
A note on Graph Automorphism and Smart Reductions

Eric Allender∗ Joshua A. Grochow† Dieter van Melkebeek‡

Cristopher Moore§ Andrew Morgan¶

February 9, 2018

Abstract

It is well-known [KST93] that the complexity of the Graph Automorphism problem
is characterized by a special case of Graph Isomorphism, where the input graphs satisfy
the “promise” of being rigid (that is, having no nontrivial automorphisms). In this
brief note, we observe that the reduction of Graph Automorphism to the Rigid Graph
Isomorphism problem can be accomplished even using Grollman and Selman’s notion
of a “smart reduction”.

1 Prologue

This paper consists of an orphan theorem.
The history of this work begins with a study of the complexity of time-bounded Kol-

mogorov complexity as it relates to the Graph Automorphism problem [AGM15]. The au-
thors of [AGM15] continued to explore this topic with other collaborators after [AGM15] was
posted on ECCC, and at one point it was found that the exposition could be simplified by
proving that Graph Automorphism can be reduced to the Rigid Graph Isomorphism promise
problem via a smart reduction, which is the topic of the current note. The project eventually
developed into a significantly stronger paper [AGvM+18]. (A more complete version of this
work is available as [AGvM+17].) But the proofs as presented in [AGvM+18, AGvM+17]
no longer make any reference to smart reductions.

What to do?
The observation that Graph Automorphism reduces to Rigid Graph Isomorphism might

be useful in some future situation, but this fact by itself falls somewhat short of the Least
Publishable Unit threshold. However, it also is not compatible with inclusion in [AGvM+17].
Since the proof was already written, and since the availability of this proof might save some-
one some effort in the future, it was decided to provide space in this ECCC comment (which
also serves the purpose of pointing out that [AGM15] has been superseded by [AGvM+17])
to archive this fact about smart reductions and Graph Automorphism.

∗Rutgers University, Piscataway, NJ, USA, allender@cs.rutgers.edu
†University of Colorado at Boulder, Boulder, CO, USA, joshua.grochow@colorado.edu
‡University of Wisconsin–Madison, Madison, WI, USA, dieter@cs.wisc.edu
§Santa Fe Institute, Santa Fe, NM, USA, moore@santafe.edu
¶University of Wisconsin–Madison, Madison, WI, USA, amorgan@cs.wisc.edu

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 162 (2015)

2 Preliminaries

We assume that the reader is already familiar with the Graph Isomorphism problem (GI) and
the Graph Automorphism problem GA; see [KST93] for more background. It is well-known
that GA ≤p

m GI (i.e., GA Karp-reduces to GI) but the converse is not known.
A promise problem consists of a pair of disjoint subsets Y,N ⊆ Σ∗ where, as usual, Σ is

a finite alphabet. A language B is a solution to the promise problem (Y,N) if Y ⊂ B ⊂ N .
(Note that a language L is simply the promise problem (L,L).) An algorithm A solves a
promise problem (Y,N) if A(x) = 1 for all x ∈ Y , and A(x) = 0 for all x ∈ N . Of particular
interest to us is the promise problem known as the Rigid Graph Isomorphism Problem. A
graph is rigid if it has no nontrivial automorphisms, i.e., none other than the identity. Rigid
Graph Isomorphism (Rigid GI) is a promise version of GI: namely, to decide whether two
graphs are isomorphic, given the promise that they are rigid. That is, Y is the set of pairs
of rigid graphs (G,H) such that G and H are isomorphic, and N is the set of pairs of rigid
graphs such that G and H are not isomorphic. Thus an algorithm that solves Rigid GI can
have arbitrary output if one of its inputs is not rigid.

We will refer to the following “promise complexity classes”.

• Promise-BPP is the class of all promise problems (Y,N) for which there is a proba-
bilistic polynomial-time Turing machine M such that, for all x ∈ Y , M accepts x with
probability at least 2/3, and for all x ∈ N , M rejects x with probability at least 2/3.

• Promise-RP is the class of all promise problems (Y,N) for which there is a probabilistic
polynomial-time Turing machine M such that, for all x ∈ Y , M accepts x with
probability at least 2/3, and for all x ∈ N , M rejects x with probability 1.

• Promise-coRP is the class of all promise problems (Y,N) for which (N,Y) is in
Promise-RP.

• Promise-ZPP is the class of all promise problems (Y,N) for which there is a proba-
bilistic polynomial-time Turing machine M such that, for all x ∈ Y , M accepts x
with probability at least 1/2 and outputs the failure symbol ⊥ otherwise, and for all
x ∈ N , M rejects x with probability at least 1/2 and outputs the failure symbol ⊥
otherwise. Promise-ZPP = Promise-RP ∩ Promise-coRP.

• Promise-NP is the class of all promise problems (Y,N) for which there is a nondeter-
ministic polynomial-time Turing machine M such that, for all x ∈ Y , some computa-
tion path of M accepts x, and for all x ∈ N , M has no computation path accepting
x.

• Promise-coNP is the class of promise problems (Y,N) for which (N,Y) ∈ Promise-NP.

• Promise-(NP ∩ coNP) is the class of all promise problems (Y,N) for which there is a
nondeterministic polynomial-time Turing machine M such that, for all x ∈ Y , some
computation path of M accepts x and any that do not accept x output ⊥, and for all
x ∈ N , some computation path of M rejects x while any that do not reject x output
⊥. Promise-(NP ∩ coNP) = Promise-NP ∩ Promise-coNP.

• Promise-UP is the class of all promise problems (Y,N) for which there is a nondeter-
ministic polynomial-time Turing machine M such that, for all x ∈ Y , M has exactly
one accepting computation path on x, and for all x ∈ N , M has no accepting compu-
tation paths.

2

• Promise-coUP is the class of all promise problems (Y,N) for which (N,Y) is in
Promise-UP.

• Promise-(UP ∩ coUP) is the class of all promise problems (Y,N) for which there is
a nondeterministic polynomial-time Turing machine M such that, for all x ∈ Y , M
has exactly one accepting computation path on x and all others output ⊥, and for all
x ∈ N , M has exactly one rejecting computation path on x and all others output ⊥.
Promise-(UP ∩ coUP) = Promise-UP ∩ Promise-coUP.

An important part of these definitions is that, on inputs outside of Y ∪N , the Turing
machine M might not satisfy the “promise” (by having acceptance probability not bounded
away from 1/2, or by having more than one accepting computation path).

The main topic of this note concerns “smart” reductions. In order to motivate this
notion, let us first define what it means to reduce one promise problem to another. Let
(Y ′, N ′) and (Y,N) be promise problems. We say that (Y ′, N ′) ≤p

T (Y,N) if there is a
polynomial-time oracle machine M , such that for every solution B of (Y,N), the language
accepted by MB(x) is a solution to (Y ′, N ′). Note that, on any input x ∈ Y ′ ∪ N ′, the
output of M with oracle B is the same as with any other oracle B′ that agrees with B on
Y ∪N ; any query that is asked by M that lies outside of Y ∪N can be answered arbitrarily,
without affecting the final outcome, and thus in some sense it is not very “smart” for M
to bother asking such “useless” queries. This motivated Grolman and Selman to formulate
the following definition:

Definition 1. [GS88] A polynomial-time Turing reduction to a promise problem (Y,N) is
called a smart reduction if it makes queries only to elements of Y ∪N .

Smart reductions pull back membership in promise complexity classes, as exemplified
in the following fact:1

Proposition 1. Let C be any of Promise-BPP, Promise-ZPP, Promise-(NP ∩ coNP), or
Promise-(UP ∩ coUP). If (Y,N) has a smart reduction to a problem in C, then (Y,N) ∈ C.

As Grollman and Selman observe in [GS88], smartness seems to be a significant restric-
tion on the space of all possible reductions to promise problems. In general, reductions
to promise problems do not seem to be able to avoid making “useless” queries where the
promise does not hold, although such queries cannot affect the ultimate decision of whether
to accept or reject. That is, reductions to promise problems can probably not always be
smart. (For more on this topic, including applications to the Graph Isomorphism problem,
see [CGRS04, GSS05].)

As a warm-up, we sketch the known smart reduction of search to decision for the promise
problem of graph isomorphism on rigid graphs. (That is, there is a deterministic polynomial-
time oracle machine that, when given two rigid graphs G0 and G1, will either determine that
the graphs are not isomorphic, or else produce an isomorphism between the two graphs,
making only oracle queries to the graph isomorphism problem where all of the queries
consist of pairs of rigid graphs.) This is completely trivial if the graphs are not isomorphic;
thus assume that the rigid graphs G0 and G1 are isomorphic. There is a (unique) vertex i
such that vertex 1 of G0 maps to vertex i of G1 via an isomorphism. We can find i using
the decision oracle as follows: For each j ∈ [n], attach a rigid “label” r to vertex 1 of G0

1 We remark that for C = Promise-BPP, the fact also holds for non-smart reductions, but is a bit more
cumbersome to prove.

3

(call this graph H), and attach the same label to vertex j in G1 (call this graph Hj). Note
that both H and Hj are rigid. Query the decision oracle for each pair (H,Hj), let i be the
(unique) j for which the answer is positive, and set π(1) = i. We keep the label r, i.e., we
continue with (H,Hi), and repeat the process to find π(2), etc.

3 Main Theorem

It is shown in [KST93] that GA ≤p
T Rigid GI, but the reduction given there is not a smart

reduction. Theorem 1 gives a smart reduction.

Theorem 1. There is a smart reduction reducing Graph Automorphism to the Rigid Graph
Isomorphism Problem.

Proof of Theorem 1. Our proof is patterned after the proof of [KST93, Theorem 1.31], which
presents a reduction of Graph Automorphism to Rigid GI.

Let G be an n-vertex graph that is input to the Graph Automorphism problem. G has
a non-trivial automorphism if and only if there is an automorphism that sends some vertex
i to a vertex j 6= i. Any automorphism fixes some (possibly empty) set of vertices.

Using the notation of [KST93], let G
(i−1)
[j] be the graph (easy to construct in polynomial

time, as presented in [KST93, pages 8 and 31]) with distinct labels on vertices {1, . . . , i−1}
(so that no automorphism can move any of those vertices), and a distinguishing label on

vertex j ≥ i. As a slight modification of this notation, let G
(i−1)
[j,k] again have distinct labels

on vertices {1, . . . , i− 1} and with two new colors (i.e., labels) r and b (red and blue), with
j colored r and k colored b, where j ≥ i and k ≥ i.

Let i be the largest index for which some automorphism exists that fixes vertices

{1, 2, . . . , i − 1}, and sends i to some j > i. Then for some k > i, G
(i−1)
[i,k] and G

(i−1)
[j,i]

are isomorphic, and for all j > i and k > i, G
(i−1)
[i,k] and G

(i−1)
[j,i] are rigid (since the first i

vertices have distinct labels). Furthermore, for all ` > i,G
(`−1)
[`,k] and G

(`−1)
[j,`] are rigid and

non-isomorphic for every j > ` and k > `.

Thus if we start with i = n − 1 and pose queries of the form (G
(i−1)
[i,j] , G

(i−1)
[k,i]) (for

j, k ∈ {i+ 1, . . . , n}) to an oracle for the Rigid Graph Isomorphism Problem, it holds that
for all large values of i the graphs are rigid and non-isomorphic (and thus satisfy the promise
of the promise problem (Y,N), until we encounter the first triple (i, j, k) such that the graphs

(G
(i−1)
[i,j] , G

(i−1)
[k,i]) are isomorphic. These graphs are also rigid, and thus they also satisfy the

promise. If the computation ends with all queries determined to be non-isomorphic, then
this is a proof that G has no nontrivial automorphism.

This algorithm works correctly on all inputs, and all queries satisfy the promise. Thus
it is a smart reduction.

Theorem 1 entails the following complexity-theoretic consequences:

Corollary 1. The following implications hold:

1. If Rigid GI is in Promise-BPP, then GA ∈ RP.

2. If Rigid GI is in Promise-coRP, then GA ∈ ZPP.

3. If Rigid GI is in Promise-coNP, then GA ∈ NP ∩ coNP.

4

4. If Rigid GI is in Promise-coUP, then GA ∈ UP ∩ coUP.

Each of these implications follows by combining known search-to-decision reductions
and closure properties of the relevant complexity classes with Theorem 1. The argument is
captured by the following claim:

Claim 1. Let C be any of BPP, RP, NP, or UP. If Rigid GI ∈ promise-coC, then for any
language L, if there is a smart reduction L ≤p

T Rigid GI, then L ∈ C ∩ coC.

The claim makes use of the following fact regarding search-to-decision reductions (which
easily follows from essentially the same proof as that of [Ko82], showing that if SAT is in
BPP, then it is in RP.):

Proposition 2. Let (Y,N) be a promise problem for which there is a smart reduction from
search to decision. Then (Y,N) ∈ Promise-BPP implies (Y,N) ∈ Promise-RP.

Given Claim 1, implications 2–4 of Corollary 1 follow immediately. For implication 1,
the claim implies that, under the hypothesis of implication 1, GA ∈ BPP. GA has a search-
to-decision reduction, so we may moreover conclude by Proposition 2 that GA ∈ RP. (We
may drop the promise- qualifier from classes containing GA, since GA is a language.)

It remains to prove Claim 1:

Proof of Claim 1. For the case of C = BPP, we have coC = BPP = C, so we just need to
show that Rigid GI ∈ Promise-BPP and L ≤p

T Rigid GI implies L in BPP. This follows from
Proposition 1. (We may drop the promise- qualifier from classes containing L, since L is a
language.)

When C = RP, we recall that Rigid GI has a search-to-decision reduction, so the hy-
pothesis combined with Proposition 2 implies that Rigid GI ∈ Promise-ZPP. The claim now
follows from Proposition 1.

For the cases where C = NP or C = UP, we note that Rigid GI is (unconditionally,
essentially by definition) in promise-C. So if Rigid GI is in promise-coC, it is in promise-C ∩
promise-coC = promise-(C ∩ coC). The claim now follows from Proposition 1.

We observe that we do not know how to prove the implication “if Rigid GI is in Promise-UP
and L smartly reduces to Rigid GI, then L ∈ UP.” This is especially disappointing, since
the hypothesis “Rigid GI is in Promise-UP” follows easily from the definitions.

Since the “promise” in the Rigid GI promise problem is precisely the problem solved by
GA, hypotheses regarding the complexity of the promise problem Rigid GI yield conclusions
about rigid graph isomorphism that do not need to be phrased in terms of promise problems:

Corollary 2. Let A = {(G,H) : G and H are rigid, and G is isomorphic to H}, and
B = {(G,H) : G and H are rigid, and G is not isomorphic to H}.

• If Rigid GI is in Promise-BPP, then A and B are in BPP.

• If Rigid GI is in Promise-coRP, then A and B are in ZPP.

• If Rigid GI is in Promise-coNP, then A and B are in NP ∩ coNP.

• If Rigid GI is in Promise-coUP, then A and B are in UP ∩ coUP.

5

Proof. Let (Y1, N1) = Rigid GI and (Y2, N2) = GA. Define Rigid GI t GA
.
= (Y,N) where

Y = ({1} × Y1) ∪ ({2} × Y2)
N = ({1} ×N1) ∪ ({2} ×N2)

Both A and B have smart reductions to Rigid GItGA: check rigidity by queries to GA, and
then, if the graphs are rigid, use Rigid GI to determine isomorphism. Moreover, Theorem 1
implies Rigid GI t GA has a smart reduction to Rigid GI, so A and B both smartly reduce
to Rigid GI. The implications now follow from Claim 1.

Acknowledgments. E. A. acknowledges the support of National Science Foundation
grant CCF-1555409. J. A. G. was supported by an Omidyar Fellowship from the Santa
Fe Institute and National Science Foundation grant DMS-1620484. D. v. M. and A. M.
acknowledge the support of National Science Foundation grant CCF-1319822. We thank
V. Arvind for helpful comments about the graph automorphism problem and rigid graphs.

References

[AGM15] Eric Allender, Joshua Grochow, and Cristopher Moore. Graph isomorphism
and circuit size. Technical Report TR15-162, Electronic Colloquium on Com-
putational Complexity, 2015.

[AGvM+17] Eric Allender, Joshua A. Grochow, Dieter van Melkebeek, Cristopher Moore,
and Andrew Morgan. Minimum circuit size, graph isomorphism, and related
problems. Technical Report TR17-158, Electronic Colloquium on Computa-
tional Complexity, 2017.

[AGvM+18] Eric Allender, Joshua A. Grochow, Dieter van Melkebeek, Cristopher Moore,
and Andrew Morgan. Minimum circuit size, graph isomorphism, and related
problems. In 9th Innovations in Theoretical Computer Science Conference,
ITCS, volume 94 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 20:1–20:20, 2018.

[CGRS04] Marcel Crâsmaru, Christian Glaßer, Kenneth W. Regan, and Samik Sengupta.
A protocol for serializing unique strategies. In Mathematical Foundations of
Computer Science (MFCS), volume 3153 of Lecture Notes in Computer Sci-
ence, pages 660–672. Springer, 2004.

[GS88] Joachim Grollmann and Alan L. Selman. Complexity measures for public-key
cryptosystems. SIAM J. Comput., 17(2):309–335, 1988.

[GSS05] Christian Glaßer, Alan L. Selman, and Samik Sengupta. Reductions between
disjoint NP-pairs. Information and Computation, 200(2):247–267, 2005.

[Ko82] Ker-I Ko. Some observations on the probabilistic algorithms and NP-hard
problems. Information Processing Letters, 14(1):39–43, 1982.

[KST93] Johannes Köbler, Uwe Schöning, and Jacobo Torán. The Graph Isomorphism
Problem: Its Structural Complexity. Birkhauser Verlag, Basel, Switzerland,
Switzerland, 1993.

6
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

