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1 The Clique polynomial

In this note we are interested in the following two polynomial families,

Permn :=
∑
σ∈Sn

n∏
i=1

xi,σ(i), and Cliquen :=
∑
S⊆[n]
|S|=
√
n

∏
i,j∈S
i<j

xi,j.

It is motivated by the question, whether Cliquen is a monotone p-projection of Permn?
This question was raised by Jukna [Juk14]. In fact, Jukna asked whether the Hamiltonian
cycle polynomial is a monotone p-projection of the permanent. The first progress was
made by Grochow [Gro15]. He proved that the Hamiltonian cycle polynomial is not a
monotone sub-exponential-size projection of Permn, but left open the possibility that
Cliquen itself is a monotone p-projection of Permn. We rule this out as well, using the
same approach. Thus this possibility of transferring monotone circuit lower bounds for
clique to permanent cannot work. It should be noted that Grochow’s connection between
extended formulation and monotone projection (Lemma 1.2) easily allows one to obtain
lower bounds against monotone projection (for example, see [Gro15, MS16]).

For any polynomial p in n variables, let Newt(p) denote the polytope in Rn that
is convex hull of the vectors of exponents of monomials of p. The correlation polytope
COR(n) is defined as the convex hull of n×n binary symmetric matrices of rank 1. That
is, COR(n) := convex hull{vvt | v ∈ {0, 1}n}.

For a polytope P , let c(P ) denote the minimal number of linear inequalities needed
to define P . A polytope Q ⊆ Rm is an extension of P ⊆ Rn if there is a linear map
π : Rm → Rn such that π(Q) = P . The extension complexity of P , denoted xc(P ), is the
minimum size c(Q) of any extension Q (of any dimension) of P .

We use the following recent results.

Fact 1.1. 1. [Gro15] c(Newt(Permn)) 6 2n.

2. [FMP+15] If polytope Q is an extension of polytope P , then xc(P ) 6 xc(Q).

Lemma 1.2 ([Gro15]). Let f(x1, . . . , xn) and g(y1, . . . , ym) be polynomials over a totally
ordered semi-ring R, with non-negative coefficients. If f is a monotone projection of g,
then the intersection of Newt(g) with some linear subspace is an extension of Newt(f).
In particular, xc(Newt(f)) 6 m+ c(Newt(g)).

Theorem 1.1 ([FMP+15]). There exists some constant C > 0 such that for all n,
xc(COR(n)) > 2Cn.
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We now show that Cliquen is not a monotone p-projection of Permn. To establish this
we will consider a different polynomial Clique∗ = (Clique∗n) that counts all cliques in a
graph. More formally,

Clique∗n :=
∑
S⊆[n]

∏
i,j∈S
i<j

xi,j.

We first claim that proving monotone projection lower bound against Clique∗ suffices
to establish lower bound against Clique. The proof is basically the VNP-completeness
proof of Cliquen (see [Hru15]).

Lemma 1.3. The family Clique∗ is a monotone p-projection of the family Clique. In
particular, Clique∗n is a monotone projection of Cliquen2.

Theorem 1.2. Over the reals (or any totally ordered semi-ring), the family Clique∗ is not
monotone p-projections of the Perm family. In fact, if Clique∗n is a monotone projection
of Permt(n), then t(n) > 2Ω(n).

Proof. Let Q be the Newton polytope of Clique∗n. It resides in N dimensions, where
N =

(
n
2

)
, and is the convex hull of vectors of the form 〈ã〉 where ã ∈ {0, 1}N is a

characteristic vector of set of edges of a clique in the complete undirected graph Kn. Let
{v1, . . . , vn} be the vertex set of Kn.

Define the polytope R, also in N dimensions, to be the intersection of Q with the
constraint

∑
e is incident on vn

ae > 1. That is, R is the convex hull of all cliques that contain

the vertex vn. Also, define a linear map ` : Rn×n → R(n−1)×(n−1), as follows, `(A) = B
where Bi,j = Ai,j if i 6= j, and Bi,i = An,i. It easily follows that `(R) = COR(n−1). Thus
R is an extension of COR(n − 1), so by Fact 1.1 (2), xc(COR(n − 1)) 6 xc(R). Further,
we can obtain an extension of R from any extension of Q by adding 1 inequality; hence
xc(R) 6 1 + xc(Q).

Suppose Clique∗n is a monotone projection of Permt(n). By Fact 1.1 (1) and Lemma 1.2,
xc(Newt(Clique∗n)) = xc(Q) 6 t(n)2 + c(Permt(n)) 6 O(t(n)2). From the preceding dis-
cussion and By Theorem 1.1, we get 2Ω(n) 6 xc(COR(n − 1)) 6 xc(R) 6 1 + xc(Q) 6
1 +O(t(n)2). It follows that t(n) is at least 2Ω(n).

Theorem 1.3. Over the reals (or any totally ordered semi-ring), the family Clique is not
monotone p-projections of the Perm family. In fact, if Cliquen is a monotone projection
of Permt(n), then t(n) > 2Ω(

√
n).

Proof. Suppose Cliquen is a monotone projection of Permt(n). From Lemma 1.3, it follows
that Clique∗n is a monotone projection of Permt(n2). Hence, from Theorem 1.2 we get

t(n2) > 2Ω(n). Thus, t(n) > 2Ω(
√
n).

Remark 1.1. It is easily seen that if a polynomial f over n-variables is an affine projec-
tion of Permm, then f is a (simple) projection of Permm(n+1). Hence, Theorem 1.2 and
Theorem 1.3 holds even when we consider monotone affine projections of the permanent.
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