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Abstract

In this paper, we study the structure of set-multilinear arithmetic cir-
cuits and set-multilinear branching programs with the aim of showing lower
bound results. We define some natural restrictions of these models for
which we are able to show lower bound results. Some of our results ex-
tend existing lower bounds, while others are new and raise open questions.
More specifically, our main results are the following:

� We observe that set-multilinear arithmetic circuits can be trans-
formed into shallow set-multilinear circuits efficiently, similar to depth
reduction results of [VSBR83, RY08] for more general commuta-
tive circuits. As a consequence, we note that polynomial size set-
multilinear circuits have quasi-polynomial size set-multilinear branch-
ing programs. We show that narrow set-multilinear ABPs (with a
restricted number of set types) computing the Permanent polynomial

PERn require 2n
Ω(1)

size. A similar result for general set-multilinear
ABPs appears difficult as it would imply that the Permanent requires
superpolynomial size set-multilinear circuits. It would also imply
that the noncommutative Permanent requires superpolynomial size
noncommutative arithmetic circuits.

� Indeed, we also show that set-multilinear branching programs are ex-
ponentially more powerful than interval multilinear circuits (where
the index sets for each gate is restricted to be an interval w.r.t. some
ordering), assuming the sum-of-squares conjecture. This further un-
derlines the power of set-multilinear branching programs.

� Finally, we consider set-multilinear circuits with restrictions on the
number of proof trees of monomials computed by it, and prove ex-
ponential lower bounds results. This raises some new lower bound
questions.

1 Introduction

Let F be a field and X = X1tX2t· · ·tXd be a partition of the variable set X.
A set-multilinear polynomial f ∈ F[X] w.r.t. this partition is a homogeneous
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degree d multilinear polynomial such that every nonzero monomial of f has
exactly one variable from Xi, 1 ≤ i ≤ d.

Both the Permanent polynomial PERn and the Determinant polynomial
DETn are set-multilinear polynomials. The variable set is X = {xij}1≤i,j≤n
and the partition can be taken as the row-wise partition of the variable set. I.e.
Xi = {xij | 1 ≤ j ≤ n} for 1 ≤ i ≤ n.

In this paper we will consider set-multilinear circuits and set-multilinear
branching programs for computing set-multilinear polynomials. Set-multilinear
circuits are well studied. The model of set-multilinear branching programs
that we consider is more general than related notions of branching programs
recently studied in the literature, like the read-once oblivious branching pro-
grams (ROABPs) [FS13].

A set-multilinear arithmetic circuit C computing f w.r.t. the above partition
of X, is a directed acyclic graph such that each in-degree 0 node of the graph
is labelled with an element from X ∪ F. Each internal node v of C is either
a + gate or × gate. With each gate v of we can associate a subset of indices
Iv ⊆ [d] and the polynomial Cv computed by the circuit at v is set-multilinear
over the variable partition ti∈IvXi. If v is a + gate then for each input u of v
Iu = Iv, and v is a × gate with inputs v1 and v2 then Iv = Iv1 t Iv2 . Clearly, in
a set-multilinear circuit every gate computes a set-multilinear polynomial (in a
syntactic sense). The output gate is labeled by [d] and computes the polynomial
f .

A set-multilinear algebraic branching program smABP is a layered directed
acyclic graph (DAG) with one in-degree zero vertex s and one out-degree zero
vertex t. The vertices of the graph are partitioned into layers 0, 1, . . . , d, and
edges go only from layer i to i+ 1 for each i. The source is the only vertex at
level 0 and the sink is the only vertex at level d. We can associate an index set
Iv ⊆ [d] with each node v in the smABP, and the polynomial computed at v is
set-multilinear w.r.t. the partition ti∈IvXi. For any edge (u, v) in the branching
program labeled by a homogeneous linear form `, we have Iv = Iut{i} for some
i ∈ [d], and ` is a linear form over variables Xi. The size of the ABP is the
number of vertices.

For any s-to-t directed path γ = e1, e2, . . . , ed, where ei is the edge from level
i−1 to level i, let `i denote the linear form labeling edge ei. Let fγ = `1 ·`2 · · · `d
be the product of the linear forms in that order. Then the ABP computes the
set-multilinear degree d polynomial:

f =
∑
γ∈P

fγ ,

where P is the set of all directed paths from s to t.

Remark 1. Showing a superpolynomial lower bound for set-multilinear circuits
and even for set-multilinear ABPs for computing the Permanent polynomial is
an open problem. In this paper we discuss some restricted versions of set-
multilinear branching programs and show lower bounds.

2



Plan of the paper

In Section 2 we show that any set-multilinear arithmetic circuit of size s can
be efficiently transformed into an O(log s) depth set-multilinear circuit with
unbounded fanin + gates and fanin 2 × gates of size polynomial in s. This is
quite similar to the depth-reduction results of [VSBR83, RY08] for more general
commutative circuits. As a result, size s set-multilinear circuits have sO(log s)

size set-multilinear branching programs.
In Section 3 we consider narrow set-multilinear branching programs: a set-

multilinear ABP computing a degree d polynomial is w-narrow if in layer d−w
the number of distinct types of the ABP is O(w). We show that n1/4-narrow

ABPs computing the Permanent requires 2Ω(n1/4) size. On the other hand, a
similar result for general set-multilinear ABPs appears difficult. For instance, it
would imply that the Permanent requires superpolynomial size noncommutative
arithmetic circuits, which is an open problem for over two decades.

In Section 4, we show that set-multilinear branching programs are expo-
nentially more powerful than interval multilinear circuits (where the index sets
for each gate is restricted to be an interval w.r.t. some ordering), assuming
the sum-of-square conjecture [HWY10]. This further underlines the power of
general set-multilinear branching programs.

Finally, in Section 5 we consider set-multilinear circuits with restrictions on
the number of proof trees of monomials computed by it, and prove exponential
lower bounds results. This raises some new lower bound questions.

2 Depth Reduction of Set-Multilinear Circuits

We follow the standard method of depth reduction of commutative arithmetic
circuits [VSBR83], and use the exposition from Shpilka and Yehudayoff’s survey
article [SY10]. The general depth reduction was adapted to syntactic multilin-
ear circuits by Raz and Yehudayoff [RY08]. Our additional observation essen-
tially is that the depth reduction procedure can be carried out while preserving
set-multilinearity as well.

Given a commutative set-multilinear circuit C of size s computing a set-
multilinear polynomial f of degree d in the input variable X = X1 t ... tXd,
we show that there is another circuit C ′ of size poly(s) and depth O(log d log s)
computing f .

Theorem 2. Let Φ be a set-multilinear arithmetic circuit of size s and degree
d over the field F and over the variable set X, partitioned as X = X1 t ... t
Xd, computing a polynomial f ∈ F[X]. Then we can efficiently compute from
Φ a set-multilinear arithmetic circuit Ψ, with multiplication gates of fanin 2
and unbounded fanin + gates, which is of size O(s3 log d) and depth O(log d)
computing the polynomial f .

Proof. By definition, Φ is a homogeneous arithmetic circuit. We assume that Φ
is non-redundant (i.e , for all gates v in Φ the polynomial fv computed at v is
nonzero). Since Φ is set-multilinear, at each gate v in Φ there is an associated
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index set Iv ⊆ [d] such that the polynomial fv is set-multilinear of degree |Iv|
over the variable set XIv , where

XIv = ti∈IvXi.

We denote the subcircuit rooted at the gate v by Φv.

Partial Derivative of fv by a gate w

Let v, w be any two gates in circuit Φ. Following the exposition in [SY10], let
Φw=y denote the circuit obtained by removing any incoming edges at w and
labeling w with a new input variable y and fv,w denote the polynomial (in
X ∪ {y}) computed at gate v in circuit Φw=y. Define

∂wfv = ∂yfv,w.

Note that fv,w is linear in y. Clearly, if w does not occur in Φv then ∂wfv = 0.
If w occurs in Φv, since Φ is set-multilinear the polynomial fv,w is linear in y
and is of the form

fv,w = hv,wy + gv,w.

Therefore, ∂wfv = hv,w. We make the following immediate observations from
the set-multilinearity of Φ.

� Either ∂wfv = 0 or ∂wfv is a homogeneous set-multilinear polynomial of
degree deg(v)− deg(w) over variable set X \XIw .

� If deg(v) < 2.deg(w) and v is a product gate with children v1, v2 such
that deg(v1) ≥ deg(v2), then ∂wfv = fv2 .∂wfv1 .

For a positive integer m, let Gm denote the set of product gates t with
inputs t1, t2 in Φ such that m < deg(t) and deg(t1), deg(t2) ≤ m. We observe
the following claims (analogous to [SY10]) which are easily proved.

Claim 3. Let Φ be a set-multilinear nonredundant arithmetic circuit over vari-
able set X = tdi=1Xi. Let v be a gate in Φ such that m < deg(v) ≤ 2m for a
positive integer m. Then fv =

∑
t∈Gm

ft.∂tfv.

Claim 4. Let Φ be a set-multilinear non-redundant arithmetic circuit over the
field F and over the set of variables X. Let v and w be gates in Φ such that
0 < deg(w) ≤ m < deg(v) < 2deg(w). Then ∂wfv =

∑
t∈Gm

∂wft.∂tfv

Construction of Ψ:
We now explain the construction of the depth-reduced circuit Ψ. The

construction is done in stages. Suppose upto Stage i we have computed, for
1 ≤ j ≤ i the following:

� All polynomials fv for gates v such that 2j−1 < deg(v) ≤ 2j .

� All partial derivatives of the form ∂wfv for gates v and w such that 2j−1 <
deg(v)− deg(w) ≤ 2j and deg(v) < 2deg(w).
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� Furthermore, inductively assume that the circuit computed so far is set-
multilinear of O(i) depth, such that all product gates are fanin 2, sum
gates are of unbounded fanin.

We now describe Stage i+ 1 where we will compute all fv for gates v such
that 2i < deg(v) ≤ 2i+1 and also all partial derivatives of the form ∂wfv for
gates v and w such that 2i < deg(v) − deg(w) ≤ 2i+1 and deg(v) < 2deg(w).
Furthermore, we will do this by adding a depth of O(1) to the circuit and
poly(d, s) many new gates maintaining set-multilinearity.

Stage i+1: We describe the construction at this stage in two parts:

Computing fv

Let v be a gate in Φ such that 2i < deg(v) ≤ 2i+1 and let m = 2i. By Claim
3, we have

fv =
∑
t∈T

ft∂tfv =
∑
t∈T

ft1ft2∂tfv,

where T is the set of gates t ∈ Gm, with children t1 and t2 such that t is in
Φv. Note that if t is not in Φv, then ∂tfv = 0. Let t ∈ T be a gate with
inputs t1 and t2. Thus. m < deg(t) ≤ 2m, deg(t1) ≤ m, deg(t2) ≤ m. Hence
deg(v)−deg(t) ≤ 2i+1−2i = 2i and deg(v) ≤ 2i+1 < 2.deg(t). Therefore, ft1 , ft2
and ∂tfv are already computed. Thus, in order to compute fv we need O(s)
many × gates and O(1) many + gates. Overall, with O(s2) many new gates
and O(1) increase in depth we can compute all fv such that 2i < deg(v) ≤ 2i+1.
Furthermore, we note that ft1 , ft2 and ∂tfv are all set-multilinear polynomials
with disjoint index sets, and the union of their index sets is Iv for each t ∈ T .
Thus, the new gates introduced all preserve set-multilinearity.

Computing ∂wfv

Let v and w be gates in Φ such that 2i < deg(v) − deg(w) ≤ 2i+1 and
deg(v) < 2deg(w). Let m = 2i + deg(w). Thus, deg(w) ≤ m < deg(v) <
2deg(w). Note that ∂tfv = 0 if t 6∈ T . Hence by Claim 4 we can write

∂wfv =
∑
t∈T

∂wft∂tfv,

where T is the set of gates in Φv that are contained in Gm. For a gate t ∈ T ,
we have deg(t) ≤ deg(v) < 2deg(w). Suppose t1 and t2 are the gates input to t
in the circuit Φ, and deg(t1) ≥ deg(t2). Then we can write

∂wfv =
∑
t∈T

ft2∂wft1∂tfv.

We claim that ft2 , ∂wft1 , and ∂tfv are already computed.

� Since deg(v) ≤ 2i+1 + deg(w) ≤ 2i+1 + deg(t1) = 2i+1 + deg(t)− deg(t2),
we have deg(t2) ≤ 2i+1 + deg(t) − deg(v) ≤ 2i+1. Hence ft2 is already
computed (in first part of stage i+ 1).
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� Since deg(t1)−deg(w) ≤ 2i, the polynomial ∂wft1 is already computed in
an earlier stage.

� Since deg(t) > m, we have deg(v)− deg(t) ≤ deg(v)−m ≤ 2i+1− 2i = 2i.

� Thus, since deg(v) ≤ 2i+1 + deg(w) ≤ 2(2i + deg(w)) < 2deg(t), the
polynomial ∂tfv is already computed in an earlier stage.

As before, for each such pair of gates w and v, we can compute ∂wfv with
O(s) new gates (using the polynomials already computed in previous stages),
and this increases the circuit depth by O(1). Doing this for all the pairs (w, v)
implies O(s3) new gates are added in the process. Furthermore, the new gates
included clearly also have the set-multilinearity property.

At the end of the log d stages, the overall size of the resulting set-multilinear
circuit Ψ is O(s3 log d) and its depth is O(log d). This completes the proof of
the theorem. �

Set-Multilinear Circuits to ABPs

Theorem 5. Given a set-multilinear arithmetic circuit of size s and degree d
over the field F and over the variable set X = tdi=1Xi, computing f ∈ F[X], we
can transform it, in time sO(log d), into a set-multilinear ABP of size sO(log d)

that computes f .

Proof. The proof of this theorem is fairly straightforward consequence of the
depth reduction result (Theorem 2 in the previous section). By Theorem 2 we
can assume to have computed a circuit Ψ of size O(s3 log d) and depth O(log d)
for computing f . By a standard procedure we transform the circuit Ψ into a
formula F by duplicating the circuit at every gate. The resulting formula is of
size sO(log d), because at every level of the circuit there is a factor of s increase
in the size (as the + gates have unbounded fanin). The formula F is clearly
also homogeneous, set-multilinear, and of depth O(log d). The formula F is also
semi-unbounded: the product gates are fanin 2 and plus gates have unbounded
fanin.

Next, we can apply a standard transformation (for e.g., see [Nis91]) to trans-
form the formula F into a homogeneous algebraic branching program (ABP).
It is a bottom-up construction of the ABP: at a + gate we can do a “parallel
composition” of the input ABPs to simulate the + gate. At a × gate it is a
sequential composition of the two ABPs. Since the formula F is set-multilinear,
the resulting ABP is also easily seen to be a set-multilinear ABP. �

3 A Lower Bound Result for Set-Multilinear ABPs

As we have shown in Theorem 2, we can simulate set-multilinear circuits of
size s and degree d using set-multilinear ABPs of size sO(log d). Thus, proving
even a lower bound of nω(logn) for set-multilinear ABPs computing the n × n
Permanent polynomial PERn would imply superpolynomial lower bounds for
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general set-multilinear circuits computing PERn which is a long-standing open
problem.

However, in this section we show a lower bound result for set-multilinear
ABPs with restricted type width, a notion that we now formally introduce.

Let P be a set-multilinear ABP computing a polynomial f ∈ F[X] of degree
d with variable set X = tdi=1Xi. By definition, the ABP P is given by as layered
directed acyclic graph with layers numbered 0, 1, . . . , d. Each node v in layer k
of the ABP is labeled by an index set Iv ⊆ [d], and a degree k set-multilinear
polynomial fv over variables ti∈IvXi is computed at v by the ABP. We refer to
Iv as the type of node v. The type width of the ABP at layer k is the number
of different types labeling nodes at layer k.

The following proposition connects type width to the notion of read-once
oblivious ABPs (ROABPs defined in [FS13]).

Proposition 6. Suppose P is a set-multilinear ABP computing a polynomial
f ∈ F[X] of degree d with variable set X = tdi=1Xi such that the type-width
of P is 1 at each layer. Then P is in fact an ROABP which is defined by a
suitable permutation on the index set [d].

Proof. As each layer of P has type width one, the list of type I0 = ∅ ⊂ I1 ⊂
· · · ⊂ Id gives an ordering of the index set, where the ith index in the ordering
is Ii \ Ii−1. W.r.t. this ordering clearly P is an ROABP. �

It is well-known that Nisan’s rank argument [Nis91] (originally used for lower
bounding noncommutative ABP size) also yields exponential lower bounds for
any ROABP computing PERn. In particular, it implies an exponential lower
bound for set-multilinear ABPs of type-width 1.

We can formulate a general rank-based approach for set-multilinear ABPs.
Let P be a set-multilinear ABP computing a polynomial f ∈ F[X] of degree

d with variable set X = tdi=1Xi, with layers of the ABP numbered 0, 1, . . . , d.
For simplicity assume |Xi| = n for each i. For each index set I ⊆ [d] let MI

denote the set of all monomials of the form
∏
i∈I xij , where xij ∈ Xi for each

i ∈ I.
For every monomial m ∈M[d] let

Sm = {(m1,m2) | m = m1m2,m1 ∈MI ,m2 ∈M[d]\I for some I ∈
(

[d]

k

)
}.

For each k, we consider matrices Mk whose rows are labeled by monomials from

t
I∈([d]

k )MI ,

and columns are labeled by monomials from

t
I∈([d]

k )M[d]\I .

with the property that for every monomial m ∈ M[d] its coefficient f(m) in f
satisfies
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f(m) =
∑

(m1,m2)∈Sm

Mk(m1,m2). (1)

For each k, let rankk(f) denote be the minimum rank attained by the
rank(Mk) for any matrix Mk satisfying the above property. We have the fol-
lowing lower bound on the size of set-multilinear ABPs computing f , following
Nisan’s rank argument [Nis91].

Theorem 7. Let f ∈ F[X] be a set-multilinear polynomial of degree d with
variable set X = tdi=1Xi. Then any set-multilinear ABP computing f is of size

at least
∑d

k=0 rankk(f).

Proof. Let P be a minimum size set-multilinear ABP computing the polynomial
f . Define matrices Lk and Rk as follows. Let v1, v2, ..., vr be the nodes in the
kth layer of the ABP. Label the rows of matrix Lk by degree-k monomials from
MI for I ∈

([d]
k

)
, and the columns of Lk by v1, v2, ..., vr. The entry Lk[m1, vi]

is defined as the coefficient of monomial m1 in the polynomial computed at
node vi. The rows of Rk are labelled v1, v2, ..., vr and columns by degree d− k
monomials from M[d]\I for I ∈

([d]
k

)
. The entry Rk[vi,m2] is defined as the

coefficient of the monomial m2 in the (set-multilinear) ABP computed between
node vi and the sink node of the ABP.

By construction the product matrix LkRk clearly satisfies Equation 1. The
claim now follows, since for each 0 ≤ k ≤ d, we have

r ≥ rank(Lk) ≥ min{rank(Lk), rank(Rk)} ≥ rankk(f).

Therefore
∑d

k=0 rankk(f) lower bounds the size of P . �

3.1 Lower bounds for narrow set-multilinear ABPs

Definition 8. A set-multilinear ABP computing a degree d polynomial in F[X]
such that X = tdi=1Xi is said to be w(d)-narrow if the type-width of the ABP
at layer d− w(d) is O(w(d)).

Theorem 9. Any (n1/4 + o(n1/4))-narrow set-multilinear ABP computing the

permanent polynomial PERn requires size 2Ω(n1/4).1

Proof. Let P be a set-multilinear n1/4 +o(n1/4)-narrow ABP computing PERn.
Let k = n1/4 +o(n1/4) be the layer with type-width O(n1/4), and Vk denote the
set of nodes in the kth layer of P . For each node v ∈ Vk let Iv denote its index
set. We know that |Iv| = k.

Claim 10. |
⋂
v∈Vk Iv| = n−O(

√
n).

1The same lower bound proof will work for the Determinant polynomial DETn.
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Proof. We note that

|
⋂
v∈Vk

Iv| = n− |
⋃
v∈Vk

Iv|

≥ n−
∑
v∈Vk

|Iv|

≥ n− cn1/4|Vk|
= n−O(n1/2).

�

Let S =
⋃
v∈Vk Iv. Note that |S| = O(

√
n), as already used in the above

claim. Likewise, X =
⋂
v∈Vk Iv is of size |X| = n − O(

√
n). Fix a constant

α > 0 such that α
√
n > |S|. Now, we choose an index set Z containing S such

that |Z| = α
√
n, and choose Y ⊆ X \ Z such that |Y | = α

√
n.

We are going to focus on the permanent of the 2α
√
n × 2α

√
n submatrix

consisting of variable {Xij | i, j ∈ Y ∪ Z}. To that end, we first set some
variables of PERn to constants as follows:

Xij =

{
1, if i /∈ Y ∪ Z and i = j

0, if i /∈ Y ∪ Z and i 6= j

The resulting ABP, after these substitutions, clearly computes PER2α
√
n on

the variables corresponding to index set Y ∪Z. Furthermore, each node v ∈ Vk
now computes a homogeneous set-multilinear polynomial of the same degree
2α
√
n− r, where r = n1/4 + o(n1/4) is the same for each v ∈ Vk.

Now, we further simplify entries in the submatrix indexed by Y ∪Z. In the
sequel let ν = α

√
n, and let

Y = {i1, i2 . . . , iν}, and

Z = {j1, j2 . . . , jν}.

In the submatrix indexed by Y ∪Z we renumber rows and columns so that
the indexing order is i1, j1, i2, j2, . . . , iν , jν . We set to zero all variables Xij if
i 6= j and {i, j} 6= {is, js} for some 1 ≤ s ≤ ν. The resulting submatrix is
now block diagonal with 2×2 blocks along the diagonal, each block indexed by
variables {is, js} for 1 ≤ s ≤ ν. In all there are 2ν many nonzero monomials
in the permanent of this submatrix. After these simplifications, the resulting
ABP computes the permanent of this block diagonal matrix. Let A denote this
block diagonal matrix.

Let M denote the set of all, 2ν many, degree ν monomials of the form∏
a∈Y,b∈S Xab, where S ∈

(
Y ∪Z
r

)
. Likewise, let M′ denote the set of 2ν many

degree ν monomials of the form
∏
a∈Z,b∈T Xab, where T ∈

(
Y ∪Z
r

)
.

We now define two matrices Lk and Rk as follows: The rows of Lk are
labeled by monomials in M. The columns of Lk are labeled by pairs (v,m′),
where v ∈ Vk and m′ is a monomial of degree ν − r on variables Xij , where
i ∈ Y ∪ Z.
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The entries of Lk are defined as follows: Lk(m, (v,m
′)) is the coefficient of

monomial mm′ in polynomial computed by ABP at node v.
The matrix Rk has its rows labeled by pairs (v,m′), where v ∈ Vk and m′

is a monomial of degree ν − r on variables Xij , where i ∈ Y ∪ Z. The columns
of Rk are labeled by the monomials in M′.

The entries of Rk are defined as follows: If m′ does not divide m then
Rk((v,m

′),m) = 0. If m′ divides m then Rk((v,m
′),m) is defined as the coef-

ficient of the monomial m in the ABP computed between node v and the sink
node of the ABP.

Thus, the product matrix LkRk is a 2ν × 2ν matrix whose rows are labeled
by monomials from M and columns by monomials from M′.

By assumption, the simplified ABP computes the permanent of block di-
agonal matrix A described above. Hence, in the product matrix LkRk the
(m1,m2)th entry is the coefficient of the monomial m1m2 in Perm(A).

We now lower bound the rank of LkRk following Nisan’s argument [Nis91].
For subsets S, T ⊂ Y ∪ Z such that S ∩ {is, js} = 1 and T ∩ {is, js} = 1,
1 ≤ s ≤ ν, consider the (S, T )th submatrix of LkRk whose rows are labeled
by degree ν monomials of the form

∏
i∈Y,j∈S Xij and columns by degree ν

monomials of the form
∏
i∈Z,j∈T Xij . We observe that the (S, T ) submatrix

has nonzero entries precisely when S ∩ T = ∅. Hence the rank of LkRk is
lower bounded by 2ν , which is the number of choices of S. On the other hand,
the rank of LkRk is upper bounded by the number of columns of LK which is
|Vk|2ν−r. Hence we have

2ν ≤ rank(LkRk) ≤ |Vk|2ν−r.

Since r = n1/4 − o(n1/4), it follows that rank(LkRk) ≥ 2r = 2Ω(n1/4) which
completes the proof.

�

Remark 11. The proof of the above theorem can be easily modified to show a
more general result: Any n1/2−ε-narrow set-multilinear ABP for PERn requires
size 2n

Ω(1)
.

As a consequence of Theorem 9 we immediately obtain the following lower
bound on the size of a sum of n1/2−ε many ROABPs for computing the perma-
nent.

Corollary 12. Let Pi, 1 ≤ i ≤ r be ROABPs such that
∑r

i=1 Pi is the per-
manent polynomial PERn (or for the determinant polynomial DETn). If r ≤
n1/2−ε then at least one of the Pi is of size 2n

Ω(1)
.

4 Interval multilinear circuits and ABPs

For variable partition X = tdi=1Xi let f ∈ F[X] be a set-multilinear polynomial.
For a permutation σ ∈ Sd, a σ-interval multilinear circuit C for computing

f is a special kind of set-multilinear arithmetic circuit: for every gate of the
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circuit the corresponding index set is a σ-interval {σ(i), σ(i + 1), . . . , σ(j)},
1 ≤ i ≤ j ≤ d.

Similarly, a σ-interval multilinear ABP is a set-multilinear ABP such that
the index set associated to every node is some σ-interval.

The aim of the present section is to compare the computational power of
interval multilinear circuits with general set-multilinear circuits. It is clear that
σ-interval multilinear circuits are restricted by the ordering of the indices. In
essence, σ-interval multilinear circuits are restricted to compute like noncom-
mutative circuits (with respect to the ordering prescribed by σ). This property
needs to be exploited to prove the separations. We show the following two
results.

1. We show that there are monotone set-multilinear polynomials f ∈ R[X]
that have monotone set-multilinear circuits (even ABPs) of linear in d
size, but requires 2Ω(d) size monotone σ-interval multilinear circuits for
every σ ∈ Sd.

2. Assuming the sum-of-squares conjecture [HWY10] we show that the poly-
nomials constructed for the above even require 2Ω(d) size general σ-interval
multilinear circuits for every σ ∈ Sd.

A new aspect is that the polynomial we construct is only partially explicit.
We use the probabilistic method to pick certain parameters that define the
polynomial.

The polynomial construction

Let X = t2d
i=1Xi be the variable set, where

Xi = {x0,i, x1,i}, 1 ≤ i ≤ 2d.

For every binary string b ∈ {0, 1}d we define the monomials:

wb =
d∏
i=1

xbi,i

w′b =

d∏
i=1

xbi,d+i.

We define the set-multilinear polynomial P ∈ F[X] as follows:

P =
∑

b∈{0,1}d
wbw

′
b.

For any permutation σ ∈ S2d permuting the indices in [2d], we define mono-
mials:

σ(wb) =

d∏
i=1

xbi,σ(i)

σ(w′b) =
d∏
i=1

xbi,σ(d+i),

11



and the corresponding polynomial σ(P ) as follows:

σ(P ) =
∑

b∈{0,1}d
σ(wb)σ(w′b).

Remark 13. In the polynomial σ(P ) we refer to the indices σ(j) and σ(d+ j)
as a matched pair of indices, since in the monomial σ(wb)σ(w′b) it is required
that the variables xbj ,σ(j) and xbj ,σ(d+j) have the same first index bj. For σ = id,
the matched pairs are (j, d+ j) for 1 ≤ j ≤ d.

Lemma 14. The set-multilinear polynomial σ(P ) can be computed by a mono-
tone set-multilinear ABP of size O(d).

Proof. The set-multilinear ABP computes the polynomial at layer 2

x0,σ(1)x0,σ(d+1) + x1,σ(1)x1,σ(d+1),

where the index set at that layer is {σ(1), σ(d+ 1)}. At the 2ith layer suppose
the polynomial computed by the ABP is

σ(P )(i) =
∑

u∈{0,1}i

i∏
j=1

xuj ,σ(j)

i∏
j=1

xuj ,σ(d+j),

where the index set is {σ(1), σ(2), . . . , σ(i)}t {σ(d+ 1), σ(d+ 2), . . . , σ(d+ i)}.
Then at layer 2i+ 2 we can compute

σ(P )(i+1) = P (i)x0,σ(i+1)x0,σ(d+i+1) + P (i)x1,σ(i+1)x1,σ(d+i+1).

We observe that the ABP remains set-multilinear. Furthermore, it is monotone.
Clearly, at layer 2d the ABP computes the polynomial σ(P ) as desired. �

An immediate consequence is the following corollary.

Corollary 15. For any collection of permutations σ1, σ2, . . . , σs ∈ S2d the poly-
nomial

∑s
j=1 σi(P ) can be computed by a monotone set-multilinear ABP of size

O(sd).

We will show that there exist a set of d permutations σ1, σ2, . . . , σd ∈ S2d

with the following property: for any permutation τ ∈ S2d there is a σi from this
set such that any τ -interval multilinear circuit that computes σi(P ) requires
size 2Ω(d).

Note that, in contrast, given a σ(P ) there is always a permutation τ ∈ S2d

such that σ(P ) can be computed by a small τ -interval multilinear circuit. In-
deed, the ABP computing σ(P ) described in Lemma 14 is an interval-multilinear
ABP w.r.t. the ordering σ(1), σ(d+ 1), σ(2), σ(d+ 2), . . . , σ(d), σ(2d).

12



Interval multilinear circuits and noncommutative circuits

We first observe that a τ -interval multilinear circuit computing a set-multilinear
polynomial in F[X], X = tdi=1Xi, is essentially like a noncommutative circuit
computing a noncommutative polynomial over the variables X, whose mono-
mials can be considered as words of the form xi1xi2 . . . xid , where xij ∈ Xτ(j)

for 1 ≤ j ≤ d.
In [HWY10], Hrubes et al have related the well-known sum-of-squares (in

short, SOS) conjecture (also see [Sha00]) to lower bounds for noncommutative
arithmetic circuits. Our results in this section are based on their work. We
recall the conjecture.

The sum-of-squares (SOS) conjecture: Consider the question of expressing
the biquadratic polynomial

SOSk(x1, . . . , xk, y1, . . . , xk) = (
∑
i∈[k]

x2
i )(
∑
i∈[k]

y2
i )

as a sum of squares (
∑

i∈[s] f
2
i ) for the least possible s, where each fi is a

homogeneous bilinear polynomial. The conjecture states that s = Ω(k1+ε) over
the field of complex numbers C (or the algebraic closure of any field F such that
char(F) 6= 2).

The following lower bound is shown in [HWY10] assuming the SOS conjec-
ture.

Theorem 16. [HWY10] Assuming the SOS conjecture over field F, any non-
commutative circuit computing the polynomial ID =

∑
w∈{x0,x1}d ww in non-

commuting variables x0 and x1 requires size 2Ω(d).

It immediately implies the following conditional lower bound for interval
multilinear circuits.

Corollary 17. Assuming the SOS conjecture, for any σ ∈ S2d a σ-interval
multilinear circuit computing the set-multilinear polynomial σ(P ) requires size
2Ω(d).

Remark 18. The connection between the SOS conjecture and lower bounds
shown in [HWY10] for the noncommutative polynomial

∑
w∈{x0,x1}d ww is made

by considering the polynomial as
∑

w1,w2∈{x0,x1}d/2 w1w2w1w2. Then the words
w1 and w2 are treated as single variables, and allowing w1 and w2 to commute
transforms the polynomial into (

∑
w2

1)(
∑
w2

2). If
∑

w∈{x0,x1}d ww has a 2o(d)

size noncommutative circuit, then it turns out that (
∑
w2

1)(
∑
w2

2) can be written
as a small sum-of-squares, contradicting the conjecture.

From the above remark we can deduce the following corollary which is
stronger than Corollary 17.

Corollary 19. For even d, partition [2d] into four intervals of size d/2 each:
I1 = [1 . . . d/2], I2 = [d/2 + 1 . . . d], I3 = [d + 1 . . . 3d/2], and I4 = [3d/2 +

13



1 . . . 2d]. Let σ ∈ S2d be any permutation such that σ(Ij) = Ij , 1 ≤ j ≤ 4. Then,
assuming the SOS conjecture, any id-interval multilinear circuit computing the
polynomial σ(P ) requires size 2Ω(d).

Proof. By definition, σ(P ) =
∑

b∈{0,1}d σ(wb)σ(w′b). Since σ stabilizes each

Ij , 1 ≤ j ≤ 4, we can write σ(wb) = w1w2 and σ(w′b) = w′1w
′
2, where the

matched pairs are between w1 and w′1, and between w2 and w′2, respectively.
Now, by substituting the same variable for each matched pair, we can ob-
tain the polynomial (

∑
w2

1)(
∑
w2

2). As explained in the proof of Corollary 17,
the argument in [HWY10] can now be applied to yield the circuit size lower
bound of 2Ω(d), assuming the SOS conjecture for the biquadratic polynomial
(
∑
w2

1)(
∑
w2

2), treating each w1 and w2 as individual variables. �

We will use the probabilistic method to show the existence of the set of
permutations σi, 1 ≤ i ≤ d in S2d, such that for each τ ∈ S2d there is some
σi(P ), i ∈ [d] that requires size 2Ω(d) τ -interval multilinear circuits. We will
require the following concentration bound.

Theorem 20. [DP09, Theorem 5.3, page 68] Let X1, · · · , Xn be any n random
variables and let f be a function of X1, X2 . . . , Xn. Suppose for each i ∈ [n]
there is ci ≥ 0 such that

|E[f |X1, · · · , Xi]− E[f |X1, · · · , Xi−1]| ≤ ci.

Then for any t > 0, we have the bound Prob[f < E[f ]− t] ≤ exp(−2t2

c ), where
c =

∑
i∈[n] c

2
i .

Lemma 21. Let σ ∈ S2d be a permutation picked uniformly at random. For
any τ ∈ S2d, the probability that σ(P ) is computable by a τ -interval multilinear
circuit of size 2o(d) is bounded by e−Ω(d), assuming the SOS conjecture.

Proof. In the polynomial P =
∑

b∈{0,1}d wbw
′
b the matched pairs, as defined

earlier, are (i, d + i), 1 ≤ i ≤ d. As in Corollary 19, we partition the index set
[2d] into four consecutive d/2-size intervals I1 = [1 . . . d/2], I2 = [d/2 + 1 . . . d],
I3 = [d + 1 . . . 3d/2], and I4 = [3d/2 + 1 . . . 2d]. Note that d/2 of the matched
pairs are between I1 and I3 and the remaining d/2 between I2 and I4. Consider
the following two subsets of matched pairs of size d/8 each:

E1 = {(i, d+ i) | 1 ≤ i ≤ d/8}
E2 = {(d/2 + i, 3d/2 + i) | 1 ≤ i ≤ d/8}.

The pairs in E1 are between I1 and I3 and pairs in E2 are between I2 and I4.
Let σ ∈ S2d be a permutation picked uniformly at random. We say (i, d+i) ∈ E1

is good if σ(i) ∈ I1 and σ(d + i) ∈ I3. Similarly, (d/2 + i, 3d/2 + i) ∈ E2 is
called good if σ(d/2 + i) ∈ I2 and σ(3d/2 + i) ∈ I4. Let Xi, 1 ≤ i ≤ d/8,
be indicator random variables which take the value 1 iff the edge (i, d + i) ∈
E1 is good. Similarly, define indicator random variables X ′i corresponding to
((d/2 + i, 3d/2 + i) ∈ E2, 1 ≤ i ≤ d/8. Note that
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1/64 ≤ Probσ∈S2d
[Xi = 1] ≤ 1/16

1/64 ≤ Probσ∈S2d
[X ′i = 1] ≤ 1/16.

Let f =
∑d/8

i=1Xi and f ′ =
∑d/8

i=1X
′
i. Clearly,

d/512 ≤ E[f ] ≤ d/128

d/512 ≤ E[f ′] ≤ d/128.

Furthermore, we also have for each i : 1 ≤ i ≤ d/8

|E[f |X1, X2, . . . , Xi]− E[f |X1, X2, . . . , Xi−1]| ≤ 1/16

|E[f ′|X ′1, X ′2, . . . , X ′i]− E[f ′|X ′1, X ′2, . . . , X ′i−1]| ≤ 1/16.

Applying Theorem 20 we deduce that

Probσ∈S2d
[f <

d

1024
] ≤ e−αd

Probσ∈S2d
[f ′ <

d

1024
] ≤ e−αd,

where α > 0 is some constant independent of d. Hence,

Probσ∈S2d
[f ≥ d

1024
and f ′ ≥ d

1024
] ≥ 1− 2e−αd.

Thus, with probability 1 − 2e−αd there are d/1024 pairs (σ(i), σ(d + i))
such that σ(i) ∈ I1 and σ(d + i) ∈ I3, and there are d/1024 pairs (σ(d/2 +
i), σ(3d/2 + i)) such that σ(d/2 + i) ∈ I2 and σ(3d/2 + i) ∈ I4. If we set
all other variables in the polynomial σ(P ) to 1, we can apply Corollary 19 to
the resulting polynomial (with d replaced by d/1024 in the corollary) which
will yield the lower bound of 2Ω(d) for any id-interval multilinear circuit (here
id-interval multilinear circuit means interval-multilinear with respect to the
standard ordering {1, 2 . . . , d}) computing σ(P ) with probability 1 − 2e−αd.
For any τ -interval multilinear circuit too the same lower bound applies because
τσ is also a random polynomial in S2d with uniform distribution. �

We are now ready to state and prove the main result of this section.

Theorem 22. There is a set-multilinear polynomial f ∈ F[X], where X =

tlog d+2d
i=1 Xi and Xi = {x0,i, x1,i}, 1 ≤ i ≤ log d + 2d such that f has an O(d2)

size monotone set-multilinear ABP and, assuming the SOS conjecture, for any
τ ∈ Slog d+2d any τ -interval multilinear circuit computing f has size 2Ω(d).
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Proof. By Lemma 21, if we pick permutations σ1, σ2, . . . , σd ∈ S2d indepen-
dently and uniformly at random then, assuming the SOS conjecture, the prob-
ability that every σi(P ) can be computed by some τ -interval multilinear circuit
is bounded by 2de−αd

2
= e−Ω(d2). As there are only (2d)! many permutations τ ,

by the union bound it follows that there exist permutations σ1, σ2, . . . , σd ∈ S2d

such that for any τ at least one of the σi(P ) requires 2Ω(d) size τ -interval
multilinear circuits. We will define the polynomial f by “interpolating” the
σi(P ), and we need the fresh log d variable sets in order to do the interpolation.
For each c : 1 ≤ c ≤ d, let its binary encoding also be denoted by c, where
c ∈ {0, 1}log d. Let uc denote the monomial

ui =

2d+log d∏
j=2d+1

xcj ,j .

Hence the monomial uc can also be seen as an encoding of c : 1 ≤ c ≤ d.
We define the polynomial f as

f =
∑

c∈{0,1}log d

ucσc(P ).

Clearly, f ∈ F[X] and for each 0-1 assignment to the variables in Xj , 2d+ 1 ≤
j ≤ 2d+ log d, the polynomial f becomes σc(P ).

Now, if f had a 2o(d) size τ -interval multilinear circuit for any τ ∈ S2d,
by different 0-1 assignments to variables in Xj , 2d + 1 ≤ j ≤ 2d + log d we
will obtain 2o(d) size τ -interval multilinear circuit for each σc(P ) which is a
contradiction. �

Finally, we note that for monotone τ -interval multilinear circuits, the lower
bound results of Theorem 16, Corollaries 17 and 19, and Lemma 21 hold uncon-
ditionally (without assuming the SOS conjecture) by a direct rank argument.
As a consequence we have the following.

Theorem 23. There is a set-multilinear polynomial f ∈ F[X], where X =

tlog d+2d
i=1 Xi and Xi = {x0,i, x1,i}, 1 ≤ i ≤ log d + 2d such that for any τ ∈

Slog d+2d any monotone τ -interval multilinear circuit computing f has size 2Ω(d).

Proof. The polynomial f defined in Theorem 22, which has small monotone set-
multilinear ABPs, requires 2Ω(d) size monotone τ -interval multilinear circuits
for all τ ∈ S2d+log d, as explained above. �

5 Proof tree restrictions on set-multilinear circuits

In this section we study set-multilinear circuits that satisfy a “semantic” re-
striction on the proof trees of monomials computed by them. Specifically, we
consider two such restrictions and show superpolynomial lower bounds for set-
multilinear circuits with such restrictions computing the Permanent.

For an arithmetic circuit C, a proof tree for a monomial m is a multiplicative
subcircuit of C rooted at the output gate defined by the following process
starting from the output gate:
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� At each + gate retain exactly one of its input gates.

� At each × gate retain both its input gates.

� Retain all inputs that are reached by this process.

� The resulting subcircuit is multiplicative and computes the monomial m
(with some coefficient).

Let C be a set-multilinear circuit computing f ∈ F[X] for variable partition
X = tdi=1Xi. Then any proof tree for a monomial is, in fact, a binary tree
with leaves labeled by variables (ignoring the leaves labeled by constants) and
internal nodes labeled by gate names (the × gates of C occurring in the proof
tree). By set-multilinearity, in each proof tree there is exactly one variable from
each subset Xi, and each variable occurs at most once in a proof tree.

Definition 24. A proof tree type T for a set-multilinear circuit C computing
a degree d polynomial in F[X] is a binary tree with d leaves. Each node v of T
is labeled by an index set Iv ⊆ [d]: The root is labeled by [d], each leaf is labeled
by a distinct singleton set [i], 1 ≤ i ≤ d, and if v has children v1 and v2 in the
tree then Iv = Iv1 t Iv2. For any tree type T , the corresponding truncated tree
type T̂ is the subtree of T obtained by deleting all nodes v such that |Iv| ≤ d/3.
Notice that any truncated tree type T̂ is a binary tree with at most two leaves
(although its depth could be unbounded).

We introduce some notation. Let C be a set-multilinear circuit for variable
partition X = tdi=1Xi. Let m ∈ Xd be any degree d monomial.

� The set of all proof trees of m in circuit C is denoted PC,m.

� The set of all proof tree types of m in circuit C is denoted TC,m.

� The set of all truncated proof tree types of m in circuit C is denoted T̂C,m.

Note that, in general, monomial m can have many proof trees. For every
proof tree in PC,m there is a corresponding proof tree type in TC,m obtained by
dropping variable and gate names from the proof tree and labeling the nodes
instead with the corresponding index sets.

Definition 25 (Property UT ). Let C be a set-multilinear circuit with variable
partition X = tdi=1Xi: Circuit C is said to have Property UT if for each
monomial m ∈ Xd all its proof trees have the same truncated proof tree type.
I.e. T̂C,m is a set of size at most 1 for each m. Notice that for m 6= m′ we can

have T̂C,m 6= T̂C,m′.

Theorem 26. Any set-multilinear circuit C satisfying Property UT w.r.t. the
variable partition X = tni=1Xi, where Xi = {Xij | 1 ≤ j ≤ n}, such that C
computes the permanent polynomial PERn requires size 2Ω(n).2

2The same lower bound result holds for DETn.
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Proof. Suppose C is a size s set-multilinear circuit satisfying Property UT ,
computing the permanent polynomial PERn. Let Gn/3 denote the set of all
product gates g in C such that deg(g) > n/3 and deg(g1) ≤ n/3 and deg(g2) ≤
n/3, where g1 and g2 are the gates that are input to g. It follows that n/3 <
deg(g) ≤ 2n/3. Furthermore, every proof tree of the circuit C has at least one
gate from Gn/3 and at most two gates from Gn/3.

Consequently, by pigeon-hole principle there is an index set I ⊆ [n], such
that truncated proof trees of at least n!/s many monomials of PERn will have
a leaf in GIn/3, where GIn/3 ⊆ Gn/3 denotes the set

GIn/3 = {g ∈ Gn/3 | index set of g is I}.

We will lower bound |GIn/3|. For g ∈ GIn/3 let Cg be the subcircuit of C
rooted at the gate g. Let ∂gC denote the partial derivative of the output gate
of C w.r.t. gate g as defined in Section 2.
Notice that circuit for ∂gC can be obtained from C as follows:

� For all gate h ∈ GIn/3 such that h 6= g, label 0 for all outgoing edges of h.

� Replace gate g with constant 1.

� For all gate g′ ∈ Gn/3 \ (GIn/3 ∪G
I
n/3), label 0 for all outgoing edges of g′.

Consider the circuit C ′ defined as follows:

C ′ =
∑

g∈GI
n/3

Cg∂gC. (2)

Since Cg and ∂gC are both circuits of size at most s, clearly the size of C ′

is bounded by s2. By choice of I there are at least n!/s monomials m of PERn

such that T̂C,m has a leaf node labeled I. Thus, for every proof tree in PC,m
there is a gate g in GIn/3.

Crucially, we claim the following.

Claim 27. In the polynomial computed by C ′:

� The coefficient of every monomial m of PERn such that T̂C,m has a leaf
node labeled I is 1.

� The coefficient of any monomial m ∈ Xn be any monomial which does
not occur in PERn is 0.

Both parts of the claim follow from Property UT . For a monomial m ∈ Xn,
if some proof tree in PC,m has a gate GIn/3, then every proof tree in PC,m has

a gate in GIn/3. Hence every proof tree of such a monomial m is accounted for

in the circuit C ′. Since all proof trees are accounted for, the net contribution
of any such monomial m is the coefficient of m in PERn.

We now define a matrix L, with respect to index set I, as follows: the rows
of L are indexed by monomials m1 of index set I. The columns of L are indexed
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by gates t ∈ GIn/3. The entry L[m1, t] is the coefficient of the monomial m1 in
the subcircuit computed at gate t.

Next, we define a matrix R with respect to index set I. The rows of R are
indexed by gates t ∈ GIn/3, and the columns of R are indexed by monomials m2

such that m2 has index set [d] \ I. The entry R[t,m2] is the coefficient of m2 in
the polynomial ∂tC

′.
Let MI be set of nonzero monomials of C ′. By the above claim, MI is

a subset of the nonzero monomial set of PERn, and the coefficient of each
monomial in MI is 1. Furthermore, by choice of I, |MI | ≥ n!/s.

Consider monomial m = m1m2. As argued above, the (m1,m2)th entry of
matrix LR is the coefficient of m in PERn if m ∈MI .

Therefore we have:

LR[m1,m2] =

{
1, if m1m2 ∈MI ,

0, otherwise.

Notice that for any other factorizationm = m′1m
′
2 ofm, the entry LR[m′1,m

′
2] =

0, because of Property UT .
Since s is an upper bound on the ranks of both L and R, clearly rank(LR) ≤

s. We now lower bound the rank of LR.

Claim 28. The rank of LR is at least
( n
n/3)
s .

To see the claim, for each subset S ∈
([n]
|I|
)

we group together the rows of

matrix LR indexed by monomials m1 of the form

m1 = Xi1j1Xi2j2 . . . Xikjk ,

where I = {i1, i2, . . . , ik} and S = {j1, j2, . . . , jk}.
Likewise, corresponding to each subset T ∈

( [n]
n−|I|

)
we group together the

columns indexed by monomials m2 of the form

m2 = Xi1j1Xi2j2 . . . Xi`j` ,

where [n] \ I = {i1, i2, . . . , i`} and T = {j1, j2, . . . , j`}.
We know that that the matrix LR has at least n!/s many 1’s, corresponding

to the nonzero monomials of PERn in MI , and all other entries of LR are zero.
The matrix LR consists of different (S, T ) blocks, corresponding to subsets

S ∈
([n]
|I|
)

and T ∈
( [n]
n−|I|

)
. For each such S, only the (S, [n] \ S) block has

nonzero entries. All other blocks in the row corresponding to S or the columns
corresponding to [n] \ S are zero. Furthermore, we note that the number of
entries in each (S, [n]\S) block is clearly bounded by (|I|!)(n−|I|)!. Therefore,
as there are n!/s many 1’s in the matrix LR, there are at least

n!

s(n− |I|)!|I|!
=

(
n
|I|
)
s

nonzero (S, [n] \ S) blocks, each of which contributes at least 1 to the rank of

the matrix LR. Hence, the rank of the matrix LR is lower bounded by
( n
|I|)
s .
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Putting it together, we obtain

s ≥ rank(LR) ≥

(
n
|I|
)
s
.

Hence s ≥
√(

n
|I|
)
≥
√(

n
n/3

)
= 2Ω(n), which completes the proof. �

5.1 Set-multilinear circuits with few proof tree types

We now consider set-multilinear circuits with a different restriction on its proof
tree types: Let C be a set-multilinear circuit computing a degree-d polynomial
f ∈ F[X] for variable partition X = tdi=1Xi such that the total number of proof
tree types of any degree-d monomial in Xd is bounded by a polynomial in d.
Can we prove superpolynomial lower bounds for such circuits?

We are able to show superpolynomial lower bounds in a more restricted
case: when the number of proof trees is bounded by d1/2−ε for some fixed ε > 0.
More precisely, suppose C is a set-multilinear circuit that computes PERn and
C has at most n1/2−ε proof tree types. Then we show that C is of size 2n

Ω(1)
.

We first decompose C into a sum of n1/2−ε many set-multilinear formulas Ci
such that in each Ci all proof trees of all monomials have the same proof tree
type. Then we convert each Ci into a set-multilinear ABP Ai such that in each
layer of this ABP all the nodes are labeled by the same index set. We can
now apply Corollary 12 to the sum of these Ai’s and obtain the claimed lower
bound.

Lemma 29. Let C be a set-multilinear circuit of size s computing a degree-d
polynomial P ∈ F[X]. If all proof trees in C have the same proof tree type T ,
then C can be efficiently transformed into a set-multilinear formula C ′ of size
sO(logn) such that in C ′ too all proof trees have the same proof tree type T ′,
where T ′ depends only on T (and not on the circuit C).

Proof. We prove the lemma by induction on the size of the index set of the
output gate of C (i.e., degree of P ). At the input gates, where index set is a
singleton set, it clearly holds. Suppose the index set of the output gate is of
size at least 2. Let TC denote the unique proof tree type for all proof trees in
C. Each node v of TC is labelled by its index set Iv ⊆ [d]. As TC is a binary
tree, there is a vertex u such that d

3 ≤ |Iu| ≤
2d
3 . Let Su = {v ∈ C | Iv = Iu}.

Let Ĉv denote the set-multilinear circuit obtained from C by (i) setting to zero
all the gates in Su \ {v}, and (ii) replacing the gate v by the constant 1. Let
Qv denote the polynomial computed at the output gate of Ĉv. Notice that its
index set is [n] \ Iu. Let Pv denote the polynomial computed at a gate v of C.
Then we can clearly write

P =
∑
v∈Su

PvQv.

Let Cv denote the subcircuit of C with output gate v. Note that

n

3
≤ deg(Pv), deg(Qv) ≤

2n

3
.
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Thus, for each v ∈ Su both Pv and Qv are set-multilinear polynomials
computed by set-multilinear circuits (Cv and Ĉv, respectively) of size at most
s. Furthermore, these circuits also have the property that all proof trees has
the same proof tree type (otherwise, C would not have the property).

By induction hypothesis, for each v ∈ Su we have set-multilinear formulas
Fv and F̂v such that:

� Fv and F̂v compute Pv and Qv, respectively.

� The size of Fv as well as F̂v is bounded by sO(log 2n
3

).

� All proof trees in Fv have a unique proof tree type. All proof trees in F̂v
have a unique proof tree type.

Furthermore, the circuit C has the following stronger property: suppose v
and v′ are two gates with the same index set Iv = Iv′ . Then the unique proof
tree type associated with subcircuit Cv is the same as the unique proof tree
type for subcircuit Cv′ . Otherwise, the circuit C would not have a unique proof
tree type associated with it.

Since all the subcircuits Cv, v ∈ Su have the same index set and thus same
proof tree type associated to it, it follows by induction hypothesis that all the
formulas Fv, v ∈ Su also have the same unique proof tree type. The same
property holds for Ĉv, v ∈ Su and hence F̂v, v ∈ Su.

Therefore, each of the product polynomials PvQv, v ∈ Su, computed by
the formulas Fv × F̂v, v ∈ Su, with a × output gate, all have the same proof
tree type. Thus, since |Su| ≤ s the polynomial P =

∑
v∈Su

PvQv has a set

multilinear formula C ′ of size ≤ s(2sO(log 2n
3

)) ≤ sO(logn) and all the proof trees
of C ′ have the same proof tree type T ′. Furthermore, it is clear that T ′ depends
only on TC . This completes the proof of the theorem. �

Lemma 30. Let C be a set-multilinear formula of size s computing degree d
polynomial P , where all proof trees of C have the same proof tree type T . Then
C can be transformed into a set-multilinear ABP such that at each layer i ∈ [d]
all gates of layer i is labelled by the same index set Ii. Furthermore, these index
sets I1, I2, . . . , Id depend only on T and not the formula C.

Proof. We show by induction on the size of given formula C.
Suppose the output gate of C is +, and C1 and C2 are the two subformulas.

Since C has unique proof tree type T , both its subcircuits C1 and C2 also have
the same unique tree type T . By induction hypothesis the two subformulas
C1 and C2 of C with same proof tree T can be converted into ABPs A1, A2

respectively s.t the index sets I1, I2, . . . , Id is same for both ABPs. The “parallel
composition” of these two ABPs yields the ABP for C with the same index sets.

Suppose output gate of C is ×. Since C has unique proof tree type T ,
both subcircuits C1 and C2 of C has unique proof tree types, say T1, T2 respec-
tively. Note that T1 and T2 are the left and right subtrees of T . By induction
hypothesis both C1 and C2 have ABPs with the claimed property. Their “se-
ries composition” yields the desired ABP with a unique index set labeling each
layer. �
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Theorem 31. Let C =
∑

i∈[r]Ci be a set-multilinear circuit, where each Ci is

set-multilinear, all proof trees of Ci have the same proof tree type, and r = n
1
2
−ε,

ε > 0. If C computes PERn ( or DETn) then some Ci is of size Ω(2
n1/4

log n ).

Proof. The idea is to convert C into a narrow set multilinear ABPs and apply
the lower bound for narrow set multilinear ABPs (Corollary 12). By Lemma
29, each circuit Ci can be converted into a set-multilinear formula C ′i of unique
proof tree type. By Lemma 30 this formula C ′i can be transformed into a
homogeneous d-layer set-multilinear ABP Ai such that at each layer i ∈ [n] all
the gates in layer i are labeled by the same index set Ii. Their sum

∑r
i=1Ai

is a homogeneous d-layer set-multilinear ABP A such that at any layer i ∈ [n]

the number of different index sets Ii ⊆ [n] labeling layer i is bounded by n
1
2
−ε.

The size of ABP A is bounded by
∑r

i=1 s
O(logn) ≤ sO(logn) where s upper

bounds the size of each Ci. By Corollary 12, any such set-multilinear ABP
computing PERn ( or DETn) requires Ω(2n

1/4
) size. Thus, sO(logn) ≥ Ω(2n

1/4
),

which implies that s ≥ Ω(2
n1/4

log n ). This completes the proof of the theorem. �

Theorem 32. Let C be set multilinear circuit of size s computing the polyno-
mial P ∈ F[X] of degree d such that the total number of proof tree types in C is
r ≥ 0. Then there are set-multilinear circuits Ci, 1 ≤ i ≤ r such that

∑
i∈[r]Ci

computes P , each Ci is of size bounded by s, and in each Ci all its proof trees
have the same type.

Proof. Let the proof tree types of C be T1, T2, · · · , Tr. We will extract circuit
Ci from C corresponding to proof tree type Ti. In Ci, we label 0 for all the
outgoing edges of gates v in C whose index set Iv ⊆ [n] is not equal to any
of the index sets of proof tree Ti. Clearly, the proof trees of Ci are precisely
all proof trees of proof tree type Ti present in circuit C and with the same
coefficients. Therefore,

∑r
i=1Ci computes polynomial P . This completes the

proof of theorem. �

Combining Theorem 32 and 31, we have the following corollary.

Corollary 33. Let C be set multilinear circuit of size s computing the polyno-
mial PERn (or DETn). If the total number of distinct proof tree types in C is

bounded by c = n
1
2
−ε, ε > 0 then s ≥ Ω(2

n1/4

log n ).

6 Summary and open problems

In this paper we investigated lower bound questions for certain set-multilinear
arithmetic circuits and ABPs. By imposing a restriction on the number of set
types for set-multilinear ABPs, or by restricting the number of proof trees in
set-multilinear circuits, we could prove nontrivial lower bounds for the Perma-
nent. We also showed a separation between set-multilinear circuits and interval
multilinear circuits, assuming the SOS conjecture.
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Some interesting open questions arise from our work: can we show lower
bounds for f(n)-narrow set-multilinear ABPs for f(n) = O(n)? Another ques-
tion is proving lower bounds for set-multilinear circuits with polynomially (or
even O(n)) many proof trees computing PERn.
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