
Complexity of distributions and average-case hardness∗

Dmitry Itsykson † Alexander Knop† Dmitry Sokolov†

Abstract

We address a natural question in average-case complexity: does there exist
a language L such that for all easy distributions D the distributional problem
(L,D) is easy on the average while there exists some more hard distribution D′

such that (L,D′) is hard on the average? We consider two complexity measures of
distributions: complexity of sampling and complexity of computing the distribution
function. The most interesting measure is the complexity of sampling. We prove
that for every 0 < a < b there exists a language L, an ensemble of distributions
D samplable in nlogb n steps and a linear-time algorithm A such that for every
ensemble of distribution F that samplable in nloga n steps, A correctly decides L on
all inputs from {0, 1}n except of a set that has infinitely small F -measure, and for
every algorithm B there are infinitely many n such that the set of all elements of
{0, 1}n for which B correctly decides L has infinitely small D-measure.

In case of complexity of computing the distribution function we prove the fol-
lowing tight result: for every a > 0 there exists a language L, an ensemble of
polynomial-time computable distributions D, and a linear-time algorithm A such
that for every computable in na steps ensemble of distributions F , A correctly de-
cides L on all inputs from {0, 1}n except a set that has F -measure at most 2−n/2,
and for every algorithm B there are infinitely many n such that the set of all
elements of {0, 1}n for which B correctly decides L has D-measure at most 2−n+1.

1 Introduction

This paper is devoted to average-case complexity. In the average case settings every com-
putational problem is supplied with a ensemble of distributions on inputs. The problem
is easy on the average if it can be solved efficiently on all but a small fraction (according
to the distribution) of the inputs.

The paper [6] gave an example of noncomputable ensemble of distributions such that
every language with that ensemble of distributions is easy on the average iff it is easy in
the worst case. This explains why the average-case complexity studies not all but only
feasible ensembles of distributions. The most natural class of ensembles of distributions
is the class of polynomial-time samplable distributions. Such distributions are distri-
butions of outputs of polynomial-time randomized algorithms. The second important

∗The research is partially supported by the RFBR grant 14-01-00545, by the President’s grant MK-
2813.2014.1 and by the Government of the Russia (grant 14.Z50.31.0030).

†Steklov Institute of Mathematics at St. Petersburg, 27 Fontanka, St.Petersburg, 191023, Russia,
dmitrits@pdmi.ras.ru, aaknop@gmail.com, sokolov.dmt@gmail.com.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 174 (2015)

class of ensembles of distributions is the class of polynomial-time computable ensembles
distributions. An ensemble of distributions is computable in polynomial time if its cu-
mulative distribution function is computable in polynomial time. It is known that every
polynomial-time computable ensemble of distribution is polynomial-time samplable but
the opposite is not true if one-way functions exist [2].

It is well known that several hard problems can be efficiently solved on almost all in-
puts for some natural distributions. For example the NP-complete problem Hamiltonian
Path is decidable in a linear time for the ensemble of the uniform distributions on the
graphs [3]. Other interesting example is the Graph Isomorphism problem that is solvable
in linear time in the case of uniform distribution on the inputs [1], while there exists
much more tricky distribution (see for example [8]) such that there are no known efficient
algorithms that solve graph isomorphism problem with high probability.

In this paper we study questions of how the complexity of distributions may affect
the complexity of the problems. By the complexity of polynomial-time samplable distri-
butions we mean the time complexity of the sampling algorithm. For polynomial-time
computable distributions we also consider another complexity measure: the time com-
plexity of the algorithm that computes the distribution function.

Consider the following variant of the time hierarchy theorem: For all a > 0 there is a
language that can be solved in polynomial time on almost all inputs according to some
polynomial-time samplable distribution, while it cannot be solved in time na on almost all
inputs for all distributions that are samplable in time na. For deterministic computations
the following statement can be proved by a straightforward diagonalization: For all a > 0
and ε > 0 there exists a language L ∈ P such that (L,D) /∈ Heur1−εDTime[na] for all
ensembles of distributions D.

For randomized algorithms with bounded error the following extension of Pervyshev’s
[7] heuristic BPP hierarchy was noted in [5]:

Theorem ([5]). For all a > 0 and ε > 0 there exists a language L such that the following
holds:

• (L,U) ∈ HeurεBPP, where U is an ensemble of uniform distributions;

• (L,D) /∈ Heur 1
2
−εBPTime[na] for all ensembles of distributions D that are sam-

plable in O(na) steps.

Informally speaking this theorem says that for some languages it is hard to sample
easy instances.

In this paper we consider an opposite problem: the complexity of sampling hard
instances. Namely we study the following question: does there exist a language L such
that for all distributions F of complexity g(n) the distributional problem (L, F) is easy
on the average, but there exist an ensemble of distributions D of complexity f(n) such
that the distributional problem (L,D) is hard on the average?

• We consider two complexity measures of distributions:

1. time complexity for sampling;

2. time complexity of computing the distribution function.

2

• We say that a distributional problem (L,D) is easy on the average if (L,D) ∈
Heurα(n)P, where α(n) = o(1).

• We consider two variants of the notion that (L,D) is hard on the average:

1. Strong hardness: (L,D) is not in Heur1−β(n)P for β(n) = o(1). We may also
consider the randomized analogue of this class: Heur1−β(n)BPP, but we will
see that if there exist an appropriate L and D such that (L,D) is not in
Heur1−β(n)P then there exist an appropriate L′ and D′ such that (L,D) is not
in Heur1−β(n)BPP.

2. Weak hardness: (L,D) is not in Heurβ(n)P. In this case it is reasonable to
assume that α(n) = o(β(n)).

• It is desirable for f(n) to be not much larger than g(n). In tight results g(n) would
be at most polynomial in f(n); in other results g(n) is bounded by a quasipolynomial
in f(n).

1.1 Our results

In Section 4 we consider a complexity of a distribution as the complexity of computing the
distribution function. We prove the result for the strong hardness and f(n) = poly(g(n)).
Namely we prove the theorem:

Theorem 1.1. For every a > 0 there exists a language L and an ensemble of polynomial-
time computable distributions D such that

• There exists a linear-time algorithm A such that Pr
x←Fn

[A(x) 6= L(x)] = O(2−n) for

all F that are computable in O(na) steps;

• For every algorithm A and for all n, Pr
x←Dn

[A(x) 6= L(x)] > 1− 1
2n−1 .

The most interesting complexity measure of distributions is the complexity of sam-
pling.

In Section 3.1 we consider the statement with the strong notion of hardness. We show
that in this case the positive answer to our question is equivalent to the following hierarchy
for sampling distributions : there exists a distribution D that is samplable in f(n) steps
such that for every distribution F that is samplable in g(n) steps, the statistical distance
between D and F is at least 1− o(1).

Watson [9] recently proved the similar (but weaker for our goals) theorem:

Theorem ([9]). For all a > 0, ε > 0 and k ∈ N there exists an ensemble D ∈ PSamp
such that:

• for all n the distribution Dn is concentrated on {1, 2, . . . , k};

• for every ensemble of distributions F ∈ Samp[na] there exist infinitely many n such
that statistical distance between Dn and Fn is at least 1− 1

k
− ε.

Watson left an open problem to prove the following conjecture:

3

Conjecture 1.1. For every a > 0 there exists b > 0 such that the hierarchy for sampling
distributions holds for f(n) = nb and g(n) = na.

We prove the hierarchy for sampling distributions for f(n) = nlogb n and g(n) = nloga n

for all 0 < a < b. And we get the following corollary:

Corollary 1.1. For all ε > 0 and c > 0 there exist a language L and a linear-time
algorithm A such that for every polynomial-time samplable ensemble of distributions F
and all n, Pr

x←Fn
[A(x) = L(x)] ≥ 1 − 1

2(log log logn)c and there exists D ∈ Samp[nlogε n] such

that (L,D) /∈ Heur1− 1

2(log log logn)c
R.

It is interesting to compare Corollary 1.1 with the result of Gutfreund, Shaltiel and
Ta-Shma [4]; they proved that for every α(n) = o(1) there is a distribution D that is
samplable in quazipolynomial-time such that for every NP-complete language L every
polynomial-time randomized algorithm fails to compute L with probability at least α(n)
for infinitely many n unless NP ⊆ BPP. In contrast to [4] Corollary 1.1 is unconditional,
uses strong notion of hardness and additionally states that L is easy for all polynomial-
time samplable distributions, on the other hand the distribution from [4] is the same for
all NP-complete languages and NP-complete languages are important while a language
from Corollary 1.1 is an artificial language based on the tricky diagonalization.

In Section 3.2 we consider the weak notion of hardness and f(n) = poly(g(n)). We
show that in this case the positive answer to our question is equivalent to the following
conjecture:

Conjecture 1.2. There exist infinitely small functions β(n) and α(n) = o(β(n)) such
that for all integer a > 0 and b > 0 there exist an ensemble of distributions D ∈ PSamp,
an increasing sequence of integers ln and a sequence of sets Sn ⊆ {0, 1}ln such that the
following holds:

• D(Sn) > β(ln) for all n;

• for all F ∈ Samp[na], F (Sn) ≤ α(ln) for infinitely many n.

We prove only the weaker statement, then where α(n) = β(n). Namely we prove the
following theorem:

Theorem 1.2. For all integer a > 0 and b > 0 there exist an ensemble of distributions
D ∈ PSamp, a sequence of integers ln and a sequence of sets Sn ⊆ {0, 1}ln such that the
following holds:

• D(Sn) > 1
lbn

for all n;

• for all F ∈ Samp[na], F (Sn) ≤ 1
lbn

for infinitely many n.

2 Preliminaries

An ensemble of distributions is a sequence {Dn}∞n=1, where Dn is a probability distri-
bution on {0, 1}n. Sometimes it is convenient to assume that Dn is concentrated on
{0, 1, . . . , 2n − 1}.

4

For two distributions A and B on {0, 1}n the statistical distance between them is
∆(A,B) = max

S⊆{0,1}n
| Pr
x←A

[x ∈ S]− Pr
x←B

[x ∈ S]|.

A distributional problem is a pair (L,D) that consists of the language L and the
ensemble of distributions D.

Let δ : N → [0, 1] be a function. We say that a distributional problem (L,D) is
heuristically decidable it time t(n) with error δ(n) if there exists an algorithm A such that
A runs in O(t(n)) steps on the inputs on length n and the following holds: Pr

x←Dn
[A(x) 6=

L(x)] ≤ δ(n) for all n. We denote it as (L,D) ∈ Heurδ(n)DTime[t(n)]. We also define a
class of distributional problems Heurδ(n)P =

⋃
c>0

Heurδ(n)DTime[nc].

We also define a class Heurδ(n)R that consists all distributional problems (L,D) such
that there exists an algorithm A such that Pr

x←Dn
[A(x) 6= L(x)] ≤ δ(n) for all n.

We say that an ensemble of distributions D is samplable in time t(n) if there exists a
randomized algorithm S that on the input 1n runs in at most O(t(n)) steps and S(1n) is
distributed accordingly Dn. The set of all ensembles that are samplable in time t(n) we
denote as Samp[t(n)]. We consider the set PSamp =

⋃
c>0

Samp[nc] of all polynomial-

time samplable ensembles.

3 Samplable distributions

3.1 Strong hardness

Definition 3.1. We say that time constructible functions f and g satisfy the hierar-
chy property of sampling distributions with parameter λ(n) if there exists an ensem-
ble of distributions D ∈ Samp[f(n)] such that for every ensemble of distributions
F ∈ Samp[g(n)], there exist infinitely many numbers n such that the statistical dis-
tance between Dn and Fn is at least 1− λ(n).

Definition 3.2. We say that time constructable functions f and g satisfy the hierarchy
property on complexity of distributional problems with parameters α(n) > 0 and β(n) > 0
if there exist a language L and an ensemble of distributions D ∈ Samp[f(n)] steps such
that:

• (L, F) ∈ Heurα(n)P for all F ∈ Samp[g(n)];

• (L,D) /∈ Heur1−β(n)P.

We say that f and g satisfy strong hierarchy property on complexity of distributional
problems if the conditions are formulated as:

• there is a linear-time algorithm A such that for all F ∈ Samp[g(n)] Pr
x←Fn

[A(x) =

L(x)] ≥ 1− α(n) for all n large enough;

• (L,D) /∈ Heur1−β(n)R.

5

Lemma 3.1. For every time constructible functions f(n), h(n) and g(n) ≥ n if f and
h satisfy the hierarchy property on sampling distributions with parameter λ(n) and
g(n) log g(n) = o(h(n)) then f and g satisfy the strong hierarchy property on complexity
of distributional problems with parameters α(n) and λ(n) for α(n) = w(λ(n)).

Proof. Let Ai be an enumeration of all randomized algorithms supplied with an alarm
clock that interrupt their executions after O(g(n)) steps. We will think about Ai as
algorithms that sample distributions; that is the output of Ai(1

n) we interpret as a string
from {0, 1}n by some fixed way. Let F be an algorithm that samples a distribution as
follows: on input 1n with probability 1

2
it executes A1(1

n) (and returns its result), with
probability 1

22
it executes A2(1

n), . . . , with probability 1
2n−1 it executes An−1(1

n) and
with probability 1

2n−1 executes An(1n). Let F define an ensemble of distributions E. It
is straightforward that E ∈ Samp[h(n)].

Since f and h satisfy the hierarchy property of sampling distributions, there exists an
ensemble D ∈ Samp[f(n)] such that ∆(Dn, En) ≥ 1− λ(n) for infinitely many numbers
n. We denote the set of all such n as I = {n1, n2, . . . }. For n ∈ I there exists a set
Sn ⊆ {0, 1}n such that Dn(Sn)− En(Sn) ≥ 1− λ(n), hence En(Sn) ≤ λ(n).

We will define a language L such that L ⊆
⋃
n∈I

Sn. Let Ti be an enumeration of all

algorithms. We define L such that for every x ∈ Snk , x ∈ L if and only if Tk does not
stop on the input x or rejects it. By the construction (L,D) /∈ Heur1−λ(n)R.

We consider an algorithm that returns 0 on every input. If R ∈ Samp[g(n)], then
there exists i such that Ai samples R. For n ≥ i for every set S ⊆ {0, 1}n the following
inequality holds: E(S) ≥ 2−iR(S). Hence for every ensemble R from Samp[g(n)] this
algorithm has error at most cλ(n), where c is a constant that depends only on the ensemble
R; cλ(n) < α(n) for n large enough.

We also prove the opposite implication

Lemma 3.2. If f and g satisfy the hierarchy property of complexity of distributional
problems with parameters α(n) and β(n) then f and g satisfy the sampling hierarchy
property with parameter α + β.

Proof. For all F ∈ Samp[g(n)] there exists a polynomial time algorithm A that solves
(L, F) in Heurα(n)P and also (L,D) /∈ Heur1−β(n)P. Let Sn be set of all x ∈ {0, 1}n such
that A(x) = L(x). We know that Fn(Sn) ≥ 1− α(n) for all n and Dn(Sn) ≤ β(n) for for
infinitely many n. Hence ∆(Dn, Fn) ≥ Fn(Sn)−Dn(Sn) ≥ 1− α(n)− β(n) for infinitely
many n.

Lemma 3.1 and Lemma 3.2 implies that if f and g satisfy the hierarchy property of
complexity of distributional problems with two infinitely small parameters then f and
g/ log2 g satisfy the strong hierarchy property on complexity of distributional problems
with two infinitely small parameters.

Watson recently proved the following theorem:

Theorem ([9]). For all a > 0, ε > 0 and k ∈ N there exists an ensemble D ∈ PSamp
such that:

• for all n the distribution Dn is concentrated on {1, 2, . . . , k};

6

• for every ensemble of distributions F ∈ Samp[D]na there exist infinitely many n
such that ∆(Dn, Fn) ≥ 1− 1

k
− ε.

In other words Watson prove that for every a > 0, ε > 0 and every constant k there
exists b > 0 such that na and nb satisfy the hierarchy property on sampling distributions
with parameter 1

k
+ ε. In fact Watson proved the stronger statement since ensemble D is

concentrated on k inputs.
Watson conjectured that for every a > 0 there exists infinitely small function α(n)

there exists b > 0 such that na and nb satisfy the hierarchy property on sampling distri-
butions with parameter α(n). This statement is still an open question.

We prove the following theorem:

Theorem 3.1. For every a, b, c such that 0 < a < b and c > 0 functions f(n) = nlogb n

and g(n) = nloga n satisfies the sampling hierarchy property with the parameter
λ(n) = 1

2(log log logn)c .

Corollary 3.1. For every a, b, c such that 0 < a < b and c > 0 functions f(n) = nlogb n

and g(n) = nloga n satisfies the strong hierarchy property on complexity of distributional
problems with parameters α(n) = β(n) = 1

2(log log logn)c .

Proof. Follows from Lemma 3.1 and Theorem 3.1.

Corollary 1.1. For all ε > 0 and c > 0 there exist a language L and a linear-time
algorithm A such that for every polynomial-time samplable ensemble of distributions F
and all n, Pr

x←Fn
[A(x) = L(x)] ≥ 1 − 1

2(log log logn)c and there exists D ∈ Samp[nlogε n] such

that (L,D) /∈ Heur1− 1

2(log log logn)c
R.

Before giving a formal proof of Theorem 3.1 we present an idea of the proof.
In the follows we assume that random variables and elements of ensembles of distri-

butions take values from the set {0, 1, . . . , 2n − 1} instead of {0, 1}n.
Our proof like a proof of the Watson’s theorem is based on the tree-like diagonalization.

We construct a distribution D and diagonalize over all distributions samplable in O(g(n))
steps by the enumeration of their generators Ai. For the i-th distribution we will prove
that the statistical distance between D and Ai(1

n) is large for some n from [ni, n
∗
i], where

n∗i is significantly more than ni. For every i we construct a tree Ti with vertices uniquely
marked with numbers from [ni, n

∗
i]. The root of Ti is marked by n∗i and leaves of Ti

are marked with numbers that are about ni. The number of a parent is greater then
the number of a child also the number of a parent is bounded by a quazipolynomial in
numbers of its child. Let t be an element from {0, 1, . . . , 2ni − 1} such that in all leaves
Ai-probability of t is less then λ(mi), where mi is the maximum leaf. Such t exists since
there are not too many leaves, the possible values of distributions is at least 2ni and
for every distribution the number of elements with probability at least λ(n) is at most
1

λ(n)
. The distribution Dn∗i

is concentrated on t. We assume that for all n ∈ [ni;n
∗
i] the

statistical distance between Ai(1
n) and Dn is less then 1− λ(n). Our goal is to define D

in such a way that in at least one leaf D is concentrated on t. This will contradict our
assumption and the definition of t.

We will transmit information about t from a parent to at least one of its children.
The distribution D on the children of p has the following property: if Dp is concentrated

7

(with probability 1− ε) on some element, then Dn is concentrated on the same element
for at least one child n of p. From the assumption about statistical distances we have
that Pr[Ai(1

p) = t] ≥ λ(p) − ε, hence there are at most 2
λ

candidates on the role of t if
we have an access to Ai(1

p). We generate a list of all elements with Ai(1
p)-probability at

least λ(p)− ε. In the first child of p we make D concentrated on the first element of the
list, on the second child on the second element and so on. There is a problem that there
are possibly different lists will be generated in different children; we solve this problem
by using several thresholds for frequencies. Formally we do it in the following lemma:

Lemma 3.3. There is an algorithm C•(n, i, δ, λ) that has an oracle access to some random
variable γ taking values in {0, 1, . . . , 2n − 1} such that for all positive integer n and
δ, λ ∈ (0, 1] if Pr[γ = t] ≥ λ for some t, then there is some integer 0 ≤ i ≤ d1 + 1

λ
e2 such

that Pr[Cγ(n, i, δ, λ) = t] ≥ 1− δ and C• runs at most poly(n, log 1
δ
, 1
λ
) steps.

Proof. Consider the following algorithm Cγ(n, i, δ, λ):

1. Let k = d 1
λ

+ 1e and ε = λ3

10k
;

2. We interpret i as a pair (a, b), where a, b ∈ [k];

3. Request the oracle for N = d2(n+1+log 1
δ
)

ε2
e samples of γ;

4. Consider the list y1, . . . , ys of all elements with frequency at least λ− εa;

5. Return yb if b ≤ s or 0 otherwise.

Note that for λ ∈ (0, 1]

k(λ− ε(2k)) ≥ (
1

λ
+ 1)(λ− λ3/5) = 1 + λ− λ2/5− λ3/5 > 1. (1)

Hence the number of elements x such that Pr[γ = x] > λ − εk is less than k; by the
similar reasons s < k, where s the size of the list in the 4-th step of the algorithm C.

Consider intervals Ij = [λ − εj − ε/2;λ − εj + ε/2]. There is a ∈ [k] such that
Pr[γ = x] /∈ Ia for all x since otherwise 1 =

∑
x

Pr[γ = x] ≥ k(λ − εk − ε/2) that

contradicts inequality (1). Hence there is a ∈ [k] such that |Pr[γ = x] − λ − εa| > ε/2
for all x.

Let x1, . . . , xl be the list of all elements x such that Pr[γ = x] > λ − εa. We know
that if Pr[γ = x] > λ− εa, then Pr[γ = x] > λ− εa+ ε/2 and also if Pr[γ = x] ≤ λ− εa,
then Pr[γ = x] < λ − εa − ε/2. For given a for every j ∈ [l], xj appears in the list from
4th step of algorithm C with probability at least 1− 2e−ε

2N/2. If Pr[γ = x] ≤ λ− εa then
by Chernoff bound x does not appear in the list from the 4th step of the algorithm C
with probability at least 1− 2e−ε

2N/2. Since γ is concentrated on the set of size 2n with
probability at least 1− 2n+1e−ε

2N/2 ≥ 1− δ the list generated on 4th step of algorithm C
is precisely the list x1, . . . , xl. Since Pr[D = t] > λ, there is b such that xb = t. Hence if
i = (a, b) then Pr[Cγ(n, i, δ, λ) = t] ≥ 1− δ.

8

Proof of Theorem 3.1. Our proof is based on the tree-like delayed diagonalization. We
diagonalize against all randomized algorithms supplied with a O(g(n))-alarm clock, we
interpret them as samplers of distributions. Let A1, A2, . . . be an enumeration of all
randomized algorithms supplied with a O(g(n))-alarm clock.

Let us consider an ε > 0 such that (1 + a)(1 + ε) < (1 + b) and fix some c.

We define integer sequences ni and n∗i such that n1 = 1, n∗i = 2(logni)
(1+ε)di

, where
di = dlog1+ε 2ed(log log ni)

2e and ni+1 = n∗i + 1. For every i we define an ensemble of
distributions Dn for n ∈ {ni, ni + 1, . . . , n∗i } such that there exists k ∈ {ni, ni + 1, . . . , n∗i }
such that ∆(Dk, Ai(1

k)) ≥ λ(k).

Lemma 3.4. For every ε > 0 there exists a family of trees Ti such that

1. The set of vertices of Ti is a subset of {ni, ni + 1, . . . , n∗i }.

2. n∗i is the root of Ti.

3. All leaves of Ti have numbers at most mi = 2ni.

4. The depth of Ti is di = dlog1+ε 2ed(log log ni)
2e.

5. If p is a parent of n then p ≤ 2log1+ε n.

6. There is an algorithm that for any vertex n of Ti outputs the parent p of n and the
number of children of p that are less than n in poly(n) steps.

7. For every inner vertex v of Ti, v has k = d 1
λ(n∗i)

+ 1e2 children.

Proof. Let us denote δ = dlog1+ε 2e.
We define a tree Ti as a complete balanced tree with depth di. The number

of leaves in the tree can be estimated as follows: kdi ≤ (2(log log logn∗i)
3c

)δ(log logni)
2 ≤

(2(log logni)
12c

)δ(log logni)
2

= 2δ(log logni)
24c ≤ ni.

The root n∗i is the only vertex on the zero level. There are exactly ks vertices on s-th

level. Let ai,j = 2(logni)
(1+ε)j

, where j ∈ {0, 1, 2, . . . }. Vertices of Ti on level (di − s) are
[ai,s; ai,s + kdi−s − 1].

Note that ai,s+1−ai,s ≥ ai,1−ai,0 = 2(logni)
(1+ε)−ni ≥ 2(logni)

(1+ε)−1 > ni ≥ kdi ≥ kdi−s.
Hence on all levels there is enough place for vertices.

The parent of j-th vertex on s-th level has number b j
k
c. Let h(n) = nlogε n. Since h(n+

k) ≥ h(n)+k we have h(2log(1+ε)
s
ni +j) ≥ h(2log(1+ε)

s
ni)+j ≥ 2log(1+ε)

s+1
ni +j/k, therefore

the property 5 is satisfied. The verification of other properties is straightforward.

Now we describe an algorithm that samples Dn for n ∈ {ni, . . . , n∗i } in O(f(n)) steps.

1. If n = n∗i then output the minimal ti ∈ {0, 1, . . . , 2ni−1} such that for all l ∈ [ni;mi]
we have that Pr[Ai(1

l) = ti] < λ(ni)/2. Such ti indeed exists since for every l there
are at most 2

λ(ni)
elements with Ai(1

l)-probability at least λ(ni)/2 and 2
λ(ni)

mi ≤ 2ni .

Such ti can be found in at most micig(mi)2
cig(mi) steps by brute force search over

all possible random bits, where ci is a constant that depends on i.

micig(mi)2
cig(mi) ≤ 2mig(mi) ≤ 22nig(2ni) ≤ 22ni(2ni)

2 loga ni <

224 log(1+a) ni ≤ 222
4(1+a) log logni

≤ 222
(log logni)

2

< n∗i = o(f(n∗i))

9

2. If n is not a vertex of Ti then return 0.

3. Otherwise, let p be the parent of n and j is a number of n in the list of all children
of p. By the property of Ti, p ≤ 2log1+ε n and such p can be found in poly(n) steps.
We return CAi(1

p)(p, j, λ(n)/2, λ(p)/2), where C is the algorithm from Lemma 3.3.
By Lemma 3.3 C runs at most poly(p) steps and on every step the simulation
of Ai(1

p) occupies at most cig(p) steps. Note that cig(p)poly(p) < 22 loga+1 p <

22 log1+a(2log
1+ε n) = 22 log(1+a)(1+ε) n < 2log(1+b) n = f(n).

For the sake of contradiction we assume that for all n ∈ {ni, . . . , n∗i }, ∆(Dn, Ai(1
n)) <

1−λ(n). By induction on the level s of Ti we prove that there is a vertex v of level s in Ti
such that Dv(ti) ≥ 1−λ(v)/2. If Dv(ti) ≥ 1−λ(v) for some leaf v then Pr[Ai(1

v) = ti] ≥
(1 − λ(v)/2) − (1 − λ(v)) = λ(v)/2 but we define ti such that Pr[Ai(1

v) = ti] < λ(v)/2.
Hence we will get a contradiction in leaves.

The base of induction follows from the construction of Dn∗i
. Let us prove the inductive

step from s to s+1. Let v be a vertex of level s such that Dv(ti) ≥ 1−λ(v)/2. If v is a leaf
then we are done. Otherwise Pr[Ai(1

v) = ti] > λ(v)/2 since ∆(Dv, Ai(1
v)) < 1 − λ(v).

Hence by Lemma 3.3 there is a child u with number j among the all children of v such
that Pr[CAi(1

v)(v, j, λ(u)/2, λ(v)/2)] > 1− λ(u)/2.

Our proof in contrast to Watson’s proof does not use error correcting codes with
list decoding. This is because we find one element that has small probability for all
leaves of the tree. This trick was impossible in Watson’s case since all distributions
was concentrated on constant number of points. In Watson’s proof there were a lot of
information transmitted from the root to leaves, and parts of this information was stored
in different vertices. Watson used list error decoding codes in order to prevent information
distortion.

Now we show why this approach cannot be adapted to the case of g(n) = na and
polynomial f(n). The problem is the following: for nonconstant λ(n) the tree Ti should
have nonconstant degree: every inner vertex has at least ki children, where ki goes to
infinity. In the root of the tree we have to make exponential in any leaf number of steps;
and the parent of every node n should be at most polynomial of every children. Thus for
every leaf l the distance between root and l is at least Ω(log `). Let mi be the leaf with
the maximal number; then the distance from the root to mi is at least L = Ω(logmi).
Let S be the set of vertices such that their numbers are less then mi but the numbers of
their parents are more then mi. Note that all vertices on the distance L from the root
must either be in S or have a descendent in S. Therefore the size of S should be at least
kLi that is greater then mi for large i, since ki goes to infinity. But this is a contradiction
since S is set of vertices with numbers less then mi.

3.2 Weak hardness

In this section we consider statement of the problem with the weak notion of hardness
and tight hierarchy (f(n) = poly(g(n))). We start from equivalent formulations:

Proposition 3.1. The following statements are equivalent:

10

1. There exists infinitely small functions β(n) and α(n) = o(β(n)) such that for all
a > 0 there exists an ensemble of distributions D ∈ PSamp and a language L such
that the following holds:

• (L, F) ∈ Heurα(n)P for all F ∈ Samp[na];

• (L,D) /∈ Heurβ(n)P.

2. There exists infinitely small functions β(n) and α(n) = o(β(n)) such that for all
a > 0 and b > 0 there exist an ensemble of distributions D ∈ PSamp, an increasing
sequence of integers ln and a sequence of sets Sn ⊆ {0, 1}ln such that the following
holds:

• D(Sn) > β(ln) for all n;

• For all F ∈ Samp[na], F (Sn) ≤ α(n) for infinitely many n.

3. There exists infinitely small functions β(n) and α(n) = o(β(n)) such that for all
a > 0 there exists an ensemble of distributions D ∈ PSamp and a language L such
that the following holds:

• There exists linear-time algorithm A such that for all F ∈ Samp[na],
Pr

x←Fn
[L(x) = A(x)] ≥ 1− α(n) for all n large enough;

• (L,D) /∈ Heurβ(n)R.

Proof. Note that if α(n) = o(β(n)), then α(n) = o(
√
α(n)β(n)) and

√
α(n)β(n) =

o(β(n)).
1→ 2. We apply statement 1 to a′ = 2a. Let Ai be an enumeration of all algorithms

with an alarm-clock n1.5a. We will think about Ai as algorithms that samples distribu-
tions; that is the output of Ai(1

n) we interpret as a string from {0, 1}n by some fixed way.
Let F be an algorithm that samples an ensemble of distributions as follows: on input
1n with probability 1

2
it executes A1(1

n) (and returns its result), with probability 1
22

it
executes A2(1

n), . . . , and with probability 1
2n−1 it executes An−1(1

n) and with probability
1

2n−1 executes An(1n). Let F define an ensemble of distributions E. It is straightforward

that E ∈ Samp[na
′
]. Statement 1 implies that (L,E) ∈ Heurα(n)P. Let an algorithm

T decide (L,E) in the class Heurα(n)P. We denote Sn = {x ∈ {0, 1}n | T (x) 6= L(x)}.
En(Sn) ≤ α(n) for all n, hence for every ensemble of distributions R ∈ Samp[na] there
exists a constant C such that Rn(Sn) ≤ Cα(n) that is less then

√
α(n)β(n) for n large

enough. Since (L,D) /∈ Heurβ(n)P, we have that D(Sn) > β(n). Hence we find sequence
of integers ln and a sequence of sets Sn ⊆ {0, 1}ln such that the following holds:

• D(Sn) > β(ln) for all n ;

• For all R ∈ Samp[na], R(Sn) ≤
√
α(n)β(n) for n large enough.

2 → 3. The proof is analogous to the end of the proof of Lemma 3.1. We apply
statement 2 to a′ = a+1. Let Ai be an enumeration of all algorithms with a O(na)-alarm-
clock; we interpret them as samplers of ensembles of distributions. Let F be an algorithm
that samples an ensemble of distribution as follows: on input 1n with probability 1

2
it

executes A1(1
n) (and returns its result), with probability 1

22
it executes A2(1

n), . . . , with

11

probability 1
2n−1 it executes An−1(1

n) and with probability 1
2n−1 executes An(1n). Let F

define an ensemble of distributions E. It is straightforward that E ∈ Samp[na+1]. Let D
and Sn be from statement 2 for a′ = a+ 1. We define a set I = {n1, n2, . . . } that consists
of all n such that En(Sn) ≤ α(n).

We will define a language L such that L ⊆
⋃
n∈I

Sn. Let Ti be an enumeration of all

algorithms. We define L such that for every x ∈ Snk , x ∈ L if and only if Tk does not
stop on the input x or rejects it. By the construction (L,D) /∈ Heurβ(n)R.

We consider an algorithm that returns 0 on every input. If R ∈ Samp[na], then
there exists i such that Ai samples R. For n ≥ i for every set S ⊆ {0, 1}n the following
inequality holds: E(S) ≥ 2−iR(S). Hence for every ensemble R from Samp[na] this
algorithm has error at most cα(n), where c is a constant that depends only on the
ensemble R; cα(n) <

√
α(n)β(n) for n large enough.

3→ 1. This implication is straightforward.

We prove the statement that is weaker then statement 2 from Proposition 3.1. Namely
we prove it in the case α(n) = β(n) = 1

nb
. By the similar way it is possible to prove it for

other infinitely small functions: 1
2n

, 1
logn

etc.

Theorem 1.2. For all integer a > 0 and b > 0 there exist an ensemble of distributions
D ∈ PSamp, a sequence of integers ln and a sequence of sets Sn ⊆ {0, 1}ln such that the
following holds:

• D(Sn) > 1
lbn

for all n;

• For all F ∈ Samp[na], F (Sn) ≤ 1
lbn

for infinitely many n.

Proof. Consider an enumeration of all algorithms Fi with alarm clock na+1 such that every
algorithm appears infinitely many times in this enumeration; we consider Fi as samplers
of distributions. We define integer sequences ni and n∗i such that n1 = 1, n∗i = 2n

a
i , and

ni+1 = 2n∗i .
Split all strings of length n on nb nonempty sets; we call them intervals and denote

by Tj,n for j ∈ {1, 2, . . . , nb}. For n ∈ [ni;n
∗
i] we define a graph (it will be a forest) as

follows:

• The set of vertexes of the graph is the set of all intervals Tj,n for n = 2k and
ni ≤ n ≤ n∗i ;

• All elements of Tj,ni are roots of trees of the forest;

• For n ∈ {ni, 2ni, 4ni, . . . , n∗i /2}, Tj,n has 2b children: {Tj′,2n | 2b(j − 1) ≤ j′ ≤
2bj − 1}.

• All elements of Tj,n∗i are leaves of trees of the forest;

We define a sampler for D as follows. It gets on the input 1n:

• if n = n∗i for some i, then find an interval Tj,ni with the smallest probability ac-
cording to Fi(1

ni). If there are several such Tj,ni , we take one with the minimal j.
(Note that this can be done in poly(n∗i) time by bruteforce). Then chose random
descendent of Tj,ni on length n∗i and return some string form this descendent. Note
that Pr[Fi(1

ni) ∈ Tj,ni] ≤ 1
nbi

.

12

• if ni ≤ n < n∗i for some i, then run Fi(1
2n) and if the result belongs to a descendent

of Tj,n for some j, then return random string from Tj,n.

Let us prove that for all i there exists j and n ∈ [ni;n
∗
i] such that Pr[D(1n) ∈ Tj,n] > 1

nb

and Pr[Fi(1
n) ∈ Tj,n] ≤ 1

nb
. (This will conclude the proof of the theorem if we choose

Si = Tj,n.) Assume the opposite; that is for all j and n ≤ n∗i if Pr[Fi(1
n) ∈ Tj,n] ≤ 1

nb
, then

Pr[D(1n) ∈ Tj,n] < 1
nb

. Let Tj,ni be an interval with the smallest probability according to
Fi(1

ni), hence Pr[Fi(1
ni) ∈ Tj,ni] ≤ 1

nbi
. By induction on l we prove that for all n = 2lni

(and n ≤ n∗i) there exists k such that Tk,n is a descendant of Tj,ni and Pr[D(1n) ∈ Tk,n] ≤
1
nb

. The base case l = 0 is already proved. Let us prove the inductive step from l to l+ 1.
Let n = 2lni. Assume that Pr[D(1n) ∈ Tk,n] ≤ 1

nb
then by the pigeonhole principle and

construction of D there is one of 2b children of Tk′,2n such that Pr[Fi(1
2n) ∈ Tk′,2n] ≤ 1

(2n)b

and hence by assumption Pr[D(12n) ∈ Tk′,2n] ≤ 1
(2n)b

. Therefore there exists k such that

Pr[D(1n
∗
i) ∈ Tk,n∗i] ≤

1
(n∗i)

b and Tk,n∗i is a descendant of Tj,ni , but the construction of

D implies that the D-probability of every descendant of Tj,ni on length n∗i is equal to
nbi

(n∗i)
b >

1
(n∗i)

b .

Corollary 3.2. For all a > 0 and b > 0 there exists a ensemble of distributions D ∈
PSamp and a language L such that the following holds:

• There exists a linear-time algorithm A such that Prx←Fn [A(x) 6= L(x)] = O(1
nb

)] for
all F ∈ Samp[na];

• (L,D) /∈ Heur 1

nb
R.

Proof. The theorem follows from Theorem 1.2 by the argument that is analogous to the
proof of implication 2→ 3 of Proposition 3.1.

4 Computable distributions

Ensemble of distributions Dn is computable in time t(n) if for all n probabilities of all
elements according to Dn are binary rational numbers and there exists an algorithm
A(x) that runs in O(t(|x|)) steps and computes the cumulative distribution function of
Dn (i.e.

∑
y≤x

Dn(x), where ≤ is lexicographical order). The set of all ensembles that are

computable in time t(n) we denote as Comp[t(n)]. The set PComp =
⋃
c>0

Comp[nc] is

the set of all ensembles computable in polynomial time.

Lemma 4.1. If an ensemble D ∈ PSamp and for all n the distribution Dn is concen-
trated on one element, then D ∈ PComp.

Proof. In order to compute the distribution function it is sufficient to find an element x0
with D-probability 1 and compare the given input with x0. If we execute the sampling
algorithm using all zeros instead of random bits, then its result would be x0.

Now we prove the statement that is analogous to hierarchy property of na and nb of
sampling distributions but for computable distributions.

13

Proposition 4.1. For all a > 0 there exists an ensemble D ∈ PComp such that for all
ensembles F ∈ Comp[na] there are infinitely many numbers n such that ∆(Dn, Fn) ≥
1− 2−n.

Proof. Let Ai be enumeration of all deterministic algorithms supplied with alarm clock
na+1 such that every algorithm appears as Ai infinitely many times. We interpret Ai as
algorithms that compute distribution functions, however among such algorithms there
are possibly incorrect ones. If Ai corresponds to some distribution F , then we define Di

such that ∆(Di, Fi) ≥ 1−2−i. To do this we concentrate Di on the input with probability
at most 2−i according Fi. If Ai is incorrect then Di would be concentrated on some input.
The result distribution would be polynomial time computable by Lemma 4.1.

Now we describe how to find an element with Fi-probability at most 2−i. We use the
binary search. If Ai does not correspond to any distribution, then we either understand
this during the realization of the binary search, in this case we stop and return 0i, or
apply binary search and find an element x ∈ {0, 1}i such that Ai(x)−Ai(x′) ≤ 2−i, where
x′ is lexicographical predecessor of x (if x = 0i, then assume that Ai(x

′) = 0).

Now we prove a statement that is similar to hierarchy property of na and nb on
complexity of distributional problems but for computable distributions.

Theorem 1.1. For every a > 0 there exists language L and ensemble of distributions
D ∈ PComp such that

• (L, F) ∈ HeurO(1
2n

)DTime[n] for all F ∈ Comp[na];

• (L,D) /∈ Heur1− 1
2n−1

R.

Proof. We cannot literally repeat the proof of Lemma 3.1 despite of we have even already
proved Proposition 4.1. The reason is the following: not every algorithm computes the
distributional function, it is not necessary that it computes even monotonic function.
And it is not easy to verify that algorithms computes a distribution function.

Let Ai be enumeration of all algorithms supplied with alarm-clock Cna, where C is
some constant. We interpret them as algorithms that computes distribution functions.
However we remember that it is not necessary that all of them computes a correct distri-
bution function. We interpret the result of Ai(x) as binary real number between 0 and
1.

For every n we will show that it is possible in poly(n) time to find xn ∈ {0, 1}n
such that if i ∈ {1, 2, . . . , n} and Ai is distributional function, then the Ai-probability
of xn is at most 2i−n. The distribution Dn would be concentrated on xn; the resulting
ensemble is computable in polynomial time by Lemma 4.1. If for all n we find such xn,
then we may define L similarly to the proof of Lemma 3.1. Namely we will choose L
such that L ⊆

⋃
n

{xn} and xn ∈ L if and only if n-th algorithm in the enumeration of all

algorithms rejects xn. For all F ∈ Comp[na] the algorithm that returns 0 on all inputs
decides (L, F) in Heur2i−nDTime[n], if F is computable by Ai in our enumeration. By
the construction (L,D) /∈ Heur1− 1

2n−1
P.

Now we describe the procedure of finding strings xn. Initially I = {1, 2, . . . , n}, we
will delete element i from I if we discover that Ai is not a distribution function on {0, 1}n.

14

On each iteration we define F (x) =
∑
i∈I

1
2i
Ai(x). By binary search we try to find such

element x ∈ {0, 1}n that F (x) − F (x′) ≤ 2−n, where x′ is lexicographical predecessor of
x and F (x′) = 0 if x = 0n. If binary search succeeds, then xn := x. If binary search fails
then it means that we discover nonmonotonicity of F (x), using this we may find i ∈ I
such that Ai is nonmonotonic and exclude all such i from I and start new iteration. If
I = ∅ then choose xn = 0n, in other cases for all i ∈ I if Ai computes a correct distribution
function then xn has probability at most 2i−n.

References

[1] Laszlo Babai, Paul Erdos, and Stanley Selkow. Random graph isomorphism. SIAM
J. Comput., 9(3):628–635, 1980.

[2] Shai Ben-David, Benny Chor, Oded Goldreich, and Michael Luby. On the theory of
average case complexity. J. Comput. Syst. Sci., 44(2):193–219, 1992.

[3] Yuri Gurevich and Saharon Shelah. Expected computation time for hamiltonian path
problem. SIAM J. Comput., 16(3):486–502, 1987.

[4] Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. If NP languages are hard on
the worst-case, then it is easy to find their hard instances. Computational Complexity,
16(4):412–441, 2007.

[5] Dmitry Itsykson, Alexander Knop, and Dmitry Sokolov. Heuristic time hierarchies
via hierarchies for sampling distributions. In Proceedings of ISAAC-2015, to appear,
2015.

[6] Ming Li and Paul M.B. Vitanyi. Average case complexity under the universal dis-
tribution equals worst case complexity. Information Processing Letters, 42:145–149,
1992.

[7] Konstantin Pervyshev. On heuristic time hierarchies. In IEEE Conference on Com-
putational Complexity, pages 347–358, 2007.

[8] E.R. van Dama and M. Muzychuk. Some implications on amorphic association
schemes. Journal of Combinatorial Theory, Series A, 117:111–127, 2010.

[9] Thomas Watson. Time hierarchies for sampling distributions. In Innovations in
Theoretical Computer Science, ITCS ’13, Berkeley, CA, USA, January 9-12, 2013,
pages 429–440, 2013.

15

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

