
Towards Optimal Deterministic Coding
for Interactive Communication∗

Ran Gelles† Bernhard Haeupler‡ Gillat Kol§ Noga Ron-Zewi ¶

Avi Wigderson‖

Abstract

We show an efficient, deterministic interactive coding scheme that simulates any interactive
protocol under random errors with nearly optimal parameters. Specifically, our coding scheme
achieves a communication rate of 1 − O(

√
H(ε)) and a failure probability of exp(−n/ log n),

where n is the protocol length and each bit is flipped independently with constant probability
ε. Prior to our work, all nontrivial deterministic schemes (either efficient or not) had a rate
bounded away from 1. Furthermore, the best failure probability achievable by an efficient deter-
ministic scheme with constant rate was only quasi-polynomial, i.e., of the form exp(− logO(1) n)
(Braverman, ITCS 2012). A rate of 1− Θ̃(

√
H(ε)) is essentially optimal (up to poly-logarithmic

factors) by a result of Kol and Raz (STOC 2013).
A central contribution in deriving our coding scheme is a novel code-concatenation scheme,

a notion standard in coding theory which we adapt for the interactive setting. Essential to our
concatenation approach is an explicit, efficiently encodable and decodable linear tree code of
length n that has relative distance Ω(1/ log n) and rate approaching 1, defined over an O(log n)-
bit alphabet. The fact that our tree code is linear, and in particular can be made systematic,
turns out to play an important role in our concatenation scheme.

We use the above tree code as the “outer code” in the concatenation scheme. The neces-
sary deterministic “inner code” is achieved by a nontrivial derandomization of the randomized
interactive coding scheme of (Haeupler, STOC 2014). This deterministic coding scheme (with
exponential running time, but applied here to O(log n) bit blocks) can handle an ε fraction of
adversarial errors with a communication rate of 1−O(

√
H(ε)).

∗Preliminary version of this paper appeared in proceedings of the 27th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2016).
†Department of Computer Science, Princeton University, rgelles@cs.princeton.edu. Supported in part by NSF

grant CCF-1149888.
‡Carnegie Mellon University, haeupler@cs.cmu.edu
§Institute for Advanced Study, Princeton, NJ. Research at the IAS supported by The Fund For Math and the

Weizmann Institute of Science National Postdoctoral Award Program for Advancing Women in Science.
¶School of Mathematics, Institute for Advanced Study, Princeton, NJ, USA and DIMACS, Rutgers University,

Piscataway, NJ, USA. This research was partially supported by NSF grants CCF-1412958 and CCF-1445755 and the
Rothschild fellowship. nogazewi@ias.edu
‖Institute for Advanced Study, Princeton, USA, avi@ias.edu. This research was partially supported by NSF grant

CCF-1412958.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 165 (2015)

1 Introduction

1.1 Background

Coding for interactive communication, the subject of this paper, connects two large bodies of work,
coding theory and communication complexity. Both study communication cost, but with very differ-
ent settings and goals in mind. Coding Theory, born with Shannon’s and Hamming’s breakthrough
papers [Sha48, Ham50], is a vast discipline which deals largely with one-way communication between
two remote parties (Alice and Bob), each holding an input (resp. x, y, possibly from some joint
distribution). Major focus is on a single communication task: Alice wants to convey x to Bob, and
the challenge is doing so reliably when the communication channel between them is unreliable, e.g.
some of the communicated bits are flipped randomly or adversarially. Alice’s messages are encoded
by longer codewords to overcome this “noise”, and one attempts to minimize the communication cost
needed to achieve high reliability in each noise model. Communication Complexity, an important
research area introduced by Yao [Yao79] 30 years later, also strives to minimize communication cost,
but has an opposite focus: it assumes a perfect communication channel between Alice and Bob, who
now want to perform an arbitrary communication task (e.g. computing an arbitrary function f(x, y))
using a two-way interactive communication protocol.

The seminal work of Schulman [Sch92, Sch93, Sch96] merged these two important subjects,
and studied coding schemes for arbitrary two-way interactive communication protocols. Given
the interaction and adaptive nature of two-way protocols, this significantly extends the challenge
of coding theory. For example, while trade-offs between coding parameters, like the fraction of
correctable errors and redundancy for one-way communication have been well understood at least
in principle already in Shannon’s paper, and efficient codes matching them were found for many
channels, these questions are still far from understood in the two-way case.

In the above papers Schulman set up the basic models, proved the existence of nontrivial coding
schemes for any interactive protocol, in both the random and the adversarial noise models, and gave
an efficient randomized scheme for random noise. Progress on finding trade-offs between parameters,
and approaching them using efficient coding schemes has been slow for a while, but the past few
years have seen an impressive flood of new techniques and results on the many challenging questions
raised by this general setting, see e.g. [BR14, GMS14, Bra12, KR13, AGS13, BKN14, BE14, GHS14,
GH14, Hae14a, FGOS15]; see [Gel15] for a survey. To (informally) cite but one central recent
result, Kol and Raz [KR13] (see also [Hae14a]) proved that for the binary symmetric channel BSCε
(in which every communicated bit is flipped independently with probability ε), the communication
rate is 1− Θ̃(

√
H(ε)), where H is the binary entropy function (this should be contrasted with the

one-way setting in which the communication rate of BSCε is known to be 1−H(ε)).
Let us describe the basic protocol structure and coding problem a bit more precisely, as in this

young field models vary, and some choices actually affect the basic parameters. Many different
variants are discussed in many different works but for our focus the assumptions we make are quite
standard. Assume that Alice and Bob communicate to perform a distributed task, e.g. compute
some function f(x, y) on their respective private inputs x and y. We fix a communication protocol π
for this task, in which we assume that the parties alternate: Alice sends one bit in odd steps, and
Bob sends one bit in even steps. We further assume that they communicate the same number of
bits on every input (the length n = |π| of π will be our main complexity parameter). Finally, we
assume that each party outputs π(x, y), the entire transcript of their conversation (this “universal”
output captures all possible tasks, e.g. computing a function). If there is no noise on the channel,
this is the standard communication complexity setting.

1

Now assume that the communication channel is noisy. Our main result is concerned with
the probabilistic noise model but throughout we shall consider also the adversarial noise model.
In the probabilistic BSCε model each communicated bit is flipped independently with a constant
probability ε. In the adversarial model an adversary can flip an ε fraction of the communication
bits. To cope with the errors, Alice and Bob run a coding scheme Π that should simulate the
noiseless protocol π over the noisy channel. That is, for any inputs x, y the parties hold and for any
noiseless protocol π, after running the coding scheme Π over the noisy channel, each party should
output π(x, y) (if the coding scheme and/or the channel are probabilistic, this should happen with
high probability over the randomness). We assume that the parties alternate also in the execution
of Π, and as we assumed π has a fixed length (communication cost) |π| for every input, we can
assume the same for Π, denoting its length by |Π|.

One basic parameter of a coding scheme Π is the rate, defined as |π|/|Π|, which captures the
redundancy of Π relative to the noiseless protocol π (this definition parallels the standard one of
rate as the ratio between message length to codeword length in one-way communication). Ideally,
the rate should approach the capacity of the channel. Two other important goals are computational
efficiency and determinism. Ideally the computational complexity of the parties using the scheme
Π (given π and their inputs) should be at most polynomial in |π|, and the coding scheme should be
deterministic.1 Furthermore, in the probabilistic noise model, we desire the coding scheme to fail
with exponentially small probability in |π| over the randomness of the channel.

1.2 Main result

In this work we focus on the probabilistic noise model BSCε which is the original model studied
in [Sch92]. Specifically, in that paper Schulman gave an efficient randomized coding scheme of
constant rate (bounded away from 1) and failure probability exp(−n/ log n) assuming the parties
share a common random string, and this latter assumption was recently eliminated in [GMS14].
In the follow-up work [Sch93], Sculmann gave also a deterministic scheme of constant rate and
exponentially small failure probability. However, this latter scheme is based on tree codes for which
no efficient construction is known and therefore it is non-efficient.

In recent years there have been quite a few advancements on obtaining efficient randomized
coding schemes with optimal parameters. Specifically, in a recent breakthrough, [BKN14] obtained
the first efficient randomized scheme of constant rate and exponentially small failure probability,
while [KR13] determined the capacity 1 − Θ̃(

√
H(ε)) of the channel and obtained an efficient

randomized scheme that achieves this capacity with failure probability exp(−nγ) for some constant
γ > 0. Finally, [Hae14a] obtained an optimal randomized scheme that achieves capacity and has an
exponentially small failure probability. 2

As to efficient deterministic coding schemes, dividing the original protocol into chunks of size
O(log n) and simulating each chunk separately via the exponential time scheme of [Sch93] gives
an efficient deterministic scheme with constant rate and failure probability 1/poly(n). Recently
Braverman [Bra12] showed how to construct tree codes in sub-exponential time, and these in turn
when run on chunks of size polylog(n) give an efficient deterministic scheme with constant rate
(bounded away from 1) and lower quasi-polynomial failure probability of the form exp(−polylog(n)).

1This presents a subtle issue in the presence of random noise. To prevent a deterministic coding scheme from
using the random noise as a source of randomness, one actually uses the so-called arbitrarily varying channel (AVC)
that extends BSCε, with which an adversary may determine the probability εi ∈ [0, ε] in which the i-th bit is flipped,
see e.g., [FK00]. In particular, Π must be correct also if there is no noise at all.

2The schemes of [Sch93, BKN14, Hae14a] are resilient also to adversarial errors.

2

Our main result provides an interactive coding scheme for BSCε channel which is both efficient,
deterministic and has nearly optimal rate and failure probability.

Theorem 1.1 (Main). For every ε > 0 there exists an efficient deterministic interactive coding
scheme Π that simulates any noiseless protocol π of length n over BSCε with rate 1 − O

(√
H(ε)

)
and failure probability exp(−Ω(ε4n/ log n)).

As mentioned above, a rate of 1 − Θ̃(
√
H(ε)) is essentially optimal (up to poly-logarithmic

factors) due to [KR13]. Achieving exponentially small failure probability (which can be done by
either randomized or inefficient schemes) remains a challenging problem for which this may be a
stepping stone.

1.3 Overview of techniques

Our coding scheme exploits the idea of code concatenation, which is a very common (simple yet
powerful) technique in the one-way coding theory literature [For65]. Concatenation usually consists
of two separate coding layers: an inner code which is defined over binary alphabet and may be
inefficient, and an outer code which must be efficient and is defined over large alphabet. In the
standard concatenation one first splits the binary message into small blocks, say of size O(log n),
views each block as a single symbol in a large alphabet, and encodes the message using the outer
code where each block is considered as a single input symbol of the outer code. Then one switches
view again and thinks of each large output symbol of the outer code as a binary string, and encodes
each such string separately via the inner code. Such concatenation results in an efficient binary
code, and by choosing the right parameters one can also guarantee that this code has good rate and
failure probability.

More concretely, in the typical concatenation setting one chooses the outer code to be a code of
nearly optimal rate ρout ≈ 1 that is resilient to some δout fraction of adversarial errors. The inner
code on the other hand is chosen to be a code of some rate ρin that has an optimal exponentially
small failure probability over BSCε. It can be verified that the rate of the final code is the product
ρout · ρin of the rates of the outer and inner codes, and since we chose the rate ρout of the outer
code to be close to 1 then the rate of the final code would be roughly the rate of the inner code
ρin. Furthermore, the final code fails only if more than δout fraction of the inner codes fail, which
for sufficiently large δout happens with probability at most (2−Ω(logn))δout(n/ logn) = 2−Ω(δout·n) over
BSCε. To summarize, in the above setting of parameters the final code inherits on one hand the
running time and the resilience of the outer code, and on the other hand the alphabet size and the
rate of the inner code.

In this work we show how the above code concatenation scheme could be implemented in the
interactive setting, and our inspiration came from the recent work [BKN14] which gave the first
efficient randomized interactive coding scheme with constant rate and exponentially small failure
probability. Our main observation is that one can interpret the scheme of [BKN14] as an instance
of interactive concatenation, and specifically this scheme could be decomposed into an outer code
which is an efficient randomized interactive scheme over O(log n)-bit alphabet that has high rate and
is resilient to a constant fraction of adversarial errors, and an inner code which is an exponential-time
(deterministic) interactive scheme over binary alphabet that has constant rate and exponentially
small failure probability over BSCε. The inner code is the tree code based scheme of [Sch93], while
the outer code is a protocol that proceeds in rounds where at each round the parties exchange the
next symbol to be transmitted in the original protocol given the partial transcripts simulated so far,
as well as random hashes and the lengths of the partial transcripts. The parties then compare the

3

hashes and the lengths and progress to the next round or rewind to a previous round accordingly.
The point here is that if one chooses the alphabet size to be of sufficiently large Ω(log n) size
then the hash and length exchange adds very little redundancy to the overall communication and
consequently a high communication rate is maintained.

Towards a deterministic version of interactive concatenation, we take a careful examination of the
properties that the outer and inner codes should satisfy in order to enable interactive concatenation.
As it turns out, assuming that both the outer and inner codes are interactive coding schemes, the
only other property that is required for interactive concatenation is that the outer code could be
encoded online when viewing both its input and output symbols as binary strings. This property is
necessary since the original protocol is an interactive protocol over binary alphabet and therefore
one cannot encode a large chunk of it a-priori before it was communicated. One way to ensure the
online encoding property is to insist that the outer code would be systematic, which means that for
every output symbol yi it holds that yi = (xi, ri) where xi is the i-th input symbol (the ’systematic’
part) and ri is the ’redundant’ part that may depend on all previous input symbols (Indeed, in
[BKN14] one can think of ri as consisting of the hash and length of the partial transcript simulated
so far). As linear codes can always be made systematic it in fact suffices that the outer code would
be linear.

More concretely, as the outer code in our construction we use a novel construction of an efficiently
encodable and decodable linear tree code of relative distance Ω(1/ log n) and rate ≈ 1, defined over
an O(log n)-bit alphabet. As the inner code we use an exponential time deterministic interactive
coding scheme that can correct ε fraction of adversarial errors (and so has exponentially small failure
probability over BSCε) with rate 1 − O(

√
H(ε)), applied to chunks of length O(log n). We obtain

this latter scheme via a derandomization of a randomized scheme due to [Hae14a] with similar
guarantees. The resulting coding scheme is an efficient coding scheme over binary alphabet that
has rate 1−O(

√
H(ε)) and failure probability exp(−n/ log n) over BSCε.

A by-product of our approach is an interesting connection between the adversarial and random
noise settings. Our concatenation lemma (Lemma 3.1) shows that an efficient deterministic (and
linear) tree code that resists δ fraction of adversarial noise (along with the inner code described
above), leads to an efficient deterministic coding scheme for BSCε that succeeds with probability
≈ 1−2−Ω(nδ) over the randomness of the channel. In particular, the failure probability of 2−Ω(n/ logn)

over a BSCε exhibited in Theorem 1.1 follows from the fact that the tree code we use as an outer code
has a relative distance of δ = O(1/ log n). Obtaining an efficient deterministic scheme whose failure
probability over BSCε is exponentially small remains an interesting open question. Our concate-
nation lemma suggests that this question is closely related to the 20-year open question of finding
deterministic and efficient tree codes with constant rate and relative distance [Sch93], and obtaining
deterministic and efficient coding schemes with constant rate that resist a constant fraction of noise
in the adversarial setting.

In what follows we describe the outer and inner codes we use in more detail and the techniques
used to obtain them.

Outer code. The high-level idea of the tree code construction is as follows. For every integer t
such that Ω(log log n) ≤ t ≤ log n we partition the message to blocks of size 2t. Each such block is
separately encoded via a standard (one-way) systematic error-correcting code with relative distance
Ω(1/ log n) and rate 1−O(1/ log n). This yields a redundant part R(t) of 2t bits which are layered
across the next block, i.e., across the encodings of the next 2t levels, so that every level gets 1 bit.
This layering amortizes the redundancy across the tree, which helps keeping the rate approaching 1

4

x1

x2

x3

x4

x5

x6

x7

x8

R(1)

R(1)

R(1)

R(2)

· · ·

· · · Λ(x1)

(Λ(x1 · · ·x8))8

x(1) x(2) . . .

Figure 1: An illustration of the tree code’s encoding; see Section 5 for details.

while still providing the required relative distance guarantee of Ω(1/ log n), yet only over the next
2t levels. See Figure 1 for an illustration of the construction.

A somewhat related tree code construction is outlined in an unpublished memo by Schul-
man [Sch03]: that construction uses the same idea of encoding prefixes of increasing lengths 2t,
using an asymptotically good error-correcting code with constant rate and relative distance, then
layering the output codeword across the next 2t levels (a similar high-level idea was used also in
[Bra12]). However, since a non-systematic code with rate bounded away from 1 is used this results
with rate O(1/ log n); on the other hand, the obtained relative distance is constant Ω(1). One
can view these two constructions as tradeoffing complementary goals: while [Sch03] optimizes the
distance at the expense of a low rate, we optimize the rate at the expense of a low distance.

To turn the above tree code into an interactive coding scheme we use a scheme similar to the tree
code based scheme of [Sch93]. However, the original analysis of [Sch93] only achieved a constant rate
bounded away from 1, regardless of the rate of the tree code, and we provide an improved analysis
of this scheme in the spirit of [Hae14a] that preserves the rate of the tree code. We also observe
that the coding scheme preserves the linearity of the tree code, and consequently this scheme could
be used as the outer code in our concatenation scheme.

Inner Code. The starting point for the inner code construction is an efficient randomized coding
scheme by Haeupler [Hae14a]. That scheme achieves rate of 1 − O(

√
ε) over a BSCε, however it is

randomized. We obtain our inner code by derandomizing this scheme, and the main technical issue
here is to derandomize the scheme without damaging its rate. On the other hand, we do not need
the derandomization to be efficient, since we will run the inner code only on protocols of length
O(log n).

Our derandomization approach generalizes the derandomization technique of [BKN14]. More
specifically, in [BKN14] the authors show an upper bound of 2O(n) on the number of different
sequences of partial transcripts that may occur during a run of their coding scheme and then show
that for each sequence of transcripts at least 1 − 2−Ω(ε·`·n) of the random strings are good for
this sequence, where ` is the output length of the hash functions. Choosing ` = Ω(1/ε) to be a
sufficiently large constant, a union bound shows the existence of a single random string that works
for all sequences.

5

In our case, since we want to maintain a high rate we cannot afford the output length of the hash
functions to be a too large constant, and so the upper bound of 2O(n) is too large for our purposes.
To deal with this we show how to relate simulated transcripts to the noise patterns that may have
caused them. A fine counting argument reduces the effective number of sequences of transcripts to
the number of typical noise patterns, i.e., the 2O(H(ε)n) patterns with at most ε fraction of bit flips.
Then a union bound argument on all the possible noise patterns proves the existence of a single
random string that works for any typical noise pattern. For this union bound to work we need to
use slightly longer hashes than in the original scheme of [Hae14a] of length ` = Ω(log(1/ε)) which
results in a slightly reduced rate of 1−O(

√
H(ε)).

1.4 Organization of the paper

We begin (Section 2) by recalling several building blocks and setting up notations we will use
throughout. Our main concatenation lemma is provided in Section 3, along with a formal statement
of the inner and outer codes we use. These prove our main Theorem 1.1. The detailed proof of
the concatenation lemma appears in Section 4. In Sections 5 and 6 we present our inner and outer
codes constructions, respectively.

2 Preliminaries

All logarithms in this paper are taken to base 2. We denote by H : [0, 1]→ [0, 1] the binary entropy
function given by H(p) = p log(1/p) + (1 − p) log(1/(1 − p)) for p /∈ {0, 1} and H(0) = H(1) = 0.
Let F2 denote the finite field of two elements and let N denote the set of positive integers. For
an integer n ∈ N let [n] := {1, . . . , n} and for a pair of integers m,n ∈ N such that m ≤ n let
[m,n] := {m,m+ 1, . . . , n}. For a vector x ∈ Σn and integers 1 ≤ i ≤ j ≤ n we denote by x[i, j]
the projection of x on the coordinates in the interval [i, j], and we let |x| = n denote the length of
x. Finally, the relative distance between a pair of strings x, y ∈ Σn is the fraction of coordinates on
which x and y differ, and is denoted by dist(x, y) := |{i ∈ [n] : xi 6= yi}| /n.

2.1 Error-correcting codes

A code is a mapping C : Σk
in → Σn

out. We call k the message length of the code and n the block
length of the code. The elements in the image of C are called codewords. The rate of C is the
ratio k log |Σin|

n log |Σout| . We say that C has relative distance at least δ if for every pair of distinct vectors
x, y ∈ Σk

in it holds that dist(C(x), C(y)) ≥ δ.
Let F be a finite field. We say that C is F-linear if Σin, Σout are vector spaces over F and

the map C is linear over F. If Σin = Σout = F and C is F-linear then we simply say that C is
linear. Finally, if k = n then we say that a code C : Σn

in → Σn
out is systematic if Σin = Γs and

Σout = Γs+r for some alphabet Γ and integers s, r ∈ N, and there exists a string R(x) ∈ (Γr)n such
that (C(x))i = (xi, (R(x))i) for every x ∈ Σn

in and i ∈ [n] (that is, the projection of (C(x))i on
the first s coordinates equals xi). We call x and R(x) the systematic part and the redundant part
of C(x), respectively.

Specific families of codes. We now mention some known constructions of error-correcting codes
that we shall use as building blocks in our tree code construction, and state their relevant properties.
We start with the following fact that states the existence of Reed-Solomon codes which achieve the
best possible trade-off between rate and distance over large alphabets.

6

Fact 2.1 (Reed-Solomon codes [RS60]). For every k, n ∈ N such that k ≤ n, and for every finite
field F such that |F| ≥ n there exists a linear code RS : Fk → Fn with rate k/n and relative distance
at least 1− k

n . Furthermore, RS can be encoded and decoded from up to (1− k
n)/2 fraction of errors

in time poly(n, logF).

The next fact states the existence of asymptotically good binary codes. Such codes can be
obtained for example by concatenating the Reed-Solomon codes from above with binary linear
Gilbert-Varshamov codes [Gil52, Var57].

Fact 2.2 (Asymptotically good binary codes). For every 0 < ρ < 1 there exist δ > 0 and integer
k0 ∈ N such that the following holds for any integer k ≥ k0. There exists a binary linear code
B : {0, 1}k → {0, 1}n with rate at least ρ and relative distance at least δ. Furthermore, B can be
encoded and decoded from up to δ/2 fraction of errors in time poly(n).

2.2 Tree codes

A tree code [Sch96] is an error-correcting code Λ : Σn
in → Σn

out which is a prefix-code: for any
i ∈ [n] and x ∈ Σn

in the first i symbols of Λ(x) depend only on x1, . . . , xi. For simplicity we
shall sometimes abuse notation and denote by Λ also the map Λ : Σj

in → Σj
out which satisfies that(

Λ(x1, . . . , xj)
)
i

=
(
Λ(x1, . . . , xn)

)
i
for every i ∈ [j] and x ∈ Σn

in. Observe that this latter map is
well defined as (Λ(x1, . . . , xn))i depends only on x1, . . . , xi.

We say that Λ has relative tree distance at least δ if for every pair of distinct vectors x, y ∈ Σn
in

such that i ∈ [n] is the first coordinate on which x and y differ (i.e., (x1, . . . , xi−1) = (y1, . . . , yi−1)
but xi 6= yi), and for every j such that i ≤ j ≤ n it holds that

dist

(
Λ(x)[i, j],Λ(y)[i, j]

)
≥ δ.

Alternatively, the relative tree distance of a tree code can be defined via the notion of suffix dis-
tance [FGOS15] (see also [BE14, BGMO15]). The suffix distance between a pair of strings x, y ∈ Σn

is
distsfx(x, y) := max

i∈[n]

{
dist

(
x[i, n], y[i, n]

)}
.

It can be shown that a tree code has relative tree distance at least δ if and only if for every pair of
distinct vectors x, y ∈ Σn

in it holds that distsfx(Λ(x),Λ(y)) ≥ δ.
Finally, we say that Λ can be decoded from α fraction of errors if there exists an algorithm that

is given as input a vector w ∈ Σj
out for some j ∈ [n] and outputs a vector y ∈ Σj

in that satisfies the
following guarantee: If there exists x ∈ Σj

in such that distsfx

(
Λ(x), w

)
≤ α, then y = x.

3 Efficient Deterministic Coding Scheme

In this section we prove our main Theorem 1.1. This theorem is an immediate implication of our
concatenation lemma below. The concatenation lemma proves that given an efficient deterministic
systematic tree code (used as an outer code) and a possibly inefficient deterministic coding scheme
(used as an inner code), one can construct an efficient deterministic coding scheme, and states
the parameters of the resulting coding scheme as a function of the parameters of the outer and
inner codes. We now give the concatenation lemma (whose proof appears in Section 4). Then, in
Lemmas 3.2 and 3.3 below, we state the existence of outer and inner codes with good parameters,
whose concatenation proves our main Theorem 1.1.

7

Lemma 3.1 (Concatenation). Suppose that the following hold:

1. (Outer code) There exists a systematic tree code Λ : ΣnΛ
in → ΣnΛ

out with Σin = {0, 1}s, Σout =
{0, 1}s+r and rate ρΛ that can be encoded and decoded from up to δΛ fraction of errors in
time TΛ.

2. (Inner code) There exists a deterministic interactive coding scheme Π that simulates any noise-
less protocol π of length s + 2(r + 1) with rate ρΠ in the presence of up to δΠ fraction of
adversarial errors, and with running time TΠ.

Then for every γ > 0 there exists a deterministic interactive coding scheme Π′ that simulates
any noiseless protocol π′ over BSCδΠ/2 of length nΛ · (s− 2) · (1− γ) with rate

ρΛ

2− ρΛ + 4/(s− 2)
· ρΠ · (1− γ),

and failure probability

exp

[
−nΛ

(
δΛ

36
· s+ 2(r + 1)

ρΠ
·
δ2

Π

4
· γ −H

(
δΛ

36
· γ
))]

.

Furthermore, the coding scheme Π′ has running time O(nΛ · (TΛ + TΠ)).

The following lemmas give the tree code that will be used as the ‘outer code’ in the concatenation
step, and an exponential time deterministic coding scheme that will be used as the ‘inner code’ in
the concatenation step.

Lemma 3.2 (Outer code). There exists an absolute constant δ0 > 0 such that the following holds
for every ε > 0 and n ∈ N. There exists a systematic F2-linear tree code Λ : Σn

in → Σn
out with

Σin = {0, 1}(logn)/ε, Σout = {0, 1}(logn)/ε+logn, rate 1
1+ε and relative tree distance at least δ0·ε

logn .
Furthermore, Λ can be encoded and decoded from up to a fraction δ0·ε

2 logn of errors in time poly(n).

We prove the above lemma in Section 5.

Lemma 3.3 (Inner code). For every ε > 0 there exists a deterministic interactive coding scheme Π
that simulates any noiseless protocol π of length n with rate 1−O

(√
H(ε)

)
in the presence of up to

a fraction ε of adversarial errors. Furthermore, Π has running time poly(n) and can be constructed
in time 2O(n).

We prove the above lemma in Section 6. We can now prove our main Theorem 1.1 based on the
above Lemmas 3.1, 3.2 and 3.3.

Proof of Theorem 1.1. Follows from Lemma 3.1 by letting Λ be the tree code guaranteed by Lemma 3.2
for constant ε and integer nΛ such that n = nΛ((log nΛ)/ε−2)(1− ε) (so nΛ = Ω(εn/ log n)), letting
Π be the coding scheme guaranteed by Lemma 3.3 for constant 2ε, and letting γ = ε.

8

4 The Concatenation Lemma: Proof of Lemma 3.1

We start with a high-level description of the coding scheme Π′. We describe below the coding
scheme Π′ for Alice; the coding scheme for Bob is symmetric.

Throughout the execution of the coding scheme Alice (respectively, Bob) maintains a string TA

that represents Alice’s current guess for the transcript of the simulated protocol π′ communicated
so far. Alice also maintains a string T̂B that represents Alice’s current guess for the corresponding
string TB of Bob. When the execution of the coding scheme Π′ is completed the outputs of Alice
and Bob are TA and TB, respectively.

The coding scheme Π′ is executed for nΛ iterations, where at iteration i Alice and Bob use the
inner coding scheme Π to communicate the next block Xi of length s− 2 of π′ (assuming that the
transcript of π′ communicated so far is TA and TB, respectively), as well as a pair of position strings
pAi−1, p

B
i−1 ∈ {0, 1}

2, and a pair of hash strings hAi−1, h
B
i−1 ∈ {0, 1}

r.
Alice (respectively, Bob) then performs, one of three actions according to the output of the

simulation via the inner coding scheme Π: she either appends her noisy version XA
i of Xi to TA,

or she leaves TA unchanged, or she erases the last block of length s − 2 from TA. These actions
correspond to the case where a seemingly correct simulation ofXi has occurred, a seemingly incorrect
simulation has occurred, or it seems that the prefix TA is incorrect, respectively. She then records
her action in the i-th position string pAi (since there are only three possible actions those could be
recorded using 2 bits).

Lastly, Alice views the string (σin)Ai := (pAi , X
A
i) ∈ {0, 1}s as the systematic part of the i-th

output symbol of the tree code Λ and lets (σout)
A
i be the corresponding i-th output symbol of the

tree code. The i-th hash string hAi ∈ {0, 1}
r is set to be the redundant part of (σout)

A
i . As described

above, both the strings pAi and hAi will be communicated by Alice in iteration i+ 1. Note that for
every i, the string ((σin)A1 , . . . , (σin)Ai) records all the actions of Alice on TA till iteration i and so,
if decoded correctly by Bob, then Bob can extract the value of TA at iteration i from this string
(same goes for Alice). The formal definition of the coding scheme Π′ appears below.

4.1 The coding scheme Π′

Coding scheme (Π′)A for Alice:
Initialize: TA := ∅, T̂B := ∅.
For i = 1, . . . , nΛ iterations:

1. Recall that pAi−1 denotes the first 2 bits of (σout)
A
i−1 and let hAi−1 denote the last r bits of

(σout)
A
i−1 (for i = 1 let (σout)

A
0 := 0s+r).

2. Simulate the protocol πA
(
|TA|, (TA, 0nΛ(s−2)−|TA|), pAi−1, h

A
i−1

)
below using the inner cod-

ing scheme Π. Let the sequence (pAi−1, p̂
B
i−1, h

A
i−1, ĥ

B
i−1, X

A
i) denote the output of the

simulation where pAi−1, p̂
B
i−1 ∈ {0, 1}

2, hAi−1, ĥ
B
i−1 ∈ {0, 1}

r and XA
i ∈ {0, 1}

s−2.

3. Let (σ̂out)
B
i−1 :=

(
p̂Bi−1, X

A
i−1, ĥ

B
i−1

)
. Decode the sequence ((σ̂out)

B
1 , . . . , (σ̂out)

B
i−1) using

the decoding algorithm for Λ. Let ((σ̂in)B1 , . . . , (σ̂in)Bi−1) be the decoded message and let
T̂B be the transcript represented by this string (if i = 1 then set T̂B = ∅).

9

4. If TA = T̂B append XA
i to TA and set pAi := 01.

5. Otherwise, if TA 6= T̂B and |TA| < |T̂B| set pAi := 00.

6. Otherwise, if TA 6= T̂B and |TA| ≥ |T̂B| erase the last s−2 bits from TA and set pAi := 10.

7. Let (σin)Ai := (pAi , X
A
i) and let (σout)

A
i be the i-th symbol of Λ((σin)A1 , . . . , (σin)Ai). Note

that since Λ is systematic it holds that (σin)Ai is a prefix of (σout)
A
i .

The output of the coding scheme is the prefix of TA of length nΛ · (s− 2) · (1− γ).

Next we describe the protocol π. This protocol is simulated by the inner coding scheme Π at Step 2
of the coding scheme Π′. The protocol π receives as input an integer 1 ≤ t ≤ nΛ(s−2), a transcript
string T ∈ {0, 1}nΛ(s−2), a position string p ∈ {0, 1}2 and a hash string h ∈ {0, 1}r. The description
of π for Alice’s side, denoted πA, is the following.

Protocol πA(t, T , p, h) for Alice:

1. Send p, h and receive p̂, ĥ (this is done bit by bit).

2. Communicate bits [t+ 1, . . . , t+ (s− 2)] of the protocol π′ assuming that the first t bits
of π′ communicated so far are the first t bits of T .

4.2 Analysis

4.2.1 Rate and running time

The coding scheme Π′ runs for nΛ iterations and at each iteration the number of bits communicated
is ((s− 2) + 2(r + 2))/ρΠ. Recall that ρλ = s

s+r . Consequently, the rate of the coding scheme Π′ is

|π′|
|Π′|

=
nΛ · (s− 2) · (1− γ)

nΛ · ((s− 2) + 2(r + 2)) /ρΠ

=
s− 2

2(s+ r)− (s− 2)
· ρΠ · (1− γ)

=
s− 2

2(s− 2)/ρΛ + 4/ρΛ − (s− 2)
· ρΠ · (1− γ)

=
ρΛ

2 + 4/(s− 2)− ρΛ
· ρΠ · (1− γ). (1)

To analyze the running time note that the running time of each iteration is O(TΛ+TΠ) and therefore
the total running time is O(nΛ · (TΛ + TΠ)).

4.2.2 Decoding guarantees

To analyze the decoding guarantees we define a potential function Φ as follows. Let t+ be the
number of blocks of length s − 2 contained in the longest prefix on which TA and TB agree, and

10

let t− = |TA|+|TB |
s−2 − 2t+. Let Φ = t+ − t−. Note that if at the end of the simulation it holds

that Φ ≥ nΛ · (1 − γ), then the simulation must be successful. The reason is that in this case
t+ ≥ nΛ · (1−γ) and so a prefix of length at least nΛ · (s− 2) · (1−γ) is correct in both TA and TB,
which means the entire transcript π′ was correctly simulated.

To bound the potential we shall use the notion of a good iteration.

Definition 4.1. We say that an iteration i is good if the following pair of conditions hold:

1. At Step 2 of iteration i, the simulation of π via the inner coding scheme Π is successful.

2. At Step 3 of iteration i, it holds that TA = T̂A and TB = T̂B.

Claim 4.2. The potential Φ decreases by at most 3 after any iteration. Furthermore, after any
good iteration the potential increases by at least 1.

Proof. At any single iteration, a party either leaves its transcript unchanged, erases the last block
of its transcript, or adds a new block to its transcript. Therefore t+ can change by at most 1 and t−

can change by at most 2 at each iteration, and so the total potential change at each iteration is at
most 3.

Next observe that if iteration i is good, then both parties know the transcript of the other
side at the beginning of iteration; they also learn the correct value of the block Xi. Therefore, if
TA = TB at the beginning of iteration i, then both parties add Xi to their transcript, t+ increases
by 1 and t− remains zero. Otherwise, if TA 6= TB and |TA| = |TB|, then both parties erase the last
block of their transcript, thus t+ does not change and t− decreases by 2. Finally, if |TA| 6= |TB|,
then the party with the longer transcript erases the last block of its transcript and so t+ does not
change while t− decreases by 1. We conclude that the total potential change at a good iteration is
at least 1.

Claim 4.2 above implies that the simulation of π′ via Π′ succeeds as long as the number of bad
iterations throughout the execution of Π′ is at most nΛγ/4. The following claim shows that we
can bound the number of bad iterations by bounding the number of iterations in which the first
condition in Definition 4.1 does not hold.

Claim 4.3. If the first condition of Definition 4.1 does not hold in at most m iterations, then the
number of bad iterations is at most 9m/δΛ.

Proof. By symmetry, it suffices to show that in addition to the m iteration where the first condition
doesn’t hold, there are at most 4m/δΛ iterations in which TB 6= T̂B at Step 3.

Fix an iteration i + 1 in which TB 6= T̂B at Step 3 and let ((σ̂in)B1 , . . . , (σ̂in)Bi) be the decoded
message at this step. By the decoding guarantee of Λ there exists t(i) ∈ [i] such that in at least δΛ

fraction of the iterations j ∈ [t(i), i] the simulation at Step 2 failed in either iteration j or iteration
j + 1 (since Xj is transmitted on iteration j but pj and hj are transmitted only on iteration j + 1).
This implies in turn that in at least δΛ/2 fraction of the iterations j ∈ [t(i), i+ 1] the simulation at
Step 2 failed in iteration j. In particular, if the simulation fails at Step 2 in the segment [t(i), i+ 1]
at most m times, then |[t(i), i+ 1]| < 2m/δΛ. However, we must take care of overlapping segments
[t(i), i+ 1].

Let
I =

{
[t(i), i+ 1] | TB 6= T̂B at Step 3 of iteration i+ 1

}
,

11

and define
⋃
I =

⋃
I∈I I. Since for each iteration i+ 1 in which TB 6= T̂B it holds that i+ 1 ∈

⋃
I,

it suffices to show that |
⋃
I| ≤ 4m/δΛ. Lemma 7 in [Sch96] says that there exists a subset I ′ ⊆ I

of distjoint intervals such that |
⋃
I ′| ≥ |

⋃
I| /2. The proof is completed by noting that if the

simulation at Step 2 failed in at most m iterations, then it must be that |
⋃
I ′| ≤ 2m/δΛ, and so

|
⋃
I| ≤ 4m/δΛ.

Using the above Claim 4.3, the simulation of Π′ is successful as long as the number of iterations
in which the simulation at Step 2 failed is at most δΛnΛγ/36. Over BSCδΠ/2, since the inner coding
scheme Π can handle δΠ fraction of adversarial errors, the probability that the simulation at Step 2
fails is at most

exp

(
−
(
δΠ

2

)2

· s+ 2(r + 1)

ρΠ

)
,

independently for each iteration. Therefore the probability of having more than δΛnΛγ/36 iterations
in which the simulation at Step 2 fails is at most

nΛ∑
k=δΛnΛγ/36

(
nΛ

k

)
exp

(
−
δ2

Π

4
· s+ 2(r + 1)

ρΠ
· k
)

= exp

[
−nΛ

(
δΛ

36
· s+ 2(r + 1)

ρΠ
·
δ2

Π

4
· γ −H

(
δΛ

36
· γ
))]

.

5 The Outer Code: Proof of Lemma 3.2

5.1 The tree code construction

A main ingredient in our tree code construction is the following lemma showing the existence of
a systematic error-correcting code C : Σk

in → Σk
out with appropriate parameters. Specifically, this

lemma shows that for any integers k, n that satisfy Ω((log n)/ε) ≤ k ≤ n, there exists a systematic
code C : Σk

in → Σk
out with |Σin| = poly(n), |Σout| = poly(n), rate 1−O(ε

logn) and relative distance
Ω(ε

logn). The lemma follows by an application of Facts 2.1 and 2.2, and we defer its proof to
Section 5.4.

Lemma 5.1. There exists an absolute constant k0 ∈ N such that the following holds for every
ε > 0 and integers k, n ∈ N such that k0 · (log n)/ε ≤ k ≤ n. There exists a systematic F2-linear
code C : Σk

in → Σk
out with Σin = {0, 1}(logn)/ε, Σout = {0, 1}(logn)/ε+1, rate ρ′ := 1

1+ε/ logn and
relative distance at least δ′ := 1

2(logn)/ε+1 . Furthermore, C can be encoded and decoded from up to a
fraction δ′/2 of errors in time poly(n).

The construction of the tree code Λ is as follows. Let m := k0 · (log n)/ε, for simplicity assume
that both m and n are powers of 2. The encoding Λ(x) of a message x ∈ Σn

in is the pointwise
concatenation of the message string x with log n − logm + 1 binary strings x(logm), . . . , x(logn) ∈
{0, 1}n, where for logm ≤ t ≤ log n the string x(t) ∈ {0, 1}n is defined as follows. Let C(t) : Σ2t

in →
Σ2t

out be the systematic code given by Lemma 5.1 for a constant ε and message length k = 2t, and let
R(t) : Σ2t

in → {0, 1}
2t be the redundant part of C(t). Divide the string x into n/2t blocks z1, . . . , zn/2t

of length 2t each, and let x(t) = (02t , R(t)(z1), . . . , R(t)(zn/2t−1)). See Figure 2.
We clearly have that Λ can be encoded in time poly(n). Note furthermore that Λ is systematic

and F2-linear and that the input alphabet size of Λ is 2logn/ε and the output alphabet size of Λ is

12

R(5)(x[1, 32]) R(5)(x[33, 64])...

R(4)(x[1, 16]) R(4)(x[17, 32]) R(4)(x[33, 48]) R(4)(x[49, 64])

R(3)(..) R(3)(..) R(3)(..) R(3)(..) R(3)(..) R(3)(..) R(3)(..) R(3)(..) R(3)(..)

· · · · · · · · ·
x[1, 80]

(Λ(x))1 (Λ(x))16 (Λ(x))32 (Λ(x))48 (Λ(x))64 (Λ(x))80

x(3)

x(4)

x(5)

Figure 2: An illustration of the first 80 indices of Λ(x), the encoding of x ∈ Σn
in using our tree code.

2logn/ε · 2logn−logm+1 ≤ 2logn/ε+logn. The rate of Λ is then at least

(log n)/ε

(log n)/ε+ log n
=

1

1 + ε
.

It remains to analyze the distance and decoding guarantee of Λ.

5.2 Distance

The distance guarantee of the tree code stems from the fact that as long as we look at two different
messages x, y that differ in their suffixes of length ≥ 2m, then the encoding at these suffixes com-
pletely includes a pair of codewords C(t)(x′) 6= C(t)(y′) for some logm ≤ t ≤ log n. Below, we show
that either the suffix is shorter than 2m and then the required distance trivially holds, or we find
the maximal value of t for which the above holds and then the required distance follows from the
distance guarantee of the code C(t).

Claim 5.2. Let x, y ∈ Σn
in be a pair of distinct messages and let i ∈ [n] be the first coordinate on

which x and y differ. For any j ∈ [i, n] it holds that

dist

(
Λ(x)[i, j],Λ(y)[i, j]

)
≥ min

{
ε

2k0 log n
,

1

16(log n)/ε+ 8

}
.

Lemma 3.2 then holds as a corollary of the above claim by setting δ0 := 1/(32k0).

Proof. If j − i < 2m then

dist

(
Λ(x)[i, j],Λ(y)[i, j]

)
≥ 1

j − i+ 1
≥ 1

2m
=

ε

2k0 log n
,

where the first inequality follows since (Λ(x))i 6= (Λ(y))i due to our assumption that xi 6= yi and
the tree code being systematic.

Next assume that j − i ≥ 2m. Let t be the maximal integer such that 2 · 2t ≤ j − i and let
i0 :=

⌊
i−1
2t

⌋
· 2t be i− 1 rounded down to the nearest multiple of 2t. Note that

i0 + 1 ≤ i < i0 + 1 + 2t < i0 + 2 · 2t ≤ j

and
j − i < 4 · 2t,

due to the maximality of t.

13

Note that Λ(x)[i0 + 1, i0 + 2t] contains x[i0 + 1, i0 + 2t] as the systematic parts of C(t)(x[i0 +
1, i0 + 2t]). Also note that by our construction, Λ(x)[i0 + 1 + 2t, i0 + 2 · 2t] contains the redundant
part R(t)(x[i0 + 1, i0 + 2t]) of C(t)(x[i0 + 1, i0 + 2t]). In a symmetric way, the same holds for Λ(y)
and y.

Furthermore, the assumption that xi 6= yi implies that x[i0 + 1, i0 + 2t] 6= y[i0 + 1, i0 + 2t] and
so by the distance guarantee of C(t) (as given by Lemma 5.1) we have that

dist

(
C(t)

(
x[i0 + 1, i0 + 2t]

)
, C(t)

(
y[i0 + 1, i0 + 2t]

))
≥ δ′. (2)

Equation (2) implies that either

dist

(
x[i0 + 1, i0 + 2t], y[i0 + 1, i0 + 2t]

)
≥ δ′

2

or
dist

(
R(t)

(
x[i0 + 1, i0 + 2t]

)
, R(t)

(
y[i0 + 1, i0 + 2t]

))
≥ δ′

2
.

Finally, note that in either case we get that

dist

(
Λ(x)[i, j],Λ(y)[i, j]

)
≥ (δ′/2) · 2t

j − i+ 1
≥ (δ′/2) · 2t

4 · 2t
=
δ′

8
,

where the first inequality is due to the fact that i0 + 1 ≤ i < i0 + 1 + 2t < i0 + 2 · 2t ≤ j and i
is the first coordinate on which x and y differ, and the second inequality is due to the fact that
j − i < 4 · 2t. Recall that δ′ = 1

2(logn)/ε+1 to complete the proof.

5.3 Decoding

Recall that the decoding procedure is given a word w ∈ Σj
out for some 1 ≤ j ≤ n and is required to

output a vector y ∈ Σj
in such that y = x whenever x ∈ Σj

in is such that distsfx(Λ(x), w) ≤ δ0·ε
2 logn .

For a given word w ∈ Σj
out, the decoded word y ∈ Σj

in is obtained as follows. We decode w in
parts according to its partitioning into blocks corresponding to the codes C(t). Specifically, we start
from the largest t for which a codeword C(t) is fully contained in the prefix of w. We then move
on to decode the remaining suffix in an iterative manner. We proceed this way until the interval at
hand is shorter than 2m, in which case we simply set y in this interval as the systematic part of w
in the corresponding interval.

The formal description of the decoding procedure follows.

Decoding procedure on input w ∈ Σj
out:

0. Initialize: ` := 1 // Left index of current interval

1. If j − ` < 2m, set y[`, j] to be the systematic part of w[`, j] and output y.

2. Otherwise, let t be the maximal integer such that 2 · 2t ≤ j − `.

3. Decode the part of w[`, `−1+2·2t] that corresponds to the encoding of the code C(t) using
the decoding procedure for C(t), and set y[`, `− 1 + 2t] to be the result of the decoding.

4. Set ` := `+ 2t and return to Step 1.

14

Let us give an example of the decoding process of w ∈ Σ75
out. (Recall Figure 2.) For this example,

let us assume thatm = 8 = 23. We begin by decoding y[1, 32]; this is done by decoding the code C(5)

whose systematic part lies in w[1, 32] and redundant part R(5)(x[1, 32]) lies in w[33, 64]. Note that
we could not use the code C(6) since its redundant part would be in the interval [65, 128] which
is beyond the range of w. After we set y[1, 32], we move on to the next interval. We cannot
decode y[33, 64] using the next C(5) since its redundant part lies beyond the range of w, and we
need to reduce the scale to t = 4. Hence, the next part we decode is y[33, 48], which is obtained
using the code C(4) whose systematic part lies in w[33, 48] and redundant part R(4)(x[33, 48]) lies
in w[49, 64]. The next C(4) is again beyond the currently decoded w and we reduce the scale to t = 3.
Using the code C(3) we decode y[49, 56], and also y[57, 64]. Finally, we are left with the interval
[65, 75] whose length is 11 < 2m; we assume that there are no errors in this interval and simply set
y[65, 75] to be the systematic part of w[65, 75].

We clearly have that the decoding procedure runs in time poly(n). To show that the decoding
procedure satisfies the required decoding guarantee we observe that our assumption—that the dis-
tance of w from Λ(x) is small on every suffix—implies that at each iteration the part of w[`, `−1+2·2t]
that corresponds to the encoding of C(t) is close to C(t)(x[`, `−1+2t]). Consequently, the decoding
guarantee of C(t) implies that y[`, `−1+2t] = x[`, `−1+2t] for every iteration in which j−` ≥ 2m.

In more detail, suppose that x ∈ Σj
in is such that distsfx(Λ(x), w) ≤ δ0·ε

2 logn . We shall show that
at each iteration the coordinates of y are set to the corresponding coordinates of x and so y = x.

If j − ` < 2m at some iteration then we have that

dist

(
Λ(x)[`, j], w[`, j]

)
≤ δ0 · ε

2 log n
=

1

64m
<

1

j − `+ 1
,

where the equality follows due to our choice of m = k0(log n)/ε and δ0 = 1/(32k0). This implies
in turn that w[`, j] = Λ(x)[`, j] and so the systematic part of w[`, j] equals x[`, j] and consequently
y[`, j] = x[`, j].

Next assume that j − ` ≥ 2m. To show the required decoding guarantee in this case note that
our assumption implies that

dist

(
Λ(x)[`, j], w[`, j]

)
≤ δ0 · ε

2 log n
.

Furthermore, due to maximality of t we have that j − ` < 4 · 2t, and consequently it holds that

dist

(
Λ(x)[`, `− 1 + 2t], w[`, `− 1 + 2t]

)
≤ 4 · 2t · (δ0 · ε)/(2 log n)

2t
=

2 · δ0 · ε
log n

≤ δ′

4
,

and similarly

dist

(
Λ(x)[`+ 2t, `− 1 + 2 · 2t], w[`+ 2t, `− 1 + 2 · 2t]

)
≤ δ′

4
.

This implies in turn that the part of w[`, `− 1 + 2 · 2t] that corresponds to the encoding of C(t) is of
relative distance at most δ′/2 from C(t)(x[`, ` − 1 + 2t]), and so by the decoding guarantee of C(t)

it holds that y[`, `− 1 + 2t] = x[`, `− 1 + 2t].

5.4 Proof of Lemma 5.1

We now complete the proof of Lemma 3.2 by proving Lemma 5.1. Lemma 5.1 follows by substituting
ρ = 1/2, s = (log n)/ε and r = 1 in the following lemma which shows the existence of a systematic
error-correcting code with good rate and distance.

15

Lemma 5.3. For every 0 < ρ < 1 there exist δ > 0 and integer k0 ∈ N such that the following holds
for any integers k, s, r ∈ N that satisfy k · ρrs ≥ k0 and s ≥ log(k(1 + ρr

s)). There exists a systematic
F2-linear code C : Σk

in → Σk
out with Σin = {0, 1}s, Σout = {0, 1}s+r, rate s

s+r and relative distance at

least δ′ := min
{
δ, 1− s/ρ

s/ρ+r

}
. Furthermore, C can be encoded and decoded from up to δ′/2 fraction

of errors in time poly
(
k, s, r

)
.

Proof. Since C is systematic it suffices to define the redundant part R of C. Roughly speaking,
R(x) is obtained by first encoding the message x via a systematic Reed-Solomon code, then encoding
the redundant part of the resulting codeword with an asymptotically good binary code, and finally
spreading the resulting bits evenly between the k coordinates of R(x).

Formally, let δ and k0 be the constants guaranteed by Fact 2.2 for rate ρ, and let B be the
asymptotically good binary code guaranteed by this fact for rate ρ and message length k · ρrs (recall
that we assume k · ρrs ≥ k0). Let RS be the Reed-Solomon code guaranteed by Fact 2.1 for message
length k and block length k(1 + ρr

s) over a field F of size 2s, and note that our assumptions imply
that 2s ≥ k(1+ ρr

s). By performing Guassian elimination, we may assume without loss of generality
that the code RS is systematic, that is, for every x ∈ Fk it holds that RS(x) = (x,R′(x)) for some
string R′(x) ∈ Fkρr/s.

Next we define the redundant part R of C. To this end, fix a string x ∈ Σk
in = Fk and let

R′(x) ∈ Fkρr/s be the redundant part of the encoding of x via the Reed-Solomon code RS. Next
view R′(x) as a binary string in {0, 1}kρr via the usual F2-linear isomorphism and encode this binary
string via the asymptotically good binary code B, let zx ∈ {0, 1}kr denote the resulting string.
Finally, divide the string zx into k blocks of size r, and for every 1 ≤ i ≤ k let (R(x))i ∈ {0, 1}r be
the i-th block of zx.

Next we analyze the properties of C. It can be verified that C has the required rate s
s+r . To

see that the relative distance of C is at least δ′, let x 6= y ∈ Σk
in be a pair of strings. If

dist(x, y) ≥ 1− k

k(1 + ρr/s)
= 1− s/ρ

s/ρ+ r

then we are done due to C being systematic. Otherwise, due to the distance guarantee of the code
RS we must have that R′(x) 6= R′(y), and consequently the distance guarantee of the code B implies
that dist(zx, zy) ≥ δ. Finally, note that grouping the coordinates of zx and zy cannot decrease the
relative distance between the pair of strings, and so we must have that dist(R(x), R(y)) ≥ δ as well.
The decoding guarantees of C follow from similar considerations, based on the decoding guarantees
of the codes RS and B.

6 The Inner Code: Proof of Lemma 3.3

The inner code is obtained via a derandomization of a randomized interactive coding scheme due
to Haeupler [Hae14a, Algorithm 3]. The main use of randomness in [Hae14a] is to allow the parties
to check, with high probability, whether or not they are synchronized (e.g., hold the same partial
transcript). To this end, each party chooses a random hash function and communicates a short
hash of its own state. Note that due to this shrinkage in length, it may happen that although
the parties are unsynchronized, the hash values they exchange are the same, leading the parties to
falsely believe they are synchronized. Such an event is called a hash collision. We show how to
devise a deterministic variant of the coding scheme of [Hae14a], in which we fix the randomness,

16

and show that there exists a fixing that is “good” for all possible runs, namely, the amount of hash
collisions that can occur for that fixing is low enough to complete the simulation correctly.

To this end, we observe that when the adversary is limited to corrupting at most a fraction ε of
the transmissions, then there are only 2O(H(ε)n) = 2O(log(1/ε)εn) different noise patterns that should
be considered; denote these as typical noise patterns. We then carefully modify the way the coding
scheme of [Hae14a] compares the states the parties hold, using linear hash functions. The linearity
of the hash functions along with the specific way in which we perform the comparisons make hash
collisions depend (roughly) only on the specific noise pattern and the randomness string, and most
importantly, (almost) independent of the specific noiseless protocol π that is simulated by the coding
scheme and the inputs (x, y) of the parties (The fact that hash collisions do not entirely depend only
on the noise pattern and the randomness string creates further complications in our proof which we
ignore in the discussion below).

Finally, we show that if we increase the output length of the hash functions from a constant (as
used in [Hae14a]) to c′ log(1/ε) for some constant c′, then for each typical noise pattern, at least
a 1 − 2−Ω(c′ log(1/ε)εn) fraction of the randomness strings lead to at most εn hash collisions which
is a small enough number of hash collisions that allows the simulation to be completed correctly.
By setting c′ to be a large enough constant, a union bound proves that there must exist a single
randomness string that is “good” for all possible typical noise patterns. A by-product of the increase
in the output length of the hash functions is that the rate of the coding scheme slightly reduces
from 1−O(

√
ε) to 1−O(

√
H(ε)).

Concretely, we prove Lemma 3.3 in two steps. In the first step we slightly modify the original
scheme of [Hae14a], specifically, by carefully modifying the way the hash comparisons are performed
and slightly increasing the output length of the hash functions, as outlined above. In the second
step we derandomize this latter modified coding scheme. The two steps are given in Sections 6.1
and 6.2 below, respectively. The proof and detailed analysis below build on the analysis of [Hae14a]
and are not self-contained. We refer the reader to the longer version of that paper [Hae14b], and in
the following all the references (lemma numbers, line numbers, variable names, etc.) correspond to
that version. For a better readability, in Appendix A we re-iterate Algorithm 3 of [Hae14b].

6.1 Modified scheme

In this section we slightly modify the randomized coding scheme given by Algorithm 3 in [Hae14b]
to obtain a randomized coding scheme Π̃ that is more suitable for derandomization, and state some
properties of the modified scheme Π̃ that we shall use for the derandomization step. We start by
describing the modified coding scheme Π̃.

6.1.1 Modified scheme

Let Π̃ be the coding scheme that is obtained from Algorithm 3 in [Hae14b] via the following modi-
fications.

1. (Output length of hash functions) The output length o of the hash functions is increased from
Θ(1) to c′ · log(1/ε) for sufficiently large constant c′ to be determined later on. Consequently,
the number rc of check bits per iteration is also increased from Θ(1) to Θ(log(1/ε)), the
length of the blocks r =

√
rc/ε increases from Θ

(√
1/ε
)
to Θ

(√
log(1/ε)/ε

)
, and the number

of iterations Rtotal decreases to

dn/r + 65εne = Θ
(√

ε/ log(1/ε)
)
n+ 65εn.

17

2. (Seed length) Our modified hash comparisons described below apply hash functions to strings
of length Θ(n log n), as opposed to length Θ(n) as is done in Algorithm 3 in [Hae14b]. To this
end, we increase the seed length s of the hash functions per iteration from Θ(n) to Θ(n log n).
Note that in this case the random string R at Line 5 can still be obtained by exchanging
Θ
(√

ε log(1/ε)
)
n random bits sampled from a δ-biased distribution with bias δ = 2−Θ(no/r) =

2−Θ
(√

ε log(1/ε)
)
n.

3. (Position string N(T)) To make hash collisions depend (roughly) only on the noise pattern and
the randomness string, the parties maintain throughout the execution of the coding scheme
Π̃ a position string N(T) ∈ [Rtotal]

Rtotal·r whose i-th coordinate equals the iteration in which
the i-th bit of T was added to T , or is empty in the case where the i-th bit of T is empty. We
denote by N ′(T) ∈ {0, 1}Rtotal·r·log(Rtotal) the binary string obtained from N(T) by replacing
each coordinate of N(T) with its binary representation of length log(Rtotal) (we pad with
zeros if the length is shorter than log(Rtotal)).

4. (Hash comparisons) Roughly speaking, our new hash comparisons will apply an F2-linear hash
function (specifically, the inner product function) to both the transcript T and the vector
N ′(T) that encodes the iterations in which each of the bits in T were added to T . Specifically,
in Line 9 we replace

hashS(k), hashS(T), hashS(T [1,MP1]), hashS(T [1,MP2])

with
hashS(k), h̃ashS

(
T
)
, h̃ashS

(
T [1,MP1]

)
, h̃ashS

(
T [1,MP2]

)
,

where the function hashS is as defined in [Hae14b] and the function h̃ashS is defined as follows.

For integers m, o and a seed S ∈ {0, 1}m·o let hS : {0, 1}≤m → {0, 1}o be the F2-linear hash
function that satisfies, for every x ∈ {0, 1}≤m and i ∈ [o], that(

hS(x)
)
i

=
〈
x, S[(i− 1) ·m+ 1, im]

〉
,

where 〈a, b〉 =
∑m

i=1 ai · bi (mod 2) is the inner product mod 2 of a, b ∈ {0, 1}m (if |x| < m
then we assume that x is padded with zeroes to the right up to length m). We note that for
every seed S the function hS is F2-linear, i.e., for any two strings x, y ∈ {0, 1}m it holds that
hS(x⊕ y) = hS(x)⊕ hS(y).

Finally, for m = Rtotal · r · log(Rtotal) = Θ(n log n), o = c′ log(1/ε) and a seed S ∈ {0, 1}m·o
we let

h̃ashS : {0, 1}≤Rtotal·r → {0, 1}3o

be the hash function that satisfies

h̃ashS(x) =

(
hS(x), hS(|x|), hS(N ′(x))

)
for every string x ∈ {0, 1}≤Rtotal·r.

6.1.2 Properties of the modified scheme

Next we state some properties of the modified scheme Π̃ that we use later. We start with the
following lemma which says that the simulation is successful as long as at most εn iterations suffer
from a hash collision. This lemma can be proved along the lines of the proof of Theorem 7.1
in [Hae14b].

18

Lemma 6.1. Let R ∈ {0, 1}Rtotal·s be an arbitrary string (not necessarily coming from a δ-biased
distribution), and let Γ be a run of Π̃ that uses the string R as the random string sampled at Line 5,
and simulates a noiseless protocol π on inputs (x, y) in the presence of up to ε fraction of adversarial
errors. Suppose furthermore that at most εn iterations in Γ suffer from a hash collision. Then the
output of Γ is π(x, y) (that is, the simulation performed by Γ is successful).

We shall also use the following claim which follows from the above lemma and says that if
at most εn iterations suffer from a hash collision up to some iteration t ∈ [Rtotal], then in most
iterations i ∈ [t] a new block was added to both TA and TB.

Claim 6.2. Let R ∈ {0, 1}Rtotal·s be an arbitrary string (not necessarily coming from a δ-biased
distribution), and let Γ be a run of Π̃ that uses the string R as the random string sampled at Line 5,
and simulates a noiseless protocol π on inputs (x, y) in the presence of up to ε fraction of adversarial
errors. Let t ∈ [Rtotal] be some iteration and suppose that at most εn iterations i ∈ [t] in Γ suffer
from a hash collision. Then there are at most 65εn iterations i ∈ [t] in which no block was added to
TA and at most 65εn iterations i ∈ [t] in which no block was added to TB.

Proof. Suppose in contradiction that there are more than 65εn iterations i ∈ [t] in which no block
was added to TA or more than 65εn iterations i ∈ [t] in which no block was added to TB. By
symmetry we may assume that there are more than 65εn iterations i ∈ [t] in which no block was
added to TA. To arrive at a contradiction we shall modify the string R to obtain a string R′ such
that when the string R in the run Γ is replaced with the string R′ then on one hand, at most εn
iterations in Γ suffer from a hash collision and on the other hand, the simulation performed by Γ is
unsuccessful which contradicts Lemma 6.1 above.

Specifically, let R′ ∈ {0, 1}Rtotal·s be the string which agrees with R on the first t · s bits and
the last (Rtotal − t) · s bits are chosen such that no hash collision occurs after iteration t when the
string R in the run Γ is replaced with the string R′. Such a choice exists since the output length of
the hash functions is o = c′ log(1/ε) and the coding scheme is performing only a constant number of
hash comparisons per iteration. Consequently, the probability that a uniform random seed in {0, 1}s
causes a hash collision at some iteration is at most exp(−Ω(c′ log(1/ε))), and in particular there
exists a seed in {0, 1}s that does not cause a hash collision at this iteration.

Let Γ′ be the run of the coding scheme Π̃ obtained from Γ by replacing the string R with the
string R′. On one hand, we have that at most εn iterations in Γ′ suffer from a hash collision. On
the other hand, since Γ′ and Γ behave the same on the first t iterations there are more than 65εn
iterations in Γ′ in which no block was added to TA. But since Π̃ is run for n/r + 65εn iterations
and since in each iteration at most one block is added to TA, we have that at the end of the run Γ′

less than n/r blocks of length r are present in TA, and so the simulation is unsuccessful. This
contradicts Lemma 6.1 above.

6.2 Derandomization

In order to derandomize the coding scheme Π̃ defined above we proceed according to the program
outlined at the beginning of this section. Specifically, we observe that as long as each block in
TA was added at the same iteration in which the corresponding block in TB was added (that is,
N(TA) = N(TB)) then TA and TB differ only by the noise pattern corresponding to the iterations in
which the blocks in TA and TB were added. Since the hash function hS we use is F2-linear, in this
case we have that hash collisions, when comparing TA and TB, depend only on the noise pattern
and the seed S used in these iterations. However, when N(TA) 6= N(TB), hash collisions may not

19

depend entirely on the noise pattern and the random seed, and this creates further complications
in our proof.

To cope with the above situation we replace in our analysis noise patterns with behavior patterns
which include the noise pattern as well as some extra information on some of the transitions made
during the execution of Π̃. We also replace hash collisions with hash mismatches which are a notion
of inconsistency of hash functions that includes hash collisions as a special case. The advantage
of these notions is that now hash mismatches depend entirely on the behavior pattern and the
randomness string.

We focus on a certain subset of behavior patterns we name typical behavior patterns; those are a
subset of the behavior patterns that can occur when the adversary is limited to ε fraction of errors.
We then show that there are at most 2O(H(ε)n) = 2O(log(1/ε)εn) different typical behavior patterns,
and that for each typical behavior pattern, at least a 1− 2−Ω(c′ log(1/ε)εn) fraction of the randomness
strings lead to at most εn hash mismatches. This implies in turn that for a large enough constant
c′ there must exist a single good randomness string that leads to at most εn hash mismatches (and
thus, at most εn hash collisions) for all typical behavior patterns. So this good randomness string
leads to a successful simulation whenever the adversary is limited to flipping at most a fraction ε of
the bits. Details follow.

6.2.1 Behavior patterns and hash mismatches

We start by formally defining the notions of behavior patterns and hash mismatches and proving
that hash mismatches depend only on the behavior pattern and the randomness string.

Definition 6.3 (Behavior pattern). Let Γ be a (possibly partial) run of the coding scheme Π̃
(determined by the randomness string, the simulated noiseless protocol π, the inputs (x, y) of the
parties and the noise pattern). The behavior pattern P of Γ consists of the following information:

1. The number of iterations in Γ.

2. The noise pattern in Γ (that is, the communication rounds in Γ in which the channel flipped
a bit).

3. The iterations in Γ in which no block was added to TA and the iterations in Γ in which no
block was added to TB.

4. For each of the iterations in Γ in which no block was added to TA, a bit saying whether Alice
made a transition on Line 25, a bit saying whether Alice returned to MP1 on Line 27 and a
bit saying whether Alice returned to MP2 on Line 30. Similarly, for each of the iterations in
Γ in which no block was added to TB, a bit saying whether Bob made a transition on Line 25,
a bit saying whether Bob returned to MP1 on Line 27 and a bit saying whether Bob returned
to MP2 on Line 30.

Definition 6.4 (Hash mismatch). Let i ∈ [Rtotal] be some iteration, let S be the seed used at
iteration i, and let kA, |TA|, N ′(TA), MP1A and MP2A (respectively, kB, |TB|, N ′(TB), MP1B and
MP2B) be the values of the variables of Alice (respectively, Bob) at the beginning of iteration i. Let
e ∈ {0, 1}|TA| be the vector that indicates the locations of the adversarial errors in the communication
rounds in which the bits of TA were transmitted. We say that a hash mismatch occurred at iteration i
if at least one of the following occurred at iteration i.

1. kA 6= kB but hashS(kA) = hashS(kB).

20

2. e 6= 0 but hS(e) = 0.

3. |TA| 6= |TB| but hS(|TA|) = hS(|TB|).

4. N ′(TA) 6= N ′(TB) but hS(N ′(TA)) = hS(N ′(TB)).

5. There exists b ∈ {1, 2} such that e[1,MPbA] 6= 0 but hS(e[1,MPbA]) = 0.

6. There exist b, b′ ∈ {1, 2} such that MPbA 6= MPb′B but hS(MPbA) = hS(MPb′B).

7. There exist b, b′ ∈ {1, 2} such that N ′(TA[1,MPbA]) 6= N ′(TB[1,MPb′B]) but

hS(N ′(TA[1,MPbA])) = hS(N ′(TB[1,MPb′B])).

The following claim says that if some iteration does not suffer from a hash mismatch then it
does not suffer from a hash collision either.

Claim 6.5. If an iteration of Π̃ does not suffer from a hash mismatch then it does not suffer from
a hash collision.

Proof. By Condition 1 of Definition 6.4 we readily have that if kA 6= kB then hashS(kA) 6=
hashS(kB). Next we show that if TA 6= TB then h̃ashS(TA) 6= h̃ashS(TB). If |TA| 6= |TB| or
N ′(TA) 6= N ′(TB) then by Conditions 3 and 4 of Definition 6.4 we have that h̃ashS(TA) 6= h̃ashS(TB).
Otherwise, if |TA| = |TB| and N ′(TA) = N ′(TB), then we have that TA⊕TB = e. Due to the linear-
ity of hS Condition 2 of Definition 6.4 implies that in this case h̃ashS(TA) 6= h̃ashS(TB). A similar
argument using Conditions 5, 6 and 7 of Definition 6.4 shows that if TA[1,MPbA] 6= TB[1,MPb′B],
for some b, b′ ∈ {1, 2}, then h̃ashS(TA[1,MPbA]) 6= h̃ashS(TB[1,MPb′B]).

Finally, we show that hash mismatches depend only on the behavior pattern and the randomness
string.

Claim 6.6. Given a string R ∈ {0, 1}Rtotal·s and a behavior pattern P of a (possibly partial) run Γ
that uses the string R as the random string sampled at Line 5, one can efficiently determine the
iterations in Γ in which a hash mismatch occurred. In particular, whether a hash mismatch occurred
at some iteration in Γ depends entirely on the string R and the behavior pattern P.

Proof. By definition it holds that whether a hash mismatch occurred at some iteration in Γ depends
only on the string R, the noise pattern in Γ and the values of the variables k, |T |, N ′(T), MP1
and MP2 for both parties at the beginning of this iteration. The noise pattern is included in the
description of P, and it can be verified by induction on the number of iterations that the values of
the variables k, |T |, N ′(T), MP1 and MP2 for both parties depend only on the behavior pattern P
and can be efficiently computed given P.

6.2.2 Existence of good randomness string

In this section we show the existence of a good random string R∗ that can be used to derandomize
the coding scheme Π̃. For this we shall use the notion of a typical behavior pattern defined as
follows.

Definition 6.7 (Typical behavior pattern). We say that a behavior pattern P is typical if the
number of bit flips in the noise pattern of P is at most 2εn, the number of iterations in P in which
no block was added to TA is at most 100εn, and the number of iterations in P in which no block
was added TB is at most 100εn.

21

The following claim bounds the number of typical behavior patterns.

Claim 6.8. There are at most 2900H(ε)n different typical behavior patterns.

Proof. First note that there are at most Rtotal ≤ n possible values for the number of iterations in P,
and that there are at most Rtotal · (r + rc) ≤ 2n communication rounds in P. Next observe that
since the noise pattern has at most 2εn bit flips, then the number of different noise patterns is at
most

2εn∑
i=0

(
2n

i

)
≤ 2εn ·

(
2n

2εn

)
≤ 22H(ε)n.

Furthermore, since there are at most 100εn iterations in which no block was added to TA, the
number of different sets of such iterations is at most

100εn∑
i=0

(
Rtotal

i

)
≤ 100εn ·

(
n

100εn

)
≤ 2100H(ε)n.

Finally, for each iteration in which no block was added to TA we keep 3 bits of information and so
the number of different possibilities for the values of these bits is at most 2300εn.

Concluding, we have that the number of different typical behavior patterns is at most

n · 22H(ε)n ·
(

2100H(ε)n
)2
·
(
2300εn

)2 ≤ 2900H(ε)n.

Next we show that for every behavior pattern most randomness strings lead to at most εn hash
mismatches.

Claim 6.9. Let P be a behavior pattern and let R be a random string sampled as in Line 5. Then
with probability at least 1−2−Ω(c′ log(1/ε)εn) the number of iterations suffering from hash mismatches
determined by P and R is at most εn.

Proof. Suppose first that R is a uniform random binary string in {0, 1}Rtotal·s. In this case, since
the output length of the hash functions is o = c′ log(1/ε) and since there are only constant number
of conditions in Definition 6.4, the probability that a hash mismatch occurs at some iteration i is at
most 2−Ω(c′ log(1/ε)). Consequently, the probability that more than εn iterations suffer from a hash
mismatch is at most (

n

εn

)
· 2−Ω(c′ log(1/ε)εn) ≤ 2−Ω(c′ log(1/ε)εn),

where the inequality holds for sufficiently large constant c′.
In our case R is sampled from a δ-biased distribution for δ = 2−Θ(no/r) and consequently the

probability that more than εn iterations suffer from a hash mismatch is at most

2−Ω(c′ε log(1/ε)n) + 2−Θ(no/r) = 2−Ω(c′ log(1/ε)εn) + 2−Θ
(√

log(1/ε)εn
)

= 2−Ω(c′ε log(1/ε)n).

Claims 6.8 and 6.9 above imply the existence of a single random string R∗ that leads to at most
εn hash mismatches for all typical behavior patterns.

22

Corollary 6.10. For sufficiently large constant c′, there is a string R∗ ∈ {0, 1}Rtotal·s such that for
every typical behavior pattern P the number of iterations suffering from hash mismatches determined
by P and R∗ is at most εn.

Finally, we show that when the coding scheme Π̃ is run with the random string R∗ guaranteed
by the above corollary then the number of iterations suffering from hash collisions is at most εn.

Claim 6.11. Let R∗ ∈ {0, 1}Rtotal·s be a string such that for every typical behavior pattern P the
number of iterations suffering from hash mismatches determined by P and R∗ is at most εn. Let Γ
be a run of Π̃ that uses the string R∗ as the random string sampled at Line 5 and has at most
ε fraction of adversarial errors. Then at most εn iterations in Γ suffer from a hash collision.

Proof. If Γ has a typical behavior pattern then by our assumption we have that R∗ leads to at most
εn iterations in Γ suffering from hash mismatches. By Claim 6.5 this implies in turn that at most
εn iterations in Γ suffer from a hash collision. Therefore it suffices to show that Γ has a typical
behavior pattern.

Suppose in contradiction that Γ has a non-typical behavior pattern P. Let t ∈ [Rtotal] be
the first iteration in Γ such that the number of iterations i ∈ [t] in which no block was added
to TA is more than 65εn or the number of iterations i ∈ [t] in which no block was added to TB
is more than 65εn. Let P ′ be the (partial) behavior pattern obtained by restricting P to the first
t iterations. Then P ′ is a typical behavior pattern and consequently by our assumption we have that
the number of iterations suffering from hash mismatches determined by P ′ and R∗ is at most εn.
Furthermore, since P and P ′ agree on the first t iterations we have that the number of iterations
suffering from hash mismatches determined by P and R∗ among the first t iterations is at most εn.
By Claim 6.5 this implies in turn that at most εn iterations i ∈ [t] in Γ suffer from a hash collision
which contradicts Claim 6.2.

6.2.3 Completing the proof of Lemma 3.3

We are now ready to complete the proof of the main result in this section.

Proof of Lemma 3.3. Corollary 6.10 and Claim 6.11 guarantee the existence of a string R∗ ∈
{0, 1}Rtotal·s such that in any run of the coding scheme Π̃ that uses the string R∗ as the random
string sampled at Line 5 and has at most ε fraction of adversarial errors, the number of iterations
suffering from a hash collision is at most εn. By Lemma 6.1 this implies in turn that any run of the
coding scheme Π̃ that uses R∗ as the random string sampled at Line 5 and has at most ε fraction
of adversarial errors successfully simulates the noiseless protocol π.

To show that Π̃ has the required rate note that the total number of bits communicated during
the execution of Π̃ is

Rtotal ·
(
r + rc

)
=

(
n

r
+ Θ(nε)

)
· r ·

(
1 +

rc
r

)
= n ·

(
1 + Θ(rε)

)
·
(

1 +
rc
r

)
= n ·

(
1 + Θ

(
rε+

rc
r

))
.

23

Due to our choice of r = Θ
(√

log(1/ε)/ε
)
and rc = Θ(log(1/ε)) the above implies in turn that the

number of bits communicated in the coding scheme Π̃ is n ·
(
1 + Θ(

√
ε log(1/ε))

)
. So the rate of Π̃

is
1−O

(√
ε log(1/ε)

)
= 1−O

(√
H(ε)

)
.

Finally, observe that one can find the string R∗ by going over all pairs (P, R) where P is a
typical behavior pattern and R ∈ {0, 1}Rtotal·s is in the support of the δ-biased distribution for
δ = 2−Θ(no/r) which requires Θ

(√
ε log(1/ε)

)
n random bits. Therefore, the number of possible

strings R is at most 2O(n). Furthermore, by Claim 6.8 there are at most 2O(n) different typical
behavior patterns P. Therefore the total number of pairs (P, R) one needs to check is at most 2O(n).
Finally, Claim 6.6 shows that for each such pair it takes poly(n) time to verify whether the number
of iterations suffering from a hash mismatch determined by this pair is at most εn, and we conclude
that the total time this process takes is at most 2O(n).

References

[AGS13] S. Agrawal, R. Gelles, and A. Sahai. Adaptive protocols for interactive communication.
Manuscript, arXiv:1312.4182 (cs.DS), 2013.

[AGHP92] N. Alon, O. Goldreich, J. Håstad, and R. Peralta. Simple constructions of almost k-wise
independent random variables. Random Structures & Algorithms, 3(3):289–304, 1992.

[BKN14] Z. Brakerski, Y. T. Kalai, and M. Naor. Fast interactive coding against adversarial
noise. J. ACM, 61(6):35:1–35:30, 2014.

[Bra12] M. Braverman. Towards deterministic tree code constructions. Proceedings of the 3rd
Innovations in Theoretical Computer Science Conference, ITCS ’12, pp. 161–167. ACM,
2012.

[BE14] M. Braverman and K. Efremenko. List and unique coding for interactive communication
in the presence of adversarial noise. Proceedings of the IEEE Symposium on Foundations
of Computer Science, FOCS ’14, pp. 236–245. 2014.

[BGMO15] M. Braverman, R. Gelles, J. Mao, and R. Ostrovsky. Coding for interactive communi-
cation correcting insertions and deletions. Preprint arXiv:1508.00514, 2015.

[BR14] M. Braverman and A. Rao. Toward coding for maximum errors in interactive commu-
nication. Information Theory, IEEE Transactions on, 60(11):7248–7255, 2014.

[FK00] U. Feige and J. Kilian. Finding OR in a noisy broadcast network. Information Processing
Letters, 73(1):69–75, 2000.

[For65] G. D. Forney. Concatenated codes. Tech. Rep. 440, Massachusetts Institute of Tech-
nology. Research Laboratory of Electronics, 1965.

[FGOS15] M. Franklin, R. Gelles, R. Ostrovsky, and L. J. Schulman. Optimal coding for streaming
authentication and interactive communication. Information Theory, IEEE Transactions
on, 61(1):133–145, 2015.

[Gel15] R. Gelles. Coding for interactive communication: A survey, 2015.

24

[GMS14] R. Gelles, A. Moitra, and A. Sahai. Efficient coding for interactive communication.
Information Theory, IEEE Transactions on, 60(3):1899–1913, 2014.

[GH14] M. Ghaffari and B. Haeupler. Optimal Error Rates for Interactive Coding II: Efficiency
and List Decoding. Proceedings of the IEEE Symposium on Foundations of Computer
Science, FOCS ’14, pp. 394–403. 2014.

[GHS14] M. Ghaffari, B. Haeupler, and M. Sudan. Optimal error rates for interactive coding
I: Adaptivity and other settings. Proceedings of the 46th Annual ACM Symposium on
Theory of Computing, STOC ’14, pp. 794–803. ACM, 2014.

[Gil52] E. N. Gilbert. A comparision of signalling alphabets. Bell System Technical Journal,
31:504–522, 1952.

[Hae14a] B. Haeupler. Interactive Channel Capacity Revisited. Proceedings of the IEEE Sympo-
sium on Foundations of Computer Science, FOCS ’14, pp. 226–235. 2014.

[Hae14b] B. Haeupler. Interactive channel capacity revisited, 2014. Long version of [Hae14a],
[online:] http://arxiv.org/abs/1408.1467.

[Ham50] R. W. Hamming. Error detecting and error correcting codes. Bell System technical
journal, 29(2):147–160, 1950.

[KR13] G. Kol and R. Raz. Interactive channel capacity. STOC ’13: Proceedings of the 45th
annual ACM Symposium on Theory of Computing, pp. 715–724. ACM, 2013.

[NN93] J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions and appli-
cations. SIAM Journal on Computing, 22(4):838–856, 1993.

[RS60] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. SIAM Journal
of the Society for Industrial and Applied Mathematics, 8(2):300–304, 1960.

[Sch92] L. J. Schulman. Communication on noisy channels: a coding theorem for computation.
Foundations of Computer Science, Annual IEEE Symposium on, pp. 724–733, 1992.

[Sch93] L. J. Schulman. Deterministic coding for interactive communication. STOC ’93: Pro-
ceedings of the twenty-fifth annual ACM Symposium on Theory of Computing, pp. 747–
756. ACM, 1993.

[Sch96] L. J. Schulman. Coding for interactive communication. IEEE Transactions on Infor-
mation Theory, 42(6):1745–1756, 1996.

[Sch03] L. J. Schulman. A postcript to “coding for interactive communication”.
[Online:] http://www.cs.caltech.edu/~schulman/Papers/intercodingpostscript.
txt, 2003. Based on joint work with Will Evans and Michael Klugerman.

[Sha48] C. E. Shannon. A mathematical theory of communication. ACM SIGMOBILE Mobile
Computing and Communications Review, 5(1):3–55, 2001. Originally appeared in Bell
System Tech. J. 27:379–423, 623–656, 1948.

[Var57] R. R. Varshamov. Estimate of the number of signals in error correcting codes. Doklady
Akadamii Nauk, pp. 739–741, 1957.

25

http://arxiv.org/abs/1408.1467
http://www.cs.caltech.edu/~schulman/Papers/intercodingpostscript.txt
http://www.cs.caltech.edu/~schulman/Papers/intercodingpostscript.txt

[Yao79] A. C.-C. Yao. Some complexity questions related to distributive computing(preliminary
report). Proceedings of the Eleventh Annual ACM Symposium on Theory of Computing,
STOC ’79, pp. 209–213. ACM, 1979.

26

Appendix

A The efficient randomized interactive coding scheme of [Hae14b]

Algorithm 1 Coding Scheme for Oblivious Adversarial Channels [Hae14b]

1: Π← n-round protocol to be simulated + final confirmation steps
2: hash← inner product hash family with o = Θ(1) and s = Θ(n)

3: Initialize Parameters: rc ← Θ(1); r ← d
√

rc
ε
e; Rtotal ← dn/r + 65nεe; T← ∅

4: Reset Status: k, E, v1, v2← 0

5: R← Random string of length Rtotal · s (can be constructed by exchanging Θ(n
√
ε) random bits and expanding

them to a δ-bias string of the needed length using [AGHP92, NN93], with bias δ = 2−Θ(n
r
o))

6: for Rtotal iterations do

7: k← k + 1; k̃← 2blog2 kc; MP1← k̃rb |T|k̃r c; MP2← MP1− k̃r . Verification Phase
8: S← s new preshared random bits from R
9: Send (hashS(k), hashS(T), hashS(T[1, MP1]), hashS(T[1, MP2]))

10: Receive (H ′k, H
′
T, H

′
MP1, H

′
MP2);

11: (Hk, HT, HMP1, HMP2)← (hashS(k), hashS(T), hashS(T[1, MP1]), hashS(T[1, MP2]))

12: if Hk 6= H ′k then
13: E← E + 1
14: else
15: if HMP1 ∈ {H ′MP1, H ′MP2} then
16: v1← v1 + 1
17: else if HMP2 ∈ {H ′MP1, H ′MP2} then
18: v2← v2 + 1

19: if k = 1 and HT = H ′T and E = 0 then . Computation Phase
20: continue computation and transcript T for r steps
21: Reset Status: k, E, v1, v2← 0
22: else
23: do r dummy communications

24: if 2E ≥ k then . Transition Phase
25: Reset Status: k, E, v1, v2← 0
26: else if k = k̃ and v1 ≥ 0.4 · k̃ then
27: rollback computation and transcript T to position MP1
28: Reset Status: k, E, v1, v2← 0
29: else if k = k̃ and v2 ≥ 0.4 · k̃ then
30: rollback computation and transcript T to position MP2
31: Reset Status: k, E, v1, v2← 0
32: else if k = k̃ then
33: v1, v2← 0

34: Output the outcome of Π corresponding to transcript T

27

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

