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Abstract

In this paper we motivate the study of Boolean dispersers for quadratic varieties by showing
that an explicit construction of such objects gives improved circuit lower bounds. An (n, k, s)-
quadratic disperser is a function on n variables that is not constant on any subset of Fn

2 of size
at least s that can be defined as the set of common roots of at most k quadratic polynomials.
We show that if a Boolean function f is a

(
n, 1.83n, 2g(n)

)
-quadratic disperser for any function

g(n) = o(n) then the circuit size of f is at least 3.11n. In order to prove this, we generalize the
gate elimination method so that the induction works on the size of the variety rather than on
the number of variables as in previously known proofs.

1 Introduction

1.1 Circuits and the gate elimination method

Denote by Bn,m the set of all Boolean functions from Fn2 to Fm2 , let Bn = Bn,1 and consider
a function f ∈ Bn. A natural question studied in theoretical computer science is the following:
what is the minimal number of binary Boolean operations needed to compute f? The corresponding
computational model is Boolean circuits. A circuit is a directed acyclic graph with inputs x1, . . . , xn,
the intermediate vertices have in-degree 2 and are labeled with binary Boolean operations. The
size of a circuit is its number of gates. Note that we do not pose any restrictions on the depth or
out-degree. By C(f) we denote the minimum size of a circuit computing f .

Counting shows that the number of small size circuits is much smaller than the total number
|Bn| = 22n of functions. Using this idea it was shown by Muller [16] that almost all functions
from Bn require circuits of size Ω(2n/n). This proof is however non-constructive: it does not give
an explicit function with high circuit complexity. By saying explicit one usually means that the
function is in P or NP. Finding an explicit function with high circuit complexity turned out to be
an extremely difficult question. The currently strongest lower bound 3.011n was recently presented
by Find et al. [10] improving a 3n− o(n) lower bound proved by Blum [3] more than 30 years ago.
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Essentially, the only known technique for proving lower bounds for circuits with no restrictions
on depth and out-degree is the gate elimination method. To illustrate it, we give a proof of a
2n−Θ(1) lower bound given by Schnorr [17]. The MODn

3,r ∈ Bn function outputs 1 if and only if
the sum (over integers) of n input bits is congruent to r modulo 3. We prove that MODn

3,r requires
circuits of size at least 2n−6 by induction on n. The base case n ≤ 3 clearly holds. For the induction
step consider an optimal circuit C computing MODn

3,r and its topologically minimal gate A (such
a gate exists since for n ≥ 4, MODn

3,r is not constant). Let x and y be input variables to A. The
crucial observation is that either x or y must feed at least one other gate. Indeed if both x and y
feed only A then the whole circuit depends on x and y only through A. This, in particular, means
that by fixing x and y in four possible ways ((x, y) = (0, 0), (0, 1), (1, 0), (1, 1)) one gets at most two
different subfunctions while there must be three different subfunctions under these assignments:
MODn−2

3,0 , MODn−2
3,1 , and MODn−2

3,2 (they are pairwise different for n ≥ 4). Assume that it is x that
feeds at least one other gate and call it B. We then replace x by 0. This eliminates at least two
gates from the circuit (A and B): if one of the inputs to a gate computes a constant then this gate
computes either a constant or a unary function on the other input and hence can be eliminated
from the circuit. The resulting circuit computes the function MODn−1

3,r so the lower bound follows
by induction. The best known lower bound for MODn

3,r is 2.5n − Θ(1) by Stockmeyer [20], the
best known upper bound is 3n+ Θ(1) by Demenkov et al. [6]. Knuth [12, solution to exercise 480]
recently conjectured that the circuit size of MODn

3,r is equal to 3n− 5− [(n+ r) mod 3 = 0].
In the analysis above, we eliminated two gates by assigning x← 0. If A computes, say, xy = x∧y

then we would have eliminated more than two gates since A becomes equal to 0 and hence all its
successors are also eliminated. So, the bottleneck case is when both A and B compute parities of
their inputs. In this case we cannot make A and B constant just by assigning a constant to x.

1.2 A 3n− o(n) lower bound for affine dispersers for sublinear dimension

A natural idea that allows to overcome the bottleneck from the previous subsection is to allow to
substitute variables not only by constants but also by sums (over F2) of other variables. Using this
idea one can prove a 3n − o(n) lower bound. The proof is due to Demenkov and Kulikov [7], the
exposition here is due to Vadhan and Williams [21].

A function we are going to prove a lower bound for is called an affine disperser. Informally, an
affine disperser is a function that cannot be made constant by sufficiently many linear substitutions.
Formally, a function f ∈ Bn is called an affine disperser for dimension d if it is not constant on any
affine subspace of Fn2 of dimension at least d.

The notion of dispersers is a relaxation of the notion of extractors — functions that take input
from some specific distribution and output a bit that is distributed statistically close to uniform.
Unlike extractors, dispersers are only required to output a non-constant bit. To specify the class
of input distributions, one defines a class of sources F , where each X ∈ F is a distribution over
Fn2 . Since dispersers are only required to output a non-constant bit, we identify a distribution
X with its support on Fn2 . A function f ∈ Bn is called a disperser for a class of sources F , if
|f(X)| = 2 for every X ∈ F . Since it is impossible to extract even one non-constant bit from
an arbitrary source (even if the source has almost full entropy), many special cases of sources are
studied (see [19] for an excellent survey). The sources we are focused on in this paper are affine
sources and their generalization — sources for polynomial varieties. Affine dispersers have drawn
much interest lately. In particular, explicit constructions of affine dispersers for dimension d = o(n)
have been constructed [2, 22, 14, 18, 1, 15]. Dispersers for polynomial varieties over large fields
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were studied by Dvir [8], and dispersers over F2 were studied by Cohen and Tal [5].
For a 3n−o(n) lower bound it is convenient to use xor-layered circuits. In an xor-layered circuit

we allow linear sums of variables to be used as inputs to a circuit. Consider the following measure of
an xor-layered circuit C: µ(C) = G(C)+I(C) where G(C) is the number of non-input gates and I(C)
is the number of inputs of C. Note that a xor-gate that depends on two inputs of an xor-layered
circuit C may be replaced by an input without increasing µ(C).

A 3n−4d lower bound for an affine disperser f ∈ Bn for dimension d follows from the following
fact: for any affine subspace S ⊆ Fn2 of dimension D and any xor-layered circuit C computing f on
S, µ(C) ≥ 4(D − d− 1). This can be shown by induction on D. The base case D ≤ d+ 1 is clear.
For the induction step, assume that C has the minimal value of µ. Let A be a top gate fed by linear
sums x and y (such a gate must exist since f on S cannot compute a linear function as D > d+ 1).
If A computes a sum of x and y then it can be replaced by an input (without increasing µ) so
assume that A computes a product, i.e., (x⊕ c1)(y ⊕ c2)⊕ c where c1, c2, c ∈ F2 are constants. In
the following we assign either x = c1 or y = c2. This gives us an affine subspace of Fn2 of dimension
at least D− 1 (if the dimension of the resulting subspace dropped to 0 this would mean that either
x or y was constant on S contradicting to the fact that the considered circuit was optimal). To to
proceed by induction we need to show that the substitution reduces µ by at least 4. For this, we
consider two cases.

Case 1. Both x and y have out-degree 1.

x y

∧A

We then assign x = c1. This trivializes A to c, so all its successors are eliminated too. In
total, we eliminate at least two gates (A and its successors) and at least two inputs (x and y).
Hence µ is reduced by at least 4. (Note that A must have at least one successor as otherwise
it would be an output gate, but this would mean that f was constant on an affine subspace
of dimension at least d.)

Case 2. The out-degree of, say, x is at least 2.

x y

∧AB

C

Let B be another successor of x and let C be a successor of A. We assign x = c1. This
removes an input x and gates A, B, and C. If B = C then C becomes a constant under the
substitution (since both its inputs are constants) so its successors are also eliminated. Thus,
in this case we eliminate at least one input and at least three gates implying that µ is reduced
by at least 4.

Plugging in an affine disperser for sublinear dimension in this argument gives a 3n − o(n) lower
bound. It is also interesting to note that the inequality G(C) + I(C) ≥ 4(n− d− 1) is tight. To see
this, note that the inner product function is an affine disperser for dimension n/2 + 1 (see, e.g., [4,
Theorem A.1]) and has circuit size n− 1.
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1.3 Stronger lower bounds for dispersers for quadratic varieties

The two considered functions, MODn
3 and an affine disperser, can be viewed as functions that are

not constant on any sufficiently large set S ⊆ Fn2 that can be defined as the set of roots of k
polynomials:

S = {x ∈ Fn2 : p1(x) = p2(x) = · · · = pk(x) = 0} .

For MODn
3 , k ≤ n − 4 and each pi is just a variable or its negation while for affine dispersers,

k ≤ n − d and pi’s are arbitrary linear polynomials. Note that the size of the set S can be easily
determined from the number of polynomials in this case:

|S| = 2n−k . (1)

A natural extension is to allow polynomials to have degree at most 2. The corresponding set S
is called a quadratic variety. Formally, a function f ∈ Bn is called an (n, k, s)-quadratic disperser
if it is not constant on any variety of size at least s defined by at most k polynomials of degree at
most 2. The main result of this paper is the following.

Theorem 1. Let 0 < α ≤ 1 and 0 < β be constants satisfying

2
− 2+α

β + 2
− 4+2α

β ≤ 1, (2)

2
− 2
β + 2

− 5+2α
β ≤ 1, (3)

2
− 3+3α

β + 2
− 2+2α

β ≤ 1, (4)

2
− 3
β + 2

− 4+α
β ≤ 1, (5)

and let f ∈ Bn,1 be an (n, k, s)-quadratic disperser. Then

C(f) ≥ min {βn− β log2 s− β, 2k} − αn .

For example, for an (n, 1.83n, 2o(n))-quadratic disperser Theorem 1 with α = 0.535 and β =
3.6513 implies a 3.1163n− o(n) > 3.116n lower bound. For an (n, 1.78n, 20.03n)-quadratic disperser
it implies a 3.006n lower bound.

Currently, explicit constructions of quadratic dispersers with such parameters are not known
while showing their existence non-constructively is easy (see Lemma 1). Theorem 1 can be viewed
as an additional motivation for their study.

Cohen and Tal [5] prove that any affine disperser (extractor) is also a disperser (extractor) for
polynomial varieties with slightly weaker parameters. In particular, their result, combined with

the affine disperser by Shaltiel [18], gives an explicit construction of an
(
n,Θ

(
n

2log0.9 n

)
, 2o(n)

)
-

quadratic disperser. Two explicit constructions of extractors for varieties over large fields are given
by Dvir [8]. For a similar, although different, notion of polynomial sources, explicit constructions of
dispersers (extractors) are given by Dvir, Gabizon, Wigderson [9] for large fields, and by Ben-Sasson
and Gabizon [1] for constant-size fields.

1.4 Weighted gate elimination

We prove Theorem 1 by extending the gate elimination method. The proof goes by induction on
the size of the current quadratic variety S. Note that for quadratic varieties the relation (1) no
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longer holds: e.g., the set of roots of n/2 polynomials x1x2 ⊕ 1, x3x4 ⊕ 1, . . . , xn−1xn ⊕ 1 contains
just one point. For this reason, we proceed as follows. We choose a polynomial p of degree 2 and
consider two subvarieties of S: S0 = {x ∈ S : p(x) = 0} and S1 = {x ∈ S : p(x) = 1}. We then
estimate how much the size of the circuit shrinks for each of these varieties and how much the size
of the variety shrinks. Roughly, we show that in at least one of these cases the circuit shrinks a lot
while the size of the variety does not shrink a lot. That is why we call this method weighted gate
elimination.

2 Definitions

2.1 Circuits

A circuit is a directed acyclic graph with all nodes having in-degree 0 or 2. Nodes of in-degree
0 are labeled with input variables and are called inputs or input gates. Nodes of in-degree 2 are
labeled with binary Boolean functions and are called gates or non-input gates. Some m gates are
also marked as outputs. Then such a circuit computes a function from Bn,m in a natural way.

For a circuit C, G(C) is the number of non-input gates and is also called the size of the circuit C.
By I(C) we denote the number of input gates. For a function f ∈ Bn,m, C(f) is the minimum size
of a circuit with n inputs and m outputs that computes f . For a gate A, by outdeg(A) we denote
the out-degree of A.

The 16 binary functions b(x, y) from B2,1 are usually classified as follows:

• 2 constant functions: 0, 1;

• 4 degenerate functions: x, x⊕ 1, y, y ⊕ 1;

• 2 xor-type functions: x⊕ y, x⊕ y ⊕ 1;

• 8 and-type functions: (x⊕ a)(y ⊕ b)⊕ c where a, b, c ∈ F2.

It is not difficult to see that gates computing constant and degenerate functions can be removed
from a circuit. Hence an optimal circuit consists of gates computing xor-type functions and and-
type functions. We call them xor-gates and and-gates, respectively.

During the gate elimination process, we will make substitutions that make some gates constant.
Assume that a gate A becomes constant (in this case, we also say that A is trivialized). Let B be
a successor of A (that is, there is a directed edge from A to B), C be the other input of B, D be
a successor of B, and E be the other input of D. Since A is now constant, B computes either a
constant or a unary function on C so B can be eliminated. This may require also to change the
binary function computed at D (that is, negating one of the inputs).

C A

B

D

E A ≡ const

C

D

E

We will also use the following observation. Assume that C is fed by A and B while B is fed
by A and D. Then C computes a binary function on A and D. This can be computed directly,
without using B so one can rebuild the circuit as shown below. If B has out-degree 1 it can be
eliminated from a circuit.
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D A

B

C

D A

B

C

By an xor-layered circuit we mean a circuit whose inputs may be labeled not only by input
variables but also by sums of variables. One can get an xor-layered circuit from a regular circuit
by replacing xor-gates that depend on two inputs by an input.

x y z

⊕

⊕

∨

∧

x⊕ y ⊕ z y z

∨

∧

2.2 Quadratic dispersers

Definition 1 (quadratic variety). A set S ⊆ Fn2 is called an (n, k)-quadratic variety if it can be
defined as the set of common roots of t ≤ k polynomials of degree at most 2:

S = {x ∈ Fn2 : p1(x) = · · · = pt(x) = 0}

where pi is a polynomial of degree at most 2, for each 1 ≤ i ≤ t.

Definition 2 (quadratic disperser). A Boolean function f ∈ Bn is called an (n, k, s)-quadratic
disperser if f is non-constant on any (n, k)-quadratic variety S ⊆ Fn2 of size at least s.

The following lemma shows that almost all functions from Bn are (n, 2o(n), 2o(n))-quadratic
dispersers.

Lemma 1. Let ω(1) ≤ s ≤ 2o(n), k = o
(
s
n2

)
. Let Dn ∈ Bn,1 be the set of (n, k, s)-quadratic

dispersers. Then |Dn||Bn| → 1 when n→∞.

Proof. There are q = n(n+1)
2 + 1 = Θ(n2) monomials of degree at most 2 in Fn2 . Therefore, there

are 2q polynomials of degree at most 2, and at most 2qk (n, k)-quadratic varieties. Each function
that is not an (n, k, s)-quadratic disperser can be specified by

1. an (n, k)-quadratic variety, where it takes a constant value,

2. one of two possible constant values that it takes on that variety,

3. values at the remaining at most 2n − s points.

Thus, the number of functions that are not (n, k, s)-quadratic dispersers is bounded from above by
2qk · 2 · 22n−s = 22n2qk+1−s = 22n2−Θ(s) = o (|Bn|).
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3 Lower bound

We will use the following technical lemma.

Lemma 2. Let 0 < α ≤ 1 and 0 < β be constants satisfying inequalities (5), (2):

2
− 3
β + 2

− 4+α
β ≤ 1,

2
− 2+α

β + 2
− 4+2α

β ≤ 1.

Then

2
− 4
β + 2

− 4
β ≤ 1, (6)

2
− 3+α

β + 2
− 3+2α

β ≤ 1. (7)

Proof. Since 2 ≤ x+ 1
x for positive x,

2
− 4
β + 2

− 4
β ≤ 2

− 4
β (2

1
β + 2

− 1
β ) = 2

− 3
β + 2

− 5
β ≤ 2

− 3
β + 2

− 4+α
β ≤ 1 .

In order to prove the inequality (7), we use Heinz’s inequality [11]:

x1−tyt + xty1−t

2
≤ x+ y

2
for x, y > 0, 0 ≤ t ≤ 1.

Let us take x = 2
− 2+α

β , y = 2
− 4+2α

β , t = 1
2+α :

2
− 3+α

β + 2
− 3+2α

β = x1−tyt + xty1−t ≤ x+ y = 2
− 2+α

β + 2
− 4+2α

β ≤ 1.

In the following lemma, we use the following circuit complexity measure: µ(C) = G(C)+α ·I(C)
where 0 < α ≤ 1 is a constant to be determined later. Theorem 1 follows from the lemma with
S = Fn2 which is an (n, 0)-quadratic variety.

Lemma 3. Let f ∈ Bn be an (n, k, s)-quadratic disperser, S ⊆ Fn2 be an (n, t)-quadratic variety,
0 < α ≤ 1, 0 < β be constants satisfying inequalities (2), (3), (4), (5), C be an xor-layered circuit
that computes f on S. Then

µ(C) ≥ min {β(log2 |S| − log2 s− 1), 2(k − t)} .

Proof. The proof goes by induction on |S|. The base case |S| ≤ 2s is trivially true. For the
induction step, assume that |S| > 2s.

To prove the induction step we proceed as follows. If t ≤ k then the right-hand side is non-
positive, so assume that t > k. Assume that C is optimal with respect to µ (that is, C has the
minimal value of µ among all circuits computing f on S). We find a gate G in C that computes
a function g of degree at most 2 and consider two (n, t + 1)-quadratic varieties of S: S0 = {x ∈
S : g(x) = 0} and S0 = {x ∈ S : g(x) = 1}. Let |S0| = p0|S| and |S1| = p1|S| where 0 < p0, p1 < 1
and p0 + p1 = 1 (note that pi = 0 or pi = 1 would mean that G computes a constant on S
contradicting to the fact that C is optimal). By eliminating from the circuit C all the gates that
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are either constant or depend on just one of its inputs on Si, one gets a circuit Ci that computes f
on Si. Assume that µ(C)− µ(Ci) ≥ ∆i. Then, by the induction hypothesis,

µ(C) ≥ µ(Ci) + ∆i ≥ min {β(log2 |Si| − log2 s− 1), 2(k − (t+ 1))}+ ∆i

= min

{
β (log2 |S| − log2 s− 1) +

(
∆i − β log2

1

pi

)
, 2(k − t) + (∆i − 2)

}
.

Hence, if ∆i ≥ β log2 1/pi and ∆i ≥ 2 for either i = 0 or i = 1 then the required inequality follows

by the induction hypothesis. The inequality ∆i ≥ β log2 1/pi is true whenever pi ≥ 2
−∆i

β . Since we
want this inequality to hold for at least one of i = 0 and i = 1 and since p0 + p1 = 1 we conclude
that for the induction step to go through it suffices to have

2
−∆0

β + 2
−∆1

β ≤ 1 and ∆0,∆1 ≥ 2 . (8)

By going through a few cases we show that we can always find a gate G such that the corre-
sponding ∆0 and ∆1 satisfy the inequalities (8). For this, we use the inequalities (2)–(7).

We start by showing that the circuit C must be non-empty. Indeed, if C is empty then it computes
a linear function l. Hence f is constant on both S0 = {x ∈ S : l(x) = 0} and S1 = {x ∈ S : l(x) = 1}.
However max{|S0|, |S1|} ≥ |S|/2 > s which contradicts to the fact that f is an (n, k, s)-quadratic
disperser.

Let A be an and-gate with the maximal number of and-gates on a way to the output of C. That
is, for each and-gate we consider all directed paths from this gate to the output gate and select
a path with the maximal number of and-gates on it; then we choose an and-gate for which this
number is maximal over all and-gates. Since C is an xor-layered circuit, we may assume that A is
a top-gate, that is, it is fed by inputs. Denote by x and y the input-gates that feed A.

Case 1. outdeg(x) = outdeg(y) = 1.

Case 1.1. outdeg(A) = 1 and A feeds an and-gate B.
Let C be the other input of B (it might be an input as well as non-input gate).

Case 1.1.1. outdeg(C) = 1.

x y

∧A

∧B
C

We make A constant. Then the gate B is eliminated. Moreover, either A = 0 or
A = 1 trivializes the gate B so all its successors and the gate C are also eliminated
(since C is only used to compute B, but B now computes a constant). In both cases
x and y are not needed anymore (as the only gate A that was fed by both these
inputs is now constant). So, we get {∆0,∆1} = {2 + 2α, 3 + 3α}. The required
inequalities (8) follows from (4).

Case 1.1.2. outdeg(C) ≥ 2.

x y

∧A

∧B
C
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Because of the choice of A, C computes a function of degree at most 2. We make C
constant. In both cases we eliminate two successors of C and C itself. This reduces
the measure by at least 2 + α. In one of the cases B is trivialized which causes
the removal of the successors of B, the gate A, and inputs x and y. Hence we get
{∆0,∆1} = {2 + α, 4 + 3α} in this case. These ∆0,∆1 satisfy the inequalities (8)
because of (2).

Case 1.2. outdeg(A) = 1 and A feeds an xor-gate B.

x y

∧A

⊕B

Since A was chosen as an and-gate with the maximal number of and-gates to the output,
the other input of B computes a function of degree at most 2. Hence B itself computes a
function of degree at most 2. We make B constant. This eliminates B and its successors.
The gate A and its inputs x and y are also not needed. Hence ∆0 = ∆1 = 3 + 2α. The
inequalities (8) are satisfied due to (7).

Case 1.3. outdeg(A) ≥ 2.

x y

∧A

Just by making the gateA constant we get ∆0 = ∆1 = 3+2α sinceA and all its successors
(at least two gates) are eliminated. Similarly to the previous case, the inequality (7)
imply that (8) holds.

Case 2. Out-degree of either x or y is at least 2. Say, outdeg(x) ≥ 2.

Case 2.1. outdeg(A) = 1 and A feeds an and-gate B.
We make A constant. Assume that A computes (x ⊕ c1)(y ⊕ c2) ⊕ c. Then A can only
be equal to c ⊕ 1 if x = c1 ⊕ 1 and y = c2 ⊕ 1. That is, when A is equal to c ⊕ 1 not
only its successor is eliminated but also all successors of x and y. In both cases the gate
B is eliminated, but in one of them it is trivialized and so all its successors are also
eliminated.

Denote by C another gate fed by x. Note that B 6= C (otherwise the circuit would not
be optimal).

Case 2.1.1. outdeg(y) = 1.

x y

∧AC

∧B

Case 2.1.1.1. B is trivialized when A = c.
If A = c we eliminate A, B, the successors of B, and y. If A = c⊕1 we eliminate
A, B, C, x, and y. Hence {∆0,∆1} = {3 + α, 3 + 2α}. The inequality (7)
guarantees that (8) holds.
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Case 2.1.1.2. B is trivialized when A = c⊕ 1.
If A = c we eliminate A, B, and y. If A = c ⊕ 1 we eliminate A, B, C, the
successors of B, x, and y (if C happens to be the only successor of B then
it becomes constant and all its successors are eliminated). Hence {∆0,∆1} =
{2 + α, 4 + 2α}. The inequalities (8) are satisfied because of (2).

Case 2.1.2. outdeg(y) ≥ 2.
Denote by D another successor of y. Note that D might be equal to C, but D 6= B.

x y

∧AC D

∧B
Case 2.1.2.1. B is trivialized when A = c.

If A = c we eliminate A, B, and the successors of B. If A = c⊕1 we eliminate A,
B, C, D, x, and y. If C = D then this gate becomes constant so all its successors
are also eliminated. Hence {∆0,∆1} = {3, 4 + 2α}. The inequalities (8) are
satisfied because (5).

Case 2.1.2.2. B is trivialized when A = c⊕ 1.
If A = c we eliminate A and B. If A = c ⊕ 1 we eliminate A, B, C, D, the
successors of B, x, and y. In this case we need to take additional care to show
that we eliminate five gates even if some of the mentioned five gates coincide.
If C 6= D and, say, C is a successor of B then C becomes constant so all its
successors are eliminated too. If C = D then C becomes constant so all its
successors are eliminated. Hence {∆0,∆1} = {2, 5 + 2α}. The inequality (3)
ensures (8).

Case 2.2. outdeg(A) = 1 and A feeds an xor-gate B.

Case 2.2.1. outdeg(B) = 1 and B feeds an xor-gate C.
x y

∧A

⊕B

⊕C
Because of the choice of A, we know that the gate C computes a quadratic function.
We make C constant. In both cases we eliminate A,B,C, and the successors of C.
Hence ∆0 = ∆1 = 4. The inequalities (8) are satisfied because of (6).

Case 2.2.2. outdeg(B) = 1 and B feeds an and-gate C.
Let D be the other input of C. Note that if D = A then the circuit is not optimal
(C depends on A and the other input of B so one can compute C directly without
using B).

Case 2.2.2.1. outdeg(D) = 1.
x y

∧A

⊕B

∧C
D
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We make B constant. In both cases we eliminate A, B, and C. Moreover, when
B is the constant trivializing C we eliminate also D and the successors of C.
The gate D contributes (to the complexity decrease) α ≤ 1 if it is an input
gate and 1 if it is not an input. Hence we have {∆0,∆1} = {3, 4 + α}. The
inequality (5) guarantees that (8) is satisfied.

Case 2.2.2.2. outdeg(D) ≥ 2.

x y

∧A

⊕B

∧C
D

We make D constant (we are allowed to do so because it computes a function of
degree at most 2). In both cases we eliminate D and its successors and reduce
the measure by at least 2 + α (as D might be an input). In the case when C
becomes constant we eliminate also the successors of C as well as A and B.
Thus, {∆0,∆1} = {2 + α, 5 + α} (to ensure that all the five gates eliminated
in the second case are different one notes that if D feeds B or a successor of C
then the circuit is not optimal). The inequalities (8) are satisfied because (2)
and α ≤ 1.

Case 2.2.3. outdeg(B) ≥ 2.

x y

∧A

⊕B

The gate B computes a function of degree at most 2. By making it constant we
eliminate B, its successors, and A, so ∆0 = ∆1 = 4. The inequalities (8) are satisfied
because of (6).

Case 2.3. outdeg(A) ≥ 2.

x y

∧A

We make A constant. In both cases A and its successors are eliminated. When x and y
become constant too (recall that if A computes (x⊕c1)(y⊕c2)⊕c then A = c⊕1 implies
that x = c1⊕1 and y = c2⊕1) at least one other successor of x is also eliminated. Thus,
{∆0,∆1} = {3, 4 + 2α}. The inequality (5) implies that (8) is satisfied.

4 Lower bounds for multi-output functions

Note that 3.011n+ o(n) is also the currently strongest lower bound even for functions from Bn,o(n)

(that is, functions with o(n) outputs). Strongest known lower bounds for multi-output functions
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from Bn,m follow from the following lemma by Lamagne and Savage [13]. It can be read as follows:
if instead of one function one needs to compute m functions then at least m − 1 additional gates
are needed.

Lemma 4. Let f = (f1, . . . , fm) ∈ Bn,m such that fi 6≡ fj and fi 6≡ fj ⊕ 1 for all 1 ≤ i 6= j ≤ m.
Then

C(f) ≥ min
1≤i≤m

C(fi) + (m− 1) .

Proof sketch. Fix a topological ordering of the gates of a circuit and consider the first min
1≤i≤m

C(fi)−1

gates in this ordering. None of them can compute any of m output functions. Since all the output
functions are different, at least m additional gates are needed to compute all of them.

Thus, it would be interesting to give an explicit construction of a quadratic disperser with good
parameters (implying a stronger than 3.011n lower bound on circuit complexity) with o(n) outputs.
Note that almost all known explicit constructions of dispersers are actually multi-output functions
f ∈ Bn,m that output (1 − ε) · 2m different values on each source. For our purposes, it is enough
for a disperser to have at least 2 different values (that is, to be non-constant). Such a disperser
is a weaker object than even a single-output disperser, so it might be easier to construct it. For
example such a relaxation helps to construct a disperser for polynomial sources (a similar, but still
different from polynomial varieties, notion of sources) over smaller fields [1].

5 Open problems and further directions

One can slightly improve the lower bound for quadratics dispersers by a more involved case analysis.
Dispersers for varieties of degree 3 allow to get even stronger lower bounds. At the same time we
do not see how the presented techniques might lead to, say, a lower bound of 4n.

The most natural question left open by this study is: to find an explicit construction of an
(n, 1.78n, 20.03n)-quadratic disperser either with o(n) outputs or with one output. Note that such a
construction would automatically imply a new circuit lower bound. It would also be interesting to
find explicit constructions of dispersers for polynomial varieties of higher degrees, as well as their
applications to circuit lower bounds.
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