n}, let
Ai be the pointwise stabilizer in A of 1, 2, . . . , i, that is, those permutations in A = Aut(G)
that send 1 to 1, send 2 to 2, ..., send i to i.

The string auxG consists of:

1. The subsets of V (G) = [n] that are the A = Aut(G)-orbits

2. For each i ∈ [n], the subsets of V (G)\[i] that are the Ai-orbits, as well as flags
indicating which of the Ai-orbits are neighbors of vertex i (note that for any Ai-orbit,
either all vertices in the orbit are adjacent to i or none of them are).

Now we describe the number pπ. First we state two simple observations regarding
using numbers as encodings. Observation 1: A subset of [n] of size k can be encoded as a
number in [

(
n
k

)
] in a manner that allows efficient encoding and decoding (see, e. g., [Knu11,

Section 7.2.1.3]). Observation 2: Any list of numbers x1, . . . , x`, where each xi ∈ [ni], can
be encoded as a single number in [n1n2 · · ·n`] in the obvious way. For clarity, consider just
the case ` = 3: A tuple (i, j, k) ∈ [n1]× [n2]× [n3] can be encoded as a number d ∈ [n1n2n3]
by expressing d in n2n3-ary notation as i + e(n2n3), then expressing e in n1-ary notation
as j + kn1. (The generalization to larger tuples is obvious.) The string auxG will contain

11

enough information to determine the sequence (n1, . . . , n`) that is necessary in order to
decode d as the tuple (x1, . . . , x`) in this way.

The number pπ will contain a description of the π-image of each Aut(G)-orbit under π,
as sets, where a subset of size k of a set of size n can be described by a number between
1 and

(
n
k

)
. These sets are described in the same order in which they appear in auxG. For

i = 1, pπ then describes the image of each A1-orbit under π, as a set within its A-orbit. For
i = 2, . . . , n, pπ then describes each Ai+1-orbit as a subset of its Ai-orbit.

The decoder works as follows. It first uses auxG and the first part of pπ to determine the
π-images of the Aut(G)-orbits on [n]. Then within each Aut(G)-orbit, the decoder extracts
from auxG a description of the A1-orbits, and uses the data in pπ to decide where each of
those is mapped to by π. For each A1-orbit that auxG indicates is adjacent to vertex 1, the
decoder adds edges from the vertices in the π-image of that orbit to the smallest vertex in
the π-image of the A-orbit of 1. Call this vertex v; note that, without loss of generality,
we may assume that π(1) = v. For if not, there is some automorphism ρ ∈ Aut(G) such
that ρ(1) = π−1(v); replacing π by π′ = π ◦ ρ, we then have that π′(G) = π(ρ(G)) = π(G)
(since ρ ∈ Aut(G)) and π′(1) = π(ρ(1)) = π(π−1(v)) = v. After this stage, the π-images
of all edges incident to π(1) have been described. The algorithm continues in this fashion
for i = 2, . . . , n. Correctness is clear: after the last stage, the decoder has described the
π-images of all edges incident to π(i) for all i.

Even a naive upper bound shows that |auxG| ≤ O(n3 log n). The decoder clearly runs
in time polynomial in |auxG| and |pπ| (the bit-length of pπ), so all that remains is to verify
the claim made in the lemma about the size of pπ, which we must do exactly, not just up
to big-Oh. To do this, it is useful to take the following pair of “dual” viewpoints on what’s
happening in the decoder.

We will describe two sequences of vertex-colored graphs, H−1, H0, H1, . . . ,Hn = π(G)
and G−1 = G,G0, . . . , Gn, corresponding to the stages of the decoding algorithm. The
colors are used to indicate the partial information about the isomorphism π : G 7→ π(G),
viz. at stage i, the set of vertices of color c in Gi are known to map to the set of vertices of
color c in Hi. G−1 = G, G0 is G with the Aut(G)-orbits colored (that is, each Aut(G)-orbit
is a single color class), and Gi is G with the Ai-orbits colored, for i = 1, . . . , n. Thus, the
coloring of Gi+1 refines that of Gi, and similarly the coloring of Hi+1 refines that of Hi

for all i. The Hi will be the graphs built by the decoder, starting with H−1 as the empty
graph on n vertices with no colors; Hn will end up as π(G). H0 is still the empty graph,
but now with colors corresponding to the π-images of the Aut(G)-orbits. For i = 1, . . . , n,
Hi has the π-images of all edges incident to π(1), . . . , π(i), and colors corresponding to the
π-images of the Ai-orbits.

Let ri(pπ) be the part of pπ used up to and including the i-th stage of the construction
(“r” for the range of numbers used). As in the rest of this proof, we measure this by the
size of the range of numbers that has been used in the description so far (rather than their
logarithm, the number of bits). So r−1(pπ) = 1, r0(pπ) = n!/(n1!n2! · · ·nk!) where the ni
are the sizes of the Aut(G)-orbits, etc.

We claim that the following invariants hold:

1. Aut(Hi) is always a direct product of symmetric groups in their natural action on the
π-images of the Ai-orbits; for i ≥ 1, there is one factor for each Ai-orbit, and for i = 0
there is one factor for each Aut(G)-orbit.

2. ri(pπ)× |Aut(Hi)|/|Aut(Gi)| = n!/|Aut(G)| for all i

12

Note that in Hn and Gn, every vertex has received its own color, since An is the trivial
group. So if we can show that (2) holds, then we are done, for then pπ is a number between
1 and rn(pπ) = rn(pπ)× |Aut(Hn)|/|Aut(Gn)| = n!/|Aut(G)|.

To see that (1) holds, consider an auxiliary sequence of graphs H ′i. For i ∈ {−1, 0}, H ′i =
Hi, and for i ∈ {1, . . . , n}, H ′i is the subgraph of Hi induced by the vertices i+1, i+2, . . . , n.
Since 1, . . . , i are fixed by Ai, each vertex in [i] ⊂ V (Hi) has its own color class. Furthermore,
since the edges from these vertices to the rest of the Hi are completely determined by the
Ai-orbits on the rest of the graph, the automorphism group of Hi is the same (not just
isomorphic) to that of H ′i, merely by removing i points that are fixed by the entire group.
Now note that, by construction, in H ′i there are no edges, only vertex colors. Thus it is
clear that Aut(H ′i), and therefore Aut(Hi), is a direct product of symmetric groups in their
natural action on the π-images of the Ai-orbits.

Now for (2). Let ni,j denote the size of the j-th color class in Gi (and thus also in Hi).
For example, n−1,1 = n, and the n0,j are the sizes of the Aut(G)-orbits. By the preceding
argument, we see that Aut(Hi) = Aut(H ′i) = Sni,1 × Sni,2 × · · · × Sni,ji , where ji is the
number of Ai-orbits. In particular, |Aut(Hi)| = ni,1!ni,2! · · ·ni,ji !.

For i = −1, we have r−1(pπ) = 1, Aut(Hi) = Sn, and Aut(Gi) = Aut(G), so r−1(pπ)×
|Aut(H−1)|/|Aut(G−1)| indeed equals n!/|Aut(G)|. For i = 0, we’ve used a number between
1 and

(
n
n0,1

)(
n−n0,1

n0,2

)
· · ·

(
n0,j0
n0,j0

)
, where j0 is the number of Aut(G)-orbits. Thus r0(pπ) =

n!/(n0,1!n0,2! · · ·n0,j0 !). As |Aut(H0)| = n0,1! · · ·n0,j0 ! (from the preceding paragraph), we
have r0(pπ)×|Aut(H0)|/|Aut(G0)| = n!/|Aut(G0)|. But note that G0 is G with the Aut(G)-
orbits colored. Since the color classes are just the Aut(G)-orbits, we have that Aut(G0) =
Aut(G), and (2) holds for i = 0 as well.

For i = 1, . . . , n, we need a slightly more structural argument. Let A0 = Aut(G0) =
Aut(G). For all i ≥ 1, Ai is the stabilizer in Ai−1 of the vertex i. Let Bi be the stabilizer of
π(i) in Aut(Hi−1); clearly Aut(Hi) ≤ Bi, but in general these two will not be equal, for in
Bi the Sni−1,· factor corresponding to the π-image of the Ai-orbit of π(i) gets replaced by
Sni−1,·−1, but in Hi this orbit gets split into the π-images of the Ai-orbits of i, which can be
smaller. By the Orbit–Stabilizer Theorem, |Ai−1|/|Ai| is the size of the Ai−1-orbit of i, and
similarly |Aut(Hi−1)|/|Bi| is the size of the Aut(Hi−1)-orbit of π(i). But by construction,
these two orbits have the same size, so, after re-arranging, we have that |Bi|/|Aut(Gi)| =
|Aut(Hi−1)|/|Aut(Gi−1|). Note that to get to this point, we didn’t have to use any additional
information from pπ (this follows from the “without loss of generality” argument above, that
π(i) can always be taken to be the smallest element in the π-image of the Ai−1-orbit of i).
Finally, to construct Hi—equivalently, to get from Bi to Aut(Hi)—we use information from
pπ to specify the π-images of the Ai-orbits (except the singleton orbit {i}) as subsets of the
Ai−1 orbits. Without loss of generality, assume that ni−1,1 corresponds to the Ai−1-orbit of i.
Then this requires an additional range of (ni−1,1−1)!ni−1,2! · · ·ni−1,ji−1 !/(ni,1!ni,2! · · ·ni,ji !)
to describe. But the latter is exactly the ratio |Bi|/|Aut(Hi)|, as desired.

Now that we’ve described the procedure, it may be useful for the reader to revisit the
examples above; they involved somewhat simplified descriptions for their particular cases,
and it is an instructive exercise to describe an isomorphic copy of a cycle by actually
following the procedure of the proof. In the examples above, it was always the case that
Aut(Gi) was itself a product of symmetric groups in their natural action, for all i. We include
our next example to aid intuition, to give an example actually following the procedure of
the proof to the letter, and to have an example where Aut(Gi) is not always just a product
of symmetric groups in the natural action.

13

Example 4 (The Petersen graph). The Petersen graph has 10 vertices and 15 edges: the
vertices can be taken to be pairs of distinct numbers from [5], with an edge between two such
vertices if the corresponding pairs are disjoint from one another. It is well-known that its
automorphism group is given by the natural action of S5 on this description, so our goal
is to have pπ ∈ [10!/5!]. Note, however, already that Aut(G) is not a symmetric group in
its natural action, but rather is an action of S5 on a set of size 10. We will denote each
vertex by a two-digit number corresponding to the pair of numbers from [5]. As the Petersen
graph is vertex-transitive, without loss of generality we may assume that π(12) = 12. A1 is
the stabilizer of 12 in Aut(G), which is the same as the setwise stabilizer of {1, 2} in S5,
namely Sym({1, 2})× Sym({3, 4, 5}) ∼= S2 × S3. It is readily verified that the A1-orbits are
{34, 35, 45} and {13, 14, 15, 23, 24, 25}, with the first of these being neighbors of 12 and the
latter not. So we use

(
9
3

)
to describe these orbits.

Next, we individualize 13; then A2 is the stabilizer of the set {1, 3} within Sym({1, 2})×
Sym({3, 4, 5}), which is readily seen to be just Sym({4, 5}). The A2-orbits that neighbor
13 are then {24, 25} and {45}, and the remaining orbits are {14, 15}, {23}, {34, 35}. To
describe all these orbits takes

(
5
2

)
(to describe {24, 25} within its A1-orbit less {13}),

(
3
2

)
to

describe {14, 15}, and
(

3
2

)
to describe {34, 35}, for a total of

(
5
2

)(
3
2

)(
3
2

)
.

Without loss of generality, we may assume that π(14) < π(15). Then we individualize 14,
which involves specifying π(25) within π({24, 25}) and specifying π(35) within π({34, 35}),
for an additional factor of 4. All remaining orbits are already singletons. The rest of the
description involves no new information from pπ, just information from auxG as to where
there are edges between various A3-orbits. Thus, we’ve described any copy of the Petersen
graph with a number between 1 and

(
9
3

)(
5
2

)(
3
2

)(
3
2

)
4 = 9·8·7·5·4·3·2·3·2·4

6·2·2·2 = 9 · 8 · 7 · 5 · 4 · 3 =
10 · 9 · 8 · 7 · 6 = 10!/5!, as desired.

Lemma 1 is a special case (for automorphism groups) of the more general question:
Given two permutation groups H ≤ G, can any coset of H in G be described in a time-
efficient manner by a number between 1 and |G|/|H|? However, it’s not clear how to modify
the proof of Lemma 1 to work for more general groups, as it relies heavily on the fact that
Aut(Hi) is always a product of symmetric groups in its natural action. We leave this as an
open question.

6 What about MCSP?

Why don’t the proofs of Theorems 1 and 2 apply to MCSP? Perhaps the easiest way to
answer this question is to define a variant of MCSP for which the proofs do carry over; this
will expose the barrier that will need to be overcome, in order to apply our techniques to
(the more customary version of) MCSP.

Define a multiplexer circuit to be a directed acyclic graph with n input gates and an
array A with m entries (for some values of n and m), where the array A has values in
{0, 1} stored in each of the m locations. The vertices of a multiplexer circuit are labeled,
where the labels describe what kind of gate resides at each vertex. There are five kinds of
gates: NOT gates (of fan-in one), AND and OR gates (of fan-in two), INPUT gates (of
fan-in one), and MULTIPLEXER gates (of fan-in logm). The size of a multiplexer circuit
with an m-entry array circuit is m plus the number of gates in the circuit. The function of
each gate should be clear, except for MULTIPLEXER gates: If the wires that feed into a
MULTIPLEXER gate evaluate to the binary representation of a number i, then the gate
takes on the value stored in the i-th element of the array A.

14

If we define MCSP using this model of circuit, then it is a routine exercise to show that
the proofs of Theorems 1 and 2 carry over with only minor adjustments: A string x has
small KT complexity if and only if there is a short description (which can be stored in the
array A of a multiplexer circuit) and a small multiplexer circuit that takes a number j as
input and computes the j-th bit of x.

However, a multiplexer circuit with an array of size m cannot be implemented by a
standard AND, OR circuit without adding at least another term of m to the size—and
there simply isn’t enough of a gap between the upper and lower bounds on KT complexity
in our proofs to absorb this additional term.

It would, indeed, be a very useful thing if there were some way to to boost the “gap”
between the upper and lower bounds in our arguments. This would not only show that
GA ∈ ZPPMCSP, but it could also form the basis of an argument that would show how to
reduce different versions of MCSP (defined in terms of subtly-different circuit models, or in
terms of different size parameters) to each other, and to clarify the relationship between
MKTP and MCSP. Until now, all of these problems have been viewed as morally-equivalent
to each other, although no efficient reduction is known between any two of these problems,
in either direction. Given the central role that MCSP occupies, it would be very desirable
to have a theorem that indicates that MCSP is fairly “robust” to minor changes to its
definition. Currently, this is completely lacking.

On a related point, it would be good to know how the complexity of MKTP compares
with the complexity of the KT-random strings: RKT = {x : KT(x) ≥ |x|}. Until now,
all prior reductions from natural problems to MCSP or MKTP carried over to RKT—but
this would seem to require even stronger “gap amplification” theorems. The relationship
between MKTP and RKT is analogous to the relationship between MCSP and the special
case of MCSP that is denoted MCSP′ by Murray and Williams [MW15]: MCSP′ consists of
truth tables f of m-ary Boolean functions that have circuits of size at most 2m/2.

Acknowledgments

The first author acknowledges the support of National Science Foundation grant CCF-
1555409. The second author was supported by an Omidyar Fellowship from the Santa Fe
Institute during this work. We thank V. Arvind for helpful comments about the graph
automorphism problem and rigid graphs. We thank Alex Russell and Yoav Kallus for
helpful ideas on encoding and decoding graphs

References

[ABK+06] E. Allender, H. Buhrman, M. Koucký, D. van Melkebeek, and D. Ronneburger.
Power from random strings. SIAM Journal on Computing, 35:1467–1493, 2006.

[AD14] Eric Allender and Bireswar Das. Zero knowledge and circuit minimization. In
Mathematical Foundations of Computer Science (MFCS), volume 8635 of Lecture
Notes in Computer Science, pages 25–32. Springer, 2014.

[AHK15] Eric Allender, Dhiraj Holden, and Valentine Kabanets. The minimum oracle
circuit size problem. In 32nd International Symposium on Theoretical Aspects

15

of Computer Science, STACS 2015, March 4-7, 2015, Garching, Germany, vol-
ume 30 of LIPIcs, pages 21–33. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, 2015.

[AKRR10] E. Allender, M. Koucký, D. Ronneburger, and S. Roy. The pervasive reach of
resource-bounded Kolmogorov complexity in computational complexity theory.
Journal of Computer and System Sciences, 77:14–40, 2010.

[DH10] R. Downey and D. Hirschfeldt. Algorithmic Randomness and Complexity.
Springer, 2010.

[For01] Lance Fortnow. Kolmogorov complexity. In Aspects of Complexity: Minicourses
in Algorithmics, Complexity, and Computational Algebra, NZMRI Mathematics
Summer Meeting, volume 4 of de Gruyter Series in Logic and Its Applications,
pages 73–86. de Gruyter, 2001.

[HILL99] J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby. A pseudorandom generator
from any one-way function. SIAM Journal on Computing, 28:1364–1396, 1999.

[Irn05] Christophe-André Mario Irniger. Graph matching—filtering databases of graphs
using machine learning techniques. PhD thesis, Universität Bern, 2005.

[KC00] V. Kabanets and J.-Y. Cai. Circuit minimization problem. In ACM Symposium
on Theory of Computing (STOC), pages 73–79, 2000.

[Knu11] Donald E. Knuth. The art of computer programming, Volume 4A, Combinatorial
algorithms: Part 1. Addison–Wesley, Upper Saddle River, NJ, USA, 2011.

[KST93] Johannes Köbler, Uwe Schöning, and Jacobo Torán. The Graph Isomorphism
Problem: Its Structural Complexity. Birkhauser Verlag, Basel, Switzerland,
Switzerland, 1993.

[KST94] Johannes Köbler, Uwe Schöning, and Jacobo Torán. The graph isomorphism
problem: its structural complexity. Birkhäuser Verlag, 1994.

[LV08] M. Li and P. Vitanyi. Introduction to Kolmogorov Complexity and its Applica-
tions. Springer, third edition, 2008.

[MW15] Cody Murray and Ryan Williams. On the (non) NP-hardness of computing cir-
cuit complexity. In Conference on Computational Complexity, 2015. to appear.

[Tra84] B. A. Trakhtenbrot. A survey of Russian approaches to perebor (brute-force
searches) algorithms. IEEE Annals of the History of Computing, 6(4):384–400,
1984.

16

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

