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Abstract

In this short note, we show that the permanent is not complete for non-negative poly-
nomials in VNPR under monotone p-projections. In particular, we show that Hamilton
Cycle polynomial,

∑
n-cycles σ

∏n
i=1 xi,σ(i) and the cut polynomials

∑
A⊆[n]

∏
i∈A,j /∈A x

q
ij

are not monotone p-projections of the permanent. To prove this we introduce a new
connection between monotone projections and extended formulations of linear programs
that may have further applications.

1 Introduction

The permanent permn(X) =
∑

π∈Sn
x1,π(1)x2,π(2) · · ·xn,π(n) has long-fascinated combinato-

rialists [Min84, vLW01, MM60], more recently physicists [WS10, AA11], and since Valiant’s
seminal paper [Val79b], has also been a key object of study in computational complexity.
Despite its beauty, the permanent has some computational quirks: in particular, although
the permanent of integer matrices is #P-complete and the permanent is VNP-complete in
characteristic zero, the permanent mod 2 is the same as the determinant, and hence can
easily be computed. In fact, computing the permanent mod 2k is easy for any k [Val79b],
though the proof is more involved. Modulo any other number n, the permanent of integer
matrices is ModnP-complete.

In contrast, the seemingly similar Hamilton Cycle polynomial,

HCn(X) =
∑

n-cycles σ

x1,σ(1)x2,σ(2) · · ·xn,σ(n),

where the sum is only over n-cycles rather than over all permutations, does not have these
quirks: The Hamilton Cycle polynomial is VNP-complete over any ring R [Val79a] and
ModnP-complete for all n (that is, counting Hamilton cycles is complete for these Boolean
counting classes).

Jukna [Juk14] observed that if the Hamilton Cycle polynomial were a monotone p-

projection of the permanent, then there would be a 2n
Ω(1)

lower bound on monotone circuits
computing the permanent, a lower bound that still remains open. Here we show that no such
monotone reduction exists, by connecting monotone p-projections to extended formulations
of linear programs.
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We use the same technique to show that the cut polynomials Cutq =
∑

A⊆[n]

∏
i∈A,j /∈A x

q
ij

are not monotone p-projections of the permanent. Perhaps the main complexity-theoretic
interest in the cut polynomials is that Cutq over the finite field Fq is the only known example
of a natural polynomial that is neither in VPFq nor VNPFq -complete under a standard
complexity-theoretic assumption (that PH doesn’t collapse) [Bür99]; there it was also shown
that if VPFq 6= VNPFq then such polynomials of intermediate complexity must exist. In
that paper, it was asked whether the cut polynomials, considered as polynomials over the
rationals, were VNPQ-complete. Although our results don’t touch on this question, these
previous results motivate the study of these polynomials over Q. In combination with our
results, they lead us to the following question:

Open Question 1. Is the m-th cut polytope an extension of the n-th TSP polytope, for
m ≤ poly(n)?

A negative answer would show that Cutq is not complete for non-negative polynomials
in VNPQ under monotone p-projections, though as with the example of the permanent, this
is not necessarily an obstacle to being VNP-complete under general p-projections. Yet even
the monotone completeness of the cut polynomials remains open.

Finally, we note that our results shed a little more light on the complicatedness of
the known VNP-completeness proofs for the permanent [Val79b, Aar11]. Namely, prior to
our result, the fact that the permanent is not hard modulo 2 already implied that any
completeness result must use 2 in a “bad” way: for example, dividing by 2 somewhere,
or somewhere requiring that some quantity that is necessarily even be non-zero. This is
indeed true both of Valiant’s original proof [Val79b] and of Aaronson’s independent quantum
linear-optics proof [Aar11]. One might hope for a classical analogue of Aaronson’s quantum
proof, using the characterization of BPP in terms of stochastic matrices as a replacement
for the characterization of BQP using unitary matrices. However, our result says that any
completeness proof for the permanent must use non-monotone reduction, so such a classical
analogue is not possible:

Corollary 1. Aaronson’s quantum linear optics proof [Aar11] that the permanent is #P-
hard cannot be replaced by one using classical randomized algorithms in place of quantum
algorithms.

In light of these results, Valiant’s 4× 4 gadget may perhaps seem less mysterious than
the fact that such a gadget exists that is only 4× 4!

We hope that the connection between Newton polytopes, monotone projections, and
extended formulations finds further use.

2 Preliminaries

A polynomial f(x1, . . . , xn) is a (simple) projection of a polynomial g(y1, . . . , ym) if f can be
constructed from g by replacing each yi with a constant or with some xj . The polynomial
f is an affine projection of g if f can be constructed from g by replacing each yi with an
affine linear function `i(~x). When we say “projection” we mean simple projection. Given
two families of polynomials (fn), (gn), if there is a function p(n) such that fn is a projection
of gp(n) for all sufficiently large n, then we say that (fn) is a projection of (gn) with blow-
up p(n). If (fn) is a projection of (gn) with polynomial blow-up, we say that (fn) is a
p-projection of (gn).
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Over a subring of R (or more generally, over a totally ordered ring), a monotone pro-
jection is a projection in which all constants appearing in the projection are non-negative.
Monotone p-projection is defined analogously.

To each monomial xe11 · · ·xenn we associate its exponent vector (e1, . . . , en), as a point in
Nn ⊆ Rn. We then have:

Definition. The Newton polytope of a polynomial f(x1, . . . , xn), denoted New(f), is the
convex hull in Rn of the exponent vectors of all monomials appearing in f with non-zero
coefficient.

A polytope is integral if all its vertices have integer coordinates; note that Newton
polytopes are always integral.

For a polytope P , let c(P ) denote the “complexity” of P , as measured by the minimal
number of linear inequalities needed to define P . A polytope Q ⊆ Rm is an extension of
P ⊆ Rn if there is an affine linear map π : Rm → Rn such that π(Q) = P . The extension
complexity of P , denoted xc(P ), is the minimum complexity of any extension of P (of any
dimension): xc(P ) = min{c(Q)|Q is an extension of P}.

The n-th TSP polytope is the convex hull of all points in {0, 1}(
n
2) corresponding to a

Hamilton cycle in the complete graph Kn. The n-th cut polytope is the convex hull of all

points in {0, 1}(
n
2) corresponding to cuts in the complete graph—that is, edge sets whose

removal results in a disonnected graph.

3 Main Lemma

Lemma 1. Let f(x1, . . . , xn) and g(y1, . . . , ym) be polynomials over R with non-negative
coefficients. If f is a monotone projection of g, then the intersection of New(g) with some
linear subspace is an extension of New(f). In particular, xc(New(f)) ≤ m+ c(New(g)).

Recall that a term of a polynomial is a monomial together with its coefficient.

Proof. Under simple projections, a monomial in the y’s maps to some scalar multiple of a
monomial in the x’s (possibly the empty monomial, resulting in a constant term, or possibly
the zero multiple, resulting in zero). Let π be a monotone projection map, defined on the
variables yi, and extended naturally to monomials and terms in the y’s. Since each term t
of g is a monomial multiplied by a positive coefficient, and since π is non-negative, π(t) is
either zero or a single monomial in the x’s with nonzero coefficient. The former situation
can happen only if t contains some variable yi such that π(yi) = 0. Let ker(π) denote the
set {yi|π(yi) = 0}. Thus, for every term t of g that is disjoint from ker(π), π(t) actually
appears (possibly with a different coefficient, but still non-zero) in f , since no two terms
can cancel under projection by π.

Let e1, . . . , em be the coordinates on Rm, the ambient space of New(g). Let K denote
the subspace of Rm defined by the equations ei = 0 for each i such that yi ∈ ker(π). Let
P be the intersection of New(g) with K, considered as a polytope in K; note that P is
exactly the convex hull of the exponent vectors of monomials in g that are disjoint from
ker(π). Since π is multiplicative on monomials, it induces a linear map `π from K to Rn
(the ambient space of New(f)). By the previous paragraph, the exponent vectors of f are
exactly `π applied to the exponent vectors of monomials in g that are disjoint from ker(π).
By the linearity of `π and the convexity of P and New(f), we have that New(f) = `π(P ), so
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P is an extension of New(f). Since P is defined by intersecting New(g) with ≤ m additional
linear equations, the lemma follows.

Several partial converses to our main lemma also hold. Perhaps the most natural and
interesting of these is:

Observation 1. Given any sequence of integral polytopes (Pn ⊆ Rn) such that the poly(n)-
th cycle cover polytope is an extension of Pn along a projection πn : Rpoly(n) → Rn with
integer coefficients of polynomial bit-length, there is a sequence of polynomials (fn) ∈ VNP
such that New(fn) = Pn and f is a monotone p-projection of the permanent.

Proof. Let Cm denote the m-th cycle cover polytope, let m(n) be a polynomial such that
Cm(n) is an extended formulation of Pn, and let b(n) be a polynomial upper bound on the
bit-length of the coefficients of πn. Let Vm denote the vertex set of the cycle cover polytope,
i.e. the incidence vectors of cycle covers. Define fn as

∑
~e∈Vm ~y

π(~e), where ~y = (y1, . . . , yn).
As every exponent vector of fn is in πn(Cm(n)) = Pn, and conversely every vertex of Pn is
an exponent vector of fn, we have New(fn) = Pn. Furthermore, fn is a monotone nonlinear
projection of the permanent using the map xij 7→ ~yπ((0,0,...,1,...,0)), where the 1 is in the (i, j)
position. Using the universality of the permanent and repeated squaring, this can easily be
turned into a monotone simple projection of the permanent of size poly(m(n), b(n)).

This can be generalized from the cycle cover polytopes and the permanent to arbi-
trary integral polytopes and the natural associated polynomial (the sum over all monomials
whose exponent vectors are vertices of the polytope), but at the price of using “monomial
projections”—in which each variable is replaced by a monomial—rather than simple pro-
jections. There ought to be a version of this observation allowing rational coefficients in π
and using Strassen’s division trick [Str73], but the only such versions the author could come
up with had so many hypotheses as to seem uninteresting.

4 Applications

Theorem 2. The Hamilton Cycle polynomial is not a monotone affine p-projection of the
permanent; in fact, any monotone affine projection from the permanent to the Hamilton
Cycle polynomial has blow-up at least 2Ω(n1/4).

Proof. First, recall that if an n-variable polynomial is an affine projection of the m × m
permanent, then it is a simple projection of the (n + 1)m × (n + 1)m permanent. For
completeness we recall the brief proof: Let `ij(~x) be the affine linear function corresponding
to the variable yij of the m ×m permanent, and write `ij = a0 + a1x1 + · · · + anxn. Let
G be the complete directed graph with loops on m vertices and edge weights yij . Replace
the edge (i, j) by n + 1 parallel edges with weights a0, a1x1, · · · , anxn. Add a new vertex
on each of these parallel edges, splitting each parallel edge into two. For the edge weighted
a0, the two edges have weights 1, a0, and for the remaining edges the new edges get weights
ai, xi. It is a simple and instructive exerise to see that this has the desired effect.

Now we show the result for simple projections. If the Hamilton Cycle polynomial were a
monotone projection of the permanent, then by the Main Lemma, New(perm) (intersected
with a linear subspace) would be an extension of New(HC).

The Newton polytope of the permanent is the convex hull of all vectors in {0, 1}n2

corresponding to directed cycle covers of a graph, as each monomial in the permanent
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corresponds to such a cycle cover. The cycle cover polytope can easily be described by
the n equations saying that each vertex has in-degree and out-degree exactly 1. Thus
c(New(permn)) ≤ n.

But the Newton polytope of the Hamilton Cycle polynomial is exactly the TSP polytope,
which by [FMP+12, Theorem 11] requires extension complexity 2Ω(n1/4).

Theorem 3. For any q, the q-th cut polynomial is not a monotone p-projection of the
permanent; in fact, any monotone projection from the permanent to the q-th cut polynomial
has blow-up at least 2Ω(n).

Proof. The proof is the same as for the Hamilton Cycle polynomial, using [FMP+12, The-
orem 7] which gives a lower bound of 2Ω(n) on the extension complexity of New(Cut1), the
cut polytope. The one additional observation we need is that New(Cutq) is just the q-scaled
version of New(Cut1), and this rescaling does not affect the extension complexity.
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