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Abstract

Proving circuit lower bounds remains a tremendously difficult problem. Although it can be easily
shown by counting that almost all Boolean predicates of n variables have circuit size Ω(2n/n), we have
no example of an NP function requiring even a superlinear number of gates. Moreover, only modest
linear lower bounds are known. Until recently, the strongest known lower bound was 3n−o(n) presented
by Blum in 1984. In 2011, Demenkov and Kulikov presented a much simpler proof of the same lower
bound, but for a more complicated function — an affine disperser for sublinear dimension. Informally,
this is a function that is resistant to any n−o(n) affine substitutions. In 2011, Ben-Sasson and Kopparty
gave an explicit construction of such a function. The proof of the lower bound basically goes by showing
that for any circuit there exists an affine hyperplane where the function complexity decreases at least by
three gates. In this paper, we prove the following two extensions.

1. We prove a
(
3 + 1

86

)
n − o(n) lower bound for the circuit size of an affine disperser for sublinear

dimension. The proof is based on the gate elimination technique extended with the following three
ideas. We generalize the computational model by allowing circuits to contain cycles, this in turn
allows us to perform affine substitutions. We use a carefully chosen circuit complexity measure to
track the progress of the gate elimination process. Finally, we use quadratic substitutions that may
be viewed as delayed affine substitutions.

2. We then present a much simpler proof of a stronger lower bound of 3.11n for a quadratic disperser.
Informally, a quadratic disperser is resistant to sufficiently many substitutions of the form x ← p,
where p is a polynomial of degree at most two. Currently, there are no constructions of quadratic
dispersers in NP (although there are constructions over large fields, and constructions with weaker
parameters over GF(2)). The key ingredient of this proof is the induction on the size of the
underlying quadratic variety instead of the number of variables as in the previously known proofs.

1 Introduction

1.1 Overview

Denote by Bn,m the set of all Boolean functions from Fn
2 to Fm

2 , let Bn = Bn,1 and consider a function
f ∈ Bn. A natural question studied in theoretical computer science is the following: what is the minimal
number of binary Boolean operations needed to compute f? The corresponding computational model is
Boolean circuits. A circuit is a directed acyclic graph with inputs x1, . . . , xn, the intermediate vertices have
indegree 2 and are labeled with binary Boolean operations. The size of a circuit is its number of internal
gates (these intermediate vertices). Note that we do not impose any restrictions on the depth or outdegree.
By C(f) we denote the minimum size of a circuit computing f .
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Counting shows that the number of small size circuits is much smaller than the total number |Bn| = 22
n

of functions. Using this idea it was shown by Shannon [55] that almost all functions from Bn require
circuits of size Ω(2n/n). This proof is however non-constructive: it does not give an explicit function of high
circuit complexity. Showing superpolynomial lower bounds for explicitly defined functions (for example, for
a function in NP) remains an incredibly challenging task. In particular, such lower bounds would imply
P ̸= NP. Moreover, superlinear bounds are unknown even for functions in ENP. Superpolynomial bounds
are known for MAEXP (exponential-time Merlin-Arthur games) [7] and ZPEXPMCSP (exponential-time
ZPP with oracle access to the Minimal Circuit Size Problem) [24], and arbitrary polynomial lower bounds
are known for S2 (the symmetric second level of the polynomial hierarchy) which is the smallest known
class both containing NP and to which PH collapses by a Karp-Lipton-style theorem [8]. Also arbitrary
polynomial lower bounds are known for a slightly non-uniform class MA/1 via padding a PSPACE-hard
language and employing a Karp-Lipton-style theorem for PSPACE [47].

People started to tackle the problem in the 60s. Kloss and Malyshev [28] proved a lower bound of
2n − O(1). Schnorr [50] proved a 2n − O(1) lower bound for a class of functions with certain structure.
Stockmeyer [57] proved a 2.5n−O(1) bound for certain symmetric functions. Paul [43] proved a 2.5n− o(n)
lower bound for a variant of the storage access function. Eventually, Blum [6] extended Paul’s argument and
proved a 3n− o(n) bound.

Blum’s bound remained unbeaten for more than thirty years. Blum’s proof consists of two parts: one
part constitutes a gate elimination procedure similar in spirit to previous bounds, the other part considers
the topology of paths in the circuit and it is designing specifically for proving a lower bound of 3n− o(n).

Demenkov and Kulikov [14] presented a much simpler proof of a 3n−o(n) lower bound for functions with
an entirely different property: affine dispersers. This property allows one to restrict the function to smaller
and smaller affine subspaces until the disperser’s dimension is reached. As was later noted by Vadhan and
Williams [60], the way Demenkov and Kulikov use this property cannot give stronger than 3n bounds as the
technique from [14] gives a tight bound of n − 1 for the inner product function (which is known to be an
affine disperser for dimension n/2 + 1).

Hence two different proofs using two different properties are both stuck at exactly the same lower bound
3n− o(n) which was first proved more than 30 years ago. Is this lack of progress grounded in combinatorial
properties of circuits and this line of research faces an insurmountable obstacle? Or can refinements on known
techniques go above 3n? In this paper we show that the latter is the case. We improve the bound for affine
dispersers to (3 + 1

86 )n − o(n), which is stronger than Blum’s bound. We then show that a stronger lower
bound of 3.11n can be proved much more easily for a stronger object that we call a quadratic disperser.
Roughly, such a function is resistant to sufficiently many substitutions of the form x ← p where p is a
polynomial of degree at most 2. Currently, there are no constructions of quadratic dispersers in NP (there
are constructions with weaker parameters for the field of size two and constructions for larger fields, though).

In a recent work, Li and Yang [26] extended the case analysis of the present paper (as well as the circuit
complexity measure used in it) in a clever way to improve the lower bound on the complexity of affine
dispersers to 3.1n− o(n).

1.2 Other models

The exact complexity of computational problems is different in different models of computation: for example,
switching from multitape to single-tape Turing machines squares the time complexity; random access ma-
chines are even more efficient. Boolean circuits over the full binary basis make a very robust computational
model. Using a different constant-arity basis only changes the constants in the complexity. A fixed set of
gates of arbitrary arity (for example, ANDs, ORs and XORs) still preserves the complexity in terms of the
number of wires (if NOT gates are not counted: the negations are written over the wires). After all, finding
a function hard for Boolean circuits can be viewed as a combinatorial problem, in a contrast to lower bounds
for uniform models (machines that work for all input lengths). Therefore, breaking the linear barrier for
Boolean circuits can be viewed as an important milestone on the way to stronger complexity lower bounds.

Stronger than 3n lower bounds are known for various restricted bases. One of the most popular such
bases, U2, consists of all binary Boolean functions except for parity (xor) and its negation (equality), Schnorr
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[51] proved that the circuit complexity of the parity function is 3n − 3. Zwick [66] gave a 4n − O(1) lower
bound for certain symmetric functions, Lachish and Raz [35] showed a 4.5n − o(n) lower bound for an
(n − o(n))-mixed function (a function all of whose subfunctions of any n − o(n) variables are different).
Iwama and Morizumi [25] improved this bound to 5n− o(n). Demenkov et al. [15] gave a simpler proof of a
5n− o(n) lower bound for a function with o(n) outputs as well as presented a 7n− o(n) lower bound for a
function with n outputs. It is interesting to note that the progress on U2 circuit lower bounds is also stuck
at the 5n − o(n) lower bound: Amano and Tarui [1] presented an (n − o(n))-mixed function whose circuit
complexity over U2 is 5n+ o(n).

While we do not have nonlinear bounds for constant-arity Boolean circuits, stronger bounds are known for
weaker models, including monotone circuits (Razborov [44]), circuits of constant depth with no XOR gates
(Yao [64] and H̊astad [20]), circuits of polylogarithmic depth over infinite fields (Shoup and Smolensky [56]),
formulas (Subbotovskaya [58], Khrapchenko [27], Nechiporuk [39], Andreev [2], Impagliazzo and Nisan [23],
Paterson and Zwick [42], H̊astad [21] and Tal [59]). These bounds, however, do not translate to superlinear
lower bounds for general constant-arity Boolean circuits.

1.3 Connections to CircuitSAT algorithms

A recent promising direction initiated byWilliams [62] connects the complexity of circuits to the complexity of
algorithms for CircuitSAT (this is the problem of checking whether a given circuit has a satisfying assignment,
that is, a substitution of inputs by constants that forces the circuit to output one). Namely, the existence of
better-than-2n algorithms for CircuitSAT for a particular circuit model implies exponential lower bounds for
these circuits for functions in large classes like NEXP. This way unconditional exponential lower bounds
have been proved for ACC0 circuits (constant-depth circuits with unbounded-arity OR, AND, NOT, and
arbitrary modular gates) [63]. Ben-Sasson and Viola [5] have demonstrated that for a constant k, one
can prove a linear lower bound kn for a function in ENP by designing a 2cn-time algorithm for 3-SAT for
c < 1/(3k+1). It should be noted, however, that currently available 3-SAT algorithms are not sufficient for
proving new lower bounds.

Also techniques similar to the ones used in proving circuit lower bounds are employed in a number of
algorithms for CircuitSAT and FormulaSAT, see e.g. [41, 49, 48, 52, 32, 11, 10].

1.4 Affine Dispersers

In this paper, we prove lower bounds for affine (and quadratic) dispersers. Informally, an affine disperser
is a function that cannot be made constant by sufficiently many linear substitutions. Formally, a function
f ∈ Bn is called an affine disperser for dimension d if it is not constant on any affine subspace of Fn

2 of
dimension at least d.

The notion of dispersers is a relaxation of the notion of extractors — functions that take input from
a possibly non-uniform distribution and “extract” randomness from it: output a bit that is distributed
statistically close to uniform. Unlike extractors, dispersers are only required to output a non-constant bit.
To specify the class of input distributions, one defines a class of sources F , where each X ∈ F is a distribution
over Fn

2 . Since dispersers are only required to output a non-constant bit, we identify a distribution X with
its support on Fn

2 . A function f ∈ Bn is called a disperser for a class of sources F , if |f(X)| = 2 for every
X ∈ F . Since it is impossible to extract even one non-constant bit from an arbitrary source even if the
source is guaranteed to have n− 1 bits of entropy (each function from Bn is constant on 2n−1 inputs), many
special cases of sources are studied (see [54] for an excellent survey). The sources we are focused on in this
paper are affine sources and their generalization — sources for polynomial varieties. Affine dispersers have
drawn much interest lately. In particular, Ben-Sasson and Kopparty [4] gave an explicit construction of affine
dispersers for sublinear dimension d = o(n), which was followed by other constructions of [65, 36, 53, 3, 37, 9].
Dispersers for polynomial varieties over large fields were studied by Dvir [16], and dispersers over F2 were
studied by Cohen and Tal [13].
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1.5 Gate elimination

Essentially, the only known technique for proving lower bounds for circuits with no restrictions on depth and
outdegree is the gate elimination method. To illustrate it, let us give a proof of a 2n − O(1) lower bound
presented by Schnorr [50]. The MODn

3,r ∈ Bn function outputs 1 if and only if the sum (over integers) of n
input bits is congruent to r modulo 3. We prove that MODn

3,r requires circuits of size at least 2n − 6 by
induction on n. The base case n ≤ 3 clearly holds. For the induction step consider an optimal circuit C
computing MODn

3,r and a topologically minimal gate A in C (such a gate exists since for n ≥ 4, MODn
3,r is not

constant). Let x and y be input variables to A. The crucial observation is that either x or y must feed at least
one other gate. Indeed if both x and y feed only A then the whole circuit depends on x and y only through A.
This, in particular, means that by fixing x and y in four possible ways ((x, y) = (0, 0), (0, 1), (1, 0), (1, 1))
one gets at most two different subfunctions while there must be three different subfunctions under these
assignments: MODn−2

3,0 , MODn−2
3,1 , and MODn−2

3,2 (they are pairwise different for n ≥ 4). Assume that it
is x that feeds at least one other gate and call it B. We then replace x by 0. This eliminates at least
two gates from the circuit (A and B): if one of the inputs to a gate computes a constant, then this gate
computes either a constant or a unary function on the other input and hence can be eliminated from the
circuit. The resulting circuit computes the function MODn−1

3,r so the lower bound follows by induction. The
best known lower bound for MODn

3,r is now 2.5n−O(1) by Stockmeyer [57], the best known upper bound is
3n−5− [(n+r) mod 3 = 0] by Kulikov and Slezkin [33]. Knuth [29] (see solution to exercise 480) conjectured
that this upper bound is tight.

In the analysis above, we eliminated two gates by assigning x← 0. If A computes, say, xy = x ∧ y then
we would have eliminated more than two gates since A becomes equal to 0 and hence all its successors are
also eliminated. So, the bottleneck case is when both A and B compute parities of their inputs. In this case
we cannot make A and B constant just by assigning a constant to x.

A natural idea that allows to overcome the bottleneck from the previous proof is to allow to substitute
variables not only by constants but also by sums (over F2) of other variables. Using this idea one can prove a
3n−o(n) lower bound. The proof is due to Demenkov and Kulikov [14], the exposition here is due to Vadhan
and Williams [60].

For a 3n− o(n) lower bound it is convenient to use xor-inputs circuits. In an xor-inputs circuit we allow
linear sums of variables to be used as inputs to a circuit. Consider the following measure of an xor-inputs
circuit C: µ(C) = G(C) + I(C) where G(C) is the number of non-input gates and I(C) is the number of
inputs of C. Note that an xor-gate that depends on two inputs of an xor-inputs circuit C may be replaced
by an input without increasing µ(C).

A 3n − 4d lower bound for the size of a (normal or xor-inputs) circuit computing an affine disperser
f ∈ Bn for dimension d follows from the following fact: for any affine subspace S ⊆ Fn

2 of dimension D and
any xor-inputs circuit C computing f on S, µ(C) ≥ 4(D−d−1) (now plug in D = n). The fact can be shown
by induction on D. The base case D ≤ d+1 is clear. For the induction step, assume that C has the minimal
value of µ. Since f on S cannot compute a linear function as D > d + 1, the circuit C must be contain at
least one gate (even if its inputs are nontrivial linear functions themselves). Let A be a topmost (closest to
the inputs) gate of C. If A computes a sum, then it can be replaced by an input (without increasing µ), so
we can assume that A computes a product of some linear sums x and y, i.e., A computes (x⊕c1)(y⊕c2)⊕c3
where c1, c2, c3 ∈ F2 are constants. In the following we assign either x = c1 or y = c2. This gives us an
affine subspace of Fn

2 of dimension at least D − 1 (if the dimension of the resulting subspace dropped to 0
this would mean that either x or y was constant on S contradicting the fact that the considered circuit was
optimal). To proceed by induction we need to show that the substitution reduces µ by at least 4. For this,
we consider two cases.

Case 1. Both x and y have outdegree 1.

x y

∧A
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We then assign x = c1. This trivializes A to c3, so all its successors are eliminated too. In total,
we eliminate at least two gates (A and its successors) and at least two inputs (x and y). Hence µ is
reduced by at least 4. (Note that A must have at least one successor as otherwise it would be the
output gate, but this would mean that f was constant on an affine subspace of dimension at least d.)

Case 2. The outdegree of, say, x is at least 2.

x y

∧AB

C

Let B be another successor of x and let C be a successor of A. We assign x = c1. This removes an
input x and gates A, B, and C. If B = C then C becomes a constant under the substitution (since
both its inputs are constants) so its successors are also eliminated (note that C cannot be the output,
because then our assumed disperser is trivialized by x = c1, that is, it is constant on a subspace of
dimension D − 1 > d). Thus, in this case we eliminate at least one input and at least three gates
implying that µ is reduced by at least 4.

Plugging in an affine disperser for sublinear dimension in this argument gives a 3n− o(n) lower bound. It is
also interesting to note that the inequality G(C) + I(C) ≥ 4(n − d − 1) is tight. To see this, note that the
inner product function (IP(x1, y1, x2, y2, . . . , xn/2, yn/2) = x1y1⊕x2y2⊕· · ·⊕xn/2yn/2) is an affine disperser
for dimension n/2 + 1 (see, e.g., [12, Theorem A.1]) and has circuit size n− 1.

1.6 A 3.01n lower bound for affine dispersers

Our first main result is the following theorem.

Theorem 1.1. The circuit size of an affine disperser for sublinear dimension is at least
(
3 + 1

86

)
n− o(n).

The main ingredients of our proof are:

• the well-known gate elimination technique,

• affine substitutions that received limited attention previously,

• a restricted type of quadratic substitutions (read-once depth-2 quadratic sources) that has not been
studied before,

• cyclic circuits, also a novel technique.

In the following, we describe these new ingredients and explain how we use them.
As one may have noticed from the gate elimination proof in the previous section, if one makes an

appropriate substitution to an input of a non-linear binary gate (that is, not an XOR or equivalence gate),
it makes this gate constant and therefore eliminates all the immediate descendents of this gate. This makes
the induction step easier than in the case of a linear gate. On the other hand, linear gates, when stacked
together, sometimes allow to reorganize the circuit. This idea has been used in [43, 57, 6, 52, 14]. Then
affine restrictions can eliminate such gates while preserving the properties of an affine disperser.

Thus, it is natural to consider a circuit as composed of linear subcircuits connected by non-linear gates.
If one considers a linear subcircuit and has to make an affine substitution, how to reorganize it efficiently? In
our case analysis we do not just dive into an affine subspace: we make affine substitutions, that is, instead of
just saying that x1⊕x2⊕x3⊕x9 = 0 and removing all gates that become constant, we make sure to replace
all occurrences of x1 by x2 ⊕ x3 ⊕ x9. Since a gate computing such a sum might be unavailable and we do
not want to increase the number of internal gates, we “rewire” some parts of the circuit, which, however,
may potentially introduce cycles. This is the first ingredient of our proof: cyclic circuits. That is, the linear
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components of our “circuits” may now have directed cycles; however, we require that the values computed
in the gates are still uniquely determined. Cyclic circuits have already been considered in [46, 17, 40, 45]
(the last reference contains an overview of previous work on cyclic circuits).

Thus, we are able to make affine substitutions. We try to make such a substitution in order to make some
topmost (i.e., closest to the inputs) non-linear gate constant. This, however, does not seem to be enough.
The second ingredient in our proof is a complexity measure that manages difficult situations (bottlenecks)
by allowing to perform an amortized analysis: we count not just the number of internal gates, we compute
a linear combination of the number of internal gates and the number of bottlenecks. Such measures were
previously considered by several authors. For example, Zwick [66] counted the number of (internal) gates
minus the number of inputs of outdegree 1. The same measure was later used by Lachish and Raz [35] and by
Iwama and Morizumi [25]. Kojevnikov and Kulikov [31] used a measure assigning different weights to linear
and non-linear gates to show that Schnorr’s 2n−O(1) lower bound [51] can be strengthened to 7n/3−O(1).
Carefully chosen complexity measures are also used to estimate the progress of splitting algorithms for
NP-hard problems [34, 30, 18].

Eventually, the wider class of substitutions one allows, the larger number of gates can be eliminated.
Affine substitutions did not appear for us to be sufficient to make a progress, so we introduced a limited
class of quadratic substitutions. Namely, we consider substitutions that form a read-once depth-2 quadratic
(rdq) source, that is, a variable can be used in the right-hand side of a quadratic substitution only once,
and only if it is not substituted by an affine or quadratic substitution itself. It extends the power of
substitutions allowing us to handle our bottleneck cases, while leaves the possibility to consider the set of
applied substitutions as a source, that is, a function turning the original inputs into new inputs. It turns
out that an affine disperser for a sublinear dimension remains non-constant for read-once depth-2 quadratic
sources of a sublinear dimension.

Of course, using such substitutions is restrictive (one must keep an eye on the limitations). However,
by including the number of appropriate quadratic substitutions in our complexity measure, our amortized
analysis accomplishes the desired lower bound.

1.7 A 3.11n lower bound for quadratic dispersers

The two considered functions, MODn
3 and an affine disperser for dimension d, can be viewed as functions that

are not constant on any sufficiently large set S ⊆ Fn
2 that can be defined as the set of roots of k polynomials:

S = {x ∈ Fn
2 : p1(x) = p2(x) = · · · = pk(x) = 0} .

For MODn
3 , k ≤ n− 2 and each pi is just a variable or its negation while for affine dispersers, k ≤ n− d and

pi’s are arbitrary linear polynomials. Note that the size of the set S, if it is nonempty, is at least 2n−
∑

k deg pk

by Warning’s second theorem [61], and in our (linear) case the equality holds

|S| = 2n−k (1)

as long as pi’s are linearly independent.
A natural extension is to allow polynomials to have degree at most 2. The corresponding set S is called

a quadratic variety. Formally, a function f ∈ Bn is called an (n, k, s)-quadratic disperser if it is not constant
on any variety of size at least s defined by at most k polynomials of degree at most 2. We prove the following
result.

Theorem 1.2. The circuit size of an (n, 1.83n, 2o(n))-quadratic disperser is at least 3.11n.

Currently, explicit constructions of quadratic dispersers with such parameters are not known while show-
ing their existence non-constructively is easy (see Lemma 2.2.1). Theorem 1.2 can be viewed as an additional
motivation for their study.

We prove Theorem 1.2 by extending the gate elimination method. The proof goes by induction on the
size of the current quadratic variety S. Note that for quadratic varieties the relation eq. (1) no longer holds:
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x yz t

∧A

⊕D

∨B

≡C

∧ E

B = (z ∨ x)
A = (x ∧ y)
D = (B ⊕A)
C = (A ≡ t)
E = (D ∧ C)

Figure 1: An example of a circuit and the program it computes.

e.g., the set of roots of n/2 polynomials x1x2 ⊕ 1, x3x4 ⊕ 1, . . . , xn−1xn ⊕ 1 contains just one point. For
this reason, we proceed as follows. We choose a polynomial p of degree 2 and consider two subvarieties of S:
S0 = {x ∈ S : p(x) = 0} and S1 = {x ∈ S : p(x) = 1}. We then estimate how much the size of the circuit
shrinks for each of these varieties and how much the size of the variety shrinks. Roughly, we show that in at
least one of these cases the circuit shrinks a lot while the size of the variety does not shrink a lot.

2 Definitions

2.1 Circuits

We consider binary circuits only and thus use the word “circuit” to denote a binary circuit. A circuit is an
acyclic directed graph in which incoming edges are numbered for every node. The nodes are called gates.
A gate may have either indegree zero (in which case it is called an input gate, or a variable) or indegree
two (in which case it is called an internal gate). Every internal gate is labelled by a Boolean function
g : {0, 1} × {0, 1} → {0, 1}, and the set of all sixteen such functions is denoted by B2. We call these binary
functions operations in order to distinguish them from functions of n variables computed in the gates. For
a circuit C, G(C) is the number of internal gates and is also called the size of the circuit C. By I(C) we
denote the number of input gates. For a function f ∈ Bn,m, C(f) is the minimum size of a circuit with n
inputs and m outputs that computes f .

We say that an operation is of and-type if it computes g(x, y) = (c1 ⊕ x)(c2 ⊕ y)⊕ c3 for some constants
c1, c2, c3 ∈ {0, 1}, and of xor-type if it computes g(x, y) = x⊕ y⊕ c1 for some constant c1 ∈ {0, 1}. Similarly,
we call gates and-type and xor-type. In our diagrams, we denote all and-type gates by ∧, and all xor-type
gates by ⊕.

If a gate computes an operation depending on precisely one of its inputs, we call it passing.
If an (internal) gate computes a constant operation, we call it trivial (note that it still has two incoming

edges). If a substitution forces some gate G to compute a constant, we say that it trivializes G. (For example,
for a gate computing the operation g(x, y) = x ∧ y, the substitution x = 0 trivializes it.)

We denote by out(G) the outdegree of the gate G. If out(G) = k, we call G a k-gate. If out(G) ≥ k,
we call it a k+-gate. We adopt the same terminology for variables (so we have 0-variables, 1-variables,
2+-variables, etc.). One gate of outdegree zero is designated as the output.

A simple example of a circuit is shown in Figure 1. For input gates, the corresponding variables are shown
inside. For an internal gate, we show its operation inside and its label near the gate. As the figure shows, a
circuit corresponds to a simple program for computing a Boolean function: each instruction of the program
is a binary Boolean operation whose inputs are input variables or the results of the previous instructions.

In the remaining part of the paper, we show parts of a circuit. Such a part usually consists of a subset
of gates and a subset of wires of a circuit. Thus, any gate shown in a picture may have an arbitrary number
of additional outgoing wires. For some of the gates, we show their out-degree above the gate. Thus, a gate
that has two out-going wires and a label 2 above it has no other out-going wires.
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2.2 Affine and quadratic dispersers

Definition 2.2.1 (affine disperser). An affine disperser for dimension d(n) is a family of functions fn : Fn
2 →

F2 such that for all sufficiently large n, fn is non-constant on any affine subspace of dimension at least d(n).

Definition 2.2.2 (quadratic variety). A set S ⊆ Fn
2 is called an (n, k)-quadratic variety if it can be defined

as the set of common roots of t ≤ k polynomials of degree at most 2:

S = {x ∈ Fn
2 : p1(x) = · · · = pt(x) = 0}

where pi is a polynomial of degree at most 2, for each 1 ≤ i ≤ t.

Definition 2.2.3 (quadratic disperser). A Boolean function f ∈ Bn is called an (n, k, s)-quadratic disperser
if f is non-constant on any (n, k)-quadratic variety S ⊆ Fn

2 of size at least s. Here k and s can be functions
of n.

The following lemma shows that almost all functions from Bn are (n, 2o(n), 2o(n))-quadratic dispersers.

Lemma 2.2.1. Let ω(kn2) ≤ s ≤ 2o(n). Let Dn ⊆ Bn be the set of (n, k, s)-quadratic dispersers. Then
|Dn|
|Bn| → 1 when n→∞.

Proof. There are q = n(n+1)
2 + 1 = Θ(n2) multilinear monomials of degree at most 2 in F2[x1, . . . , xn].

Therefore, there are 2q polynomials of degree at most 2, and at most 2qk (n, k)-quadratic varieties. Each
function that is not an (n, k, s)-quadratic disperser can be specified by

1. an (n, k)-quadratic variety, where it takes a constant value,

2. this value (0 or 1),

3. values at the remaining at most 2n − s points.

Thus, the number of functions that are not (n, k, s)-quadratic dispersers is bounded from above by 2qk · 2 ·
22

n−s = 22
n

2qk+1−s = 22
n

2−Θ(s) = o (|Bn|).

2.3 Generalizations of circuits

Cyclic circuits In this paper we apply a sequence of transformations on circuits. To accomodate this
we use the following generalization of circuits (note that we do not use xor-inputs circuits that have been
introduced solely for demonstration purposes in Subsection 1.5). These generalized circuits may contain
specific types of cycles where all the gates are internally consistent.

A cyclic circuit is a directed (not necessarily acyclic) graph where all vertices have indegree either 0
or 2. We adopt the same terminology for its nodes (input and internal gates) and its size as for ordinary
circuits. We restrict our attention to cyclic xor-circuits, where all gates compute affine operations. While
the most interesting internal gates compute either ⊕ or ≡, for technical reasons we also allow passing gates
and trivial gates. We will be interested in multioutput cyclic circuits, so, in contrast to our definition of
ordinary circuits, several gates may be designated as outputs, and they may have nonzero outdegree.

A circuit, and even a cyclic circuit, naturally corresponds to a system of equations over F2. Variables
of this system correspond to the values computed in the internal gates. The operation of an internal gate
imposes an equation defining the computed value. Whenever an input gate is encountered, it is treated as
a constant (because we will be interested in solving this system when we are given specific input values).
Thus we formally have a separate system for every assignment to the input gates; for the case of a cyclic
xor-circuit all these systems are linear and share the same matrix. For a gate G fed by gates F and H and
computing some operation ⊙, we write the equation G ⊕ (F ⊙H) = 0. A more specific clarifying example
would be a gate G computing F ⊕ x ⊕ 1, where x is an input gate; then the line in the system would be
G⊕F = x⊕1, where G and F contribute two 1’s to the matrix, and x⊕1 contributes to the constant vector.
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For a cyclic xor-circuit, this is a linear system with a square matrix. We call a cyclic xor-circuit fair if
this matrix has full rank. It follows that for every assignment of the inputs, there exist unique values for
the gates such that these values are consistent with the circuit (that is, for each gate its value is correctly
computed from the values in its inputs). Thus, similarly to an ordinary circuit, every gate in a fair circuit
computes a function of the values fed into its input gates (clearly, it is an affine function). An example of
a fair cyclic xor-circuit is shown in Figure 2. Note that if we additionally impose the requirement that the
graph is acyclic, we arrive at ordinary linear circuits (that is, circuits consisting of xor-type gates, passing
gates, and constant gates).

Relationship between cyclic and acyclic xor-circuits It is not difficult to show that for multiple
outputs, fair cyclic xor-circuits form a stronger model than acyclic xor-circuits. For example, the 9 functions
computed simultaneously by the cyclic xor-circuit shown in Figure 2 cannot be computed by an acyclic
xor-circuit with 9 gates. To see this, assume for the sake of contradiction, that an acyclic xor-circuit with 9
gates computes the same functions. Since the circuit has 9 gates all gates must compute outputs. Consider a
topologically minimal gate G. Such a gate exists since the circuit is acyclic. Since G is topologically minimal
it computes the sum of two input gates, therefore it cannot compute any output.

On the other hand, in the case of single-output circuits, cycles do not make the model stronger: a minimal
xor-circuit of k variables computing a single output has exactly k − 1 internal gates and is acyclic.

Semicircuits We introduce the following notion, called semicircuits, a generalization of both Boolean
circuits and cyclic xor-circuits.

A semicircuit is a composition of a cyclic xor-circuit and an (ordinary) circuit. Namely, its nodes can
be split into two sets, X and C. All input nodes belong to X, and the nodes in the set X form a cyclic
xor-circuit. The nodes in the set C form an ordinary circuit (if wires going from X to C are replaced by
variables). There are no wires going back from C to X. A semicircuit is called fair if X is fair.

3 Lower bound 3.01n for affine dispersers

This section is devoted to the proof of a (3+ 1
86 )n− o(n) lower bound on the circuit size of affine dispersers.

In this section, we abuse the notation by using the word “circuit” to mean a fair semicircuit.
The proof goes by induction. We start with an affine disperser and a circuit computing it on {0, 1}n.

Then we gradually shrink the space where it is computed by adding equations (“substitutions”) for variables.
This allows us to simplify the circuit by reducing the number of internal gates (and other parameters counted
in the complexity measure) and eliminating the variable we have just substituted. (The details come several
paragraphs below.)

In Subsection 3.1, we formally define a read-once depth-two quadratic source (a source of special type
arising from constant, affine, and quadratic equalities) that we later use instead of an affine source. We
prove that a disperser for affine sources is also a disperser for our generalized sources, and thus known
constructions of affine dispersers can be used for our needs.

In Subsection 3.2, we define the circuit complexity measure that allows us to perform “amortized” anal-
ysis. We need to define the notion of a so-called troubled gate here. Informally speaking, this is a gate
participating in a specific type of combinatorial fragment of a circuit that is a “bottleneck” for the proof:
namely, it does not allow to eliminate more than three gates easily. To overcome this difficulty, we use a
circuit complexity measure that depends on the number of troubled gates.

The main result formulated in this section is the following: we can always reduce the measure by an
appropriate amount by shrinking the space; the lower bound follows. The measure is defined as a linear
combination of four parameters of a circuit: the number of internal gates, the number of troubled gates, the
number of quadratic equalities, and the number of inputs. The optimal values of coefficients in this linear
combination come from solving a simple linear program.

Eventually, Subsection 3.3 employs all the developed techniques in order to prove the main lower bound of
this section modulo technicalities: substitution and transformation rules, and the case distinction argument.
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G1 = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8

G2 = x1 ⊕ x2 ⊕ x3 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8

G3 = x1 ⊕ x2 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8

G4 = x1 ⊕ x5 ⊕ x6 ⊕ x7 ⊕ x8

G5 = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6 ⊕ x8

G6 = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6

G7 = x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6

G8 = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x7 ⊕ x8

G9 = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x6 ⊕ x7 ⊕ x8

G1 = G9 ⊕ x5

G2 = G1 ⊕ x4

G3 = G2 ⊕ x3

G4 = G3 ⊕ x2

G5 = G1 ⊕ x7

G6 = G5 ⊕ x8

G7 = G6 ⊕ x1

G8 = G4 ⊕G7
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1 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0
1 0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 0 0
0 0 0 1 0 0 1 1 0
0 0 0 0 0 0 0 1 1


×



G1

G2

G3

G4

G5

G6

G7

G8

G9


=



x5

x4

x3

x2

x7

x8

x1

0
x6


Figure 2: An example of a cyclic xor-circuit that is more efficient than an ordinary circuit. In this case all
the gates are labeled with ⊕. The affine functions computed by the gates are shown below the circuit. The
bottom row shows the program computed by the circuit as well as the corresponding linear system.
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The details of transformation rules used to normalize and simplify the circuit are given in Subsection 3.4.
The simplest substitutions are replacing a variable by a constant or by an already computed function

of other variables. After defining them formally, we show how to make substitutions in fair semicircuits,
and how to normalize them afterwards. We introduce five normalizing transformations covering various
degenerate cases that may occur in a circuit after applying a substitution to it: e.g., a gate of outdegree 0,
a gate computing a constant function, a gate whose value depends on one of its inputs only. For each such
case, we show how to simplify a circuit.

We then proceed to a more complicated case: affine substitutions. This is the step that might potentially
introduce cycles in the affine part of a circuit and that requires to work with a generalized notion of circuits.

In order to balance our complexity measure, we need to analyze carefully how many new troubled gates
can be introduced by applying a normalizing transformation. At the same time, we show that a circuit
computing an affine disperser cannot have too many troubled gates (otherwise one could find an affine
subspace of a rather large dimension where the circuit outputs a constant). This implies that the bottleneck
case cannot appear too often during the gate elimination process.

Eventually, the complete case distinction argument for eliminating a part of the circuit of the required
measure is given in Subsection 3.5.

3.1 Read-once depth-2 quadratic sources

We generalize affine sources as follows.

Definition 3.1.1. Let the set of variables {x1, . . . , xn} be partitioned into three disjoint sets F,L,Q ⊆
{1, . . . , n} (for free, linear, and quadratic). Consider a system of equalities that contains

• for each variable xj with j ∈ Q, a quadratic equality of the form

xj = (xi ⊕ ci)(xk ⊕ ck)⊕ cj ,

where i, k ∈ F (i ̸= k) and ci, ck, cj are constants; every variable from F appears in the right-hand of
at most one quadratic equation;

• for each variable xj with j ∈ L, an affine equality of the form

xj =
⊕

i∈Fj⊆F

xi ⊕
⊕

i∈Qj⊆Q

xi ⊕ cj

for a constant cj .

A subset R of {(x1, x2, . . . , xn) ∈ Fn
2} that satisfies these equalities is called a read-once depth-2 quadratic

source (or rdq-source) of dimension d = |F |. The variables from the right-hand side of quadratic substitutions
are called protected. Other free variables are called unprotected.

An example of such a system is shown in Figure 3. In particular, the figure explains the name: the right-
hand side of each equality is computed by a depth-two circuit (with binary ∧-gates and unbounded fan-in
⊕-gates) and computes a Boolean function of degree at most two; also, each variable is read by an ∧-gate
at most once.

In the proof of the lower bound, we gradually build a straight-line program as follows. By analyzing the
structure of the current circuit, we find a free variable xj and a function p (of degree at most 2) so that:

1. Many gates become redundant in the circuit under the substitution x ← p. In particular, informally
x becomes disconnected from the circuit. (The formal details of transformations of circuits after the
substitutions are delayed to Subsection 3.4.)

2. Adding the equality x = p to the current rdq-source keeps it an rdq-source. In particular, x stops to be
free.
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x1 x2 x3 x4 x5 x6 x7 x8

∧x9 ∧ x10 ∧x11

⊕x12 ⊕x13 ⊕ x14

Figure 3: An example of an rdq-source. Note that a variable can be read just once by an and-type gate
while it can be read many times by xor-type gates.

Thus, a substitution is written as x← p and is used to shrink a circuit, where an equality is written as x = p
and is used to shrink the source. Below, we state formally possible ways to further restrict an rdq-source.

Lemma 3.1.1. Let R ⊆ Fn
2 be an rdq-source of dimension d specified by sets F,L,Q and a system of equal-

ities. Let xj ∈ F be a free variable of R. Then, adding any of the following equalities to R results in an rdq
source of dimension d− 1.

1. xj = c, where c ∈ {0, 1};

2. xj =
⊕

i∈I xi ⊕ c, where I ⊆ F ∪Q and c ∈ {0, 1}, provided xj is unprotected;

3. xj = (xi ⊕ ci)(xk ⊕ ck)⊕ cj, where i, j, k ∈ F and ci, ck, cj ∈ {0, 1}, provided that xj is unprotected;

4. xj = xi ⊕ c, where c ∈ {0, 1} and both xi and xj are protected free variables appearing in the same
quadratic equality in R.

Proof. After adding a new equality, the variable xj is not free anymore. For each of the four possibilities,
we show how to rewrite the existing equalities of R so that the properties of an rdq-source still hold.

1. We move j from F to L and replace every occurrence of xj by c in all (affine and quadratic) equalities
of R. If xj appears in the right-hand side of a quadratic equality, xj = c makes it affine. We then
move the corresponding variable from Q to L.

2. We move j from F to L. Since xj is unprotected, it does not appear in the right-hand side of quadratic
equalities. In (the right-hand side of) all affine equalities, we replace xj by

⊕
i∈I xi ⊕ c. This leaves

them affine.

3. We move j from F to Q. Since xj is unprotected, it does not appear in quadratic equalities. We do
nothing with affine equalities as they are allowed to contain variables from Q.

4. We move j from F to L. In every affine equality, we replace xj by xi ⊕ c. The only quadratic equality
involving xj becomes affine. The variable xi becomes unprotected.

The dimension of the rdq-source drops by one, as we remove exactly one variable from F .

In what follows, we abuse the notation by denoting by the same letter R the source, the straight-line
program defining it, and the mapping R : Fd

2 → Fn
2 computed by this program that takes the d free variables

and evaluates all other variables.

Definition 3.1.2. Let R ⊆ Fn
2 be an rdq-source of dimension d, let the free variables be x1, x2, . . . , xd, and

let f : Fn
2 → F2 be a function. The function f restricted to R, denoted f |R, is a function f |R : Fd

2 → F2,
defined by f |R(x1, . . . , xd) = f(R(x1, . . . , xd)).

Note that affine sources are precisely rdq-sources with Q = ∅. We define dispersers for rdq-sources
similarly to dispersers for affine sources.
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Definition 3.1.3. An rdq-disperser for dimension d(n) is a family of functions fn : Fn
2 → F2 such that for

all sufficiently large n, for every rdq-source R of dimension at least d(n), fn|R is non-constant.

Now we show that affine dispersers are also rdq-dispersers for related parameters, allowing us to prove
a lower bound on the complexity of affine dispersers by using the fact that they work as rdq-dispersers as
well.

Lemma 3.1.2. An affine disperser for dimension d is an rdq-disperser for dimension 2d. In particular, an
affine disperser for sublinear dimension is also an rdq-disperser for sublinear dimension.

Proof. We prove this lemma by showing that every rdq-sourse R ⊆ Fn
2 of dimension d contains an affine

subspace of dimension at least d/2.
For each quadratic equality xj = (xi ⊕ ci)(xk ⊕ ck) ⊕ cj of R, further restrict R by adding an equality

xi = 0. This replaces a quadratic equality by two affine equalities xi = 0 and xj = ci(xk ⊕ ck) ⊕ cj ; the
number of free variables decreases by one. Also, since the free variables do not occur in the left-hand side,
the newly introduced affine substitution is consistent with the previous affine substitutions.

Since the variables occurring on the right-hand side of quadratic equalities are disjoint, we have initially
that 2|Q| ≤ |F | = d, so the number of newly introduced affine equalities is at most d/2.

Note that it is important in the proof that protected variables do not appear in the left-hand side. The
proposition above is obviously false for quadratic varieties: no Boolean function can be non-constant on all
sets of common roots of n−o(n) quadratic polynomials. For example, the system of n/2 quadratic equalities
x1x2 = x3x4 = . . . = xn−1xn = 1 defines a single point, so any function is constant on this set.

3.2 Circuit complexity measure

Before we introduce our complexity measure, we define an important notion: troubled gate. Such gates
correspond to “bottlenecks” in our case analysis in Subsection 3.5, thus the number of them is important
for the measure.

Definition 3.2.1 (troubled gates). We say that an internal gate G is troubled if it satisfies the following
three criteria:

• G is an and-type gate of outdegree 1,

• the gates feeding G are input gates,

• both input gates feeding G have outdegree 2.

x y

∧G

Recall that we denote all and-type gates by ∧, and all xor-type gates by ⊕.
For a circuit C and an rdq-source R ⊆ Fn

2 , we define the following circuit complexity measure:

µ(C,R) = g + αQ · q + αT · t+ αI · i ,

where g is the number of internal gates in C, q is the number of quadratic equalities in R, t is the number of
troubled gates in C, and i is the number of influential input gates in C. We say that an input is influential
if it feeds at least one gate or is protected (recall that a variable is protected if it occurs in the right-hand
side of a quadratic equality in R). The constants αQ, αT , αI > 0 will be chosen later.

We will show later (Proposition 3.4.3) that when a gate is removed from a circuit by applying a normalizing
transformation the measure µ is reduced by at least β = 1−4αT . The constant αT will be chosen to be very
close to 0 (certainly less than 1/4), so β > 0.

In order to estimate the initial value of our measure, we need the following lemma.
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Lemma 3.2.1. Let C be a circuit computing an affine disperser f : Fn
2 → F2 for dimension d. Then the

number of troubled gates in C is less than n
2 + 5d

2 .

Proof. Let V be the set of the inputs, |V | = n. Assume to the contrary that t ≥ n
2 +

5d
2 . Let vi be the number

of variables feeding exactly i troubled gates. Since a variable feeding a troubled gate must have outdegree 2,
vi = 0 for i > 2. By double counting the number of wires from inputs to troubled gates, 2t = v1+2v2. Since
v1 + v2 ≤ n,

n+ 5d ≤ 2t = v1 + 2v2 ≤ n+ v2 (2)

To derive a contradiction, we construct an affine subspace S of Fn
2 of dimension at least d such that C is

constant on S. To do this, start with empty sets L and U . The set L will be populated by affine equations
defining the subspace S, the set U will contain variables that will remain unconstrained by L. Denote by T
the set of inputs that feed two troubled gates. By eq. (2), |T | = v2 ≥ 5d. Repeat the following step while
T is not empty.

Take any input x ∈ T , it feeds two troubled gates G1 and G2. Denote other variables feeding
G1 and G2 by y1 and y2. In what follows, we call two inputs feeding the same troubled gate
neighbors. Consider two cases.

1. y1 ̸= y2. The gates G1 and G2 compute operations (x⊕ a1)(y1 ⊕ b1)⊕ c1 and (x⊕ a2)(y2 ⊕
b2)⊕ c2. Note that if y1 = b1 and y2 = b2, then the function computed by the circuit does
not depend on x: both gates that are fed by x are constant under y1 = b1 and y2 = b2. Each
of y1 and y2 has at most one other neighbor in C. We remove x, y1, y2 and all neighbors of
y1, y2 (at most five variables in total) from T , we add x to U , and we add equalities y = b1
and y = b2 to L.

2. y1 = y2. Denote them by y. The gates G1 and G2 compute operations

(x⊕ a1)(y ⊕ b1)⊕ c1 and (x⊕ a2)(y ⊕ b2)⊕ c2 .

If a1 = a2, then C does not depend on x under y = a1. We update T,U, L as follows:
U = U ∪ {x}, T = T \ {x, y}, L = L ∪ {y = a1}. The case b1 = b2 is treated similarly.
Assume now that a1 = a2 ⊕ 1 and b2 = b1 ⊕ 1. Hence, G1 and G2 compute operations

(x⊕ a1)(y ⊕ b1)⊕ c1 and (x⊕ a1 ⊕ 1)(y ⊕ b1 ⊕ 1)⊕ c2 .

Consider an equality y = x ⊕ a1 ⊕ b1 ⊕ 1. For every assignment satisfying this equality,
C does not depend on x as both G1 and G2 are constant. We update T,U, L as follows:
U = U ∪ {x}, T = T \ {x, y}, L = L ∪ {y = x⊕ a1 ⊕ b1 ⊕ 1}.

At every step, we remove no more than five variables from T and add one variable to U . Since |T | ≥ 5d
initially, U contains at least d variables in the end of the process. The system of equalities L is consistent.
Indeed, at every step, we add an equality to L that has in the left-hand side a variable whose neighbor is
from T . Right after this, we remove both variables from T , so that no future iteration will try to assign
anything to them.

Thus, the circuit is constant on the affine subspace defined by the following equalities:

• all equalities from L;

• equalities z = 0 for all variables except for those from U and those from the left-hand side of equalities
from L.

Since the equalities from L make the circuit independent of all variables from U , the resulting affine subspace
has dimension at least d.

We are now ready to state a lower bound on the circuit complexity measure of rdq-dispersers.
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Theorem 3.1. Let f : Fn
2 → F2 be an rdq-disperser for dimension d and C be a fair semicircuit computing f

(thus, C computes f on an rdq-source R = Fn
2 defined by an empty straight-line program). Let 0 ≤ αQ, αI ,

0 ≤ αT ≤ 1/4 be constants. Then µ(C,Fn
2 ) ≥ δ · (n− d− 2) where the constant δ is defined as follows:

δ := αI +min
{αI

2
, 4β, 3 + αT , 2β + αQ, 5β − αQ, 2.5β +

αQ

2

}
, (3)

and
β = 1− 4αT .

We defer the proof of this theorem to Subsection 3.5. This theorem, together with Lemma 3.1.2, implies
a lower bound on the circuit complexity of affine dispersers.

Corollary 3.2.1. Let δ, β, αQ, αT , αI be constants as above, then the circuit size of an affine disperser for
sublinear dimension is at least (

δ − αT

2
− αI

)
n− o(n) .

Proof. Note that q = 0, i ≤ n, t < n
2 + 5d

2 (see Lemma 3.2.1). Thus, the circuit size is

g = µ− αQ · q − αT · t− αI · i

> δ(n− 2d− 2)− αT ·
(
n

2
+

5d

2

)
− αI · n

=
(
δ − αT

2
− αI

)
n−

(
2δ +

5αT

2

)
d− 2δ

=
(
δ − αT

2
− αI

)
n− o(n) .

The maximal value of δ − αT

2 − αI is given by the following linear program: maximize δ − αT

2 − αI

subject to

β + 4αT = 1

αT , αQ, αI , β ≥ 0

δ ≤ αI+min
{αI

2
, 4β, 3 + αT , 2β + αQ, 5β − αQ, 2.5β +

αQ

2

}
.

The optimal values for this linear program are

αT =
1

43
,

αQ = 1 + 22αT =
65

43
,

αI = 6 + 2αT = 6 +
2

43
,

β = 1− 4αT =
39

43
,

δ = 9 + 3αT = 9 +
3

43
.

This gives the main result of this section.

Theorem 1.1. The circuit size of an affine disperser for sublinear dimension is at least
(
3 + 1

86

)
n− o(n).
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3.3 Gate elimination

In order to prove Theorem 3.1 we first show that it is always possible to make a substitution and decrease
the measure by δ.

Theorem 3.2. Let f : Fn
2 → F2 be an rdq-disperser for dimension d, let R be an rdq-source of dimension

s ≥ d+ 2, and let C be a fair semicircuit computing the function f |R. Then there exist an rdq-source R′ of
dimension s′ < s and a fair semicircuit C ′ computing the function f |R′ such that

µ(C ′, R′) ≤ µ(C,R)− δ(s− s′) .

Before we proceed to the proof, we show how to derive the main theorem from this claim:

Proof of Theorem 3.1. We prove that, for any rdq-source R ⊆ Fn
2 of dimension s and any C computing f |R,

it holds that µ(C,R) ≥ δ(s−d−2). We do this by induction on s. Note that the statement is vacuously true
for s ≤ d + 2, since µ is non-negative. Now suppose the statement is true for all rdq-sources of dimension
strictly less than s for some s > d+2, and let R be an rdq-source of dimension s. Let C be a fair semicircuit
computing f |R. Let R′ be the rdq-source of dimension s′ whose existence is guaranteed by Theorem 3.2,
and let C ′ be a fair semicircuit computing f |R′ . We have that

µ(C,R) ≥ µ(C ′, R′) + δ(s− s′) ≥ δ(s− d− 2),

where the second inequality holds by the induction hypothesis.

We have just proved our main theorem, and we proceed to proving the statements whose proofs we de-
ferred.

3.4 Cyclic circuit transformations

3.4.1 Basic substitutions

In this section we consider several types of substitutions. Substitutions transform circuits into simpler (yet
not equivalent) ones.

Substituting an input with a constant is straightforward.

Substitution by a constant. Let C be a circuit with input gates x1, . . . , xn, and let c ∈ {0, 1} be a constant.
To make a substitution x1 ← c, for every gate G fed by x1, replace the operation g(x1, t) computed by G
with the operation g′(x1, t) = g(c, t) and remove a wire from x1 to G.

Proposition 3.4.1. Substitution of a variable x1 by a constant c transforms a circuit C into another circuit
C ′ (in particular, it is still a fair semicircuit) that has the same number of internal gates, the same topology,
and for every gate H that computes a function h(x1, . . . , xn) in C, the corresponding gate in the new circuit
C ′ computes the function h(c, x2, . . . , xn).

The substitution where an input x is replaced by an output of a different gate G is more complicated. In
this case, in each gate fed by x, we replace the wires coming from x by the wires coming from G.

Substitution by a function. Let C be a circuit with input gates x1, . . . , xn, let g(x2, . . . , xn) be a function
computed by a gate G unreachable from x1 by a directed path in C, and let c ∈ {0, 1}. To make a substitution
x1 ← G⊕ c, for every gate H fed by x1, replace a wire from x1 to H by a wire from G to H; if c = 1, negate
the corresponding operand in the operation computed by H.

The picture below gives an example. We replace x1 by the negation of (the function computed at) G.
The operation x⊕ y computed at one of the successors of x1 is replaced by x ≡ y = x⊕ y⊕1. The operation
x ∧ y computed at the other successor is replaced by x < y = x ∧ y.
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x1

G

⊕ ∧ x1 ← G⊕ 1

x1

G

≡ <

Proposition 3.4.2. Substitution by a function g(x2, . . . , xn) for a variable x1 transforms a circuit C into a
circuit C ′ that is still a fair semicircuit, and for every gate H that computes a function h(x1, . . . , xn) in C,
except for x1, the corresponding gate in the new circuit C ′ computes the function h(g(x2, . . . , xn), x2, . . . , xn).

This substitution may introduce a new troubled gate only in the following case out(x1) = 1, x1 feeds an
and-gate, and G is an input 1-gate.

Proof. Note that we require that G is not reachable from x1 (thus we do not introduce new cycles), and also
that g does not depend on x1. Functions computed in the gates are the solution of the system corresponding
to the circuit (see Subsection 2.3). The transformation simply replaces every equation of the formH = F⊙x1

with the equation H = F ⊙G (and every equation of the form H ′ = x1⊙x1 with the equation H ′ = G⊙G).
In order to prove that C ′ is a fair semicircuit, we show that for each assignment to the inputs, there

is a unique assignment to the gates of C ′ that is consistent with the inputs. Consider specific values for
x2, . . . , xn and the value g(x2, . . . , xn) for x1. Assume that the solution for the old system does not satisfy
the new equation. Then it violates the corresponding equation in the old system, a contradiction. Vice versa,
consider two different solutions for the new system. Both of them (augmented with x1 = g(x2, . . . , xn)) must
satisfy the old system, but the old system has a unique solution.

The only gates that could potentially become troubled are the successors of x1. Let A be such a gate.
After the substitution, it is fed by G. Hence, A may become troubled only if G = xi is an input gate and
out(G) = 2 after the substitution. Since after the substitution, the outdegree of G is increased by out(x1),
we conclude that before the substitution it holds that out(x1) = out(G) = 1.

In what follows, however, we will also use substitutions that do not satisfy the hypothesis (G is unreachable
from x1) of this proposition: substitutions that create cycles. We defer this construction to Subsection 3.4.3.

3.4.2 Normalization

In order to work with a circuit, we are going to assume that it is “normalized”, that is, it does not contain
obvious inefficiencies (such as trivial gates, etc.), in particular, those created by substitutions. We describe
certain normalizing transformations below; however, while normalizing we need to make sure the circuit
remains within certain limits: in particular, it must remain fair and compute the same function. We need
to check also that we do not “spoil” a circuit by introducing “bottleneck” cases (namely, troubled gates, see
Definition 3.2.1).

In order to count the number of troubled gates, we limit normalizing transformations of the circuit to
a few very specific cases described below and make sure that we never get more than four new troubled gates
per eliminated gate.

We say that a circuit is normalized if none of the following transformations is applicable to it. Each
transformation eliminates a gate G whose inputs are gates I1 and I2. (Note that I1 and I2 can be inputs or
internal nodes, and, in the case where a cyclic part has been modified, they can coincide with G itself.)

Transformation 1: If G has no outgoing edges and is not marked as an output, then remove it.

I1 I2

G

I1 I2

Note also that it could not happen that the only outgoing edge of G feeds itself, because this would make a
trivial equation and violate the circuit fairness.

Transformation 2: If G is trivial, i.e., it computes a constant function c of the circuit inputs (not
necessarily a constant operation on the two inputs of G), remove G and “embed” this constant to the next
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gates. That is, for every gate H fed by G, replace the operation h(g, t) computed in this gate (where g is the
input from G and t is the other input) by the operation h′(g, t) = h(c, t). (Clearly, h′ depends on at most one
argument, which is not optimal, and in this case after removing G one typically applies Transformation 3
or 2 to its successors.)

I1 I2

G

I1 I2

Transformation 3: If G is passing, i.e., it computes an operation depending only on one of its inputs,
remove G by reattaching its outgoing wires to that input. This may also require changing the operations
computed at its successors (the corresponding input may be negated; note that an and-type gate (xor-type
gate) remains an and-type gate (xor-type gate)).

If G feeds itself and depends on another input, then the self-loop wire (which would now go nowhere) is
dropped. (Note that if G feeds itself it cannot depend on the self-loop input.)

IfG has no outgoing edges it must be an output gate (otherwise it would be removed by Transformation 1).
In this special case, we remove G and mark the corresponding input of G (or its negation) as the output
gate.

I1 I2

G

I1 I2

Transformation 4: If G is a 1-gate that feeds a single gate Q, Q is distinct from G itself, and Q is also fed
by one of G’s inputs, then replace in Q the incoming wire going from G by a wire going from the other input
of G (this might also require changing the operation at Q); then remove G. We call such a gate G useless.

I1 I2

G

Q

I1 I2

Q

Transformation 5: If the inputs of G coincide (I1 and I2 refer to the same node) then we replace the
binary operation g(x, y) computed in G with the operation g′(x, y) = g(x, x). Then perform the same
operation on G as described in Transformation 3 or 2.

Proposition 3.4.3. Each of the Transformations 1–5 removes one internal gate, and introduces at most
four new troubled gates. An input gate that was not connected by a directed path to the output gate cannot
be connected by a new directed path1. None of the transformations change the functions of n input variables
computed in the gates that are not removed. A fair semicircuit remains a fair semicircuit.

Proof. Fairness. The circuit remains fair since no transformation changes the set of solutions of the system.
New troubled gates. For all the transformations, the only gates that may become troubled are I1, I2

(if they are and-type gates), and the gates they feed after the transformation (if I1 or I2 is a variable).
Note that other gates cannot generate troubled gates during a particular transformation (they can do it
in the next transformation, but this Proposition considers a single transformation). In Transformation 2
they may become constant (thus not and-type) and could change the degree only of a disappearing gate. In
Transformations 3 and 4 they are fed by I1, I2, so if they become troubled themselves, this is already counted
for I1, I2; these transformations do not change degrees of any other gate. Transformation 5 just replaces an
operation with a unary one, so all troubled gates appear in the subsequent Transformation 2 or 3.

It is clear from the figures that during a single transformation each of I1, I2 may create at most two new
troubled gates: troubled gates appear if

1This trivial observation will be formally needed when we later count the number of such gates.
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• an and-type gate changes its outdegree from 2 to 1,

• an input of the circuit changes its outdegree to 2,

• an and-type gate becomes feeded by an input of the circuit.

Hence each transformation, when applied, introduces at most four new troubled gates.
(A typical case where exactly four troubled gates are introduced is where I1, I2 are circuit inputs, we

change their outdegrees to two, and their descendants are distinct and-type gates of indegree one and
outdegree one.)

3.4.3 Affine substitutions

In this section, we introduce more complicated substitutions that do create cycles. This will be needed in
order to perform affine substitutions.

Our particular goal is to apply a substitution of the form x1 ←
⊕

i∈I xi ⊕ c ⊕ b without computing its
right-hand side explicitly. For this, we replace a gate computing an affine function x1 ⊕

⊕
i∈I xi ⊕ c (where

c ∈ {0, 1} is a constant) by a trivial gate computing a constant b ∈ {0, 1}, while x1 is replaced by an internal
gate computing the function

⊕
i∈I xi ⊕ c ⊕ b, when the subcircuit for computing this function is already

present in the circuit. The details of this transformation are given in Lemma 3.4.2.
In order to prove a formal statement about the result of this substitution, we need to generalize the

terminology to xor-circuits and prove a structural lemma (which would be trivial for acyclic circuits).
For an xor-circuit, we say that a gate G depends on a variable x if G computes an affine function in which

x is a term. Note that in a circuit without cycles this means that precisely one of the immediate predecessors
(arguments) of G depends on x, and one could trace this dependency all the way to x, therefore there always
exists a path from x to G. In the following lemma we show that it is always possible to find such a path in
a fair cyclic circuit too. However, the functions computed in gates of a cyclic circuit result as a solution of a
system of equations and are not just consequent compositions like it is in the case of ordinary circuits, thus
it may be possible that some nodes on this path do not depend on x. (For example, in Figure 2, gate G4 is
fed by x2 but does not depend on it.)

Lemma 3.4.1. Let C be a fair cyclic xor-circuit, and let the gate G depend on the variable x. Then there
is a path from x to G.

Proof. Let R be the set of internal gates that are reachable from x, and U be the set of internal gates that
are not reachable from x. Let us enumerate the gates in such a way that gates from U have smaller indices
than gates from R. Then the circuit C corresponds to the system[

U 0
R1 R2

]
× G =

[
LU

LR

]
,

where G = (g1, . . . , g|C|)
T is the vector of unknowns (the gates’ values), U is the principal submatrix corre-

sponding to U (a square submatrix whose rows and columns correspond to the gates from U). Note that the
upper right part of the matrix is 0, because there are no wires going from R to U .

Since the value of G depends on the input x, there is an assignment α to all other inputs such that G’s
value is different in the two cases where (LU , LR) corresponds to (α, x = 0) and to (α, x = 1). However,
LU does not change when the value of the single input x changes (as x does not appear in this vector of
constants; recall that it also includes the inputs).

Note that the submatrix U must be non-singular, because otherwise the whole matrix would be singular,
which would contradict the fairness of C, so U × G′ = LU determines the values of G′ uniquely. Therefore,
the values of unreachable gates are uniquely determined by α and do not depend on x.

We now come to rewiring. Let G be a gate computing x1 ⊕
⊕

i∈I xi ⊕ c and not reachable by a directed
path from any and-type gate, and let b ∈ {0, 1} be a constant. In order to perform a substitution x1 =
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⊕
i∈I xi ⊕ c ⊕ b, we define the affine substitution transformation of a circuit (see Figure 4). Consider a

path from x1 to G that is guaranteed to exist by Lemma 3.4.1. Denote the internal gates on this path by
G1, . . . , Gk = G. Denote by T1, . . . , Tk the other inputs of these gates. Note that we assume that G1, . . . , Gk

are pairwise different gates while some of the gates T1, . . . , Tk may coincide with each other and with some
of G1, . . . , Gk (it might even be the case that Ti = Gi).

The affine substitution transformation adds a new internal gate Z. to the circuit. For every i > 1, the
wire from Ti to Gi is replaced by a wire from Ti to Gi−1, and the wire from T1 to G1 is replaced by a wire
from T1 to Z. For every i ≥ 1, the wire from Gi to Gi+1 is replaced by a wire from Gi+1 to Gi, and the wire
from x1 to G1 is replaced by a wire from G1 to Z.

An example of the affine substitution transformation is shown in Figure 4 (where k = 4 for the sake
of example). The gates A0, . . . , Ak are shown on the picture just for convenience: any of x1, Z,G1, . . . , Gk

may feed any number of gates, not just one Ai. In the following lemma we summarize important properties
of this transformation.

Lemma 3.4.2. Let C be a fair semicircuit with input gates x1, . . . , xn and internal gates G1, . . . , Gm.
Let G be a gate not reachable by a directed path from any and-type gate. Assume that G computes the
function x1 ⊕

⊕
i∈I xi ⊕ c, where I ⊆ {2, . . . , n}. Let b ∈ {0, 1} be a constant. Then the affine substitution

transformation applied to C results in a new circuit C ′ with the following properties:

1. C ′ has the same gates as C, plus a new internal gate Z; x1 is disconnected from the circuit;

2. the operation in G is replaced by the constant operation b;

3. inC′(Z) = 2, outC′(G) = outC(G) + 1, outC′(x1) = 0, outC′(Z) = outC(x1)− 1.

4. The indegrees and outdegrees of all other gates are the same in C and C ′.

5. C ′ is fair.

6. all gates common for C ′ and C compute the same functions on the affine subspace defined by x1 ⊕⊕
i∈I xi ⊕ c ⊕ b = 0, that is, if f(x1, . . . , xn) is the function computed by an internal gate in C and

f ′(x2, . . . , xn) is the function computed by its counterpart in C ′, then f(
⊕

i∈I xi ⊕ c⊕ b, x2, . . . , xn) =
f ′(x2, . . . , xn). The gate Z computes the function

⊕
i∈I xi ⊕ c⊕ b (which on the affine subspace equals

x1).

Proof. The first four items of the lemma follow from the definition of the transformation.
To show the fairness of C ′ (the fifth item), assume the contrary, that is, the sum of a subset S of rows of

the new matrix is zero. There are two differences between the programs corresponding to linear parts of C
and C ′: instead of G1 ⊕ T1 = x1, C

′ contains G1 ⊕ T1 ⊕ Z = 0; additionally, C ′ contains Gk = b. If the
set of rows S contains the row corresponding to G1 ⊕ T1 ⊕ Z = 0, then the same rows of C (without the
Z-column) also sum up to zero. Hence, S must contain the row for Gk = b. However, this would mean that
if we sum up the corresponding equations for C, we get Gk = const⊕

⊕
j∈J xj where J ̸∋ 1 (note that x1 was

replaced by Z in the new system, and cancelled out by our assumption). This contradicts the assumption
of the lemma that Gk computes the function x1 ⊕

⊕
i∈I xi ⊕ c. Therefore, the matrix for C ′ has full rank.

The programs shown next to the circuits explain that for x1 =
⊕

i∈I xi ⊕ c ⊕ b, the gates G1, . . . , Gk

compute the same values in C ′ and C. Indeed, G = Gk in C computes x1⊕
⊕

i∈I xi⊕ c (by the statement of

the lemma). From the structure of C, we see that this is x1 ⊕
⊕k

i=1 Ti, i.e.,
⊕k

i=1 Ti =
⊕

i∈I xi ⊕ c), which
is b under x1 =

⊕
i∈I xi ⊕ c ⊕ b (and it is set to b in C ′). Then, looking at the systems shown next to the

circuits and summing up the lines Gi = Gi−1 ⊕ Ti (resp., Gi−1 = Gi ⊕ Ti) and using Gk = b we see that for

i ≥ 2, Gi =
⊕k

j=i+1 Tj in both cases. Then summing up the lines we also see that G1 computes Gk⊕
⊕k

i=2 Ti

in C and G1 computes b⊕
⊕k

i=2 Ti in C ′. Since Z = G1⊕ T1 in C ′, the value of Z is G1⊕ T1 = b⊕
⊕k

i=1 Ti

is also clearly correct.

Corollary 3.4.1. The affine substitution transformation does not introduce new troubled gates.
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A0
x1

⊕
G1A1 T1

⊕
G2A2 T2

⊕
G3A3 T3

⊕
G4 = G

A4 T4

G1 = x1 ⊕ T1

G2 = G1 ⊕ T2

G3 = G2 ⊕ T3

G4 = G3 ⊕ T4


1 1 0 0 0 0 0 0
1 0 1 1 0 0 0 0
0 0 1 0 1 1 0 0
0 0 0 0 1 0 1 1

×



G1

T1

G2

T2

G3

T3

G4

T4


=


x1

0
0
0



A0
⊕
Z

⊕
G1A1 T1

⊕
G2A2 T2

⊕
G3A3 T3

b
G4 = G

A4 T4

Z = G1 ⊕ T1

G1 = G2 ⊕ T2

G2 = G3 ⊕ T3

G3 = G4 ⊕ T4

G4 = b


1 1 0 0 0 0 0 0 1
1 0 1 1 0 0 0 0 0
0 0 1 0 1 1 0 0 0
0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 1 0 0

×



G1

T1

G2

T2

G3

T3

G4

T4

Z


=


0
0
0
0
b



Figure 4: Transformation from Lemma 3.4.2. We use ⊕ as a generic label for xor-type gates. That is, in the
picture, gates labelled ⊕ may compute the function ≡.

Proof. In C ′, the gates Z,G1, . . . , Gk−1 are xor-type; the operation computed by Gk is constant; the gate
A0 is fed by a xor-type gate; for the gates T1, . . . , Tk we don’t change their type nor their inputs. All other
gates are the same as in C.

After we apply the transformation, we apply Transformation 2 to G. Since the only troubled gates
introduced by this transformation are the inputs of the removed gate, no troubled gates are introduced
(and one gate, G itself, is eliminated, thus the combination of Lemma 3.4.2 and Transformation 2 does not
increase the number of internal gates). Note also that even if G computes x1 ⊕ c (i.e., I = ∅), it is still
an internal gate, so that the gates it feeds cannot be troubled.

3.5 Gate elimination: Full proof

Let C be a circuit. By normalize(C) we mean a circuit resulting from the following procedure: while at least
one of the Transformations 1–5 is applicable to C, apply the first such transformation. We say that C is
normalized, if none of of the transformation rules is applicable to C (in other words, C = normalize(C)).

Lemma 3.5.1. Let C be a circuit computing f |R for a function f : Fn
2 → F2 and an rdq-source R ⊆ Fn

2 . Let
also αT ≤ 1/4. Then, normalize(C) is a circuit computing f |R such that

µ(normalize(C), R) ≤ µ(C,R)

Proof. Transformations 1–5 do not change the function computed by a circuit and do not affect an underlying
rdq-source. Each of them eliminates an internal gate from a circuit, introduces at most four new troubled
gates (see Proposition 3.4.3), and does not increase the number of influential input gates. Thus, each
application of a transformation rule decreases µ by at least (1− 4αT ) ≥ 0.

We now present the proof of Theorem 3.2.
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Proof of Theorem 3.2. Overview. In the proof of the theorem we perform a single step of the amortized
complexity analysis of a circuit and an rdq-source. In this step we simplify this pair by substituting a single
variable (or more) and/or modifying the rdq source (for example, by adding an equation to it), and it allows
us to reduce the complexity of the circuit where the reduction is measured using the measure µ. The circuit
simplification is being made using the transformation rules from subsection 3.4 (from simple ones that result
from substitutions by constants to the most complicated ones that create cycles). We prove that for every
circuit and rdq-source we are able to reduce the measure by the required amount, and it requires considering
multiple cases.

Details. Since normalization does not change R and does not increase µ(C,R), for proving a lower bound
on µ(C,R) one may assume that C is normalized.

Assume that the rdq-source R ⊆ Fn
2 is specified by sets F,L,Q. In what follows, we will further restrict R

by decreasing the number of free variables either by one or by two, then we will implement these substitutions
in C and normalize C afterwards. Formally, we do it as follows:

• We add an equality or two to R where each equality is of one of the four types stated in Lemma 3.1.1.

• Since the circuit C computes the disperser on the smaller set R ⊆ Fn
2 , some gates of C become

redundant. (For example, if we add an equality x2 ← x1 ⊕ x3 ⊕ 1 to R, then a gate computing
x1 ⊕ x2 ⊕ x3 is equal to 1 on all points x ∈ R.) We simplify C as follows.

– Change the operations in the gates fed by the substituted variables or restructure the xor part of
the circuit according to Lemma 3.4.2.

– After then, apply normalizing transformations to eliminate some gates (and disconnect substituted
variables).

• We estimate the decrease of µ.

Thus, the gates are eliminated from the circuit by normalizing transformations only. This allows us to keep
track of the newly introduced troubled gates via Proposition 3.4.3 that ensures that every gate eliminated by
a normalizing transformation introduces at most four new troubled gates. This also shows that normalizing
transformations serve two purposes: to assume that we are dealing with a normalized circuit that does not
contain obvious inefficiencies and to eliminate gates that become redundant after adding a new equality to R.

Since s ≥ d+2, even if we add two more equalities to R, the disperser will not become a constant. This,
in particular, implies that if a gate becomes constant, then it is not an output gate and hence feeds at least
one other gate. By going through the possible cases we will show that it is always possible to perform one
or two consecutive substitutions matching at least one of the following types. By ∆µ we denote the decrease
of µ after subsequent normalization.

Types of substitutions

1. Perform two consecutive affine substitutions to reduce the number of influential inputs by three.
That is, for two different variables xj , xk ∈ F , add equalities xj = ⊕i∈Ixi ⊕ c and xk = ⊕i∈I′xi ⊕ c′

to R, then change some wires and gate operations in C, then normalize C. If normalization reduces
the number of influential inputs by three, then ∆µ ≥ 3αI . Per one substitution, this gives ∆µ ≥ 1.5αI .

2. Perform one affine substitution to reduce the number of influential inputs by two: ∆µ ≥ 2αI . (This
is done similarly to the previous case.)

3. Perform one affine substitution to eliminate four internal gates. That is, for a variable xj ∈ F , add
an equality xj = ⊕i∈Ixi⊕ c to R, then change some wires and gate operations in C, then normalize C.
If normalization removes four internal gates, then ∆µ ≥ 4β + αI .

4. Perform one constant substitution to eliminate three internal gates including at least one troubled
gate so that no new troubled gate is introduced. That is, for a variable xj ∈ F , add an equality
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xj = c to R, then change some wires and gate operations in C, then normalize C. If normalization
removes three (internal) gates, one of which is troubled, and does not introduce new troubled gates,
then ∆µ ≥ αI + 3 + αT .

5. Perform one quadratic substitution to eliminate five internal gates. That is, for a variable xj ∈ F ,
add an equality xj = (xi ⊕ a)(xj ⊕ b) ⊕ c to R, then change some wires and gate operations in C,
then normalize C. If normalization removes five gates, then ∆µ ≥ 5β − αQ + αI (the αQ summand
corresponds to the newly introduced quadratic equality).

6. Perform two affine substitutions to eliminate five internal gates and replace a quadratic equality
by an affine one. That is, for two different variables xj , xk ∈ F , add equalities xj = ⊕i∈Ixi ⊕ c and
xk = ⊕i∈I′xi⊕ c′ to R, then change some wires and gate operations in C, then normalize C. If adding
these two equalities replaces a quadratic equality in R by an affine one and if normalization eliminates
five internal gates, then ∆µ ≥ 5β + αQ + 2αI . Per one substitution, this gives ∆µ ≥ 2.5β +

αQ

2 + αI .

7. Perform one affine substitution to eliminate two internal gates and replace one quadratic equality
by an affine one. That is, for a variable xj ∈ F , add an equality xj = ⊕i∈Ixi⊕c to R, then change some
wires and gate operations in C, then normalize C. If adding this equality replaces a quadratic equality
in R by an affine one and if normalization eliminates two internal gates, then ∆µ ≥ 2β + αQ + αI .

All substitutions that we perform are of the form such that adding the corresponding equality to the
rdq-source results in a new rdq-source (recall Lemma 3.1.1). Note also that δ is defined (recall Equation (3))
as the minimum of the lower bounds on ∆µ given in the seven cases above.

We check all possible cases of (C,R). In every case, we assume that the conditions of the previous cases
are not satisfied. We also rely on the specified order of applications of the normalizing transformations where
applicable.

Recall that Proposition 3.4.3 guarantees that each of the Transformation rules introduces at most 4 trou-
bled gates while eliminating an internal gate. Thus, β = 1− 4αT is the minimum guaranteed decrease of the
measure per one eliminated gate. Due to our choice of β ≥ 0, if some additional gate disappears during the
process, it may introduce new troubled gates but does not increase the measure.

In all the cases below, we use the following observation. Assume that a gate A is fed by gates P and Q
such that P is constant on all points of the underlying rdq-source R ⊆ Fn

2 . This means that A depends
on Q only and computes one of the following four functions: 0, 1, Q,Q. This, in turn, means that A can
be eliminated by either Transformation 2 or Transformation 3.

Cases

Case 1. There is a protected (w.r.t. R) variable x that feeds in C either an and-type gate or at least two
internal gates. In this case, one can eliminate two gates as follows.

x
protected

BA

If x feeds two gates A and B, assign 0 to it: add an equality x = 0 to R, change operations computed
in A and B to passing, and apply Transformation 3 to eliminate these two gates. Since assigning
a constant to x removes a quadratic substitution from R (recall that x is protected w.r.t. R), this gives
a type 7 substitution.

x
protected

∧A
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If x feeds an and-type gate A, assign x the constant c that forces A to compute a constant b: add
an equality x = c to R; change the operation in A to b and change the operation in its descendant
to passing; apply Transformations 2 and 3 to remove these two gates. Again, assigning a constant to x
removes a quadratic substitution from R which results in a type 7 substitution.

Case 2. The rdq-source R contains a quadratic equality involving protected variables x and x′ such that x is
a 0-variable in C (i.e., it feeds no gates). Then, we assign 0 to x′: add an equality x′ = 0 to R, replace
the quadratic equality by an affine one, make the corresponding changes to C and normalize it. After
this, neither x nor x′ are influential, so we have a type 2 substitution.

Note that after this case all protected variables are 1-variables feeding xor gates.

Case 3. There is a variable x feeding an and-type gate T , and out(x) + out(T ) ≥ 4. Let c be the constant
such that T becomes a constant b when x = c. Then, we add an equality x = c to R, replace x by c
in C, and normalize C. Below, we show that normalization eliminates four gates from C, leading to
a type 3 substitution.

Note that normalization removes all descendants of x and T . If T and x have no common descendants,
this already gives four gates, so assume that they do share descendants and denote by A one of such
gates.

x

∧ T

A

Under x = c, A becomes constant, too. Hence, A cannot be an output gate (the dimension of the
disperser is at least d + 2, hence one cannot trivialize the circuit by a single substitution). Thus,
one eliminates T , A, and all descendants of x, T , and A. If there are two such gates, one gets four
eliminated gates. If there is a single such gate, it must be a descendant of A and one of x and T . Then,
this descendant also turns into a constant, hence it is not an output gate, and hence all its descendants
are also eliminated.

Note that after this case all variables feeding and-gates have outdegree one or two.

Case 4. There is an and-type gate T fed by two input gates x and y, one of which (say, x) has outdegree 1.

In this and all the subsequent pictures, we show the outdegrees near the gates that are important for
the case analysis, similarly to the picture corresponding to the present case.

x
1

y
1+

∧T

We substitute y by the constant trivializing T . This removes the dependence on x and y (which are
both influential and unprotected), a type 2 substitution.

Case 5. There is an and-type gate T fed by two input gates x and y, and at this point (due to the cases 3
and 4) we have out(T ) = 1 and out(x) = out(y) = 2, that is, T is troubled. We call the gates
as described in the following picture:

x
2

y
2

∧T
1

D

B C
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x
2

y
2

∧T
1

D

B C

Case 5: assigning x the constant trivializing T eliminates three gates including the trou-
bled gate T . If this does not introduce any other troubled gate, we get ∆µ ≤ 3+αI +αT

(type 4). Subcases consider all possibilities when a new troubled gate appears after
eliminating the gates B, D, and T .

Case 5.1: B = C. Case 5.2: D feeds B and C.

Case 5.2.1:
out(B) ≥ 2.

Case 5.2.2:
out(B) = 1.

Case 5.3: B feeds D, D feeds C.

Case 5.4. We can now assume that B and D are not connected in any direction.
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Case 5.4.1:
D feeds a new
troubled gate un-
der the substitution
of x. The troubled
gate E gets a vari-
able z from D.

Case 5.4.1.1: out(z) ≥ 2.

Case 5.4.1.1.1:
out(B) ≥ 2.

Case 5.4.1.1.2:
out(B) = 1.

Case 5.4.1.2: D is
an and.

Case 5.4.1.3: z is
protected.

Case 5.4.1.4: z is
unprotected and D
is an xor.

x
2

y
2

∧T

D

B
1+

C

∧
E

z

t
1+ Case 5.4.2:

B feeds a new
troubled gate E.

Case 5.4.2.1:
out(B) ≥ 2.

Case 5.4.2.2:
out(B) = 1.

Figure 5: Subcases of Case 5.

Since the circuit is normalized, B ̸= D and C ̸= D (Transformation 4). One eliminates B, T,D
by substituting the constant to x that trivializes T . If, in addition to the three gates, one more gate
is eliminated by normalization, we are done (substitution of type 3). Otherwise, we have just three
gates, but the troubled gate T is eliminated. If no new troubled gate is introduced during normalization,
it makes a substitution of type 4. Likewise, if this is the case for a substitution to y, we are done.

In the remaining subcases of Case 5 we will be dealing with the situation where only three gates are
eliminated while one or more troubled gates are introduced (see Figure 5).

Note that a new troubled gate is introduced only if something has happened around some and-type
gate E, which becomes a new troubled gate. Consider the case we are substituting x (not y). Whatever
has happened, it is due to two gates, B and D, that became passing (if some of them became trivial,
then one more gate would be removed).

Denote by P and Q the two gates that feed B and D, respectively. Then, after the normalization the
circuit looks as follows.
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x← c

y
1

C

P

Q

The gates B and D become passing, so after the normalization, P feeds the successors of B and Q feeds
the successors of D. Thus, the out-degree of P and Q cannot decrease and hence these two gates cannot
become troubled after the normalization. Thus, the only gates that could potentially become troubled
are the successors of B and D.
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The plan for the following cases is to exploit the local topology, that is, possible connections between
B, D, and C. First we consider “degenerate” cases where these gates are locally connected beyond
what is shown in the figure in Case 5. After this, we continue to the more general case.

Case 5.1. B = C.

x
2

y
2

∧T
1

D

B

We show that it is possible to trivialize both T and B by a single affine substitution, giving a
substitution of type 2 (x and y are unprotected so the number of influential variables drops by 2).
Assume that T computes the operation (x⊕ a)(y⊕ b)⊕ c where a, b, c ∈ {0, 1}. If B is an ⊕-type
gate, it computes x ⊕ y ⊕ d for d ∈ {0, 1}. Then, under the substitution x ← y ⊕ a ⊕ b ⊕ 1
both T and B trivialize (the gate T evaluates to c, since, under the considered substitution,
x⊕ a = y⊕ b⊕ 1 and hence (x⊕ a)(y⊕ b) = 0). Assume now that B is an ∧-type gate computing
(x⊕a′)(y⊕b′)⊕c′ for a′, b′, c′ ∈ {0, 1}. If either a = a′ or b = b′, then the two gates are trivialized
by either x← a or y ← b′. Hence, the only remaining case is when a′ = a⊕1 and b′ = b⊕1. In this
case, a substitution x← y⊕ a⊕ b⊕ 1 trivializes T and B: B computes (x⊕ a⊕ 1)(y⊕ b⊕ 1)⊕ c′

and this product is equal to 0 under the substitution.

Case 5.2. D feeds both B and C.
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In this case, a new troubled gate may emerge (after substituting x to trivialize T and normalizing)
only because D is fed by a variable u, and it is passed to some and-type gate E. Note that
out(D) ≤ 2, because otherwise u would become a 3-variable and E would not become troubled.
Therefore, u cannot be passed by D to E directly, it is passed via B.

Case 5.2.1. out(B) ≥ 2.
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Even if out(u) = 1, it must be that C = E or that B feeds C, because otherwise u would
become a 3-variable after substituting x. Below we show that neither is possible.
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If C = E, we have that B = D and y = z (E is fed by B, whereas C is fed by y and D;
hence, if C = E, then the in-degree of C is more than two unless B = D), contradicting the
assumption that D ̸= B (from Case 5). If B feeds C, we have that B = D, which contradicts
the assumption that B ̸= D from Case 5.

Case 5.2.2. out(B) = 1.
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We can substitute constants for z, to make B a 0-gate, and for y, to trivialize T . This way x
ceases to be influential, and we have ∆µ ≥ 3αI for two substitutions (type 1).

Note that after this case we can assume that D does not feed B. If it does, we switch the roles of
the variables x and y.

Case 5.3. B feeds D and D feeds C.
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Substituting y to trivialize T removes T , D, and C. Now we show that this substitution introduces
no new troubled gates, which contradicts our assumption about new troubled gates. The gates C
and D are passing the internal gate B. Thus, the gate that used to be fed by C is now fed by B,
therefore, locally nothing changed for this gate. The only gate that now locally looks differently
is the gate B, but it is now fed by the variable x of degree 1, and, therefore, is not a troubled
gate.

Case 5.4. We can now assume that there is no wire between B and D.

Indeed, if B feeds D, we can switch the roles of x and y unless C feeds D (impossible, because
then D has three inputs: T , B, and C) or unless we switched x and y before (that is, D feeds C,
Case 5.3).

Case 5.4.1. D feeds a new troubled gate under the substitution of x. The troubled gate E gets some
variable z from D (directly, as D and B are not connected).
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Case 5.4.1.1. out(z) ≥ 2. Then, out(D) = 1 and E is fed by another variable t either directly or via
B.
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If E is fed by another variable t, we substitute t to trivialize E. Then, E is eliminated
by Transformation 2, its descendant becomes either passing or constant and is eliminated
by Transformation 3 or 2. Also, the gate D becomes a 0-gate and is eliminated by Trans-
formation 1. Then, T is eliminated by Transformation 1, giving a type 3 substitution.
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In the latter case when B is fed by t so that after normalizing, E is fed by t, we consider
two subcases.

Case 5.4.1.1.1. out(B) ≥ 2.
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In this case, B is an xor-type gate (see Case 3), and by substituting x = t ⊕ c for the
appropriate constant c, we can make B a constant trivializing E and eliminate two
more descendants of B and E, a type 3 substitution. (If there is just a single gate fed
by B and E, then it becomes constant under the substitution, so at least one more
descendant of this gates is eliminated.)

Case 5.4.1.1.2. out(B) = 1.
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We set z and y to constants trivializing T and E, respectively. Then B becomes a
0-gate and is eliminated, which means that x becomes a 0-variable. We then get a
substitution of type 1.

We can now assume that out(z) = 1 and thus out(D) ≥ 2, because z must get outdegree
two in order to feed the new troubled gate.
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Case 5.4.1.2. D is an and-type gate.
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Substituting z by the appropriate constant trivializes D and eliminates both gates that
it feeds (recall that out(D) ≥ 2); also T becomes a 0-gate, a type 3 substitution.

Case 5.4.1.3. z is protected (recall that a variable is called protected if it occurs in the right-hand
side of a quadratic equality defining the current rdq-source R).
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We first substitute x by the constant trivializing x. After the normalization, the gates B,
T , and D are eliminated and E is fed by t and z. We then substitute z by the constant
trivializing E. Then, the normalization eliminates E and its descendants (note that E
cannot feed any of B,D, T as this would create a cycle). Thus, we eliminate five gates
and one quadratic equality, a type 6 substitution.

Case 5.4.1.4. Since we can now assume that z is unprotected and D is an xor-type gate, D computes
the function (x⊕ a)(y ⊕ b)⊕ z ⊕ c (for a, b, c ∈ {0, 1}).
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Since E is an ∧-type gate, it computes a function (B ⊕ a′)(D ⊕ b′) ⊕ c′ (for a′, b′, c′ ∈
{0, 1}). We make a quadratic substitution z ← (x ⊕ a)(y ⊕ b) ⊕ c ⊕ b′. To do this,
we add the corresponding quadratic equality and mark x and y as protected. (Note that
out(z) = 1, so we do not need to replace other occurrences of z with its new value.)
Under this substitution, the gates D and E compute the constants b′ and c′, respectively,
and are eliminated by Transformation 2. Then, T becomes a 0-gate and is eliminated
by Transformation 1. Since D and E become constant, all their descendants are also
eliminated. If there are at least two such gates, then the total number of eliminated gates
is five. If D and E share a descendant F , then F becomes constant and all descendants
of F are also eliminated. Thus, in any case five gates are eliminated. Taking into account
the penalty for introducing a quadratic equality, we get a substitution of type 5.

Case 5.4.2. Since D does not feed a new troubled gate, B does, and B is fed directly by a variable t
(since B and D are not connected). The new troubled gate E must be also fed directly by a
variable z (because D does not feed it).
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Case 5.4.2.1. out(B) ≥ 2. In this case, B is an xor-type gate, see Case 3).
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Let c be a constant such that E is trivialized under x ← t ⊕ c. We make a substitution
x ← t ⊕ c using Proposition 3.4.2. This does not introduce new troubled gates, since
out(x) ̸= 1. Normalizing eliminates B, E, and their descendants, a type 3 substitution.
(If B and E share a descendant F , then F becomes constant and all descendants of F
are also eliminated.)

Case 5.4.2.2. out(B) = 1.
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In this case, we can set z and y to constants trivializing T and E, respectively. Then B
becomes a 0-gate and is eliminated, which means that x becomes a 0-variable. We then
get a substitution of type 1.

—————————–

Starting from the next case we will consider a topologically minimal and-type gate and call it A for
the remaining part of the proof. Here A is topologically minimal if it cannot be reached from another
and-type gate via a directed path. (Note that there are no cycles containing and-type gates in a fair
semicircuit. Thus, it is always possible to find a topologically minimal and-type gate.)

Note that the circuit C must contain at least one and-type gate. Indeed, otherwise C would compute
an affine function

⊕
i∈I xi ⊕ c on the current rdq-source R of dimension s ≥ d+2. But then, C would

compute the constant on the following rdq-source R′ ⊆ Fn
2 of dimension at least d+ 1:

R′ =

{
x ∈ R :

⊕
i∈I

xi = 0

}
.

The minimality implies that both inputs of A are computed by fair cyclic xor-circuits (note that a
subcircuit of a fair circuit is fair, because it corresponds to a submatrix of a full-rank matrix); in
particular, they can be input gates.

Case 6. One input of A is an input gate x of outdegree 2 while the other one is an internal gate Q of
outdegree 1.
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x
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Q

∧A

Recall that x is unprotected due to Case 1, and x cannot feed Q because of Transformation 4. Substi-
tuting x by the constant trivializing A eliminates the two successors of x, all the successors of A, and
makes Q a 0-gate which is then eliminated by Transformation 1. A type 3 substitution. (As usual, if
the only successor of A coincides with the other successor of x then this gate becomes constant so its
successors are also eliminated. That is, in any case at least four gates are eliminated.)

Case 7. One input to A is an internal gate Q. Denote the other input by P . If P is also an internal gate
and has outdegree larger than Q we switch the roles of P and Q.

QP

∧A

In this case we will try to substitute a value to Q in order to trivialize A (see Figure 6). Q is a gate
computed by a fair xor-circuit, so it computes an affine function c⊕

⊕
i∈I xi. Note that I ̸= ∅ because

of Transformation 2. We use the xor-reconstruction procedure described in Lemma 3.4.2. In order to
perform it, we need at least one unprotected variable xi with i ∈ I.

P Q

∧A

Case 7: A is topologically first and-type gate, thus, both inputs of A — P and Q — are
computed by fair cyclic xor-circuits. Q is an internal gate, P is either an input gate or
an internal gate s.t. out(P ) ≤ out(Q). Q computes c⊕

⊕
i∈I xi where I ̸= ∅.

Case 7.1: There exists an unprotected variable x1 ∈ I. Case 7.2: All variables in I are protected.
The case where P and Q are both inputs is covered
in Case 5.

Case 7.1.1: Q is a 2+-gate.

Case 7.1.2: Q is an internal 1-
gate, P is an input.

Case 7.1.3: Q and P are inter-
nal 1-gates.

Case 7.2.1: Two inputs of Q are input gates xj and xk which occur
in one quadratic substitution.

Case 7.2.2: Q is an internal 2+-gate.

Case 7.2.3: P is an input gate.

Case 7.2.4: Q and P are internal 1-gates.

Case 7.2.4.1: There exists an in-
put variable xj from the affine
function computed at Q, s.t.
xj and xk appear together in a
quadratic substitution, but xk is
not an input of P .

Case 7.2.4.2: Both inputs of P
are input gates xp and xq.

Case 7.2.4.3. Now at most one
input of Q is an input gate (by
Case 7.2.4.2).

Figure 6: Subcases of Case 7.

Case 7.1. Such a variable x1 exists.

We then add the equality x1 = b⊕c⊕
⊕

i∈I\{1} xi to the rdq-source R for the appropriate constant

b (so that Q on the updated R computes the constant trivializing A). We could now simply
replace the operation in Q by this constant (since the just updated circuit computes correctly the
disperser on the just updated R). However, we need to eliminate the just substituted variable
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x1 from the circuit. To do this, we perform the reconstruction described in Lemma 3.4.2. Note
that it only changes the in- and out-degrees of x1 (replacing it by a new internal gate Z) and Q.
No new troubled gates are introduced (see Corollary 3.4.1), and the subsequent application of
Transformation 2 to Q removes Q.

Moreover, normalizing transformations remove all descendants of Q, all descendants of A, and,
in the case out(P ) = 1, Transformation 1 removes P if it is an internal gate, or P becomes a
0-variable, if it was a variable. It remains to compute the decrease of the measure.

Below we go through several subcases depending on the types and out-degrees of the gates P
and Q.

Case 7.1.1. Q is a 2+-gate. We recall the general picture of xor-reconstruction.

x1

P
1+

⊕
2+

Q

∧A

xor-reconstruction

⊕ Z

P
1+ 3+

Q

∧A

After the reconstruction, there are at least three descendants of Q and at least one descendant
of A, a type 3 substitution. (If a descendant of A is also a descendant of Q, then it becomes
constant and hence all its descendants are also eliminated.)

Case 7.1.2. Q is an internal 1-gate and P is an input gate. Then P has outdegree 1 and is unprotected
(see Cases 6, 1).
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P
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⊕
1
Q

∧A

xor-reconstruction

⊕ Z

P
1 2

Q

∧A

Note that P ̸= x1 since the only outgoing edge of P goes to an and-type gate. Thus, after
the xor-reconstruction and normalization (that eliminates the gate A that is trivialized), the
circuit becomes independent of both x1 and P , giving a type 2 substitution.

Case 7.1.3. Q is an internal 1-gate and P is an internal gate. Then P is a 1-gate (if the outdegree of
P were larger we would switch the roles of P and Q).

x1

⊕
1

P ⊕
1
Q

∧A

xor-reconstruction

⊕ Z

⊕
1

P
2
Q

∧A

After the substitution, we remove two successors of Q, at least one successor of A, and make
P a 0-gate, giving a type 3 substitution. Note that P cannot be a successor of Q because of
Transformation 4. If a descendant of A is also a descendant of Q, then it becomes constant
and hence all its descendants are also eliminated.

Case 7.2. All variables in the affine function computed by Q are protected.

Case 7.2.1. Both inputs to Q are variables, say xj and xk, and they occur in the same quadratic
equality w = (xj ⊕ c)(xk ⊕ c′)⊕ c′′ in R. Perform a substitution xj ← xk ⊕ c′′′ (using Propo-
sition 3.4.2) in order to trivialize the gate A. It does not introduce new troubled gates as xj

is not a 1-gate feeding an and-type gate. It eliminates the quadratic equality from R (and
does not harm other quadratic equalities, because xj and xk could not occur in them) and
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eliminates Q, A, its descendant (and more, but we do not need it) from C, which makes
∆µ ≥ 3β + αQ + αI , a type 7 substitution.

Case 7.2.2. Q is a 2+-gate. Take any j ∈ I. Assume that xj occurs in a quadratic equality xp =
(xj ⊕ a)(xk ⊕ b) ⊕ c in R. Recall that at this point, all protected variables are 1-variables
feeding xor-gates (see Cases 1 and 2). Make a substitution xk ← d and normalize the circuit.
This eliminates the successor of xk from C, eliminates the quadratic equality from R, and
makes xj unprotected. If at least two gates are removed during normalization, then we get
∆µ ≥ 2β + αQ + αI , a type 7 substitution. In what follows, we assume that the only gate
removed during normalization after the substitution xk ← d is the successor of xk.
If the gate Q is not fed by xk, then it has outdegree at least 2 after the substitution xk ← d
and normalizing the descendants of xk. If the gate Q is fed by xk, then its second input must
be an internal xor-gate Q′ (if it were an input gate it would be a variable xj but then we
would fall into Case 7.2.1). Then, after substituting xk ← d and normalizing Q the gate Q′

feeds A and has outdegree at least 2. We denote Q′ by Q in this case.
Hence in any case, in the circuit normalized after the substitution xk ← d, the gate A is fed
by the 2+-gate Q that computes an affine function of variables containing an unprotected
variable xj . We then make Q constant trivializing A by the appropriate affine substitution
to xj . Like in Case 7.1.1, this eliminates four gates: after the xor-reconstruction, Q is a 3+-
gates, the normalization removes all its descendants (including A); since A becomes constant,
all its descendants are also eliminated; if a descendant of A is also a descendant of Q, then
it becomes constant and hence all its descendants are also eliminated. Together with the
substitution xk ← d, it gives ∆µ ≥ 5β + αQ + 2αI , a type 6 substitution.

Hence in what follows we assume that out(Q) = 1. Therefore P is either a variable or an
internal xor-type 1-gate.

Case 7.2.3. P is an input gate. Then P has outdegree 1 and is unprotected (see Cases 6, 1). Take any
j ∈ I and assume that xj appears with xk in a quadratic equality in R. We first substitute
xk ← d and normalize the circuit. After this, the second input of A still computes a linear
function that depends on xj which is now unprotected. We make an affine substitution to xj

trivializing A. This makes P a 0-variable, a type 1 substitution.

Case 7.2.4. P is an internal xor-type 1-gate. If P computes an affine function of variables at least one
of which is unprotected, we are in Case 7.1.3 with P and Q exchanged. So, in what follows
we assume that both P and Q compute affine functions of protected variables.

Case 7.2.4.1. One of P andQ (say,Q) computes an affine function of variables one of which (call it xj)
has a couple xk that does not feed P .2 We substitute xk by a constant and normalize
the descendant of xk. Normalization eliminates one xor-gate fed by xk and makes xj

unprotected. Note that at this point P is still an xor-type 1-gate. We then trivialize A by
substituting xj by an affine function. Similarly to Case 7.1.3, this eliminates four gates
and gives, for two substitutions, ∆µ ≥ 5β + αQ + 2αI . A type 6 substitution.

Case 7.2.4.2. Both inputs to P or Q (say, P ) are (protected) variables xp and xq. Let xj be a (pro-
tected) variable from the affine function computed at Q and let xk be its couple. Note
that by Case 1, xj ̸= xp, xq. By Case 7.2.4.1, we may assume that xk = xp or xk = xq.
For concreteness, let us assume that xk = xp.

xp xq

Q
1

⊕P
1

∧A

We substitute xp by a constant to eliminate a quadratic equality containing xp. The
gate P then computes xq or its negation. We substitute xq by a constant that trivializes

2We say that xk is a couple of xj if they appear in the right-hand side of the same quadratic substitution.
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A. This way, we eliminate gates A,P,Q, and a successor of A. All these four gates are
different: P and Q are predecessors of A and hence cannot be successors of A. Also, the
number of influential variables reduces by two (xp and xq) and the number of quadratic
equalities reduces by two (the quadratic equalities containing xp and xq are distinct,
because the couple of xp is xj ̸= xq). These two substitutions decrease the measure by
at least ∆µ ≥ 4β + 2αQ + 2αI , which corresponds to two substitutions of type 7.

Case 7.2.4.3. By case 7.2.4.2, P and Q are fed by at most one input gate. If P (or Q) computes
an affine function which depends on two or more variables, then at least one of those
variables does not feed Q (or P ), which is covered by Case 7.2.4.1. Therefore, the only
remaining case is the following. Since P and Q, and gates that feed them all compute
nontrivial functions (because of Transformation 2), P computes an affine function of
a single variable xp, Q computes an affine function of a single variable xq, the variables
xp and xq appear together in a quadratic equality. Moreover xp feeds Q while xq feeds P :
if, say, xp does not feed Q, then we are in Case 7.2.4.1. But this is just impossible. Indeed,
since xp is a protected variable it only feeds Q (by Case 1). As P computes an affine
function on xp, Lemma 3.4.1 guarantees that there is a path from xp to P . But this path
must go through Q and A leading to a cycle that goes through an and-type gate A.

4 Lower bound 3.11n for quadratic dispersers

This section is devoted to the proof of the following theorem.

Theorem 1.2. The circuit size of an (n, 1.83n, 2o(n))-quadratic disperser is at least 3.11n.

4.1 Xor-inputs circuits

By an xor-inputs circuit we mean a circuit whose inputs may be labeled not only by input variables but also
by sums of variables. We note that one can get rid of xor-type top-gates in an xor-inputs circuit (a top-gate
is a gate fed by two input-gates). To this end one can repeatedly replace xor-gates that depend on two
inputs by new inputs (see Figure 7). Moreover, such a transformation does not increase the total number
of inputs and internal gates. In this section we abuse the notation by using the word “circuit” to
mean an xor-inputs circuit.

x y z

⊕

⊕

∨

∧

x⊕ y ⊕ z y z

∨

∧

Figure 7: An example of a transformation from a regular circuit to an xor-inputs circuit.

In this section, we use a circuit complexity measure: µ(C) = G(C) + α · I(C) where 0 < α ≤ 1 is a
constant to be determined later. Clearly, the transformation above does not increase µ(C).

4.2 Lower Bound

Theorem 1.2 follows from the following more general result.
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Theorem 4.1. Let 0 < α ≤ 1 and 0 < β be constants satisfying

2−
2+α
β + 2−

4+2α
β ≤ 1, (4)

2−
2
β + 2−

5+2α
β ≤ 1, (5)

2−
3+3α

β + 2−
2+2α

β ≤ 1, (6)

2−
3
β + 2−

4+α
β ≤ 1, (7)

and let f ∈ Bn be an (n, k, s)-quadratic disperser. Then

C(f) ≥ min {βn− β log2 s− β, 2k} − αn .

The “magic” numbers α and β control the decrease in the circuit complexity and the decrease in the
variety size: informally, the numerator (e.g., 2 + α) corresponds to the decrease in the complexity measure
(which takes into account the number of internal gates and the number of variables (input gates)) for a

particular substitution and the exponent (for example, 2−
2+α
β ) upper bounds the decrease in the variety size

after this substitution.

Proof of theorem 1.2. It is not difficult to check that α = 0.535 and β = 3.6513 satisfy the conditions
of theorem 4.1. Since f is a quadratic disperser with parameters k = 1.83n and s = 2o(n), theorem 4.1 gives
the following lower bound on C(f):

min{3.6513n− o(n), 3.66n} − 0.535n = 3.1163n− o(n) > 3.11n .

We need the following technical lemma.

Lemma 4.2.1. Let 0 < α ≤ 1 and 0 < β be constants satisfying inequalities eq. (7) and eq. (4). Then

2 · 2−
4
β ≤ 1, (8)

2−
3+α
β + 2−

3+2α
β ≤ 1. (9)

Proof. Since 2 ≤ x+ 1
x for positive x,

2−
4
β + 2−

4
β ≤ 2−

4
β (2

1
β + 2−

1
β ) = 2−

3
β + 2−

5
β ≤ 2−

3
β + 2−

4+α
β ≤ 1 .

In order to prove the inequality eq. (9), we use Heinz’s inequality [22]:

x1−tyt + xty1−t ≤ x+ y for x, y > 0, 0 ≤ t ≤ 1.

Let us take x = 2−
2+α
β , y = 2−

4+2α
β , t = 1

2+α :

2−
3+α
β + 2−

3+2α
β = x1−tyt + xty1−t ≤ x+ y = 2−

2+α
β + 2−

4+2α
β ≤ 1.

Theorem 4.1 follows immediately from the following lemma with S = Fn
2 that is an (n, 0)-quadratic

variety. (Recall that an (n, k)-quadratic variety is a set S ⊆ Fn
2 such that there exists k polynomials

p1, . . . , pk of degree at most 2 such that S = {x ∈ Fn
2 : p1(x) = 0, . . . , pk(x) = 0}. See Definition 2.2.2.)

Lemma 4.2.2. Let f ∈ Bn be an (n, k, s)-quadratic disperser, S ⊆ Fn
2 be an (n, t)-quadratic variety,

0 < α ≤ 1, 0 < β be constants satisfying inequalities eq. (4), eq. (5), eq. (6), eq. (7), C be an xor-inputs
circuit that computes f on S. Then

µ(C) ≥ min {β(log2 |S| − log2 s− 1), 2(k − t)} .
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Proof. The proof goes by induction on |S|. The base case |S| ≤ 2s is trivially true. For the induction step,
assume that |S| > 2s.

To prove the induction step we proceed as follows. If t ≥ k then the right-hand side is non-positive, so
assume that t < k. Assume that C is optimal with respect to µ (that is, C has the minimal value of µ among
all circuits computing f on S). We find a gate G in C that computes a polynomial g of degree at most 2
and consider two (n, t + 1)-quadratic varieties of S: S0 = {x ∈ S : g(x) = 0} and S1 = {x ∈ S : g(x) = 1}.
Let |S0| = p0|S| and |S1| = p1|S| where 0 < p0, p1 < 1 and p0 + p1 = 1 (note that pi = 0 or pi = 1 would
mean that G computes a constant on S contradicting the fact that C is optimal). By eliminating from the
circuit C all the gates that are either constant or depend on just one of its inputs on Si, one gets a circuit
Ci that computes f on Si. Assume that µ(C)− µ(Ci) ≥ ∆i. Then, by the induction hypothesis,

µ(C) ≥ µ(Ci) + ∆i ≥
min {β(log2 |Si| − log2 s− 1), 2(k − (t+ 1))}+∆i =

min {β (log2 |S| − log2 s− 1) + (∆i + β log2 pi) , 2(k − t) + (∆i − 2)} .

Hence, if ∆i ≥ −β log2 pi and ∆i ≥ 2 for either i = 0 or i = 1 then the required inequality follows by

the induction hypothesis. The inequality ∆i ≥ −β log2 pi is true whenever pi ≥ 2−
∆i
β . Since we want this

inequality to hold for at least one of i = 0 and i = 1 and since p0+p1 = 1 we conclude that for the induction
step to go through it suffices to have

2−
∆0
β + 2−

∆1
β ≤ 1 and ∆0,∆1 ≥ 2 . (10)

By going through a few cases we show that we can always find a gate G such that the corresponding
∆0 and ∆1 satisfy the inequalities eq. (10). (In order to do this, we in particular use the fact that α and β
satisfy the inequalities eq. (4)–eq. (9).)

We start by showing that the circuit C must be non-empty. Indeed, if C is empty then it computes a
linear function l. Hence f is constant on both S0 = {x ∈ S : l(x) = 0} and S1 = {x ∈ S : l(x) = 1}. However
max{|S0|, |S1|} ≥ |S|/2 > s which contradicts the fact that f is an (n, k, s)-quadratic disperser.

In the case analysis below, we find a gate G that computes a polynomial p of degree at most 2 and make
it equal to constant c. To do this, we restrict the current set S to Sc = {x ∈ S : p(x) = c}. Then, for every
gate H of C, if it is constant on Sc, we replace its operation by this constant. After this, we normalize the
circuit using Transformations 1–3 (see Subsection 3.4.2; it is easy to see that this can only decrease µ(C)).

The gate G in this case cannot be an output gate as otherwise the whole circuit would be constant on
both subsets {x ∈ S : p(x) = 0} and {x ∈ S : p(x) = 1} one of which has size at least s/2, contradicting to
the disperser property. Hence, G has at least one successor and it is also eliminated.

Let A be an and-gate with the maximal number of and-gates on a way to the output of C. That is, for
each and-gate we consider all directed paths from this gate to the output gate and select a path with the
maximal number of and-gates on it; then we choose an and-gate for which this number is maximal over all
and-gates. Since C is an xor-inputs circuit, we may assume that A is a top-gate, that is, it is fed by inputs.
Denote by x and y the input gates that feed A.

Case 1. out(x) = out(y) = 1.

Case 1.1. out(A) = 1 and A feeds an and-gate B.
Let C be the other input of B (it might be an input as well as a non-input gate).

Case 1.1.1. out(C) = 1.

x y

∧A

∧B

C
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We make A constant. Then the gate B is eliminated. Moreover, either A = 0 or A = 1
trivializes the gate B so all its successors and the gate C are also eliminated (since C is only
used to compute B, but B now computes a constant). In both cases x and y are not needed
anymore (as the only gate A that was fed by both these inputs is now constant). So, we get
{∆0,∆1} = {2 + 2α, 3 + 3α} if C is an input gate (or {2 + 2α, 4 + 2α} if it is not, but this is
even better as α ≤ 1, which we use in the rest of the analysis without further mentioning it).
The required inequalities eq. (10) follow from eq. (6).

Case 1.1.2. out(C) ≥ 2.

x y

∧A

∧B

C

Because of the choice of A, the gate C computes a polynomial of degree at most 2. We make
C constant. In both cases we eliminate two successors of C and C itself. This reduces the
measure by at least 2+α. In one of the cases B is trivialized which causes the removal of the
successors of B, the gate A, and inputs x and y. Hence we get {∆0,∆1} = {2+α, 4+ 3α} in
this case. These ∆0,∆1 satisfy the inequalities eq. (10) because of eq. (4).

Case 1.2. out(A) = 1 and A feeds an xor-gate B.

x y

∧A

⊕B

Since A was chosen as an and-gate with the maximal number of and-gates to the output, the other
input of B computes a polynomial of degree at most 2. Hence B itself computes a polynomial of
degree at most 2. We make B constant. This eliminates B and its successors. The gate A and
its inputs x and y are also not needed. Hence ∆0 = ∆1 = 3 + 2α. The inequalities eq. (10) are
satisfied due to eq. (9).

Case 1.3. out(A) ≥ 2.

x y

∧A

Just by making the gate A constant we get ∆0 = ∆1 = 3 + 2α since A and all its successors
(at least two gates) are eliminated. Similarly to the previous case, the inequality eq. (9) imply
that eq. (10) holds.

Case 2. max{out(x), out(y)} ≥ 2. Say, out(x) ≥ 2.

Case 2.1. out(A) = 1 and A feeds an and-gate B.
We make A constant. Assume that A computes (x ⊕ c1)(y ⊕ c2) ⊕ c. Then A can only be equal
to c⊕ 1 if x = c1 ⊕ 1 and y = c2 ⊕ 1. That is, when A is equal to c⊕ 1 not only its successor is
eliminated but also all successors of x and y. In both cases the gate B is eliminated, but in one
of them it is trivialized and so all its successors are also eliminated.

Denote by C another gate fed by x. Note that B ̸= C (otherwise the circuit would not be optimal).

Case 2.1.1. out(y) = 1.

x y

∧AC

∧B
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Case 2.1.1.1. B is trivialized when A = c.
If A = c we eliminate A, B, the successors of B, and y. If A = c ⊕ 1 we eliminate A,
B, C, x, and y. Hence {∆0,∆1} = {3 + α, 3 + 2α}. The inequality eq. (9) guarantees
that eq. (10) holds.

Case 2.1.1.2. B is trivialized when A = c⊕ 1.
If A = c we eliminate A, B, and y. If A = c⊕1 we eliminate A, B, C, the successors of B,
x, and y (if C happens to be the only successor of B then it becomes constant and all its
successors are eliminated). Hence {∆0,∆1} = {2 + α, 4 + 2α}. The inequalities eq. (10)
are satisfied because of eq. (4).

Case 2.1.2. out(y) ≥ 2.
Denote by D another successor of y. Note that D might be equal to C, but D ̸= B,C by
Transformation 4 of Subsection 3.4.2.

x y

∧AC D

∧B

Case 2.1.2.1. B is trivialized when A = c.
If A = c, we eliminate A, B, and the successors of B. If A = c ⊕ 1, we eliminate A,
B, C, D, x, and y. If C = D then this gate becomes constant so all its successors are
also eliminated. Hence {∆0,∆1} = {3, 4 + 2α}. The inequalities eq. (10) are satisfied
because eq. (7).

Case 2.1.2.2. B is trivialized when A = c⊕ 1.
If A = c, we eliminate A and B. If A = c⊕ 1, we eliminate A, B, C, D, the successors of
B, x, and y. If C ̸= D and, say, C is a successor of B, then C becomes constant so all its
successors are eliminated too. If C = D, then C becomes constant so all its successors
are eliminated. Hence {∆0,∆1} = {2, 5 + 2α}. The inequality eq. (5) ensures eq. (10).

Case 2.2. out(A) = 1 and A feeds an xor-gate B.

Case 2.2.1. out(B) = 1 and B feeds an xor-gate C.

x y

∧A

⊕B

⊕C

Since A is and-gate with the maximal number of and-gates on a way to the output of the
circuit, we know that the gate C computes a function of degree at most two.. We make
C constant. In both cases we eliminate A,B,C, and the successors of C. Hence ∆0 = ∆1 = 4.
The inequalities eq. (10) are satisfied because of eq. (8).

Case 2.2.2. out(B) = 1 and B feeds an and-gate C.
Let D be the other input of C. Note that if D = A then the circuit is not optimal (C depends
on A and the other input of B so one can compute C directly without using B).

Case 2.2.2.1. out(D) = 1.

x y

∧A

⊕B

∧C

D
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We make B constant. In both cases we eliminate A, B, and C. Moreover, when B
is the constant trivializing C we eliminate also D and the successors of C. The gate
D contributes (to the complexity decrease) α ≤ 1 if it is an input gate and 1 if it is
not an input. Hence we have {∆0,∆1} = {3, 4 + α}. The inequality eq. (7) guarantees
that eq. (10) is satisfied.

Case 2.2.2.2. out(D) ≥ 2.

x y

∧A

⊕B

∧C

D

The gate D computes a function of degree at most 2: out(A) = 1, hence there is no path
from A to D; if D computed a function of degree at most 3, A would not be a gate with
the maximum number of and-type gates on a path to the output. We make D constant.
In both cases we eliminate D and its successors and reduce the measure by at least 2+α
(as D might be an input). In the case when C becomes constant we eliminate also the
successors of C as well as A and B. Thus, {∆0,∆1} = {2 + α, 5 + α} (to ensure that all
the five gates eliminated in the second case are different one notes that if D feeds B or
a successor of C then the circuit is not optimal). The inequalities eq. (10) are satisfied
because eq. (4) and α ≤ 1.

Case 2.2.3. out(B) ≥ 2.

x y

∧A

⊕B

The gate B computes a polynomial of degree at most 2. By making it constant we eliminate B,
its successors, and A, so ∆0 = ∆1 = 4. The inequalities eq. (10) are satisfied because of eq. (8).

Case 2.3. out(A) ≥ 2.

x y

∧A

We make A constant. In both cases A and its successors are eliminated. When x and y become
constant too (recall that if A computes (x⊕ c1)(y⊕ c2)⊕ c then A = c⊕ 1 implies that x = c1⊕ 1
and y = c2⊕1) at least one other successor of x is also eliminated. Thus, {∆0,∆1} = {3, 4+2α}.
(If a successor of x coincides with a successor of A, it becomes constant and all its successors are
also eliminated.) The inequality eq. (7) implies that eq. (10) is satisfied.

5 Conclusion and Open Problems

In this paper we broke the “3n barrier” that stayed for thirty years after Blum’s paper [6] and demonstrated
that there is no combinatorial obstacle in the constant 3 here. Both our proofs use gate elimination and
decompose the circuit into D ◦ L, where L is an xor-circuit. It would be interesting to use a different class
for the decomposition, for example, “quadratic” circuits having at most one nonlinear gate on each path.
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Gate elimination alone has been recently shown to be unable to prove nonlinear bounds [19] because there
are “robust” functions of high complexity that survive many (arbitrary) substitutions losing their complexity
(measured as the number of gates or any other subadditive function) only proportional to the number of
substituted variables. We must, however, notice that this result does not exclude additional tricks based
on specific functions properties (for example, it is unclear whether there are “robust” affine dispersers), and
not all the complexity measures are obviously subadditive. In addition, other types of breaking the function
rather than substituting subsequent variables are available. For example, one can assign a specific value to
an appropriate gate in the middle of a circuit as it is done in [49] (see also [38]) for proving a CircuitSAT
upper bound. This can be viewed as going deep into a very complicated variety, which breaks completely
the argument of [19].

Finally, finding explicit constructions of quadratic dispersers would transfer the bounds of Section 4 into
the status of lower bounds for explicit functions. Constructions of dispersers for higher degrees will give
more motivation for developing the techniques of this paper beyond “simple” varieties.
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