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Abstract

We prove a deterministic exponential time upper bound for Quantum Merlin-Arthur games with k
unentangled provers. This is the first non-trivial upper bound of QMA(k) better than NEXP and can be
considered an exponential improvement, unless EXP = NEXP. The key ideas of our proof are to use
perturbation theory to reduce the QMA(2)-complete SEPARABLE SPARSE HAMILTONIAN problem to a
variant of the SEPARABLE LOCAL HAMILTONIAN problem with an exponentially small promise gap,
and then to decide this instance using ε-net methods. Our results imply an exponential time algorithm
for the PURE STATE N -REPRESENTABILITY problem in quantum chemistry, which is in QMA(2) but
is not known to be in QMA. We also discuss the implications of our results on the BEST SEPARABLE
STATE problem.
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1 Introduction

Non-determinism is a fundamental concept of theoretical computer science and led to the definition of NP,
kicking of modern computational complexity theory in the 1970’s [Coo71, Lev73]. Another powerful con-
cept is interaction, where the prover/verifier interpretation of NP has been generalized to include randomness
(MA, Merlin-Arthur games) [Bab85], multiple rounds of interaction (IP) [GMR85], and multiple provers
(MIP) [BOGKW88]. The inherent power of these concepts became only manifest when IP and MIP were
related to well-known complexity classes which are considered much more powerful than NP due to the
seminal results that MIP = NEXP [BFL91] and IP = PSPACE [Sha92].

In the 1990’s, the formal foundations of quantum complexity theory have been laid [BV93] and anal-
ogous questions about the power of non-determinism (QMA) [Wat00, KSV02] and interaction with one or
multiple provers (QIP, QMIP, and variants thereof) [Wat99, KM02] have been asked in a quantum context.
In this setting, the proof becomes a quantum state and the verifier is a quantum computer. Some of these
questions have been answered (QMA ⊆ PP, QIP = PSPACE) [MW05, JJUW10]. But in addition to that,
quantum theory turned out to offer new exciting possibilities, which have no classical counterpart!

In 2001, Kobayashi, Matsumoto, and Yamakami [KMY01, KMY03] first noticed the potential com-
putational power that might be harnessed in Quantum Merlin-Arthur games from the promise of multiple
unentangled quantum proofs, a concept which only makes sense in the quantum setting. This promise al-
ready hints at the very close relation to the problem of entanglement detection in quantum physics! [Bei10]

The resulting complexity class for k unentangled provers is called QMA(k), which was later shown to
equal QMA(2) [HM13]. Liu, Christandl, and Verstraete [LCV07] showed that an important, natural problem
in quantum chemistry, the PURE STATE N -REPRESENTABILITY problem, is in QMA(k) yet not obviously
in QMA. Chailloux and Sattath [CS12] showed that the SEPARABLE SPARSE HAMILTONIAN problem is
QMA(2)-complete. Blier and Tapp [BT09] provided an example for the power of this class even if restricted
to tiny proof states: they showed that NP is contained in a QMAlog(2). In this setting, Merlin receives just
two logarithmically sized quantum witness states relative to the input size, an exponential compression of
the proof size compared to the classical case!

Aaronson et. al. [ABD+08] studied The Power of Unentanglement and raised the question whether the
containment of NP in QMAlog(2) might be “scaled up exponentially”, such that NEXP would be contained
in QMA(2) with polynomially sized quantum proofs in turn. One obstacle to reach such a conclusion is the
vanishing promise gap in known reductions of NP to QMAlog(2), whereas a constant gap and O(log(n))-
sized proofs would imply QMA(2) = NEXP. Indeed, [Per12] has shown that QMA(2) with exponentially
small promise gap is indeed equal to NEXP. This question lead to two complementary lines of research:
on the one hand, several researchers [Bei10, CF13, LGNN11] worked on improving the promise gap while
maintaining a logarithmic witness size, whereas other groups started from the requirement of constant error
and showed that witness sizes of Õ(

√
n) suffice to put NP into QMAÕ(

√
n)(2) with constant promise gap

[ABD+08, HM13]. In certain restricted settings, a PSPACE upper bound for QMA(k) has been shown by
[SW15]. Nevertheless, no non-trivial upper bound for the general class QMA(k) other than the trivial NEXP
upper bound has been found so far.

We answer the QMA(k)
?
= NEXP question in the negative (unless EXP = NEXP) by showing:

Theorem 1. QMA(k) ⊆ EXP

Techniques The key tool we use in our proofs is the application of matrix perturbation theory to a
QMA(2)-complete SEPARABLE SPARSE HAMILTONIAN in order to reduce the locality of its globally acting
sparse terms while accepting the exponential cost in operator norm.

Perturbation theory has been introduced into quantum complexity theory before by the seminal works
of [KKR06, OT08, BDLT08] and we refer to these works for a detailed introduction into this technique.
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Its main application so far has been to reduce local Hamiltonian terms with high but constant locality to
lower constant locality (e.g. 5-local to 2-local). One reason for this is the well-known fact, that these gadget
constructions induce large operator norms that scale exponentially with the locality of the input terms.
Thus, at most O(log(n))-local terms can be reduced to constant locality while simultaneously maintaining
polynomial scaling of the operator norm with the system size.

To our knowledge, this is the first work that explores the application of perturbative gadgets on globally
acting Hamiltonian terms in the context of quantum complexity theory while accepting the exponential cost
in operator norm. The resulting operators may be deemed unphysical, yet we can afford to work with them
as our ultimate goal is a classical algorithm and not a physical Hamiltonian. The resulting SEPARABLE

LOCAL HAMILTONIAN instances with large norm or, equivalently, small promise gap, can then be directly
solved using ε-net methods [SW15] in exponential time.

Overview of the proof To show Theorem 1, we start from a generic QMA(k) verifier circuit. The proof
then proceeds in four steps: first, we amplify the soundness and completeness bounds of the given QMA(k)
verifier using the amplification method of Harrow and Montanaro (Theorem 8) to the levels required for the
reduction to SEPARABLE SPARSE HAMILTONIAN by Chailloux and Sattath (Lemma 9). Second, we apply
the Chailloux-Sattath construction yielding a SEPARABLE SPARSE HAMILTONIAN instance that contains k
non-local but sparse Hamiltonian terms. Third, we apply our main technical lemma (Lemma 14) yielding
a SEPARABLE LOCAL HAMILTONIAN instance with exponentially small promise gap and polynomially
increased system size. Fourth, we apply the ε-net methods of Shi and Wu (Corollary 6) to decide the
instance in exponential time.

Structure of the paper In Section 1, we have motivated the study of QMA(k) and its relation to other
problems, reviewed related work, presented our key results and techniques, and gave an overview of the
poof of our main theorem. In Section 2, we introduce all technical definitions and earlier results that we will
use in Section 3 to prove our claims. In Section 4 we discuss the implications of our results on the BEST

SEPARABLE STATE problem, and finally we conclude in Section 5.

2 Preliminaries and definitions

Throughout the paper we use logarithms of base 2 and write Õ(n) = O(n poly log(n)). We say a pure state
|ψ〉 is a product state, if it can be written as |ψ〉 = |ψA〉 ⊗ |ψB〉. More generally, a mixed state (or a general
operator) ρ is called separable, if it can be written as ρ =

∑
i piρ

A
i ⊗ ρBi with pi ≥ 0 and

∑
i pi = 1.

Definition 2 (QMA(k)). A languageL is in QMA`(k)s,c if there exists a polynomial-time quantum algorithm
A such that, for all inputs x ∈ {0, 1}n:

1. Completeness: If x ∈ L, there exist k witnesses |ψ1〉, . . . , |ψk〉, each a state of ` qubits, such that A
outputs ACCEPT with probability at least c on input |x〉|ψ1〉, . . . , |ψk〉.

2. Soundness: If x /∈ L, then A outputs ACCEPT with probability at most s on input |x〉|ψ1〉, . . . , |ψk〉,
for all states |ψ1〉, . . . , |ψk〉.

We use QMA(k) as shorthand for QMApoly(n)(k) 1
3
, 2
3
, and QMA as shorthand for QMA(1). We always

assume 1 ≤ k ≤ poly(n). We also use the notation QMASEP
` (k)s,c where SEP indicates that A’s mea-

surement {M,1 −M} is restricted to the set of separable operators M =
∑

i αi ⊗ βi for some positive
semidefinite matrices αi, βi.
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Definition 3 (LOCAL HAMILTONIAN problem). Input: a set of hermitian matricesH1, . . . ,Hm, where each
matrix acts on a set of at most k out of the n qubits, and I � Hi � 0 (i.e. both Hi and I −Hi are positive
semidefinite), and two real number a and b such that b − a > poly(1/n). We define the Hamiltonian
H =

∑m
i=1Hi, where each matrix Hi is implicitly extended to the entire Hilbert space of the n qubits by

tensoring identities. Output: Output YES if there exists a state |ψ〉 such that 〈ψ|H|ψ〉 ≤ a, and NO if for
every state |ψ〉, 〈ψ|H|ψ〉 ≥ b. The difference b− a is called the promise gap of the Hamiltonian.

Definition 4 (SEPARABLE LOCAL HAMILTONIAN problem). The input is the same as the input for the
LOCAL HAMILTONIAN problem together with a partition of the qubits to disjoint sets A and B. The answer
is YES if ∃|ψ〉 = |χA〉 ⊗ |χB〉 s.t. 〈ψ|H|ψ〉 ≤ a and the answer is NO if 〈ψ|H|ψ〉 ≥ b for all tensor
product states |ψ〉 = |χA〉 ⊗ |χB〉.

Note, that equivalent definitions can be made based on tensor products of mixed states, or separable states
as witness states. We now define the SEPARABLE SPARSE HAMILTONIAN problem.

Definition 5 (SEPARABLE SPARSE HAMILTONIAN problem). An operator A over n qubits is row-sparse
if each row in A has at most poly(n) non-zero entries, and there exists an efficient classical algorithm
that, given i, outputs a list (j, Ai,j) running over all non zero elements of Ai,j . The SEPARABLE SPARSE

HAMILTONIAN problem is the same as SEPARABLE LOCAL HAMILTONIAN except each termHi in the input
Hamiltonian is row-sparse instead of k-local.

We will use the following theorem of Shi and Wu [SW15].

Corollary 6 ([SW15, Problem 3, Corollary 6]). Take the expression Q =
∑r

i=1Hi of any l-local Hamil-
tonian over A1 ⊗ · · · ⊗ Ak (each Ai is of dimension d = 2n) such that ‖Hi‖op ≤ w for each i as input.
Assuming k, l = O(1), the quantity

OptSep(Q) = min 〈Q, ρ〉 subject to X ∈ SepD(A1 ⊗ · · · ⊗Ak) (1)

where SepD(A1⊗ · · · ⊗Ak) is the set of separable density operators over the space A1⊗ · · · ⊗Ak, can be
approximated to precision δ in

DTIME(exp(O(logO(1)(d)(log log(d) + log(w/δ))))× poly(d,w, 1/δ)), (2)

which is quasi-polynomial in d,w, 1/δ. If n is considered as the input size and w/δ = O(poly(n)), then
OptSep(Q) can be approximated to precision δ in PSPACE.

Harrow and Montanaro [HM13] prove the following results:

Lemma 7 ([HM13, Lemma 6]). For any m, k, 0 ≤ s < c ≤ 1,

QMAm(k)s,c ⊆ QMASEP
km (2)s′,c′

where c′ = 1+c
2 and s′ = 1− (1−s)2

100 .

Theorem 8 ([HM13, Theorem 9]).

1. If s ≤ 1− 1/q(n), k = poly(n) and p(n), q(n) be arbitrary polynomials, then2

QMA`(k)s,1 = QMASEP
O(k`p(n)q2(n))(2)exp(−p(n)),1. (3)

2We have explicitly included the asymptotic scaling of the proof sizes, which are implicit in the proof of the theorem in [HM13]
but were not included in the original statement of the theorem.
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2. If c− s ≥ 1/q(n), c < 1, k = poly(n) and p(n), q(n) be arbitrary polynomials, then

QMA`(k)s,c = QMASEP
Õ(k`p2(n)q2(n))

(2)exp(−p(n)),1−exp(−p(n)). (4)

Lemma 9 (SEPARABLE SPARSE HAMILTONIAN is QMA(2)-hard [CS12]). Let U = UTUT−1 . . . U0 be the
verifier circuit of a language L ∈ QMASEP` (2) 1

T+1
,1− C

512(T+1)4
for some constant C with input x, proof size

`, and α ancillas. W.l.o.g., assume that U has been produced by Lemma 7 or Theorem 8. Then there exists
a separable sparse Hamiltonian HSSH that is a sum of O(T ) sparse terms acting on at most 2`+O(T ) +α
qubits, such that

1. if x ∈ L then there exists a |ψ〉 = |ψ1〉 ⊗ |ψ2〉, such that 〈ψ|H|ψ〉 ≤ C
512(T+1)5

.

2. if x /∈ L then for all |ψ〉 = |ψ1〉 ⊗ |ψ2〉, 〈ψ|H|ψ〉 ≥ C
256(T+1)5

Theorem 10 (Eigenvalue-Approximating Gadget Theorem [OT08, Theorem 7]). Let ||V || ≤ ∆/2 where
∆ is the spectral gap of H and λ(H) = 0. Let H̃|<∆/2 be the restriction of H̃ = H + V to the space of
eigenstates with eigenvalues less than ∆/2. Let there be an effective Hamiltonian Heff with Spec(Heff) ⊆
[a, b]. If the self-energy Σ−(z) for all z ∈ [a − ε, b + ε] where a < b < ∆/2 − ε for some ε > 0, has the
property that

||Σ−(z)−Heff || ≤ ε, (5)

then each eigenvalue λ̃j of H̃|<∆/2 is ε-close to the jth eigenvalue of Heff . In particular

|λ(Heff)− λ(H̃)| ≤ ε. (6)

Theorem 11 (Norm-Approximating Gadget Theorem [OT08, Theorem A.1]). Given is a Hamiltonian H
such that no eigenvalues of H lie between λ− = λ∗ −∆/2 and λ+ = λ∗ + ∆/2. Let H̃ = H + V where
||V || ≤ ∆/2. Let there be an effective Hamiltonian Heff with Spec(Heff) ⊆ [a, b], a < b. We assume that
Heff = Π−HeffΠ−. Let Dr be a disk of radius r in the complex plane centered around z0 = b+a

2 . Let r be
such that b+ ε < z0 + r < λ∗. Let weff = b−a

2 . Assume that for all z ∈ Dr we have

‖Σ−(z)−Heff‖ ≤ ε. (7)

Then

‖H̃<λ∗ −Heff‖ ≤
3(||Heff ||+ ε)‖V ‖
λ+ − ||Heff || − ε

+
r(r + z0)ε

(r − weff)(r − weff − ε)
. (8)

Lemma 12 (Norm-approximating Parallel Subdivision Gadget [OT08]). LetHtarget = Helse+
∑k

i=1Ai⊗Bi
be an `-local Hamiltonian, where Ai and Bi are k-many pairs of (`/2)-local terms and Helse contains
all terms that shall not be generated perturbatively. Let Heff = Htarget ⊗ |0..0〉〈0..0| be an effective
Hamiltonian acting on a larger system extended by O(k) ancillas, i.e. Htarget acting on the subspace where
the ancillas are in their ground state. Let ∆ = poly(n, k)/ε2 for a sufficiently large poly(n, k). Then for
any ε there exists a (d`/2e+ 1)-local Hamiltonian H̃ with ˜‖H‖ = ∆ such that∥∥∥H̃|<∆/2 −H ⊗ |0...0〉〈0...0|

∥∥∥ ≤ ε (9)

where H̃|<∆/2 indicates the restriction of H̃ to the space of eigenvectors with eigenvalues less than ∆/2.

Proof sketch. Lemma 12 is implicit in [OT08, Appendix A]: Consider the parallel subdivision gadget con-
struction of [OT08, Section 3.1]. In the construction, Theorem 10 is applied to construct an operator H̃
such that each eigenvalue λ̃j of H̃|<∆/2 is ε-close to the jth eigenvalue of Heff . It is straightforward to
check that the same assumptions (up to a larger polynomial in the choice of ∆) suffice to apply Theo-
rem 11 instead of Theorem 10 to the constructed gadget Hamiltonian, yielding the norm approximation∥∥∥H̃|<∆/2 −H ⊗ |0...0〉〈0...0|

∥∥∥ ≤ ε instead of an eigenvalue approximation.
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3 Proof

We will now proceed to prove Theorem 1 by showing the following slightly more general result.

Theorem 13 (main result). QMA`(k)s,c with c− s > 1/q, q = q(n), is decidable in

DTIME(exp(O(poly(k, `, q, α, T, log(n))))) ⊆ EXP, (10)

where T is a bound on the size of the QMA(k) verifier circuit and α a bound on the number of ancillas used.

We note that our upper bound is consistent with previously known hardness results, such as NEXP ⊆
QMA(2)s,c with c− s ≥ 2−O(poly(n)) [Per12] and NP ⊆ QMAlog(2)s,c with 1/(c − s) ≤ O(poly(n))
[BT09, BT12], as well as the general lower bounds of [HM13, AIM14] relative to the Exponential-Time
Hypothesis (ETH) of [IP99].

Proof. The proof proceeds in four steps: first, we amplify the soundness and completeness bounds of the
given QMA(k) verifier using Theorem 8 to the levels required by Lemma 9. Second, we apply Lemma 9
yielding a SEPARABLE SPARSE HAMILTONIAN instance. Third, this serves as input to Lemma 14 which
yields a SEPARABLE LOCAL HAMILTONIAN instance with exponentially small promise gap. Fourth, we
apply Corollary 6 and decide the instance in EXP. Let us now discuss these steps in detail.

Step one (QMA(k) amplification). We apply Theorem 8 to the QMA`(k)s,c verifier circuit, yielding a
QMASEP

`′ (2)e−p(n),1−e−p(n) verifier circuit, where the proof size has been expanded to `′ = Õ(k`p2(n)q2(n)).
Choosing p(n) = 10 log(T ) + D for a sufficiently large constant D satisfies the bounds s > 1

T+1 and
c < 1

512(T+1)4
required by Lemma 9. Thus we have `′ = Õ(k`q2(n) log2(T ))

Step two (reduction to SEPARABLE SPARSE HAMILTONIAN). We apply Lemma 9 to the QMASEP
`′ (2)s,c

instance of step one, with c = 1
T+1 , s = 1

512(T+1)4
, `′ = Õ(k` log2(T )q2(n)), yielding a separable local

Hamiltonian HSSH with energy thresholds a ≤ C
512(T+1)5

and b ≥ C
256(T+1)5

in the YES and NO cases,

respectively, where HSSH acts on w = O(2`′ + α+ T ) = Õ(k` log2(T )q2(n) + α+ T ) qubits, where α is
the number of ancilla bits used by the original verifier.

Step three (reduction to SEPARABLE LOCAL HAMILTONIAN). We apply our main technical Lemma 14
toHSSH produced in step two. This yields a SEPARABLE LOCAL HAMILTONIAN instanceHSLH with ground
energies a ≤ 5C

2048(T+1)5
2−O(poly(`′) log(nkT )) and b ≥ 7C

2048(T+1)5
2−O(poly(`′) log(nkT )) in the YES and NO

cases, respectively, where HSLH acts on w′ = O(2k`′ + α+ T ) = Õ(k2` log2(T )q2(n) + α+ T ) qubits.

Step four (enumeration of ε-net). Finally, we apply Corollary 6 to HSLH to approximate the ground
energy of HSLH over the set of separable states to precision

δ =
C

2048(T + 1)5
2−O(poly(`′) log(nkT )) (11)

≈ 2−O(poly(`′) log(nkT )) (12)

which suffices to decide the HSLH instance. Since d = 2w
′
, this requires at most

DTIME(exp(O(logO(1)(2w
′
)(log log(2w

′
) + log(1/δ))))× poly(2w

′
, 1/δ)) (13)
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Expanding all parameters we find an upper bound of

DTIME(exp(O(poly(k, `, q, α, T, log(n))))) (14)

Clearly, for QMA(k) with k, `, q, α, T ∈ O(poly(n)) we have

QMA(k) ⊆ DTIME(exp(O(poly(n)))) ⊆ EXP. (15)

Note, that the condition in Corollary 6 implying containment in PSPACE is not satisfied in our setting.

It remains to prove our main technical lemma.

Lemma 14 (SEPARABLE LOCAL HAMILTONIAN with exponentially small promise gap is QMA(2)-hard).
Let HSSH be a SEPARABLE SPARSE HAMILTONIAN instance produced by Lemma 9. Then there exists a
SEPARABLE LOCAL HAMILTONIAN instance HSLH such that

1. if x ∈ L then there exists a |ψ〉 = |ψ1〉 ⊗ |ψ2〉, such that 〈ψ|H|ψ〉 ≤ 5C
2048(T+1)5

2−O(poly(`) log(nkT ))

2. if x /∈ L then for all |ψ〉 = |ψ1〉 ⊗ |ψ2〉, 〈ψ|H|ψ〉 ≥ 7C
2048(T+1)5

2−O(poly(`) log(nkT ))

HSLH acts on an enlarged system of O(2k`+ T + α) qubits.

Proof. Note that HSSH is a Feynman-Kitaev Hamiltonian [KSV02, section 14.4.1] of the standard form

HSSH = Hin +Hprop +Hout +Hclock (16)

where Hprop =
∑T

t=1Ht. Since by the assumptions of Lemma 9 the verifier circuit encoded in HSSH has
been brought into a standard form by the Harrow-Montanaro construction (i.e. Lemma 7 or Theorem 8), we
know that HSSH contains exactly k non-local terms (one for each prover) of the form

Ht = −1

2
|t〉〈t− 1| ⊗ Ut −

1

2
|t− 1〉〈t| ⊗ U †t +

1

2
(|t〉〈t|+ |t+ 1〉〈t+ 1|)⊗ 1 (17)

These encode a simultaneous controlled-swap operation Ut = CSWAP on 2` qubits. All other terms are 5-
local. As noticed by Chailloux and Sattath [CS12], it’s necessary to perform this controlled-swap operation
“in one time step” in the history state that constitutes the ground state of the Feynman-Kitaev Hamiltonian.
This is required in order to ensure the separability of the ground state of HSSH for satisfiable instances.

From this starting point, we show the lemma by reducing SEPARABLE SPARSE HAMILTONIAN to SEP-
ARABLE LOCAL HAMILTONIAN with exponentially small promise gap. Our approach to deal with the
non-local terms is to approximate them by local ones perturbatively using the parallel subdivision gadget
of [OT08] as summarized in Lemma 12. Let us extract one representative non-local term HCSWAP from
Ht. The lemma is later applied to all k of these terms in parallel. Note that the CSWAP operation across
2` qubits exhibits a natural tensor product structure which is a crucial prerequisite to apply Lemma 12
iteratively. Using CSWAP = CSWAP† we write

HCSWAP =

swap terms Si︷ ︸︸ ︷
SWAP1,`+1 ⊗ SWAP2,`+2 ⊗ · · · ⊗ SWAP`,2`⊗

control C︷ ︸︸ ︷
|1〉〈1| ⊗

time propagation T︷ ︸︸ ︷
(|t〉〈t+ 1|+ |t+ 1〉〈t|) (18)

We apply Lemma 12 to HSSH iteratively O(log(`)) times in order to break down HCSWAP into ultimately
O(1)-local terms along its natural tensor product structure as illustrated in Figure 1. For one application of
Lemma 12 a choice of

∆1 =
poly(n, k)

ε2
(19)
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S1S2S3S4|S5CT iteration (tree depth) i

��	
i = 1@@R

S1S2S3|S4Xu1 Xu1S5|CT
��	 @@R ��	 @@R

i = 2

S1S2|S3Xu2 Xu2S4Xu1 Xu1S5Xu3 Xu3CT

��	 @@R
i = 3

S1S2Xu4 Xu4S3Xu2

Figure 1: [CBBK15] Reduction tree diagram for parallel subdivision gadget acting on a HCSWAP term
as defined in eq. (18) for the case ` = 5. In our case, each Si is a two-qubit SWAP operator acting on
qubits (i, ` + i), C is the control operator, whereas T is the time propagation operator. The vertical lines |
show where the subdivisions are made at each iteration to each term. The Xui terms indicate the coupling
to mediator qubit ui introduced in this step. Clearly, the number of mediator qubits scales as O(`) and
O(log(`)) iterations suffice to arrive at O(1)-local terms.

suffices. Iterating the gadget increases the required interaction strength by a polynomial factor [BDLT08].

∆i+1 =
poly(n, k)

ε2
∆3
i (20)

Thus, after O(log(`)) iterations, we find

∆ ≤
(

poly(n, k)

ε2

)3log(`)

≤
(

poly(n, k)

ε2

)poly(`)

≤ 2O(poly(`) log(nk/ε)) (21)

It suffice to choose ε = C
2048(T+1)5 log(`)

to resolve the promise gap of HSSH (see Lemma 9) considering
O(log(`)) parallel iterations per term, each incurring error ε. The result of the iterated gadget construction
is a 3-local operator H̃SSH with ∥∥∥H̃SSH

∥∥∥ ≤ ∆ ≤ 2O(poly(`) log(nkT )) (22)

such that ∥∥∥H̃SSH −HSSH ⊗ |0 · · · 0〉〈0 · · · 0|
∥∥∥ ≤ C

2048(T + 1)5
(23)

Figure 1 illustrates how O(`) mediator qubits are introduced per term. Since there are k non-local terms
being reduced in parallel, a total of O(k`) mediator qubits are added. Let us finally define the desired
SEPARABLE LOCAL HAMILTONIAN instance as the normalized version of H̃SSH as

HSLH = ∆−1H̃SSH (24)

To finish the proof of the lemma, it remains to show that the claimed completeness and soundness bounds
are satisfied by HSLH. Let us first verify completeness and soundness of H̃SSH explicitly which will in turn
imply the exponentially rescaled bounds for HSLH.

For the completeness bound we show the that the separable witness state implied by Lemma 9, i.e.
|ψ〉 = |ψA〉 ⊗ |ψB〉 with energy 〈ψ|HSSH|ψ〉 ≤ a, implies that the separable state |ψ〉|0 · · · 0〉 of the
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extended system satisfies 〈ψ|〈0 · · · 0| H̃SSH |ψ〉|0 · · · 0〉 ≤ 5C
2048(T+1)5

. Omitting the explicit tensoring of
|0 · · · 0〉 ancillas for readability, we have

〈ψ|H̃SSH|ψ〉 = 〈ψ|HSSH|ψ〉+ 〈ψ|(H̃SSH −HSSH)|ψ〉 (25)

≤ C

512(T + 1)5
+
∥∥∥H̃SSH −HSSH

∥∥∥ (26)

≤ 4C

2048(T + 1)5
+

C

2048(T + 1)5
(27)

=
5C

2048(T + 1)5
(28)

where the first inequality follows from the assumptions of Lemma 9 and uses basic properties of the spectral
norm, while the second inequality follows from eq. (23). Note that essentially the same separable state |ψ〉 =
|ψA〉 ⊗ |ψB〉 (once extended to the larger space with |0 · · · 0〉 ancillas) satisfies the respective completeness
bounds in both, the perturbed as well as the unperturbed setting.

Similarly, for the soundness bound, we know that for all states |ψ〉

〈ψ|HSSH|ψ〉 = 〈ψ|H̃SSH|ψ〉+ 〈ψ|(HSSH − H̃SSH)|ψ〉 (29)

≤ 〈ψ|H̃SSH|ψ〉+
∥∥∥HSSH − H̃SSH

∥∥∥ (30)

≤ 〈ψ|H̃SSH|ψ〉+
C

2048(T + 1)5
(31)

where eq. (30) follows from basic properties of the spectral norm, and eq. (31) follows from eq. (23). Fur-
thermore, since for all separable |ψ〉 = |ψA〉 ⊗ |ψB〉 we have 〈ψ|HSSH|ψ〉 ≥ C

256(T+1)5
by the assumptions

of Lemma 9, it follows that

〈ψ|H̃SSH|ψ〉 ≥
7C

2048(T + 1)5
(32)

Dividing eq. (28) and eq. (32) by ∆ already yields the lemma. Moreover, for HSLH these bounds imply a
promise gap of

γ =
1

∆

7C − 5C

2048(T + 1)5
=

2C

2048(T + 1)5
2−O(poly(`) log(nkT )) (33)

Clearly, the inverse exponential scaling of γ in ` dominates the scaling in all other parameters. Since in
general QMA(2) instances `, k, T ∈ O(poly(n)), the promise gap of HSLH scales with 2−O(poly(n)).

4 On the BEST SEPARABLE STATE problem

In this section, we review the implications of our results on the related BEST SEPARABLE STATE problem.
The complexity of QMA(2) stems from essentially two sources: the search for a witness state over the set
of separable states and the fact the verifier is a quantum computer. Removing the second aspect, one is lead
to following related problem, which is often discussed in the context of QMA(2).

Problem 1 (BEST SEPARABLE STATE BSSε). Given as input an Hermitian matrix A ∈ Cd2×d2 , with
eigenvalues in [0, 1], and let

λsep(A) := max
v,w∈Cd:‖v‖=‖w‖=1

(v† ⊗ w†)A(v ⊗ w). (34)

Compute λ̃sep(A), such that |λsep(A)−λ̃sep(A)| ≤ ε. (Here ε is assumed to be an arbitrarily small constant
if not specified otherwise.)
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This problem has been related to 18 approximately equivalent problems by Harrow and Montanaro
[HM13] emphasizing the importance of understanding the complexity of BSSε and its relation to QMA(2).
For example, the BEST SEPARABLE STATE problem is equivalent to approximating the injective tensor norm
of a 3-index tensor [DF92], a generic problem arising in several contexts (e.g. in [BBH+12] in relation to
the Unique Games Conjecture [Kho02]), variants of the PLANTED CLIQUE problem, and – unsurprisingly
– various problems in quantum information theory.

Note, that BSSε is clearly a generalization of QMA(2)s,c as we have removed assumptions about the
input. Indeed, by choosing d = 2poly(n) and ε = 1/poly(n), QMA(2) can be reduced to an exponentially
large instance of BSSε in exponential time in n: It suffices to compute A classically by multiplying the
matrices defining the verifier circuit V and choosing ε = c−s

2 = 1/poly(n).

Hardness of BSSε What is known about the hardness of the problem? BSS1/poly(d) is already known
to be NP-hard [Gur03, Ioa07, Gha10] and is closely related to the problem of entanglement detection in
quantum states. A long-standing open question is whether BSSε remains NP-hard in the regime of constant
ε. [HM13, AIM14] give a lower bound of dΩ(log(d)) relative to the Exponential Time Hypothesis [IP99].
For the special case that ‖A‖2F = O(poly log(d)) or assuming that {A,1 − A} is an LOCC measurement
(which allows local operations and only classical communication across the subsystem boundary), quasi-
polynomial time algorithms are known [BCY11, SW15].

Impact of our results Do our perturbative methods yield a quasi-polynomial time algorithm for the gen-
eral case? Interestingly, this does not seem to be the case. Let us briefly discuss informally, why two of the
most natural approaches fail to yield a better upper bound.

One natural approach is to reduce BSSε to an instance of QMAlog(2) and then apply Theorem 13. If after
the reduction all parameters in the application of Theorem 13 turned out to be O(poly log(d)) this would
result in a quasi-polynomial time upper bound for BSSε in terms of d. Such a reduction appears to introduce
insourmountable overhead, though: Since we lack a O(log(d))-sized circuit decomposition of A, we can
only recover a quantum circuit very generically by first diagonalizing A = UDU † in the eigenbasis, and
then decomposing the unitary U over some gate set using the Solovay-Kitaev algorithm [NC11]. Assuming
d a power of 2, ` = log(d), and an approximation error of ε, this will yield a quantum circuit of size

T = O(4`242` logc(4`242`/ε)) = O(poly(d, log(1/ε)) (35)

acting on 2` qubits. Thus, even though k, q, `, α, log(n) ≤ O(log(d)) in this case, Theorem 13 only yields
a run-time bound exponential in d due to T scaling polynomial in d.3

Another natural approach is to consider H = 1−A as a (global) Hamiltonian with the goal to apply the
perturbative gadgets immediately. Clearly, 0 ≤ H ≤ 1 and approximating 1−λsep(A) to additive error ε is
equivalent to approximating the ground energy of H over the set of separable states. Since the perturbative
gadgets require a tensor product structure in the Hamiltonian terms, decompose H over the Pauli product
operator basis, i.e. H =

∑
ci1,...,inσi1 ⊗ · · · ⊗ σi` , where ` = log(d) respecting the tensor product structure

of v⊗w. Without further assumptions, the sum consists of 4log(d2) = d4 terms. Using Lemma 12 iteratively
O(log(`)) times we can now break down each of the d4 global terms inH intoO(n) 3-local terms at the cost
of increased operator norm. Furthermore, each non-local term induces O(log(d)) mediator qubits. Thus,
after the reduction there are O(d4 log(d)) terms in a transformed local Hamiltonian H̃ acting on an enlarged
system of O(d4 log(d)) qubits or dimension d′ = 2O(d4 log(d)). To approximate the operator in norm within
ε it suffices to choose (cf. eq. (21))

∆ = 2O(poly(`) log(nk/ε)) = 2O(poly(log(d)) log(d4 log(d)/ε)) ≤ 2O(poly(log(d),log(1/ε))) (36)
3Note, that this rough bound does not even include the number of gates required for implementing D yet.
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in Lemma 12. This yields the operator H̃ with
∥∥∥H − H̃∥∥∥ ≤ ε on the low-energy subspace of interest. Then

we apply Corollary 6, which allows us to approximate 1− λsep(A) to precision O(ε) in

DTIME(exp(O(logO(1)(d′)(log log(d′) + log(∆/ε))))× poly(d′,∆, 1/ε)), (37)

which simplifies to

DTIME(exp(O(poly(d, log(1/ε))) (38)

In summary, we find that the lack of further structural information about A, such as a short circuit
decomposition or a short Pauli decomposition (both in terms ofO(poly log(d))), is a significant obstacle for
solving BSSε in quasi-polynomial time using our methods. Only in the special case of QMA(2), where such
information is available, our method is able to effectively exploit it and yields a quasi-polynomial time upper
bound (in terms of d), but not in the general case of BSSε. This is consistent with earlier quasi-polynomial
time algorithms for BSSε [BCY11, SW15] which require a bound on ‖A‖2F = O(poly log(d)) as well.

5 Conclusion

We have shown the first non-trivial upper bound on QMA(k). In fact, we have shown how to solve the
class in deterministic exponential time and ruled out its equivalence with NEXP, unless NEXP = EXP.
Our results imply an exponential time algorithm for the PURE STATE N -REPRESENTABILITY problem in
quantum chemistry, which is in QMA(2) but is not known to be in QMA. Furthermore, we have discussed
the implications of our results on the BSSε problem and explained why no quasi-polynomial time algorithm
for BSSε follows. Rather, we found that the quantum circuit structure present in QMA(k) but missing in
BSSε is necessary to apply our techniques effectively. In this paper, we were mainly concerned with proving
an exponential time upper bound for QMA(k) and leave the explicit determination of the polynomials in our
upper bounds open for future work.
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