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Abstract

We show that randomized communication complexity can be superlogarithmic in the partition
number of the associated communication matrix, and we obtain near-optimal randomized lower
bounds for the Clique vs. Independent Set problem. These results strengthen the deterministic
lower bounds obtained in prior work (Göös, Pitassi, and Watson, FOCS 2015).

1 Introduction

A prior work [GPW15] exhibited a boolean function F : X × Y → {0, 1} whose deterministic
communication complexity is superlogarithmic in the partition number

χ(F ) := χ0(F ) + χ1(F )

where χi(F ) is the least number of rectangles (sets of the form A×B where A ⊆ X , B ⊆ Y) needed to
partition the set F−1(i). In this follow-up work, we upgrade the lower-bound results from [GPW15]
to hold against randomized protocols—here the notation Ω̃(m) hides factors polylogarithmic in m.

Theorem 1. There is an F with randomized communication complexity Ω̃(log1.5 χ(F )).

Theorem 2. There is an F with randomized communication complexity Ω̃(log2 χ1(F )).

Discussion of Theorem 1. Every F has deterministic communication complexity at least
logχ(F ) and at most O(log2 χ(F )), where the latter upper bound is a classical result of [AUY83].
Our Theorem 1 shows that the upper bound cannot be improved much even if we allow randomized
protocols. Another implication of Theorem 1 is that none of the known rectangle-based lower-
bound methods, as catalogued by Jain and Klauck [JK10], can capture (up to constant factors)
the randomized communication complexity of total functions. In particular, Theorem 1 gives a
power 1.5 gap between randomized communication complexity and the partition bound [JK10, JLV14];
previously, no gap was known for total functions. We also note that a query complexity analogue of
Theorem 1 (with an exponent of log3(3.2) ≈ 1.0587 instead of 1.5) was recently obtained by Kothari,
Racicot-Desloges, and Santha [KRS15].

†Work done while at IBM Research Almaden.
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Discussion of Theorem 2. The relationship between χ1(F ) and the communication complexity
of F can be equivalently formulated in the language of the Clique vs. Independent Set game, played
on a graph derived from F (Alice holds a clique, Bob holds an independent set: do they intersect?).
See [Yan91, §4] or [Juk12, §4.4] for the equivalence. Yannakakis [Yan91] (extending [AUY83])
proved that every F has deterministic communication complexity at most O(log2 χ1(F )). Our
Theorem 2 shows that this upper bound is essentially tight even if we allow randomized protocols,
and it implies that there is a graph on n nodes for which Clique vs. Independent Set requires
Ω̃(log2 n) randomized communication. (The deterministic upper bound O(log2 n) holds for all
graphs.) A related work [Göö15] exhibited an F with conondeterministic communication complexity
Ω(log1.128 χ1(F )); this result remains incomparable with Theorem 2.

Techniques. The basic strategy in [GPW15] for obtaining the deterministic versions of Theorems
1–2 was to first obtain analogous gaps in the easier-to-understand world of query complexity, then
“lift” the results to communication complexity using a so-called simulation lemma. For getting
randomized lower bounds, two obstacles immediately present themselves: (i) The functions studied
in [GPW15] are too easy for randomized protocols (as shown by [MS15]). (ii) There is no known
simulation lemma for the bounded-error randomized setting.

To handle obstacle (i), we modify the functions from [GPW15] in a way that preserves their low
partition numbers while eliminating the structure that was exploitable by randomized protocols. To
handle obstacle (ii) for Theorem 2, we actually prove a lower bound for a model that is stronger
than the standard randomized model, but for which there is a known simulation lemma [GLM+15].
This idea alone does not handle obstacle (ii) for Theorem 1, though. For that, we start by giving a
proof of the query complexity analogue of Theorem 1 (which, incidentally, strengthens [KRS15]),
then develop a way to mimic that argument using communication complexity, by going through
information complexity (exploiting machinery from [KLL+12] and [BW15a]). In the process, this
yields a corollary that may be of independent interest: information complexity under arbitrary
distributions is essentially equivalent to information complexity under distributions that are only
over 1-inputs (or only over 0-inputs).

2 Complexity Measures

We study the following communication complexity models/measures; see Figure 1. For any complexity
measure C we write coC(F ) := C(¬F ) and 2C(F ) := max{C(F ), coC(F )} for short.

− Pcc: The deterministic communication complexity of F is denoted Pcc(F ).

− BPPcc: The randomized communication complexity of F is denoted BPPcc(F ).

− UPcc: Recall (e.g., [KN97, Juk12]) that a cost-c nondeterministic protocol for F corresponds
to a covering (allowing overlaps) of F−1(1) with 2c rectangles. A nondeterministic protocol
is unambiguous if on every 1-input there is a unique accepting computation; combinatorially,
this means we have a disjoint covering (partition) of F−1(1). We define UPcc(F ) := dlogχ1(F )e.
Thus coUPcc(F ) = dlogχ0(F )e, and 2UPcc(F ) ∈ dlogχ(F )e ± 1.

− WAPPcc: Abstractly speaking, a WAPP computation (Weak Almost-Wide PP; introduced
in [BGM06]) is a randomized computation that accepts 1-inputs with probability in [(1− ε)α, α],
and 0-inputs with probability in [0, εα], where ε < 1/2 is an error parameter and α = α(n) > 0
is arbitrary.
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Figure 1: Models of computation that can be instantiated for both communication and query
complexity. Here A B means that model B can simulate model A without any overhead.

Instantiating this for protocols, we define WAPPcc
ε (F ) as the least “cost” of a randomized

(public-coin) protocol Π that computes F in the above sense; the “cost” of a protocol Π
with parameter α is defined as the usual communication cost (number of bits communicated)
plus log(1/α). In this definition, we may assume w.l.o.g. that Π is zero-communication [KLL+12]:
Π is simply a probability distribution over rectangles R, and Π accepts an input (x, y) iff (x, y) ∈ R
for the randomly chosen R. Such a protocol Π exchanges only 2 bits to check the condition
(x, y) ∈ R, and the rest of the cost is coming from having a tiny α.

We note that WAPPcc corresponds to the (one-sided) smooth rectangle bound of [JK10],
which is known to be equivalent to approximate nonnegative rank [KMSY14]. A consequence of
this equivalence is that WAPPcc could alternatively be defined without charging anything for
α > 0, as long as we restrict our protocols to be private-coin; see also [GLM+15, Theorem 9].
Also, 2WAPPcc is equivalent to the relaxed partition bound of [KLL+12] (we elaborate on this
in Section 5.2). We remark that WAPPcc is not amenable to efficient amplification of the error
parameter; there can be an exponential gap between WAPPcc

ε and WAPPcc
δ for different constants

ε and δ, at least for partial functions [GLM+15, Theorem 6].

For a boolean function f : {0, 1}n → {0, 1} we consider the following decision tree models/measures:

− Pdt: The deterministic decision tree complexity of f is denoted Pdt(f).

− BPPdt: The randomized decision tree complexity of f is denoted BPPdt(f).

− UPdt: A nondeterministic decision tree is a DNF formula. We think of the conjunctions in the
DNF formula as certificates—partial assignments to inputs that force the function to be 1. The
cost is the maximum number of input bits read by a certificate. A nondeterministic decision tree
is unambiguous if on every 1-input there is a unique accepting certificate. We define UPdt(f) as
the least cost of an unambiguous decision tree for f . Other works that have studied unambiguous
decision trees include [Sav02, Bel06, Göö15, GPW15, KRS15].

− WAPPdt: We define WAPPdt
ε (f) as the least height of a randomized decision tree that accepts 1-

inputs with probability in [(1−ε)α, α], and 0-inputs with probability in [0, εα], where α = α(n) > 0
is arbitrary. (Note that only the number of queries matters; we do not charge for α being small.)
Like the communication version, this measure is not amenable to efficient amplification of the
error parameter [GLM+15].

The analogue of a WAPPcc protocol being w.l.o.g. a distribution over rectangles is that
a WAPPdt decision tree is w.l.o.g. a distribution over conjunctions. This implies that we
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may characterize WAPPdt
ε (f) using conical juntas: A conical junta h is a nonnegative linear

combination of conjunctions. That is, h =
∑
wCC where the sum ranges over conjunctions

C : {0, 1}n → {0, 1} and wC ≥ 0 for all C. Then WAPPdt
ε (f) is the least degree (maximum

width of a conjunction with positive weight in h) of a conical junta h that ε-approximates f
in the sense that h(z) ∈ [1− ε, 1] for all z ∈ f−1(1), and h(z) ∈ [0, ε] for all z ∈ f−1(0). Other
works have studied conical juntas under such names as the (one-sided) partition bound for query
complexity [JK10] and query complexity in expectation [KLdW15].

3 Overview

In this section we give an outline for obtaining our main results, Theorems 1–2. For complexity
models/measures C and C′, we informally say “C-vs-C′ gap” to mean the existence of a function
whose C complexity is significantly higher than its C′ complexity. Using the notation defined in
Section 2, we can rephrase our main results as follows.

Theorem 1 (BPPcc-vs-2UPcc). There is an F such that BPPcc(F ) ≥ Ω̃(2UPcc(F )1.5).

Theorem 2 (BPPcc-vs-UPcc). There is an F such that BPPcc(F ) ≥ Ω̃(UPcc(F )2).

(§ 3.1) Tribes-List: Our starting point is to define Tribes-List, a variant of a function introduced
in [GPW15]. Its purpose is to witness a BPP-vs-UP gap for query complexity.

(§ 3.2) Composition: Next, we modify Tribes-List using two types of function composition, which
we call lifting and AND-composition, to obtain candidate functions for BPP-vs-2UP gaps in
both query and communication complexity.

(§ 3.3) Overview of proofs: With the candidate functions defined, we outline our strategy to
prove the desired communication lower bounds.

3.1 Tribes-List

The Tribes-List function TL : {0, 1}n → {0, 1} is defined on n := Θ(k3 log k) bits where k is a
parameter. We think of the input as a k × k matrix M with entries Mij taking values from the
alphabet Σ := {0, 1} × ([k]k−1 ∪ {⊥}). Here each entry is encoded with Θ(k log k) bits, and we
assume that the encoding of Mij = (mij , pij) ∈ Σ is such that a single bit is used to encode the
value mij ∈ {0, 1} and another bit is used to encode whether or not pij = ⊥. If pij 6= ⊥, then we
can learn its exact value in [k]k−1 by querying all the Θ(k log k) bits.

Informally, we have TL(M) = 1 iff M has a unique all-(1, ∗) column (here ∗ is a wildcard) that
also contains an entry with k − 1 pointers to entries of the form (0, ∗) in all other columns. More
formally, we define TL in Figure 2 by describing an unambiguous decision tree of cost Θ(k log k)
computing it.

3.2 Composition

Given a base function witnessing some complexity gap, we will establish a different but related
complexity gap by transforming the function into a more complex one via one (or both) of the
following operations involving function composition: lifting and AND-composition. Lifting is used to
go from a query complexity gap to an analogous communication complexity gap. AND-composition
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Unambiguous decision tree for TL:

Nondeterministically guess a column index j ∈ [k].
Consider the entries Mij = (mij , pij) for i ∈ [k]: check
that mij = 1 for all i and that pij 6= ⊥ for at least
one i (this is ≤ 2k queries). Let i be the first row index
for which pij 6= ⊥ and read the full value of pij (this is
Θ(k log k) queries). Interpret pij ∈ [k][k]r{j} as a list of
pointers, describing a row index for all columns other
than j. For each of these k− 1 pointed-to entries Mi′j′ ,
check that mi′j′ = 0 (this is k − 1 queries).

1,⊥

1,⊥

1,⊥

1,pij

1, ∗

0, ∗

0, ∗

0, ∗

0, ∗

Figure 2: The unambiguous decision tree that defines the Tribes-List function.

is used to go from a gap with a UP upper bound to a gap with a 2UP upper bound. To show that
an operation indeed converts one gap to another gap, we need two types of results: an observation
showing how the relevant upper bounds behave under the operation, and a more difficult lemma
showing how the relevant lower bounds behave under the operation.

Lifting. Let g : {0, 1}b×{0, 1}b → {0, 1} be a fixed two-party function (called the gadget). We can
lift f : {0, 1}n → {0, 1} via the gadget g to obtain a two-party composed function f ◦gn : ({0, 1}b)n×
({0, 1}b)n → {0, 1} where Alice is given x = (x1, . . . , xn) and Bob is given y = (y1, . . . , yn) (with
each xi, yi ∈ {0, 1}b) and the goal is to compute (f ◦ gn)(x, y) := f(g(x1, y1), . . . , g(xn, yn)).

A decision tree for f generally yields a corresponding type of communication protocol for f ◦ gn:
whenever the decision tree queries the i-th bit, Alice and Bob communicate b+ 1 bits to evaluate
the corresponding bit g(xi, yi). By counting conjunctions, it can be verified that such a connection
holds for the 2UP and UP models as well:

Observation 3. For all f : {0, 1}n → {0, 1}, g : {0, 1}b × {0, 1}b → {0, 1}, and C ∈ {2UP,UP}, we
have Ccc(f ◦ gn) ≤ Cdt(f) ·O(b+ log n).

For any model C, a result in the converse direction (giving a black-box method of converting a
communication protocol for f ◦ gn into a comparably efficient decision tree for f) is highly nontrivial
and is called a simulation lemma. In this work, we use a simulation lemma for C = WAPP:

Lemma 4 (Simulation for WAPP [GLM+15]). For all f : {0, 1}n → {0, 1} and constants
0 < ε < δ < 1/2, we have WAPPdt

δ (f) ≤ O
(
WAPPcc

ε (f◦gn)/ log n
)

where g : {0, 1}b×{0, 1}b → {0, 1}
is the inner-product gadget defined as follows: b = b(n) := 100 log n, and g(xi, yi) := 〈xi, yi〉 mod 2.

AND-composition. Given f : {0, 1}n → {0, 1} we can compose it with the k-bit AND function
to obtain AND ◦ fk : ({0, 1}n)k → {0, 1} defined by (AND ◦ fk)(z1, . . . , zk) = 1 iff f(zi) = 1 for
all i. Similarly, given F : X × Y → {0, 1} we can obtain AND ◦ F k : X k × Yk → {0, 1} defined by
(AND ◦ F k)(x, y) = 1 iff F (xi, yi) = 1 for all i.

AND-composition converts a UP upper bound into a 2UP upper bound [GPW15]:
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Observation 5. For all f and k, we have 2UPdt(AND◦fk) ≤ k ·UPdt(f)+O(UPdt(f)2). Similarly,
for all F and k, we have 2UPcc(AND ◦ F k) ≤ k · UPcc(F ) +O(UPcc(F )2 + log k).

The two parts of Observation 5 are analogous, so we describe the idea only in terms of the
query complexity part. Since coUPdt(f) ≤ Pdt(f) ≤ O(UPdt(f)2), it suffices to have coUPdt(f) as
the second term on the right side. The idea is to let a 1-certificate for AND ◦ fk be comprised
of 1-certificates for each of the k copies of f , and a 0-certificate for AND ◦ fk be comprised of a
0-certificate for the first copy of f that evaluates to 0, together with 1-certificates for each of the
preceding copies of f .

On the other hand, the following lemma (proven in Section 5.1) shows that randomized query
complexity goes up by a factor of k under AND-composition.

Lemma 6. For all f and k, we have BPPdt(f) ≤ O
(
BPPdt(AND ◦ fk)/k

)
.

We note that Lemma 6 qualitatively strengthens the tight direct sum result for randomized
query complexity in [JKS10] since computing the outputs of all k copies of f is at least as hard
as computing the AND of the outputs. Similarly, if we could prove an analogue of Lemma 6 for
communication complexity, it would qualitatively strengthen the notoriously-open tight direct sum
conjecture for randomized communication complexity.

3.3 Overview of proofs

The following diagram shows how we construct the functions used to witness our gaps. Starting
with some f , we can lift it to obtain F , or we can apply AND-composition to obtain f∗. We can
obtain F ∗ by either lifting f∗ or equivalently applying AND-composition to F .

f f∗

F F ∗

coWAPPdt-vs-UPdt BPPdt-vs-2UPdt

coWAPPcc-vs-UPcc BPPcc-vs-2UPcc

AND-composition

lifting lifting

AND-composition

Proof of Theorem 2. We start by discussing the proof of Theorem 2 as it will be used in the
proof of Theorem 1. We actually prove the following stronger version of Theorem 2 that gives a
lower bound even against coWAPPcc

ε (F ) ≤ O(BPPcc(F )):

Theorem 2? (coWAPPcc-vs-UPcc). There is an F such that coWAPPcc
0.04(F ) ≥ Ω̃(UPcc(F )2).

Our proof follows the same outline as in [GPW15] and only requires us to lift the following
analogous result for query complexity (proved in Section 4):

Lemma 7 (coWAPPdt-vs-UPdt). coWAPPdt
0.05(TL) ≥ Ω̃(UPdt(TL)2).

To derive Theorem 2?, set f := TL and F := f ◦ gn, where g is the gadget from Lemma 4
and n is the input length of f . Recall that UPdt(f) ≥ nΩ(1). Thus by Observation 3, UPcc(F ) ≤
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UPdt(f) ·O(log n) ≤ Õ(UPdt(f)), and by Lemma 4, coWAPPcc
0.04(F ) ≥ Ω(coWAPPdt

0.05(f) · log n) ≥
Ω(coWAPPdt

0.05(f)). Thus coWAPPcc
0.04(F ) ≥ Ω̃(UPcc(F )2).

Proof of Theorem 1. An “obvious” strategy for Theorem 1 would be again to first prove the
analogous query complexity result and then lift it to communication complexity. (This is the outline
used for the analogous result in [GPW15].) In other words, we would follow the lower-right path in
the above diagram:

Obvious strategy

(a) Start with f witnessing a BPPdt-vs-UPdt gap.
(b) Obtain f∗ witnessing a BPPdt-vs-2UPdt gap by applying AND-composition to f .
(c) Obtain F ∗ witnessing a BPPcc-vs-2UPcc gap by lifting f∗.

We have the tools to complete steps (a) and (b):

Lemma 8 (BPPdt-vs-2UPdt). There is an f such that BPPdt(f) ≥ Ω̃(2UPdt(f)1.5).

Proof. This is witnessed by f∗ := AND ◦ TLk where k := UPdt(TL). By Observation 5, 2UPdt(f∗) ≤
O(k2), and by Lemmas 6–7, BPPdt(f∗) ≥ Ω(k · BPPdt(TL)) ≥ Ω(k · coWAPPdt

0.05(TL)) ≥ Ω̃(k3).

Unfortunately, we do not know how to carry out step (c), because we currently lack a simulation
lemma for BPP. (We believe that such a lemma is true, and it is an interesting open problem to
prove this!) We get around this obstacle by reversing the order of steps (b) and (c), that is, we
instead follow the upper-left path in the diagram:

Modified strategy

(a′) Start with f witnessing a coWAPPdt-vs-UPdt gap.
(b′) Obtain F witnessing a coWAPPcc-vs-UPcc gap by lifting f .
(c′) Obtain F ∗ witnessing a BPPcc-vs-2UPcc gap by applying AND-composition to F .

Steps (a′) and (b′) are just Theorem 2?. For step (c′) it would suffice to have an analogue of
Lemma 6 for communication complexity. This is open, but fortunately we have some wiggle room
since it suffices to have coWAPPε instead of BPP on the left side of Lemma 6. For this, we can
prove a communication analogue (indeed, with 2WAPPε instead of coWAPPε):

Lemma 9. For all F , k, and constants 0 < ε < 1/2, we have

2WAPPcc
ε (F ) ≤ O

(
BPPcc(AND ◦ F k)/k + logBPPcc(AND ◦ F k)

)
.

To derive Theorem 1, let F be the function in Theorem 2?, and let F ∗ := AND ◦ F k where k :=
UPcc(F ). Then F ∗ witnesses Theorem 1: By Observation 5, 2UPcc(F ∗) ≤ O(k2), and by Lemma 9,
BPPcc(F ∗) ≥ Ω

(
k · (2WAPPcc

0.04(F )−O(log k))
)
≥ Ω

(
k · (coWAPPcc

0.04(F )−O(log k))
)
≥ Ω̃(k3).

Proof of Lemma 9. We start with the intuition for the proof of Lemma 6, which is a warmup for
Lemma 9. For brevity let f∗ := AND ◦ fk. Given an input z for f , the basic idea is to plant z into a
random coordinate of f∗(z1, . . . , zk), and plant random 1-inputs into the other coordinates, and then
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run the randomized decision tree for f∗. If q is the query complexity of f∗, the expected number
of bits of z that are queried (over a random 1-input) will be at most q/k. Our new randomized
decision tree will simulate this but abort after 8q/k queries to z have been made. If an answer is
returned, we output the same value for f(z), and if no answer is returned within this many queries,
then we output 0. A simple analysis shows that we succeed with high probability in the average-case
(which is equivalent to worst-case by the minimax theorem).

To prove Lemma 9, we would like to mimic this argument in the communication world, using the
fact that internal information complexity is sandwiched between BPPcc and 2WAPPcc [KLL+12] and
satisfies a sort of AND-composition analogous to Lemma 6 using well-known properties (by planting
the input into a random coordinate, and planting random 1-inputs into the other coordinates).
However there is a significant barrier to this idea “just working”: the AND-composition property
(direct sum lemma) requires a distribution over 1-inputs of F (one-sided), while the relation to
2WAPPcc requires an arbitrary distribution over inputs to F (two-sided). To bridge this divide, we
prove a new property of information complexity: the one-sided version is essentially equivalent to the
two-sided version. A key ingredient in showing the latter is the “information odometer” of [BW15a],
which allows us to keep track of the amount of information that has been revealed, and abort the
protocol once we have reached our limit, and argue that we can carry this out without revealing too
much extra information. We note that this one-vs-two sided information complexity lemma is the
only component of the proof of Theorem 1 that distinguishes between arbitrary rectangle partitions
(2UPcc) and rectangle partitions induced by protocols (Pcc).

Organization. The only ingredients that remain to be proved are Lemma 7 (which we prove in
Section 4) and Lemma 6 and Lemma 9 (both of which we prove in Section 5).

4 Decision Tree Lower Bound

In this section we prove Lemma 7, restated here for convenience.

Lemma 7 (coWAPPdt-vs-UPdt). coWAPPdt
0.05(TL) ≥ Ω̃(UPdt(TL)2).

Recall that UPdt(TL) ≤ O(k log k) by definition. To prove Lemma 7 we show that there is no
o(k2)-degree conical junta h =

∑
wCC that outputs values in [0.95, 1] on inputs from TL−1(0) and

outputs values in [0, 0.05] on inputs from TL−1(1). A similar lower bound for the plain k × k Tribes
function was proved by [JK10, Theorem 4] using LP duality; our argument is more direct.

To illustrate the basic style of argument, we start gently by proving an Ω(n) conical junta
degree bound for approximating the NAND function—this lower bound will be used in the proof of
Lemma 7, too.

4.1 Warm-up: Lower bound for NAND

Suppose for contradiction that h =
∑
wCC is a conical junta of degree o(n) computing the n-

bit NAND function to within error 1/5. We will argue that if h is correct on inputs of Hamming
weights n and n − 1, then it must mess up on inputs of Hamming weight n − 2: h will output a
value larger than 1, which is a contradiction. We now give the details.

To begin, we have h(~1) ≤ 1/5 by the correctness of h (here ~1 is the all-1 input). This means
that the total weight (sum of wC ’s) associated with conjunctions that read only 1’s is at most 1/5.
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Let X ∈ NAND−1(1) be a uniformly random string of Hamming weight n− 1. By correctness,

E[h(X)] =
∑
wCE[C(X)] =

∑
wCP[C(X) = 1] ≥ 4/5.

In the above sum, there are two types of conjunctions that contribute with a positive acceptance
probability: those that read only 1’s, and those that read a single 0 and some o(n) many 1’s. Since
the first type has total weight ≤ 1/5 we must have

∑
C∈C wCP[C(X) = 1] ≥ 3/5 where C is the

set of conjunctions of the second type. Consider the acceptance probability of any C ∈ C on a
uniformly random string Y ∈ NAND−1(1) of Hamming weight n− 2: if the width of C is d, then
P[C(Y ) = 1] = (n − d)/

(
n
2

)
, which is (2 − o(1))/n for d = o(n). Since P[C(X) = 1] = 1/n we

conclude that
P[C(Y ) = 1] = (2− o(1)) · P[C(X) = 1]. (1)

We now arrive at the desired contradiction:

E[h(Y )] ≥
∑

C∈C wCP[C(Y ) = 1] = (2− o(1))
∑

C∈C wCP[C(X) = 1] ≥ (2− o(1)) · 3/5 > 1.

4.2 Proof of Lemma 7

We prove a lower bound for TL : Σk×k → {0, 1} by arguing that Ω(k2) entries must be touched: We
only charge one query for reading a whole matrix entry in Σ = {0, 1} × ([k]k−1 ∪ {⊥}). That is,
we assume each conjunction either reads nothing from an entry or reads one fully. The width of a
conjunction is then understood as the number of entries it reads.

We study three types of random inputs to TL:

− X ∈ TL−1(0) is defined so that the columns in X are independent, and in each column all
entries are (1,⊥) except we plant a single (0,⊥) entry in a random row index. Hence there
are altogether k many (0,⊥) entries in X.

− Y ∈ TL−1(0) is defined like X except we replace a random (1,⊥) entry in X with a (0,⊥)
entry. Hence there are altogether k + 1 many (0,⊥) entries in Y , two of them sharing a
column.

− Z ∈ TL−1(1) is defined like X except we replace a random (0,⊥) entry (k different choices)
in X with a (1, p) entry, where p is a list of pointers to all other positions of (0,⊥) entries
(making Z indeed a 1-input).

The crux of the argument is contained in the following claim.

Claim 10. For every conjunction C of width o(k2), either P[C(Y ) = 1] ≥ 1.4 · P[C(X) = 1] or
P[C(Z) = 1] ≥ 0.5 · P[C(X) = 1].

Before proving Claim 10, let us see how to finish the proof of Lemma 7 assuming it. We have a
similar claim for conical juntas:

Claim 11. For every conical junta h of degree o(k2), either E[h(Y )] ≥ 1.1 · E[h(X)] or E[h(Z)] ≥
0.1 · E[h(X)].

Proof. Let h =
∑
wCC. By linearity, E[h(X)] =

∑
wCP[C(X) = 1] and similarly for Y and Z. By

Claim 10, let C be a set of conjunctions such that for each C ∈ C , P[C(Y ) = 1] ≥ 1.4 ·P[C(X) = 1],
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and for each C 6∈ C , P[C(Z) = 1] ≥ 0.5 ·P[C(X) = 1]. Either
∑

C∈C wCP[C(X) = 1] ≥ 0.8 ·E[h(X)],
in which case

E[h(Y )] ≥
∑

C∈C wCP[C(Y ) = 1] ≥
∑

C∈C wC · 1.4 · P[C(X) = 1] ≥ 1.4 · 0.8 · E[h(X)],

or
∑

C 6∈C wCP[C(X) = 1] ≥ 0.2 · E[h(X)], in which case

E[h(Z)] ≥
∑

C 6∈C wCP[C(Z) = 1] ≥
∑

C 6∈C wC · 0.5 · P[C(X) = 1] ≥ 0.5 · 0.2 · E[h(X)].

Now to prove Lemma 7, suppose for contradiction that h is a conical junta of degree o(k2)
computing ¬TL to within error 0.05. That is, the value of h is in [0.95, 1] on 0-inputs of TL

and in [0, 0.05] on 1-inputs of TL. In particular, E[h(X)] ∈ [0.95, 1], E[h(Y )] ∈ [0.95, 1], and
E[h(Z)] ∈ [0, 0.05]. This directly contradicts Claim 11.

Proof of Claim 10. We may assume that C accepts X with positive probability for otherwise the
claim is trivial. Hence C reads at most a single (0,⊥) entry from each column. We analyze two
cases depending on how many (0,⊥) entries C reads in total.

The first (easy) case is when C reads less than k/2 many (0,⊥) entries. Here C cannot detect
us replacing a random (0,⊥) entry with a (1, p) entry with probability better than 1/2. That is,
P[C(Z) = 1] ≥ 0.5 · P[C(X) = 1].

The second case is when C reads at least k/2 many (0,⊥) entries. Because C has width o(k2)
there is some S1 ⊆ [k] of size |S1| ≥ (1 − o(1))k such that C reads o(k) entries from each of the
columns indexed by S1. (More precisely, if C has width δk2, then there is a set of (1−

√
δ)k columns

from each of which C reads at most
√
δk entries.) Let S2 ⊆ [k], |S2| ≥ k/2, be the set of columns

where C reads a (0,⊥). Let i ∈ [k] denote the unique column where X and Y differ. Note that i is
a uniform random variable; for example, P[i ∈ S1] = 1− o(1). In what follows, we take ≈ to mean
up to a (1± o(1)) factor. We calculate:

P[C(Y ) = 1] ≥ P[C(Y ) = 1 and i ∈ S1]

≈ P[C(Y ) = 1 | i ∈ S1]

= P[C(Y ) = 1 and i ∈ S2 | i ∈ S1] + P[C(Y ) = 1 and i /∈ S2 | i ∈ S1]

= λ · P[C(Y ) = 1 | i ∈ S1 ∩ S2]︸ ︷︷ ︸
(I)

+ (1− λ) · P[C(Y ) = 1 | i ∈ S1 r S2]︸ ︷︷ ︸
(II)

,

where λ := P[i ∈ S2 | i ∈ S1] ≥ 1/2− o(1). In the first term, the condition (i ∈ S1 ∩ S2) means that
C reads a single (0,⊥) and o(k) many (1,⊥)’s from the i-th column. Hence we are in a situation
analogous to that in (1), and the same argument yields

(I) ≥ (2− o(1)) · P[C(X) = 1 | i ∈ S1 ∩ S2] ≈ 2 · P[C(X) = 1].

In the second term, the condition (i ∈ S1 r S2) means that C reads o(k) many (1,⊥)’s from the
i-th column. Hence C cannot detect our planting of an additional (0,⊥) entry in that column with
probability better than o(1):

(II) ≥ (1− o(1)) · P[C(X) = 1 | i ∈ S1 r S2] ≈ P[C(X) = 1].

In summary, we get that for some λ ≥ 1/2− o(1),

P[C(Y ) = 1] ≥ (2λ+ (1− λ)− o(1)) · P[C(X) = 1]

≥ (3/2− o(1)) · P[C(X) = 1]

≥ 1.4 · P[C(X) = 1].
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5 AND-Composition Lemmas

In this section we prove Lemma 6 and Lemma 9, restated here for convenience.

Lemma 6. For all f and k, we have BPPdt(f) ≤ O
(
BPPdt(AND ◦ fk)/k

)
.

Lemma 9. For all F , k, and constants 0 < ε < 1/2, we have

2WAPPcc
ε (F ) ≤ O

(
BPPcc(AND ◦ F k)/k + logBPPcc(AND ◦ F k)

)
.

5.1 AND-composition for query complexity

We now prove Lemma 6. For brevity let f∗ := AND ◦ fk. Let T ∗ be a height-q randomized decision
tree for f∗ with error 1/8. We design a height-8q/k randomized decision tree for f with error 1/4.

Let D be an arbitrary distribution over f−1(1). Consider the following randomized decision tree
T that takes z ∈ {0, 1}n as input:

1. Pick i ∈ [k] uniformly at random and let zi := z.
2. For j ∈ [k] r {i} sample zj ∼ D independently.
3. Run T ∗(z1, . . . , zk) until it has made 8q/k queries in the i-th component.
4. If T ∗ already produced an output in Step 3, output the same bit; otherwise output 0.

Note that with probability 1 we have f∗(z1, . . . , zk) = f(z). Let RT denote T ’s randomness and
RT ∗ denote T ∗’s randomness. If f(z) = 0 then

PRT
[T (z) = 1] ≤ max(z1,...,zk)∈(f∗)−1(0) PRT∗ [T

∗(z1, . . . , zk) = 1] ≤ 1/8 ≤ 1/4.

Furthermore,

Pz∼D,RT
[T (z) = 0] = Pz1,...,zk∼D, i∈[k], RT∗

[
T ∗(z1, . . . , zk) outputs 0 or makes more
than 8q/k queries in the i-th component

]

≤ max(z1,...,zk)∈(f∗)−1(1)

 PRT∗ [T
∗(z1, . . . , zk) = 0] +

maxRT∗ Pi∈[k]

[
T ∗(z1, . . . , zk) makes more than
8q/k queries in the i-th component

] 
≤ 1/8 + 1/8 = 1/4.

Now let D be an arbitrary distribution over {0, 1}n and define T w.r.t. (D | f−1(1)). We have

Pz∼D,RT
[T (z) 6= f(z)] =

∑
b∈{0,1} Pz∼(D | f−1(b)), RT

[T (z) 6= b] · Pz∼D[f(z) = b]

≤
∑

b∈{0,1}(1/4) · Pz∼D[f(z) = b] = 1/4.

By the minimax theorem, there is a height-8q/k randomized decision tree (a mixture of the T ’s)
that on any input produces the wrong output with probability ≤ 1/4.

5.2 Definitions

We adopt the following conventions throughout the proof of Lemma 9. We denote random vari-
ables with upper-case letters, and we denote particular outcomes of the random variables with

11



the corresponding lower-case letters. All communication protocols are randomized and mixed-
coin, and we use (R,RA, RB) to denote the public randomness, Alice’s private randomness, and
Bob’s private randomness, respectively. We say a protocol Π is ε-correct for F if for all (x, y),
PR,RA,RB

[Π(x, y) = F (x, y)] ≥ 1− ε. For a distribution D over inputs, we say Π is (ε,D)-correct
for F if P(X,Y )∼D,R,RA,RB

[Π(X,Y ) = F (X,Y )] ≥ 1 − ε. The internal information cost of a pro-
tocol Π with respect to (X,Y ) ∼ D is defined as ICD(Π) := I(R,M ;X |Y ) + I(R,M ;Y |X) =
I(M ;X |Y,R) + I(M ;Y |X,R) where the random variable M is the concatenation of all messages.
We also let CC(Π) denote the worst-case communication cost of Π.

It is convenient for us to work with a measure 2WAPPcc∗ that is defined slightly differently
from 2WAPPcc but is equivalent in the sense that for all F and 0 < ε < 1/2, 2WAPPcc

ε (F ) ≤
2WAPPcc∗

ε (F ) ≤ O(2WAPPcc
ε/2(F )). We note that 2WAPPcc directly expresses the two-sided smooth

rectangle bound of [JK10], while 2WAPPcc∗ directly expresses the relaxed partition bound of
[KLL+12] and was the definition used in [GLM+15].

Definition 12. We define 2WAPPcc∗
ε (F ) as the minimum of CC(Π) + log(1/α) over all α > 0

and all protocols Π with output values {0, 1,⊥} such that for all (x, y), P[Π(x, y) 6= ⊥] ≤ α and
P[Π(x, y) = F (x, y)] ≥ (1− ε)α (i.e., Π is (1− (1− ε)α)-correct).

We also need the distributional version of 2WAPPcc∗.

Definition 13. For an input distribution D, we define 2WAPPcc∗
ε,D(F ) as the minimum of CC(Π) +

log(1/α) over all α > 0 and all protocols Π with output values {0, 1,⊥} such that P[Π(x, y) 6= ⊥] ≤ α
for all (x, y), and P[Π(X,Y ) = F (X,Y )] ≥ (1−ε)α for (X,Y ) ∼ D (i.e., Π is (1−(1−ε)α,D)-correct).

5.3 AND-composition for communication complexity

We now outline the proof of Lemma 9. Recall that the proof of Lemma 6 involved these steps:

(i) embedding the input into a random coordinate of a k-tuple and filling the other coordinates
with random 1-inputs (to cut the cost on 1-inputs by a factor k),

(ii) aborting the execution if the cost became too high (to ensure low cost also on 0-inputs while
maintaining average-case correctness on 1-inputs),

(iii) using the minimax theorem to go from average-case to worst-case correctness.

We start by noting that an analogue of (i) holds for information complexity (which lower bounds
BPPcc). Then as one of our main technical contributions we prove an analogue of (ii) for information
complexity. Then inbetween (ii) and (iii) we insert a step applying the known result that information
complexity upper bounds 2WAPPcc∗ in the distributional setting. Finally we use the analogue of
(iii) for 2WAPPcc∗. Formally, Lemma 9 follows by stringing together the following lemmas.

Lemma 14. Fix any F , k, 0 < ε < 1/2, and distribution D over F−1(1). For every ε-correct
protocol Π for AND ◦ F k there is an ε-correct protocol Π′ for F with ICD(Π′) ≤ CC(Π)/k and
CC(Π′) ≤ CC(Π).

Lemma 15. Fix any F , constants 0 < ε < δ < 1/2, and input distribution D, and let D1 :=
(D |F−1(1)). For every (ε,D)-correct protocol Π there is a (δ,D)-correct protocol Π′ with ICD(Π′) ≤
O
(
ICD1(Π) + log(CC(Π) + 2)

)
.

Lemma 16. Fix any F , constants 0 < ε < δ < 1/2, and input distribution D. For every (ε,D)-
correct protocol Π we have 2WAPPcc∗

δ,D(F ) ≤ O(ICD(Π) + 1).
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Lemma 17. Fix any F and 0 < ε < 1/2. Then 2WAPPcc∗
ε (F ) ≤ 2 + maxD 2WAPPcc∗

ε,D(F ).

Lemma 14 is a standard application of the “direct sum” property of information cost; for
completeness we sketch the argument in Appendix A. Lemma 15 is proved in Section 5.4 and
relies on [BW15a]. Lemma 16 is due to [KLL+12, Theorem 1.1 of the ECCC version]. Lemma 17
follows from an argument in [KLL+12, Appendix A of the ECCC version] that uses LP duality; for
completeness, in Appendix A we give a more intuitive version of the argument phrased in terms of
the minimax theorem.

The moral conclusion of Lemma 15 is that “one-sided information complexity” is essentially
equivalent to “two-sided information complexity” for average-case protocols. Combining Lemma 15
with [Bra12, Theorem 3.5 of the ECCC version] shows that a similar equivalence holds for worst-case
protocols. More specifically, a distribution-independent definition of information complexity for
bounded-error protocols can be obtained by maximizing over all input distributions; our corollary
shows that this measure is essentially unchanged if we maximize only over distributions over 1-inputs
(or symmetrically, 0-inputs). This is not needed for our results, but may be of independent interest.

Corollary 18. Fix any F , constants 0 < ε < δ < 1/2, and b ∈ {0, 1}. Then

inf
δ-correct

protocols Π

max
D over

all inputs

ICD(Π) ≤ max
D over
b-inputs

inf
ε-correct

protocols Π

O
(
ICD(Π) + log(CC(Π) + 2)

)
.

5.4 One-sided information vs. two-sided information

Intuition for Lemma 15. Recall the following idea, which was implicit in the proof of Lemma 6.
Suppose we have a randomized decision tree computing some function, and we have a bound b on
the expected number of queries made over a random 1-input. Then to obtain a randomized decision
tree with a worst-case query bound, we can keep track of the number of queries made during the
execution and halt and output 0 if it exceeds, say, 8b. Correctness on 0-inputs is maintained since
we either run the original decision tree to completion and thus output 0 with high probability, or
we abort and output 0 anyway. We get average-case correctness on 1-inputs since by Markov’s
inequality, with probability at least 7/8 the original decision tree uses at most 8b queries, in which
case we run it to completion and output 1 with high probability.

The high-level intuition is to mimic this idea for information complexity. We have a protocol
with a bound on the information cost w.r.t. the distribution D1 over 1-inputs. The “information
odometer” of [BW15a] allows us to “keep track of” information cost, so we can halt and output
0 if it becomes too large. This will guarantee that the information cost is low w.r.t. the input
distribution D, and correctness on 0-inputs is maintained. However, there is a complication with
showing the average-case correctness on 1-inputs.

For each computation path specified by an input (x, y), an outcome of public randomness r, and
a full sequence of messages m, there is a contribution cx,y,r,m such that the information cost w.r.t.
D is the expectation of cx,y,r,m over a random computation path with (x, y) ∼ D. Similarly, there is
a contribution c1

x,y,r,m such that the information cost w.r.t. D1 is the expectation of c1
x,y,r,m over a

random computation path with (x, y) ∼ D1. These contributions play the role of “number of queries”
along a computation path in the decision tree setting, but a crucial difference is that cx,y,r,m 6= c1

x,y,r,m

in general; i.e., the contribution to information cost depends on the input distribution (whereas
number of queries did not). To show the average-case correctness on 1-inputs, we need a bound on
the typical value of cx,y,r,m, whereas the assumption that information cost w.r.t. D1 is low gives us
a bound on the typical value of c1

x,y,r,m.
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Thus the heart of the argument is to show that typically, cx,y,r,m is not much larger than c1
x,y,r,m.

Intuitively, one might expect the difference to be at most 1, since the only additional information
that can be revealed (beyond what is revealed under D1) should be the fact that (x, y) is a 1-input
(which is 1 bit of information). More precisely, we show that for given (x, y), the expected difference
depends on how balanced F is on the x row and the y column. Then we just need to note that F is
typically reasonably balanced for both the x row and the y column.

Formal proof of Lemma 15. Assume w.l.o.g. that every execution of Π communicates exactly
the same number of bits, and that Alice always sends a bit in odd rounds and Bob always sends
a bit in even rounds (by inserting dummy coin flip rounds if necessary). As shown in [BW15a],
we can also assume that Π is “smooth” (i.e., in every step, the bit to be communicated is 1 with
probability between 1/3 and 2/3)—this is needed in order to apply Lemma 19 below.

Consider a probability space with random variables X,Y,R,RA, RB,M, F where (X,Y ) ∼
D is the input, (R,RA, RB) is Π’s randomness, M := M1, . . . ,MCC(Π) is the sequence of bits
communicated by Π, and F := F (X,Y ) is the function value. For convenience of notation, if we
condition on “x”, this is shorthand for conditioning on “X = x”. Letting t ∈ {1, . . . ,CC(Π)} and
letting D denote KL-divergence (relative entropy), if we define

dx,y,r,m<t
:= D

(
Mt |x, y, r,m<t

Mt | y, r,m<t

)
+ D

(
Mt |x, y, r,m<t

Mt |x, r,m<t

)
,

cx,y,r,m :=
∑

t dx,y,r,m<t ,

cx,y := E[cX,Y,R,M |x, y],

then it can be seen [BW15a, Appendix C of the ECCC version] that

ICD(Π) = E[cX,Y,R,M ] = E[cX,Y ]. (2)

Note that if t is odd the second term of dx,y,r,m<t is 0, and if t is even the first term is 0; hence we
think of dx,y,r,m<t as defined by a single term (depending on who communicates in round t).

Although the following lemma was not explicitly stated in this way in [BW15a], it follows
immediately from the corresponding part of the argument for the “conditional abort theorem” in
that paper [BW15b].

Lemma 19 (Odometer). For every smooth protocol Π, constant γ > 0, input distribution D,
and I > 0, there is a protocol Π∗ with ICD(Π∗) ≤ O

(
I + log(CC(Π) + 2)

)
that simulates Π in the

following sense: Π∗ uses the same randomness (R,RA, RB) as Π and some additional, independent
randomness Q. Consider any fixed outcome x, y, r, rA, rB, and let m be Π’s messages. Then

(i) for every q, Π∗ outputs either ⊥ or the same bit that Π does, and
(ii) if cx,y,r,m ≤ I then PQ[Π∗ outputs ⊥] ≤ γ.

Define γ := (δ−ε)/5. To obtain Π′ witnessing Lemma 15, we obtain Π∗ from Lemma 19 with I :=
(ICD1(Π)/γ + 2 log(1/γ))/γ and replace the output ⊥ with 0. Then we have ICD(Π′) = ICD(Π∗) ≤
O
(
ICD1(Π) + log(CC(Π) + 2)

)
, so we just need to verify that Π′ is (δ,D)-correct. In the following,

we use Π,Π∗,Π′ to denote random variables (jointly distributed with X,Y,R,RA, RB,M, F,Q)
representing the outputs of the protocols.

Claim 20. P[cX,Y,R,M > I and F = 1] ≤ 4γ.
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Assuming Claim 20, we have

P[Π′ 6= Π = F ] = P[Π∗ = ⊥ and Π = F = 1]

≤ P[Π∗ = ⊥ and F = 1]

≤ P
[
cX,Y,R,M > I and F = 1

]
+ P

[
Π∗ = ⊥

∣∣ cX,Y,R,M ≤ I and F = 1
]

≤ 4γ + γ

= 5γ

where the first line follows by construction of Π′ and part (i) of Lemma 19, and the fourth line
follows by Claim 20 and part (ii) of Lemma 19. Finally,

P[Π′ 6= F ] ≤ P[Π 6= F ] + P[Π′ 6= Π = F ] ≤ ε+ 5γ = δ

since Π is (ε,D)-correct. This finishes the proof of Lemma 15.
To prove Claim 20, we first need to state another claim. Analogously to the notation leading up

to (2), if for (x, y) ∈ F−1(1) we define

d1
x,y,r,m<t

:= D
(
Mt |x, y, r,m<t

Mt | y, r,m<t, F = 1

)
+ D

(
Mt |x, y, r,m<t

Mt |x, r,m<t, F = 1

)
,

c1
x,y,r,m :=

∑
t d

1
x,y,r,m<t

,

c1
x,y := E[c1

X,Y,R,M |x, y],

then we have
ICD1(Π) = E[c1

X,Y,R,M |F = 1] = E[c1
X,Y |F = 1]. (3)

Claim 21. For (x, y) ∈ F−1(1), we have cx,y − c1
x,y ≤ log

(
1/P[F = 1 | y]

)
+ log

(
1/P[F = 1 |x]

)
.

Proof of Claim 20. For any (x, y), by Markov’s inequality we have

P
[
cX,Y,R,M > cX,Y /γ

∣∣x, y] ≤ γ. (4)

Say y is bad if P[F = 1 | y] ≤ γ, and x is bad if P[F = 1 |x] ≤ γ. By Claim 21 and a union bound,

P
[
cX,Y > c1

X,Y + 2 log(1/γ) and F = 1
]
≤ P

[
(Y is bad or X is bad) and F = 1

]
≤ P[F = 1 |Y is bad] + P[F = 1 |X is bad]

≤ 2γ. (5)

By Markov’s inequality and (3) we have

P
[
c1
X,Y > ICD1(Π)/γ and F = 1

]
≤ P

[
c1
X,Y > ICD1(Π)/γ

∣∣F = 1
]
≤ γ. (6)

Claim 20 follows by combining (4), (5), and (6) using a union bound.

Proof of Claim 21. Fix (x, y) ∈ F−1(1). Let MA := M1,M3, . . . be the bits sent by Alice, and let
MB := M2,M4, . . . be the bits sent by Bob. Let MA,<t := M1,M3, . . . ,Mk where k is the largest
odd value < t, and let MB,<t := M2,M4, . . . ,Mk where k is the largest even value < t.
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For the moment, also consider any fixed r, rB . Consider a separate probability space with random
variables X∗,M∗ distributed as (X,M | y, r, rB), and note that for even t, M∗t is a deterministic
function of M∗A,<t. For the conditioning notation in the following, let x∗ := x. We have

∑
odd t E

[
dX,Y,R,M<t

∣∣x, y, r, rB] =
∑

odd t EM∗A,<t

[
D
(
M∗t |x∗,m∗A,<t
M∗t |m∗A,<t

) ∣∣∣∣x∗]
= D

(
M∗A |x∗

M∗A

)
= D

(
MA |x, y, r, rB
MA | y, r, rB

)
where the middle equality is a direct application of the chain rule for D. Similarly, for any fixed
r, rA, we have ∑

even t E
[
dX,Y,R,M<t

∣∣x, y, r, rA] = D
(
MB |x, y, r, rA
MB |x, r, rA

)
.

Then (no longer fixing any of r, rA, rB) we have

cx,y = E
[∑

t dX,Y,R,M<t

∣∣x, y]
= ER,RB

[∑
odd t E

[
dX,Y,R,M<t

∣∣x, y, r, rB]]+ ER,RA

[∑
even t E

[
dX,Y,R,M<t

∣∣x, y, r, rA]]
= ER,RB

[
D
(
MA |x, y, r, rB
MA | y, r, rB

)]
+ ER,RA

[
D
(
MB |x, y, r, rA
MB |x, r, rA

)]
(7)

and similarly,

c1
x,y = ER,RB

[
D
(
MA |x, y, r, rB
MA | y, r, rB, F = 1

)]
+ ER,RA

[
D
(
MB |x, y, r, rA
MB |x, r, rA, F = 1

)]
. (8)

Note that

D
(
MA |x, y, r, rB
MA | y, r, rB

)
− D

(
MA |x, y, r, rB
MA | y, r, rB, F = 1

)
=
∑

mA
P[mA |x, y, r, rB] · log

(
P[mA | y, r, rB, F = 1]

P[mA | y, r, rB]

)
≤
∑

mA
P[mA |x, y, r, rB] · log

(
1/P[F = 1 | y]

)
= log

(
1/P[F = 1 | y]

)
(9)

and similarly,

D
(
MB |x, y, r, rA
MB |x, r, rA

)
− D

(
MB |x, y, r, rA
MB |x, r, rA, F = 1

)
≤ log

(
1/P[F = 1 |x]

)
. (10)

Claim 21 follows by combining (7), (8), (9), and (10) using linearity of expectation.

16



A Appendix: Basic Lemmas

A.1 Proof of Lemma 14

Write the input to AND ◦ F k as
(
(X1, Y1), . . . , (Xk, Yk)

)
∼ Dk. Let (R,RA, RB) be Π’s randomness

and M be Π’s messages. It is known (see [BR14, Lemma 3.14 of the ECCC Revision #1 version]
and [BM13, Fact 2.3 of the ECCC Revision #1 version]) that

CC(Π) ≥ ICDk(Π) ≥
k∑
i=1

I
(
R,M ;Xi

∣∣X1,...,i−1, Yi, Yi+1,...,k

)
+I
(
R,M ;Yi

∣∣X1,...,i−1, Xi, Yi+1,...,k

)
.

Therefore there exists i and x1,...,i−1, yi+1,...,k such that

CC(Π)/k ≥ I
(
R,M ;Xi

∣∣x1,...,i−1, Yi, yi+1,...,k

)
+ I
(
R,M ;Yi

∣∣x1,...,i−1, Xi, yi+1,...,k

)
which is exactly ICD(Π′) where Π′ is the following protocol with input denoted (Xi, Yi):

1. Sample the same public randomness R as Π.
2. Alice privately samples RA and Xi+1,...,k according to Dk−i conditioned on yi+1,...,k.
3. Bob privately samples RB and Y1,...,i−1 according to Di−1 conditioned on x1,...,i−1.
4. Run Π on input (x1,...,i−1, Xi, Xi+1,...,k), (Y1,...,i−1, Yi, yi+1,...,k) with randomness (R,RA, RB).

Trivially, CC(Π′) ≤ CC(Π). The ε-correctness of Π′ follows from the ε-correctness of Π since
with probability 1, F (xj , Yj) = 1 for j < i and F (Xj , yj) = 1 for j > i and thus

(AND ◦ F k)
(
(x1,...,i−1, Xi, Xi+1,...,k), (Y1,...,i−1, Yi, yi+1,...,k)

)
= F (Xi, Yi).

A.2 Proof of Lemma 17

Define α∗ such that log(1/α∗) = maxD 2WAPPcc∗
ε,D(F ). Consider the following two-player zero-sum

game.r Each pure row strategy is an input (x, y) to F .r Each pure column strategy is a distribution µ over pairs (S, b), where S is a rectangle and
b ∈ {0, 1,⊥}, such that P(S,b)∼µ

[
(x, y) ∈ S and b 6= ⊥

]
≤ α∗ holds for each (x, y).r The payoff to the column player is P ((x, y), µ) := P(S,b)∼µ
[
(x, y) ∈ S and b = F (x, y)

]
.

We claim that for every mixed row strategy D there exists a pure column strategy µ such that
E(x,y)∼D[P ((x, y), µ)] ≥ (1 − ε)α∗. By assumption, there exists a 2WAPPcc∗

ε,D protocol Π with
communication cost c and associated α satisfying c+ log(1/α) ≤ log(1/α∗). Assume Π only uses
public randomness (by making any private randomness public). Consider the distribution µ over
pairs (S, b) sampled as follows:r with probability 1− α∗ · 2c/α, let S be arbitrary and b = ⊥;r otherwise, sample the randomness of Π and a uniformly random transcript (of which we may

assume there are exactly 2c many) from the induced deterministic protocol, and let (S, b) be
the rectangle and output of that transcript.

17



Then for each (x, y),

P(S,b)∼µ
[
(x, y) ∈ S and b 6= ⊥

]
= (α∗ · 2c/α) · PΠ’s randomness[Π(x, y) 6= ⊥] ·

Puniform transcript[Π(x, y) has that transcript]

≤ (α∗ · 2c/α) · α · (1/2c)
= α∗

so µ is a valid pure column strategy. Similarly, for each (x, y) we have P ((x, y), µ) = (α∗/α) ·
PΠ’s randomness[Π(x, y) = F (x, y)], and thus

E(x,y)∼D[P ((x, y), µ)] = (α∗/α) · P(x,y)∼D,Π’s randomness[Π(x, y) = F (x, y)] ≥ (1− ε)α∗.

Since the set of all pure column strategies µ forms a polytope, and since P ((x, y), µ) is an affine
function of µ for each (x, y), we may consider w.l.o.g. only the finitely-many pure column strategies
that are vertices of the polytope. Thus we may employ the minimax theorem to find a mixed column
strategy ν such that for every pure row strategy (x, y) we have Eµ∼ν [P ((x, y), µ)] ≥ (1 − ε)α∗.
Consider a protocol Π that publicly samples µ ∼ ν and (S, b) ∼ µ, then checks whether (x, y) ∈ S
(with 2 bits of communication) and outputs b if so and ⊥ if not. Then for each (x, y),r P[Π(x, y) 6= ⊥] = Eµ∼ν

[
P(S,b)∼µ

[
(x, y) ∈ S and b 6= ⊥

]]
≤ Eµ∼ν [α∗] = α∗ by the definition of

pure column strategies, andr P[Π(x, y) = F (x, y)] = Eµ∼ν
[
P(S,b)∼µ

[
(x, y) ∈ S and b = F (x, y)

]]
= Eµ∼ν [P ((x, y), µ)] ≥

(1− ε)α∗.

Thus Π witnesses that 2WAPPcc∗
ε (F ) ≤ 2 + log(1/α∗).
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[GPW15] Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication vs.
partition number. In Proceedings of the 56th Symposium on Foundations of Computer
Science (FOCS), pages 1077–1088. IEEE, 2015. doi:10.1109/FOCS.2015.70.

[JK10] Rahul Jain and Hartmut Klauck. The partition bound for classical communication com-
plexity and query complexity. In Proceedings of the 25th Conference on Computational
Complexity (CCC), pages 247–258. IEEE, 2010. doi:10.1109/CCC.2010.31.

[JKS10] Rahul Jain, Hartmut Klauck, and Miklos Santha. Optimal direct sum results for
deterministic and randomized decision tree complexity. Information Processing Letters,
110(20):893–897, 2010. doi:10.1016/j.ipl.2010.07.020.

[JLV14] Rahul Jain, Troy Lee, and Nisheeth Vishnoi. A quadratically tight partition bound for
classical communication complexity and query complexity. Technical report, arXiv, 2014.
arXiv:1401.4512.

[Juk12] Stasys Jukna. Boolean Function Complexity: Advances and Frontiers, volume 27 of
Algorithms and Combinatorics. Springer, 2012.

[KLdW15] Jedrzej Kaniewski, Troy Lee, and Ronald de Wolf. Query complexity in expectation.
In Proceedings of the 42nd International Colloquium on Automata, Languages, and
Programming (ICALP), pages 761–772. Springer, 2015. doi:10.1007/978-3-662-47672-7 62.

[KLL+12] Iordanis Kerenidis, Sophie Laplante, Virginie Lerays, Jérémie Roland, and David Xiao.
Lower bounds on information complexity via zero-communication protocols and appli-
cations. In Proceedings of the 53rd Symposium on Foundations of Computer Science
(FOCS), pages 500–509. IEEE, 2012. doi:10.1109/FOCS.2012.68.

19

http://dx.doi.org/10.1109/TIT.2014.2347282
http://dx.doi.org/10.1109/TIT.2014.2347282
http://dx.doi.org/10.1145/2213977.2214025
http://dx.doi.org/10.1145/2213977.2214025
http://dx.doi.org/10.1145/2746539.2746548
http://dx.doi.org/10.1145/2746539.2746596
http://dx.doi.org/10.1109/FOCS.2015.69
http://dx.doi.org/10.1109/FOCS.2015.70
http://dx.doi.org/10.1109/CCC.2010.31
http://dx.doi.org/10.1016/j.ipl.2010.07.020
http://arxiv.org/abs/1401.4512
http://dx.doi.org/10.1007/978-3-662-47672-7_62
http://dx.doi.org/10.1109/FOCS.2012.68


[KMSY14] Gillat Kol, Shay Moran, Amir Shpilka, and Amir Yehudayoff. Approximate nonnegative
rank is equivalent to the smooth rectangle bound. In Proceedings of the 41st Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP), pages 701–712.
Springer, 2014. doi:10.1007/978-3-662-43948-7 58.

[KN97] Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University
Press, 1997.

[KRS15] Robin Kothari, David Racicot-Desloges, and Miklos Santha. Separating decision tree
complexity from subcube partition complexity. In Proceedings of the 19th International
Workshop on Randomization and Computation (RANDOM), pages 915–930. Schloss
Dagstuhl, 2015. doi:10.4230/LIPIcs.APPROX-RANDOM.2015.915.

[MS15] Sagnik Mukhopadhyay and Swagato Sanyal. Towards better separation between de-
terministic and randomized query complexity. Technical Report TR15-107, Electronic
Colloquium on Computational Complexity (ECCC), 2015. URL: http://eccc.hpi-web.de/
report/2015/107.
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