Some Lower Bound Results for Set-Multilinear Arithmetic Computations

V. Arvind S. Raja
Institute of Mathematical Sciences, Chennai.
\{arvind,rajas\}@imsc.res.in

November 6, 2015

Abstract

In this paper, we study the structure of set-multilinear arithmetic circuits and set-multilinear branching programs with the aim of showing lower bound results. We define some natural restrictions of these models for which we are able to show lower bound results. Some of our results extend existing lower bounds, while others are new and raise open questions. More specifically, our main results are the following: - We observe that set-multilinear arithmetic circuits can be transformed into shallow set-multilinear circuits efficiently, similar to depth reduction results of VSBR83, RY08 for more general commutative circuits. As a consequence, we note that polynomial size setmultilinear circuits have quasi-polynomial size set-multilinear branching programs. We show that narrow set-multilinear ABPs (with a restricted number of set types) computing the Permanent polynomial PER_{n} require $2^{n^{\Omega(1)}}$ size. A similar result for general set-multilinear ABPs appears difficult as it would imply that the Permanent requires superpolynomial size set-multilinear circuits. It would also imply that the noncommutative Permanent requires superpolynomial size noncommutative arithmetic circuits. - Indeed, we also show that set-multilinear branching programs are exponentially more powerful than interval multilinear circuits (where the index sets for each gate is restricted to be an interval w.r.t. some ordering), assuming the sum-of-squares conjecture. This further underlines the power of set-multilinear branching programs. - Finally, we consider set-multilinear circuits with restrictions on the number of proof trees of monomials computed by it, and prove exponential lower bounds results. This raises some new lower bound questions.

1 Introduction

Let \mathbb{F} be a field and $X=X_{1} \sqcup X_{2} \sqcup \cdots \sqcup X_{d}$ be a partition of the variable set X. A set-multilinear polynomial $f \in \mathbb{F}[X]$ w.r.t. this partition is a homogeneous
degree d multilinear polynomial such that every nonzero monomial of f has exactly one variable from $X_{i}, 1 \leq i \leq d$.

Both the Permanent polynomial PER_{n} and the Determinant polynomial DET_{n} are set-multilinear polynomials. The variable set is $X=\left\{x_{i j}\right\}_{1 \leq i, j \leq n}$ and the partition can be taken as the row-wise partition of the variable set. I.e. $X_{i}=\left\{x_{i j} \mid 1 \leq j \leq n\right\}$ for $1 \leq i \leq n$.

In this paper we will consider set-multilinear circuits and set-multilinear branching programs for computing set-multilinear polynomials. Set-multilinear circuits are well studied. The model of set-multilinear branching programs that we consider is more general than related notions of branching programs recently studied in the literature, like the read-once oblivious branching programs (ROABPs) [FS13].

A set-multilinear arithmetic circuit C computing f w.r.t. the above partition of X, is a directed acyclic graph such that each in-degree 0 node of the graph is labelled with an element from $X \cup \mathbb{F}$. Each internal node v of C is either $\mathrm{a}+$ gate or \times gate. With each gate v of we can associate a subset of indices $I_{v} \subseteq[d]$ and the polynomial C_{v} computed by the circuit at v is set-multilinear over the variable partition $\sqcup_{i \in I_{v}} X_{i}$. If v is a + gate then for each input u of v $I_{u}=I_{v}$, and v is a \times gate with inputs v_{1} and v_{2} then $I_{v}=I_{v_{1}} \sqcup I_{v_{2}}$. Clearly, in a set-multilinear circuit every gate computes a set-multilinear polynomial (in a syntactic sense). The output gate is labeled by $[d]$ and computes the polynomial f.

A set-multilinear algebraic branching program smABP is a layered directed acyclic graph (DAG) with one in-degree zero vertex s and one out-degree zero vertex t. The vertices of the graph are partitioned into layers $0,1, \ldots, d$, and edges go only from layer i to $i+1$ for each i. The source is the only vertex at level 0 and the sink is the only vertex at level d. We can associate an index set $I_{v} \subseteq[d]$ with each node v in the smABP, and the polynomial computed at v is set-multilinear w.r.t. the partition $\sqcup_{i \in I_{v}} X_{i}$. For any edge (u, v) in the branching program labeled by a homogeneous linear form ℓ, we have $I_{v}=I_{u} \sqcup\{i\}$ for some $i \in[d]$, and ℓ is a linear form over variables X_{i}. The size of the ABP is the number of vertices.

For any s-to- t directed path $\gamma=e_{1}, e_{2}, \ldots, e_{d}$, where e_{i} is the edge from level $i-1$ to level i, let ℓ_{i} denote the linear form labeling edge e_{i}. Let $f_{\gamma}=\ell_{1} \cdot \ell_{2} \cdots \ell_{d}$ be the product of the linear forms in that order. Then the ABP computes the set-multilinear degree d polynomial:

$$
f=\sum_{\gamma \in \mathcal{P}} f_{\gamma},
$$

where \mathcal{P} is the set of all directed paths from s to t.
Remark 1. Showing a superpolynomial lower bound for set-multilinear circuits and even for set-multilinear ABPs for computing the Permanent polynomial is an open problem. In this paper we discuss some restricted versions of setmultilinear branching programs and show lower bounds.

Plan of the paper

In Section 2 we show that any set-multilinear arithmetic circuit of size s can be efficiently transformed into an $O(\log s)$ depth set-multilinear circuit with unbounded fanin + gates and fanin $2 \times$ gates of size polynomial in s. This is quite similar to the depth-reduction results of VSBR83, RY08] for more general commutative circuits. As a result, size s set-multilinear circuits have $s^{O(\log s)}$ size set-multilinear branching programs.

In Section 3 we consider narrow set-multilinear branching programs: a setmultilinear ABP computing a degree d polynomial is w-narrow if in layer $d-w$ the number of distinct types of the ABP is $O(w)$. We show that $n^{1 / 4}$-narrow ABPs computing the Permanent requires $2^{\Omega\left(n^{1 / 4}\right)}$ size. On the other hand, a similar result for general set-multilinear ABPs appears difficult. For instance, it would imply that the Permanent requires superpolynomial size noncommutative arithmetic circuits, which is an open problem for over two decades.

In Section 4, we show that set-multilinear branching programs are exponentially more powerful than interval multilinear circuits (where the index sets for each gate is restricted to be an interval w.r.t. some ordering), assuming the sum-of-square conjecture HWY10. This further underlines the power of general set-multilinear branching programs.

Finally, in Section 5 we consider set-multilinear circuits with restrictions on the number of proof trees of monomials computed by it, and prove exponential lower bounds results. This raises some new lower bound questions.

2 Depth Reduction of Set-Multilinear Circuits

We follow the standard method of depth reduction of commutative arithmetic circuits [VSBR83], and use the exposition from Shpilka and Yehudayoff's survey article [SY10]. The general depth reduction was adapted to syntactic multilinear circuits by Raz and Yehudayoff RY08. Our additional observation essentially is that the depth reduction procedure can be carried out while preserving set-multilinearity as well.

Given a commutative set-multilinear circuit C of size s computing a setmultilinear polynomial f of degree d in the input variable $X=X_{1} \sqcup \ldots \sqcup X_{d}$, we show that there is another circuit C^{\prime} of size poly (s) and depth $O(\log d \log s)$ computing f.

Theorem 2. Let Φ be a set-multilinear arithmetic circuit of size s and degree d over the field \mathbb{F} and over the variable set X, partitioned as $X=X_{1} \sqcup \ldots$
X_{d}, computing a polynomial $f \in \mathbb{F}[X]$. Then we can efficiently compute from Φ a set-multilinear arithmetic circuit Ψ, with multiplication gates of fanin 2 and unbounded fanin + gates, which is of size $O\left(s^{3} \log d\right)$ and depth $O(\log d)$ computing the polynomial f.

Proof. By definition, Φ is a homogeneous arithmetic circuit. We assume that Φ is non-redundant (i.e, for all gates v in Φ the polynomial f_{v} computed at v is nonzero). Since Φ is set-multilinear, at each gate v in Φ there is an associated
index set $I_{v} \subseteq[d]$ such that the polynomial f_{v} is set-multilinear of degree $\left|I_{v}\right|$ over the variable set $X_{I_{v}}$, where

$$
X_{I_{v}}=\sqcup_{i \in I_{v}} X_{i} .
$$

We denote the subcircuit rooted at the gate v by Φ_{v}.

Partial Derivative of f_{v} by a gate w

Let v, w be any two gates in circuit Φ. Following the exposition in SY10, let $\Phi_{w=y}$ denote the circuit obtained by removing any incoming edges at w and labeling w with a new input variable y and $f_{v, w}$ denote the polynomial (in $X \cup\{y\})$ computed at gate v in circuit $\Phi_{w=y}$. Define

$$
\partial_{w} f_{v}=\partial_{y} f_{v, w}
$$

Note that $f_{v, w}$ is linear in y. Clearly, if w does not occur in Φ_{v} then $\partial_{w} f_{v}=0$. If w occurs in Φ_{v}, since Φ is set-multilinear the polynomial $f_{v, w}$ is linear in y and is of the form

$$
f_{v, w}=h_{v, w} y+g_{v, w} .
$$

Therefore, $\partial_{w} f_{v}=h_{v, w}$. We make the following immediate observations from the set-multilinearity of Φ.

- Either $\partial_{w} f_{v}=0$ or $\partial_{w} f_{v}$ is a homogeneous set-multilinear polynomial of degree $\operatorname{deg}(v)-\operatorname{deg}(w)$ over variable set $X \backslash X_{I_{w}}$.
- If $\operatorname{deg}(v)<2 . \operatorname{deg}(w)$ and v is a product gate with children v_{1}, v_{2} such that $\operatorname{deg}\left(v_{1}\right) \geq \operatorname{deg}\left(v_{2}\right)$, then $\partial_{w} f_{v}=f_{v_{2}} \cdot \partial_{w} f_{v_{1}}$.

For a positive integer m, let G_{m} denote the set of product gates t with inputs t_{1}, t_{2} in Φ such that $m<\operatorname{deg}(t)$ and $\operatorname{deg}\left(t_{1}\right), \operatorname{deg}\left(t_{2}\right) \leq m$. We observe the following claims (analogous to SY10) which are easily proved.

Claim 3. Let Φ be a set-multilinear nonredundant arithmetic circuit over variable set $X=\sqcup_{i=1}^{d} X_{i}$. Let v be a gate in Φ such that $m<\operatorname{deg}(v) \leq 2 m$ for a positive integer m. Then $f_{v}=\sum_{t \in G_{m}} f_{t} . \partial_{t} f_{v}$.
Claim 4. Let Φ be a set-multilinear non-redundant arithmetic circuit over the field \mathbb{F} and over the set of variables X. Let v and w be gates in Φ such that $0<\operatorname{deg}(w) \leq m<\operatorname{deg}(v)<2 \operatorname{deg}(w)$. Then $\partial_{w} f_{v}=\sum_{t \in G_{m}} \partial_{w} f_{t} . \partial_{t} f_{v}$

Construction of Ψ :

We now explain the construction of the depth-reduced circuit Ψ. The construction is done in stages. Suppose upto Stage i we have computed, for $1 \leq j \leq i$ the following:

- All polynomials f_{v} for gates v such that $2^{j-1}<\operatorname{deg}(v) \leq 2^{j}$.
- All partial derivatives of the form $\partial_{w} f_{v}$ for gates v and w such that $2^{j-1}<$ $\operatorname{deg}(v)-\operatorname{deg}(w) \leq 2^{j}$ and $\operatorname{deg}(v)<2 \operatorname{deg}(w)$.
- Furthermore, inductively assume that the circuit computed so far is setmultilinear of $O(i)$ depth, such that all product gates are fanin 2, sum gates are of unbounded fanin.

We now describe Stage $i+1$ where we will compute all f_{v} for gates v such that $2^{i}<\operatorname{deg}(v) \leq 2^{i+1}$ and also all partial derivatives of the form $\partial_{w} f_{v}$ for gates v and w such that $2^{i}<\operatorname{deg}(v)-\operatorname{deg}(w) \leq 2^{i+1}$ and $\operatorname{deg}(v)<2 \operatorname{deg}(w)$. Furthermore, we will do this by adding a depth of $O(1)$ to the circuit and poly (d, s) many new gates maintaining set-multilinearity.

Stage i+1: We describe the construction at this stage in two parts:

Computing f_{v}

Let v be a gate in Φ such that $2^{i}<\operatorname{deg}(v) \leq 2^{i+1}$ and let $m=2^{i}$. By Claim 3, we have

$$
f_{v}=\sum_{t \in T} f_{t} \partial_{t} f_{v}=\sum_{t \in T} f_{t_{1}} f_{t_{2}} \partial_{t} f_{v},
$$

where T is the set of gates $t \in G_{m}$, with children t_{1} and t_{2} such that t is in Φ_{v}. Note that if t is not in Φ_{v}, then $\partial_{t} f_{v}=0$. Let $t \in T$ be a gate with inputs t_{1} and t_{2}. Thus. $m<\operatorname{deg}(t) \leq 2 m, \operatorname{deg}\left(t_{1}\right) \leq m, \operatorname{deg}\left(t_{2}\right) \leq m$. Hence $\operatorname{deg}(v)-\operatorname{deg}(t) \leq 2^{i+1}-2^{i}=2^{i}$ and $\operatorname{deg}(v) \leq 2^{i+1}<2 . \operatorname{deg}(t)$. Therefore, $f_{t_{1}}, f_{t_{2}}$ and $\partial_{t} f_{v}$ are already computed. Thus, in order to compute f_{v} we need $O(s)$ many \times gates and $O(1)$ many + gates. Overall, with $O\left(s^{2}\right)$ many new gates and $O(1)$ increase in depth we can compute all f_{v} such that $2^{i}<\operatorname{deg}(v) \leq 2^{i+1}$. Furthermore, we note that $f_{t_{1}}, f_{t_{2}}$ and $\partial_{t} f_{v}$ are all set-multilinear polynomials with disjoint index sets, and the union of their index sets is I_{v} for each $t \in T$. Thus, the new gates introduced all preserve set-multilinearity.

Computing $\partial_{w} f_{v}$

Let v and w be gates in Φ such that $2^{i}<\operatorname{deg}(v)-\operatorname{deg}(w) \leq 2^{i+1}$ and $\operatorname{deg}(v)<2 \operatorname{deg}(w)$. Let $m=2^{i}+\operatorname{deg}(w)$. Thus, $\operatorname{deg}(w) \leq m<\operatorname{deg}(v)<$ $2 \operatorname{deg}(w)$. Note that $\partial_{t} f_{v}=0$ if $t \notin T$. Hence by Claim 4 we can write

$$
\partial_{w} f_{v}=\sum_{t \in T} \partial_{w} f_{t} \partial_{t} f_{v},
$$

where T is the set of gates in Φ_{v} that are contained in G_{m}. For a gate $t \in T$, we have $\operatorname{deg}(t) \leq \operatorname{deg}(v)<2 \operatorname{deg}(w)$. Suppose t_{1} and t_{2} are the gates input to t in the circuit Φ, and $\operatorname{deg}\left(t_{1}\right) \geq \operatorname{deg}\left(t_{2}\right)$. Then we can write

$$
\partial_{w} f_{v}=\sum_{t \in T} f_{t_{2}} \partial_{w} f_{t_{1}} \partial_{t} f_{v}
$$

We claim that $f_{t_{2}}, \partial_{w} f_{t_{1}}$, and $\partial_{t} f_{v}$ are already computed.

- Since $\operatorname{deg}(v) \leq 2^{i+1}+\operatorname{deg}(w) \leq 2^{i+1}+\operatorname{deg}\left(t_{1}\right)=2^{i+1}+\operatorname{deg}(t)-\operatorname{deg}\left(t_{2}\right)$, we have $\operatorname{deg}\left(t_{2}\right) \leq 2^{i+1}+\operatorname{deg}(t)-\operatorname{deg}(v) \leq 2^{i+1}$. Hence $f_{t_{2}}$ is already computed (in first part of stage $i+1$).
- Since $\operatorname{deg}\left(t_{1}\right)-\operatorname{deg}(w) \leq 2^{i}$, the polynomial $\partial_{w} f_{t_{1}}$ is already computed in an earlier stage.
- Since $\operatorname{deg}(t)>m$, we have $\operatorname{deg}(v)-\operatorname{deg}(t) \leq \operatorname{deg}(v)-m \leq 2^{i+1}-2^{i}=2^{i}$.
- Thus, since $\operatorname{deg}(v) \leq 2^{i+1}+\operatorname{deg}(w) \leq 2\left(2^{i}+\operatorname{deg}(w)\right)<2 \operatorname{deg}(t)$, the polynomial $\partial_{t} f_{v}$ is already computed in an earlier stage.

As before, for each such pair of gates w and v, we can compute $\partial_{w} f_{v}$ with $O(s)$ new gates (using the polynomials already computed in previous stages), and this increases the circuit depth by $O(1)$. Doing this for all the pairs (w, v) implies $O\left(s^{3}\right)$ new gates are added in the process. Furthermore, the new gates included clearly also have the set-multilinearity property.

At the end of the $\log d$ stages, the overall size of the resulting set-multilinear circuit Ψ is $O\left(s^{3} \log d\right)$ and its depth is $O(\log d)$. This completes the proof of the theorem.

Set-Multilinear Circuits to ABPs

Theorem 5. Given a set-multilinear arithmetic circuit of size s and degree d over the field \mathbb{F} and over the variable set $X=\sqcup_{i=1}^{d} X_{i}$, computing $f \in \mathbb{F}[X]$, we can transform it, in time $s^{O(\log d)}$, into a set-multilinear $A B P$ of size $s^{O(\log d)}$ that computes f.

Proof. The proof of this theorem is fairly straightforward consequence of the depth reduction result (Theorem 2 in the previous section). By Theorem 2 we can assume to have computed a circuit Ψ of $\operatorname{size} O\left(s^{3} \log d\right)$ and depth $O(\log d)$ for computing f. By a standard procedure we transform the circuit Ψ into a formula F by duplicating the circuit at every gate. The resulting formula is of size $s^{O(\log d)}$, because at every level of the circuit there is a factor of s increase in the size (as the + gates have unbounded fanin). The formula F is clearly also homogeneous, set-multilinear, and of depth $O(\log d)$. The formula F is also semi-unbounded: the product gates are fanin 2 and plus gates have unbounded fanin.

Next, we can apply a standard transformation (for e.g., see [Nis91]) to transform the formula F into a homogeneous algebraic branching program (ABP). It is a bottom-up construction of the ABP: at a + gate we can do a "parallel composition" of the input ABPs to simulate the + gate. At a \times gate it is a sequential composition of the two ABPs. Since the formula F is set-multilinear, the resulting ABP is also easily seen to be a set-multilinear ABP .

3 A Lower Bound Result for Set-Multilinear ABPs

As we have shown in Theorem 2, we can simulate set-multilinear circuits of size s and degree d using set-multilinear ABPs of size $s^{O(\log d)}$. Thus, proving even a lower bound of $n^{\omega(\log n)}$ for set-multilinear ABPs computing the $n \times n$ Permanent polynomial PER_{n} would imply superpolynomial lower bounds for
general set-multilinear circuits computing PER_{n} which is a long-standing open problem.

However, in this section we show a lower bound result for set-multilinear ABPs with restricted type width, a notion that we now formally introduce.

Let P be a set-multilinear ABP computing a polynomial $f \in \mathbb{F}[X]$ of degree d with variable set $X=\sqcup_{i=1}^{d} X_{i}$. By definition, the ABP P is given by as layered directed acyclic graph with layers numbered $0,1, \ldots, d$. Each node v in layer k of the ABP is labeled by an index set $I_{v} \subseteq[d]$, and a degree k set-multilinear polynomial f_{v} over variables $\sqcup_{i \in I_{v}} X_{i}$ is computed at v by the ABP. We refer to I_{v} as the type of node v. The type width of the ABP at layer k is the number of different types labeling nodes at layer k.

The following proposition connects type width to the notion of read-once oblivious ABPs (ROABPs defined in [FS13]).

Proposition 6. Suppose P is a set-multilinear ABP computing a polynomial $f \in \mathbb{F}[X]$ of degree d with variable set $X=\sqcup_{i=1}^{d} X_{i}$ such that the type-width of P is 1 at each layer. Then P is in fact an ROABP which is defined by a suitable permutation on the index set $[d]$.

Proof. As each layer of P has type width one, the list of type $I_{0}=\emptyset \subset I_{1} \subset$ $\cdots \subset I_{d}$ gives an ordering of the index set, where the $i^{\text {th }}$ index in the ordering is $I_{i} \backslash I_{i-1}$. W.r.t. this ordering clearly P is an ROABP.

It is well-known that Nisan's rank argument Nis91 (originally used for lower bounding noncommutative ABP size) also yields exponential lower bounds for any ROABP computing PER_{n}. In particular, it implies an exponential lower bound for set-multilinear ABPs of type-width 1.

We can formulate a general rank-based approach for set-multilinear ABPs.
Let P be a set-multilinear ABP computing a polynomial $f \in \mathbb{F}[X]$ of degree d with variable set $X=\sqcup_{i=1}^{d} X_{i}$, with layers of the ABP numbered $0,1, \ldots, d$. For simplicity assume $\left|X_{i}\right|=n$ for each i. For each index set $I \subseteq[d]$ let M_{I} denote the set of all monomials of the form $\prod_{i \in I} x_{i j}$, where $x_{i j} \in X_{i}$ for each $i \in I$.

For every monomial $m \in M_{[d]}$ let

$$
S_{m}=\left\{\left(m_{1}, m_{2}\right) \mid m=m_{1} m_{2}, m_{1} \in M_{I}, m_{2} \in M_{[d] \backslash I} \text { for some } I \in\binom{[d]}{k}\right\} .
$$

For each k, we consider matrices M_{k} whose rows are labeled by monomials from

$$
\sqcup_{I \in\binom{[d]}{k}} M_{I},
$$

and columns are labeled by monomials from

$$
\sqcup_{I \in\binom{[d]}{k}} M_{[d] \backslash I} .
$$

with the property that for every monomial $m \in M_{[d]}$ its coefficient $f(m)$ in f satisfies

$$
\begin{equation*}
f(m)=\sum_{\left(m_{1}, m_{2}\right) \in S_{m}} M_{k}\left(m_{1}, m_{2}\right) . \tag{1}
\end{equation*}
$$

For each k, let $\operatorname{rank}_{k}(f)$ denote be the minimum rank attained by the $\operatorname{rank}\left(M_{k}\right)$ for any matrix M_{k} satisfying the above property. We have the following lower bound on the size of set-multilinear ABPs computing f, following Nisan's rank argument Nis91.

Theorem 7. Let $f \in \mathbb{F}[X]$ be a set-multilinear polynomial of degree d with variable set $X=\sqcup_{i=1}^{d} X_{i}$. Then any set-multilinear ABP computing f is of size at least $\sum_{k=0}^{d} \operatorname{rank}_{k}(f)$.

Proof. Let P be a minimum size set-multilinear ABP computing the polynomial f. Define matrices L_{k} and R_{k} as follows. Let $v_{1}, v_{2}, \ldots, v_{r}$ be the nodes in the $k^{\text {th }}$ layer of the ABP. Label the rows of matrix L_{k} by degree- k monomials from M_{I} for $I \in\binom{[d]}{k}$, and the columns of L_{k} by $v_{1}, v_{2}, \ldots, v_{r}$. The entry $L_{k}\left[m_{1}, v_{i}\right]$ is defined as the coefficient of monomial m_{1} in the polynomial computed at node v_{i}. The rows of R_{k} are labelled $v_{1}, v_{2}, \ldots, v_{r}$ and columns by degree $d-k$ monomials from $M_{[d] \backslash I}$ for $I \in\binom{[d]}{k}$. The entry $R_{k}\left[v_{i}, m_{2}\right]$ is defined as the coefficient of the monomial m_{2} in the (set-multilinear) ABP computed between node v_{i} and the sink node of the ABP.

By construction the product matrix $L_{k} R_{k}$ clearly satisfies Equation 1. The claim now follows, since for each $0 \leq k \leq d$, we have

$$
r \geq \operatorname{rank}\left(L_{k}\right) \geq \min \left\{\operatorname{rank}\left(L_{k}\right), \operatorname{rank}\left(R_{k}\right)\right\} \geq \operatorname{rank}_{k}(f)
$$

Therefore $\sum_{k=0}^{d} \operatorname{rank}_{k}(f)$ lower bounds the size of P.

3.1 Lower bounds for narrow set-multilinear ABPs

Definition 8. A set-multilinear ABP computing a degree d polynomial in $\mathbb{F}[X]$ such that $X=\sqcup_{i=1}^{d} X_{i}$ is said to be $w(d)$-narrow if the type-width of the $A B P$ at layer $d-w(d)$ is $O(w(d))$.
Theorem 9. Any $\left(n^{1 / 4}+o\left(n^{1 / 4}\right)\right)$-narrow set-multilinear ABP computing the permanent polynomial PER_{n} requires size $2^{\Omega\left(n^{1 / 4}\right)} \sqrt{1}$

Proof. Let P be a set-multilinear $n^{1 / 4}+o\left(n^{1 / 4}\right)$-narrow ABP computing PER_{n}. Let $k=n^{1 / 4}+o\left(n^{1 / 4}\right)$ be the layer with type-width $O\left(n^{1 / 4}\right)$, and V_{k} denote the set of nodes in the $k^{t h}$ layer of P. For each node $v \in V_{k}$ let I_{v} denote its index set. We know that $\left|I_{v}\right|=k$.
Claim 10. $\left|\bigcap_{v \in V_{k}} I_{v}\right|=n-O(\sqrt{n})$.

[^0]Proof. We note that

$$
\begin{aligned}
\left|\bigcap_{v \in V_{k}} I_{v}\right| & =n-\left|\bigcup_{v \in V_{k}} \overline{I_{v}}\right| \\
& \geq n-\sum_{v \in V_{k}}\left|\overline{I_{v}}\right| \\
& \geq n-c n^{1 / 4}\left|V_{k}\right| \\
& =n-O\left(n^{1 / 2}\right) .
\end{aligned}
$$

Let $S=\bigcup_{v \in V_{k}} \overline{I_{v}}$. Note that $|S|=O(\sqrt{n})$, as already used in the above claim. Likewise, $X=\bigcap_{v \in V_{k}} I_{v}$ is of size $|X|=n-O(\sqrt{n})$. Fix a constant $\alpha>0$ such that $\alpha \sqrt{n}>|S|$. Now, we choose an index set Z containing S such that $|Z|=\alpha \sqrt{n}$, and choose $Y \subseteq X \backslash Z$ such that $|Y|=\alpha \sqrt{n}$.

We are going to focus on the permanent of the $2 \alpha \sqrt{n} \times 2 \alpha \sqrt{n}$ submatrix consisting of variable $\left\{X_{i j} \mid i, j \in Y \cup Z\right\}$. To that end, we first set some variables of PER_{n} to constants as follows:

$$
X_{i j}= \begin{cases}1, & \text { if } i \notin Y \cup Z \text { and } i=j \\ 0, & \text { if } i \notin Y \cup Z \text { and } i \neq j\end{cases}
$$

The resulting ABP, after these substitutions, clearly computes $\mathrm{PER}_{2 \alpha \sqrt{n}}$ on the variables corresponding to index set $Y \cup Z$. Furthermore, each node $v \in V_{k}$ now computes a homogeneous set-multilinear polynomial of the same degree $2 \alpha \sqrt{n}-r$, where $r=n^{1 / 4}+o\left(n^{1 / 4}\right)$ is the same for each $v \in V_{k}$.

Now, we further simplify entries in the submatrix indexed by $Y \cup Z$. In the sequel let $\nu=\alpha \sqrt{n}$, and let

$$
\begin{aligned}
Y & =\left\{i_{1}, i_{2} \ldots, i_{\nu}\right\}, \text { and } \\
Z & =\left\{j_{1}, j_{2} \ldots, j_{\nu}\right\} .
\end{aligned}
$$

In the submatrix indexed by $Y \cup Z$ we renumber rows and columns so that the indexing order is $i_{1}, j_{1}, i_{2}, j_{2}, \ldots, i_{\nu}, j_{\nu}$. We set to zero all variables $X_{i j}$ if $i \neq j$ and $\{i, j\} \neq\left\{i_{s}, j_{s}\right\}$ for some $1 \leq s \leq \nu$. The resulting submatrix is now block diagonal with 2×2 blocks along the diagonal, each block indexed by variables $\left\{i_{s}, j_{s}\right\}$ for $1 \leq s \leq \nu$. In all there are 2^{ν} many nonzero monomials in the permanent of this submatrix. After these simplifications, the resulting ABP computes the permanent of this block diagonal matrix. Let A denote this block diagonal matrix.

Let \mathcal{M} denote the set of all, 2^{ν} many, degree ν monomials of the form $\prod_{a \in Y, b \in S} X_{a b}$, where $S \in\binom{Y \cup Z}{r}$. Likewise, let \mathcal{M}^{\prime} denote the set of 2^{ν} many degree ν monomials of the form $\prod_{a \in Z, b \in T} X_{a b}$, where $T \in\binom{Y \cup Z}{r}$.

We now define two matrices L_{k} and R_{k} as follows: The rows of L_{k} are labeled by monomials in \mathcal{M}. The columns of L_{k} are labeled by pairs $\left(v, m^{\prime}\right)$, where $v \in V_{k}$ and m^{\prime} is a monomial of degree $\nu-r$ on variables $X_{i j}$, where $i \in Y \cup Z$.

The entries of L_{k} are defined as follows: $L_{k}\left(m,\left(v, m^{\prime}\right)\right)$ is the coefficient of monomial mm^{\prime} in polynomial computed by ABP at node v.

The matrix R_{k} has its rows labeled by pairs $\left(v, m^{\prime}\right)$, where $v \in V_{k}$ and m^{\prime} is a monomial of degree $\nu-r$ on variables $X_{i j}$, where $i \in Y \cup Z$. The columns of R_{k} are labeled by the monomials in \mathcal{M}^{\prime}.

The entries of R_{k} are defined as follows: If m^{\prime} does not divide m then $R_{k}\left(\left(v, m^{\prime}\right), m\right)=0$. If m^{\prime} divides m then $R_{k}\left(\left(v, m^{\prime}\right), m\right)$ is defined as the coefficient of the monomial m in the ABP computed between node v and the sink node of the ABP.

Thus, the product matrix $L_{k} R_{k}$ is a $2^{\nu} \times 2^{\nu}$ matrix whose rows are labeled by monomials from \mathcal{M} and columns by monomials from \mathcal{M}^{\prime}.

By assumption, the simplified ABP computes the permanent of block diagonal matrix A described above. Hence, in the product matrix $L_{k} R_{k}$ the $\left(m_{1}, m_{2}\right)^{t h}$ entry is the coefficient of the monomial $m_{1} m_{2}$ in $\operatorname{Perm}(A)$.

We now lower bound the rank of $L_{k} R_{k}$ following Nisan's argument Nis91]. For subsets $S, T \subset Y \cup Z$ such that $S \cap\left\{i_{s}, j_{s}\right\}=1$ and $T \cap\left\{i_{s}, j_{s}\right\}=1$, $1 \leq s \leq \nu$, consider the $(S, T)^{t h}$ submatrix of $L_{k} R_{k}$ whose rows are labeled by degree ν monomials of the form $\prod_{i \in Y, j \in S} X_{i j}$ and columns by degree ν monomials of the form $\prod_{i \in Z, j \in T} X_{i j}$. We observe that the (S, T) submatrix has nonzero entries precisely when $S \cap T=\emptyset$. Hence the rank of $L_{k} R_{k}$ is lower bounded by 2^{ν}, which is the number of choices of S. On the other hand, the rank of $L_{k} R_{k}$ is upper bounded by the number of columns of L_{K} which is $\left|V_{k}\right| 2^{\nu-r}$. Hence we have

$$
2^{\nu} \leq \operatorname{rank}\left(L_{k} R_{k}\right) \leq\left|V_{k}\right| 2^{\nu-r} .
$$

Since $r=n^{1 / 4}-o\left(n^{1 / 4}\right)$, it follows that $\operatorname{rank}\left(L_{k} R_{k}\right) \geq 2^{r}=2^{\Omega\left(n^{1 / 4}\right)}$ which completes the proof.

Remark 11. The proof of the above theorem can be easily modified to show a more general result: Any $n^{1 / 2-\epsilon}$-narrow set-multilinear ABP for PER_{n} requires size $2^{n^{\Omega(1)}}$.

As a consequence of Theorem 9 we immediately obtain the following lower bound on the size of a sum of $n^{1 / 2-\epsilon}$ many ROABPs for computing the permanent.

Corollary 12. Let $P_{i}, 1 \leq i \leq r$ be ROABPs such that $\sum_{i=1}^{r} P_{i}$ is the permanent polynomial PER_{n} (or for the determinant polynomial DET_{n}). If $r \leq$ $n^{1 / 2-\epsilon}$ then at least one of the P_{i} is of size $2^{n^{\Omega(1)}}$.

4 Interval multilinear circuits and ABPs

For variable partition $X=\sqcup_{i=1}^{d} X_{i}$ let $f \in \mathbb{F}[X]$ be a set-multilinear polynomial.
For a permutation $\sigma \in S_{d}$, a σ-interval multilinear circuit C for computing f is a special kind of set-multilinear arithmetic circuit: for every gate of the
circuit the corresponding index set is a σ-interval $\{\sigma(i), \sigma(i+1), \ldots, \sigma(j)\}$, $1 \leq i \leq j \leq d$.

Similarly, a σ-interval multilinear $A B P$ is a set-multilinear ABP such that the index set associated to every node is some σ-interval.

The aim of the present section is to compare the computational power of interval multilinear circuits with general set-multilinear circuits. It is clear that σ-interval multilinear circuits are restricted by the ordering of the indices. In essence, σ-interval multilinear circuits are restricted to compute like noncommutative circuits (with respect to the ordering prescribed by σ). This property needs to be exploited to prove the separations. We show the following two results.

1. We show that there are monotone set-multilinear polynomials $f \in \mathbb{R}[X]$ that have monotone set-multilinear circuits (even ABPs) of linear in d size, but requires $2^{\Omega(d)}$ size monotone σ-interval multilinear circuits for every $\sigma \in S_{d}$.
2. Assuming the sum-of-squares conjecture HWY10 we show that the polynomials constructed for the above even require $2^{\Omega(d)}$ size general σ-interval multilinear circuits for every $\sigma \in S_{d}$.

A new aspect is that the polynomial we construct is only partially explicit. We use the probabilistic method to pick certain parameters that define the polynomial.

The polynomial construction

Let $X=\sqcup_{i=1}^{2 d} X_{i}$ be the variable set, where

$$
X_{i}=\left\{x_{0, i}, x_{1, i}\right\}, 1 \leq i \leq 2 d
$$

For every binary string $b \in\{0,1\}^{d}$ we define the monomials:

$$
\begin{aligned}
w_{b} & =\prod_{i=1}^{d} x_{b_{i}, i} \\
w_{b}^{\prime} & =\prod_{i=1}^{d} x_{b_{i}, d+i}
\end{aligned}
$$

We define the set-multilinear polynomial $P \in \mathbb{F}[X]$ as follows:

$$
P=\sum_{\bar{b} \in\{0,1\}^{d}} w_{b} w_{b}^{\prime}
$$

For any permutation $\sigma \in S_{2 d}$ permuting the indices in $[2 d]$, we define monomials:

$$
\begin{aligned}
\sigma\left(w_{b}\right) & =\prod_{i=1}^{d} x_{b_{i}, \sigma(i)} \\
\sigma\left(w_{b}^{\prime}\right) & =\prod_{i=1}^{d} x_{b_{i}, \sigma(d+i)}
\end{aligned}
$$

and the corresponding polynomial $\sigma(P)$ as follows:

$$
\sigma(P)=\sum_{\bar{b} \in\{0,1\}^{d}} \sigma\left(w_{b}\right) \sigma\left(w_{b}^{\prime}\right) .
$$

Remark 13. In the polynomial $\sigma(P)$ we refer to the indices $\sigma(j)$ and $\sigma(d+j)$ as a matched pair of indices, since in the monomial $\sigma\left(w_{b}\right) \sigma\left(w_{b}^{\prime}\right)$ it is required that the variables $x_{b_{j}, \sigma(j)}$ and $x_{b_{j}, \sigma(d+j)}$ have the same first index b_{j}. For $\sigma=i d$, the matched pairs are $(j, d+j)$ for $1 \leq j \leq d$.

Lemma 14. The set-multilinear polynomial $\sigma(P)$ can be computed by a monotone set-multilinear $A B P$ of size $O(d)$.

Proof. The set-multilinear ABP computes the polynomial at layer 2

$$
x_{0, \sigma(1)} x_{0, \sigma(d+1)}+x_{1, \sigma(1)} x_{1, \sigma(d+1)},
$$

where the index set at that layer is $\{\sigma(1), \sigma(d+1)\}$. At the $2 i^{\text {th }}$ layer suppose the polynomial computed by the ABP is

$$
\sigma(P)^{(i)}=\sum_{\bar{u} \in\{0,1\}^{i}} \prod_{j=1}^{i} x_{u_{j}, \sigma(j)} \prod_{j=1}^{i} x_{u_{j}, \sigma(d+j)},
$$

where the index set is $\{\sigma(1), \sigma(2), \ldots, \sigma(i)\} \sqcup\{\sigma(d+1), \sigma(d+2), \ldots, \sigma(d+i)\}$. Then at layer $2 i+2$ we can compute

$$
\sigma(P)^{(i+1)}=P^{(i)} x_{0, \sigma(i+1)} x_{0, \sigma(d+i+1)}+P^{(i)} x_{1, \sigma(i+1)} x_{1, \sigma(d+i+1)} .
$$

We observe that the ABP remains set-multilinear. Furthermore, it is monotone. Clearly, at layer $2 d$ the ABP computes the polynomial $\sigma(P)$ as desired.

An immediate consequence is the following corollary.
Corollary 15. For any collection of permutations $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{s} \in S_{2 d}$ the polynomial $\sum_{j=1}^{s} \sigma_{i}(P)$ can be computed by a monotone set-multilinear ABP of size $O(s d)$.

We will show that there exist a set of d permutations $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{d} \in S_{2 d}$ with the following property: for any permutation $\tau \in S_{2 d}$ there is a σ_{i} from this set such that any τ-interval multilinear circuit that computes $\sigma_{i}(P)$ requires size $2^{\Omega(d)}$.

Note that, in contrast, given a $\sigma(P)$ there is always a permutation $\tau \in S_{2 d}$ such that $\sigma(P)$ can be computed by a small τ-interval multilinear circuit. Indeed, the ABP computing $\sigma(P)$ described in Lemma 14 is an interval-multilinear ABP w.r.t. the ordering $\sigma(1), \sigma(d+1), \sigma(2), \sigma(d+2), \ldots, \sigma(d), \sigma(2 d)$.

Interval multilinear circuits and noncommutative circuits

We first observe that a τ-interval multilinear circuit computing a set-multilinear polynomial in $\mathbb{F}[X], X=\sqcup_{i=1}^{d} X_{i}$, is essentially like a noncommutative circuit computing a noncommutative polynomial over the variables X, whose monomials can be considered as words of the form $x_{i_{1}} x_{i_{2}} \ldots x_{i_{d}}$, where $x_{i_{j}} \in X_{\tau(j)}$ for $1 \leq j \leq d$.

In HWY10, Hrubes et al have related the well-known sum-of-squares (in short, SOS) conjecture (also see [Sha00]) to lower bounds for noncommutative arithmetic circuits. Our results in this section are based on their work. We recall the conjecture.

The sum-of-squares (SOS) conjecture: Consider the question of expressing the biquadratic polynomial

$$
\operatorname{SOS}_{k}\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, x_{k}\right)=\left(\sum_{i \in[k]} x_{i}^{2}\right)\left(\sum_{i \in[k]} y_{i}^{2}\right)
$$

as a sum of squares $\left(\sum_{i \in[s]} f_{i}^{2}\right)$ for the least possible s, where each f_{i} is a homogeneous bilinear polynomial. The conjecture states that $s=\Omega\left(k^{1+\epsilon}\right)$ over the field of complex numbers \mathbb{C} (or the algebraic closure of any field \mathbb{F} such that $\operatorname{char}(\mathbb{F}) \neq 2)$.

The following lower bound is shown in HWY10 assuming the SOS conjecture.

Theorem 16. HWY10 Assuming the SOS conjecture over field \mathbb{F}, any noncommutative circuit computing the polynomial $I D=\sum_{w \in\left\{x_{0}, x_{1}\right\}^{d}} w w$ in noncommuting variables x_{0} and x_{1} requires size $2^{\Omega(d)}$.

It immediately implies the following conditional lower bound for interval multilinear circuits.

Corollary 17. Assuming the SOS conjecture, for any $\sigma \in S_{2 d}$ a σ-interval multilinear circuit computing the set-multilinear polynomial $\sigma(P)$ requires size $2^{\Omega(d)}$.

Remark 18. The connection between the SOS conjecture and lower bounds shown in [HWY10] for the noncommutative polynomial $\sum_{w \in\left\{x_{0}, x_{1}\right\}_{d}} w w$ is made by considering the polynomial as $\sum_{w_{1}, w_{2} \in\left\{x_{0}, x_{1}\right\}^{d / 2}} w_{1} w_{2} w_{1} w_{2}$. Then the words w_{1} and w_{2} are treated as single variables, and allowing w_{1} and w_{2} to commute transforms the polynomial into $\left(\sum w_{1}^{2}\right)\left(\sum w_{2}^{2}\right)$. If $\sum_{w \in\left\{x_{0}, x_{1}\right\}^{d}} w w$ has a $2^{o(d)}$ size noncommutative circuit, then it turns out that $\left(\sum w_{1}^{2}\right)\left(\sum w_{2}^{2}\right)$ can be written as a small sum-of-squares, contradicting the conjecture.

From the above remark we can deduce the following corollary which is stronger than Corollary 17 .

Corollary 19. For even d, partition $[2 d]$ into four intervals of size $d / 2$ each: $I_{1}=[1 \ldots d / 2], I_{2}=[d / 2+1 \ldots d], I_{3}=[d+1 \ldots 3 d / 2]$, and $I_{4}=[3 d / 2+$
$1 \ldots 2 d]$. Let $\sigma \in S_{2 d}$ be any permutation such that $\sigma\left(I_{j}\right)=I_{j}, 1 \leq j \leq 4$. Then, assuming the SOS conjecture, any id-interval multilinear circuit computing the polynomial $\sigma(P)$ requires size $2^{\Omega(d)}$.

Proof. By definition, $\sigma(P)=\sum_{b \in\{0,1\}^{d}} \sigma\left(w_{b}\right) \sigma\left(w_{b}^{\prime}\right)$. Since σ stabilizes each $I_{j}, 1 \leq j \leq 4$, we can write $\sigma\left(w_{b}\right)=w_{1} w_{2}$ and $\sigma\left(w_{b}^{\prime}\right)=w_{1}^{\prime} w_{2}^{\prime}$, where the matched pairs are between w_{1} and w_{1}^{\prime}, and between w_{2} and w_{2}^{\prime}, respectively. Now, by substituting the same variable for each matched pair, we can obtain the polynomial $\left(\sum w_{1}^{2}\right)\left(\sum w_{2}^{2}\right)$. As explained in the proof of Corollary 17 . the argument in [HWY10] can now be applied to yield the circuit size lower bound of $2^{\Omega(d)}$, assuming the SOS conjecture for the biquadratic polynomial $\left(\sum w_{1}^{2}\right)\left(\sum w_{2}^{2}\right)$, treating each w_{1} and w_{2} as individual variables.

We will use the probabilistic method to show the existence of the set of permutations $\sigma_{i}, 1 \leq i \leq d$ in $S_{2 d}$, such that for each $\tau \in S_{2 d}$ there is some $\sigma_{i}(P), i \in[d]$ that requires size $2^{\Omega(d)} \tau$-interval multilinear circuits. We will require the following concentration bound.

Theorem 20. [DP09, Theorem 5.3, page 68] Let X_{1}, \cdots, X_{n} be any n random variables and let f be a function of $X_{1}, X_{2} \ldots, X_{n}$. Suppose for each $i \in[n]$ there is $c_{i} \geq 0$ such that

$$
\left|\mathbb{E}\left[f \mid X_{1}, \cdots, X_{i}\right]-\mathbb{E}\left[f \mid X_{1}, \cdots, X_{i-1}\right]\right| \leq c_{i}
$$

Then for any $t>0$, we have the bound $\operatorname{Prob}[f<\mathbb{E}[f]-t] \leq \exp \left(-\frac{2 t^{2}}{c}\right)$, where $c=\sum_{i \in[n]} c_{i}^{2}$.

Lemma 21. Let $\sigma \in S_{2 d}$ be a permutation picked uniformly at random. For any $\tau \in S_{2 d}$, the probability that $\sigma(P)$ is computable by a τ-interval multilinear circuit of size $2^{o(d)}$ is bounded by $e^{-\Omega(d)}$, assuming the SOS conjecture.

Proof. In the polynomial $P=\sum_{b \in\{0,1\}^{d}} w_{b} w_{b}^{\prime}$ the matched pairs, as defined earlier, are $(i, d+i), 1 \leq i \leq d$. As in Corollary 19, we partition the index set $[2 d]$ into four consecutive $d / 2$-size intervals $I_{1}=[1 \ldots d / 2], I_{2}=[d / 2+1 \ldots d]$, $I_{3}=[d+1 \ldots 3 d / 2]$, and $I_{4}=[3 d / 2+1 \ldots 2 d]$. Note that $d / 2$ of the matched pairs are between I_{1} and I_{3} and the remaining $d / 2$ between I_{2} and I_{4}. Consider the following two subsets of matched pairs of size $d / 8$ each:

$$
\begin{aligned}
& E_{1}=\{(i, d+i) \mid 1 \leq i \leq d / 8\} \\
& E_{2}=\{(d / 2+i, 3 d / 2+i) \mid 1 \leq i \leq d / 8\} .
\end{aligned}
$$

The pairs in E_{1} are between I_{1} and I_{3} and pairs in E_{2} are between I_{2} and I_{4}. Let $\sigma \in S_{2 d}$ be a permutation picked uniformly at random. We say $(i, d+i) \in E_{1}$ is good if $\sigma(i) \in I_{1}$ and $\sigma(d+i) \in I_{3}$. Similarly, $(d / 2+i, 3 d / 2+i) \in E_{2}$ is called good if $\sigma(d / 2+i) \in I_{2}$ and $\sigma(3 d / 2+i) \in I_{4}$. Let $X_{i}, 1 \leq i \leq d / 8$, be indicator random variables which take the value 1 iff the edge $(i, d+i) \in$ E_{1} is good. Similarly, define indicator random variables X_{i}^{\prime} corresponding to $\left((d / 2+i, 3 d / 2+i) \in E_{2}, 1 \leq i \leq d / 8\right.$. Note that

$$
\begin{aligned}
1 / 64 & \leq \operatorname{Prob}_{\sigma \in S_{2 d}}\left[X_{i}=1\right] \leq 1 / 16 \\
1 / 64 & \leq \operatorname{Prob}_{\sigma \in S_{2 d}}\left[X_{i}^{\prime}=1\right] \leq 1 / 16 .
\end{aligned}
$$

Let $f=\sum_{i=1}^{d / 8} X_{i}$ and $f^{\prime}=\sum_{i=1}^{d / 8} X_{i}^{\prime}$. Clearly,

$$
\begin{aligned}
d / 512 & \leq \mathrm{E}[f] \leq d / 128 \\
d / 512 & \leq \mathrm{E}\left[f^{\prime}\right] \leq d / 128
\end{aligned}
$$

Furthermore, we also have for each $i: 1 \leq i \leq d / 8$

$$
\begin{array}{r}
\left|\mathbb{E}\left[f \mid X_{1}, X_{2}, \ldots, X_{i}\right]-\mathbb{E}\left[f \mid X_{1}, X_{2}, \ldots, X_{i-1}\right]\right| \leq 1 / 16 \\
\left|\mathbb{E}\left[f^{\prime} \mid X_{1}^{\prime}, X_{2}^{\prime}, \ldots, X_{i}^{\prime}\right]-\mathbb{E}\left[f^{\prime} \mid X_{1}^{\prime}, X_{2}^{\prime}, \ldots, X_{i-1}^{\prime}\right]\right| \leq 1 / 16 .
\end{array}
$$

Applying Theorem 20 we deduce that

$$
\begin{gathered}
\operatorname{Prob}_{\sigma \in S_{2 d}}\left[f<\frac{d}{1024}\right] \leq e^{-\alpha d} \\
\operatorname{Prob}_{\sigma \in S_{2 d}}\left[f^{\prime}<\frac{d}{1024}\right] \leq e^{-\alpha d}
\end{gathered}
$$

where $\alpha>0$ is some constant independent of d. Hence,

$$
\operatorname{Prob}_{\sigma \in S_{2 d}}\left[f \geq \frac{d}{1024} \text { and } f^{\prime} \geq \frac{d}{1024}\right] \geq 1-2 e^{-\alpha d}
$$

Thus, with probability $1-2 e^{-\alpha d}$ there are $d / 1024$ pairs $(\sigma(i), \sigma(d+i))$ such that $\sigma(i) \in I_{1}$ and $\sigma(d+i) \in I_{3}$, and there are $d / 1024$ pairs $(\sigma(d / 2+$ $i), \sigma(3 d / 2+i))$ such that $\sigma(d / 2+i) \in I_{2}$ and $\sigma(3 d / 2+i) \in I_{4}$. If we set all other variables in the polynomial $\sigma(P)$ to 1 , we can apply Corollary 19 to the resulting polynomial (with d replaced by $d / 1024$ in the corollary) which will yield the lower bound of $2^{\Omega(d)}$ for any $i d$-interval multilinear circuit (here $i d$-interval multilinear circuit means interval-multilinear with respect to the standard ordering $\{1,2 \ldots, d\}$) computing $\sigma(P)$ with probability $1-2 e^{-\alpha d}$. For any τ-interval multilinear circuit too the same lower bound applies because $\tau \sigma$ is also a random polynomial in $S_{2 d}$ with uniform distribution.

We are now ready to state and prove the main result of this section.
Theorem 22. There is a set-multilinear polynomial $f \in \mathbb{F}[X]$, where $X=$ $\sqcup_{i=1}^{\log d+2 d} X_{i}$ and $X_{i}=\left\{x_{0, i}, x_{1, i}\right\}, 1 \leq i \leq \log d+2 d$ such that f has an $O\left(d^{2}\right)$ size monotone set-multilinear ABP and, assuming the SOS conjecture, for any $\tau \in S_{\log d+2 d}$ any τ-interval multilinear circuit computing f has size $2^{\Omega(d)}$.

Proof. By Lemma 21, if we pick permutations $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{d} \in S_{2 d}$ independently and uniformly at random then, assuming the SOS conjecture, the probability that every $\sigma_{i}(P)$ can be computed by some τ-interval multilinear circuit is bounded by $2^{d} e^{-\alpha d^{2}}=e^{-\Omega\left(d^{2}\right)}$. As there are only ($2 d$)! many permutations τ, by the union bound it follows that there exist permutations $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{d} \in S_{2 d}$ such that for any τ at least one of the $\sigma_{i}(P)$ requires $2^{\Omega(d)}$ size τ-interval multilinear circuits. We will define the polynomial f by "interpolating" the $\sigma_{i}(P)$, and we need the fresh $\log d$ variable sets in order to do the interpolation. For each $c: 1 \leq c \leq d$, let its binary encoding also be denoted by c, where $c \in\{0,1\}^{\log d}$. Let u_{c} denote the monomial

$$
u_{i}=\prod_{j=2 d+1}^{2 d+\log d} x_{c_{j}, j}
$$

Hence the monomial u_{c} can also be seen as an encoding of $c: 1 \leq c \leq d$. We define the polynomial f as

$$
f=\sum_{c \in\{0,1\}^{\log d}} u_{c} \sigma_{c}(P)
$$

Clearly, $f \in \mathbb{F}[X]$ and for each $0-1$ assignment to the variables in $X_{j}, 2 d+1 \leq$ $j \leq 2 d+\log d$, the polynomial f becomes $\sigma_{c}(P)$.

Now, if f had a $2^{o(d)}$ size τ-interval multilinear circuit for any $\tau \in S_{2 d}$, by different 0-1 assignments to variables in $X_{j}, 2 d+1 \leq j \leq 2 d+\log d$ we will obtain $2^{o(d)}$ size τ-interval multilinear circuit for each $\sigma_{c}(P)$ which is a contradiction.

Finally, we note that for monotone τ-interval multilinear circuits, the lower bound results of Theorem 16, Corollaries 17 and 19, and Lemma 21 hold unconditionally (without assuming the SOS conjecture) by a direct rank argument. As a consequence we have the following.

Theorem 23. There is a set-multilinear polynomial $f \in \mathbb{F}[X]$, where $X=$ $\sqcup_{i=1}^{\log d+2 d} X_{i}$ and $X_{i}=\left\{x_{0, i}, x_{1, i}\right\}, 1 \leq i \leq \log d+2 d$ such that for any $\tau \in$ $S_{\log d+2 d}$ any monotone τ-interval multilinear circuit computing f has size $2^{\Omega(d)}$.

Proof. The polynomial f defined in Theorem 22, which has small monotone setmultilinear ABPs, requires $2^{\Omega(d)}$ size monotone τ-interval multilinear circuits for all $\tau \in S_{2 d+\log d}$, as explained above.

5 Proof tree restrictions on set-multilinear circuits

In this section we study set-multilinear circuits that satisfy a "semantic" restriction on the proof trees of monomials computed by them. Specifically, we consider two such restrictions and show superpolynomial lower bounds for setmultilinear circuits with such restrictions computing the Permanent.

For an arithmetic circuit C, a proof tree for a monomial m is a multiplicative subcircuit of C rooted at the output gate defined by the following process starting from the output gate:

- At each + gate retain exactly one of its input gates.
- At each \times gate retain both its input gates.
- Retain all inputs that are reached by this process.
- The resulting subcircuit is multiplicative and computes the monomial m (with some coefficient).

Let C be a set-multilinear circuit computing $f \in \mathbb{F}[X]$ for variable partition $X=\sqcup_{i=1}^{d} X_{i}$. Then any proof tree for a monomial is, in fact, a binary tree with leaves labeled by variables (ignoring the leaves labeled by constants) and internal nodes labeled by gate names (the \times gates of C occurring in the proof tree). By set-multilinearity, in each proof tree there is exactly one variable from each subset X_{i}, and each variable occurs at most once in a proof tree.

Definition 24. A proof tree type T for a set-multilinear circuit C computing a degree d polynomial in $\mathbb{F}[X]$ is a binary tree with d leaves. Each node v of T is labeled by an index set $I_{v} \subseteq[d]$: The root is labeled by [d], each leaf is labeled by a distinct singleton set $[i], 1 \leq i \leq d$, and if v has children v_{1} and v_{2} in the tree then $I_{v}=I_{v_{1}} \sqcup I_{v_{2}}$. For any tree type T, the corresponding truncated tree type \hat{T} is the subtree of T obtained by deleting all nodes v such that $\left|I_{v}\right| \leq d / 3$. Notice that any truncated tree type \hat{T} is a binary tree with at most two leaves (although its depth could be unbounded).

We introduce some notation. Let C be a set-multilinear circuit for variable partition $X=\sqcup_{i=1}^{d} X_{i}$. Let $m \in X^{d}$ be any degree d monomial.

- The set of all proof trees of m in circuit C is denoted $\mathcal{P}_{C, m}$.
- The set of all proof tree types of m in circuit C is denoted $\mathcal{T}_{C, m}$.
- The set of all truncated proof tree types of m in circuit C is denoted $\hat{\mathcal{T}}_{C, m}$.

Note that, in general, monomial m can have many proof trees. For every proof tree in $\mathcal{P}_{C, m}$ there is a corresponding proof tree type in $\mathcal{T}_{C, m}$ obtained by dropping variable and gate names from the proof tree and labeling the nodes instead with the corresponding index sets.

Definition 25 (Property $\mathcal{U} \mathcal{T})$. Let C be a set-multilinear circuit with variable partition $X=\sqcup_{i=1}^{d} X_{i}$: Circuit C is said to have Property $\mathcal{U T}$ if for each monomial $m \in X^{d}$ all its proof trees have the same truncated proof tree type. I.e. $\hat{\mathcal{T}}_{C, m}$ is a set of size at most 1 for each m. Notice that for $m \neq m^{\prime}$ we can have $\hat{\mathcal{T}}_{C, m} \neq \hat{\mathcal{T}}_{C, m^{\prime}}$.

Theorem 26. Any set-multilinear circuit C satisfying Property $\mathcal{U T}$ w.r.t. the variable partition $X=\sqcup_{i=1}^{n} X_{i}$, where $X_{i}=\left\{X_{i j} \mid 1 \leq j \leq n\right\}$, such that C computes the permanent polynomial PER_{n} requires size $2^{\Omega(\bar{n})}{ }^{2}$

[^1]Proof. Suppose C is a size s set-multilinear circuit satisfying Property $\mathcal{U} \mathcal{T}$, computing the permanent polynomial PER_{n}. Let $G_{n / 3}$ denote the set of all product gates g in C such that $\operatorname{deg}(g)>n / 3$ and $\operatorname{deg}\left(g_{1}\right) \leq n / 3$ and $\operatorname{deg}\left(g_{2}\right) \leq$ $n / 3$, where g_{1} and g_{2} are the gates that are input to g. It follows that $n / 3<$ $\operatorname{deg}(g) \leq 2 n / 3$. Furthermore, every proof tree of the circuit C has at least one gate from $G_{n / 3}$ and at most two gates from $G_{n / 3}$.

Consequently, by pigeon-hole principle there is an index set $I \subseteq[n]$, such that truncated proof trees of at least $n!/ s$ many monomials of PER_{n} will have a leaf in $G_{n / 3}^{I}$, where $G_{n / 3}^{I} \subseteq G_{n / 3}$ denotes the set

$$
G_{n / 3}^{I}=\left\{g \in G_{n / 3} \mid \text { index set of } g \text { is } I\right\} .
$$

We will lower bound $\left|G_{n / 3}^{I}\right|$. For $g \in G_{n / 3}^{I}$ let C_{g} be the subcircuit of C rooted at the gate g. Let $\partial_{g} C$ denote the partial derivative of the output gate of C w.r.t. gate g as defined in Section 2.
Notice that circuit for $\partial_{g} C$ can be obtained from C as follows:

- For all gate $h \in G_{n / 3}^{I}$ such that $h \neq g$, label 0 for all outgoing edges of h.
- Replace gate g with constant 1 .
- For all gate $g^{\prime} \in G_{n / 3} \backslash\left(G_{n / 3}^{I} \cup G_{n / 3}^{\bar{T}}\right)$, label 0 for all outgoing edges of g^{\prime}.

Consider the circuit C^{\prime} defined as follows:

$$
\begin{equation*}
C^{\prime}=\sum_{g \in G_{n / 3}^{I}} C_{g} \partial_{g} C . \tag{2}
\end{equation*}
$$

Since C_{g} and $\partial_{g} C$ are both circuits of size at most s, clearly the size of C^{\prime} is bounded by s^{2}. By choice of I there are at least $n!/ s$ monomials m of PER_{n} such that $\hat{\mathcal{T}}_{C, m}$ has a leaf node labeled I. Thus, for every proof tree in $\mathcal{P}_{C, m}$ there is a gate g in $G_{n / 3}^{I}$.

Crucially, we claim the following.
Claim 27. In the polynomial computed by C^{\prime} :

- The coefficient of every monomial m of PER_{n} such that $\hat{\mathcal{T}}_{C, m}$ has a leaf node labeled I is 1.
- The coefficient of any monomial $m \in X^{n}$ be any monomial which does not occur in PER_{n} is 0 .

Both parts of the claim follow from Property $\mathcal{U} \mathcal{T}$. For a monomial $m \in X^{n}$, if some proof tree in $\mathcal{P}_{C, m}$ has a gate $G_{n / 3}^{I}$, then every proof tree in $\mathcal{P}_{C, m}$ has a gate in $G_{n / 3}^{I}$. Hence every proof tree of such a monomial m is accounted for in the circuit C^{\prime}. Since all proof trees are accounted for, the net contribution of any such monomial m is the coefficient of m in PER_{n}.

We now define a matrix L, with respect to index set I, as follows: the rows of L are indexed by monomials m_{1} of index set I. The columns of L are indexed
by gates $t \in G_{n / 3}^{I}$. The entry $L\left[m_{1}, t\right]$ is the coefficient of the monomial m_{1} in the subcircuit computed at gate t.

Next, we define a matrix R with respect to index set I. The rows of R are indexed by gates $t \in G_{n / 3}^{I}$, and the columns of R are indexed by monomials m_{2} such that m_{2} has index set $[d] \backslash I$. The entry $R\left[t, m_{2}\right]$ is the coefficient of m_{2} in the polynomial $\partial_{t} C^{\prime}$.

Let M_{I} be set of nonzero monomials of C^{\prime}. By the above claim, M_{I} is a subset of the nonzero monomial set of PER_{n}, and the coefficient of each monomial in M_{I} is 1 . Furthermore, by choice of $I,\left|M_{I}\right| \geq n!/ s$.

Consider monomial $m=m_{1} m_{2}$. As argued above, the $\left(m_{1}, m_{2}\right)^{t h}$ entry of matrix $L R$ is the coefficient of m in PER_{n} if $m \in M_{I}$.

Therefore we have:

$$
L R\left[m_{1}, m_{2}\right]= \begin{cases}1, & \text { if } m_{1} m_{2} \in M_{I}, \\ 0, & \text { otherwise }\end{cases}
$$

Notice that for any other factorization $m=m_{1}^{\prime} m_{2}^{\prime}$ of m, the entry $L R\left[m_{1}^{\prime}, m_{2}^{\prime}\right]=$ 0 , because of Property $\mathcal{U} \mathcal{T}$.

Since s is an upper bound on the ranks of both L and R, clearly $\operatorname{rank}(L R) \leq$ s. We now lower bound the rank of $L R$.
Claim 28. The rank of $L R$ is at least $\frac{\binom{n}{n / 3} \text {. }}{\text {. }}$
To see the claim, for each subset $S \in\binom{[n]}{|I|}$ we group together the rows of matrix $L R$ indexed by monomials m_{1} of the form

$$
m_{1}=X_{i_{1} j_{1}} X_{i 2 j_{2}} \ldots X_{i_{k} j_{k}}
$$

where $I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ and $S=\left\{j_{1}, j_{2}, \ldots, j_{k}\right\}$.
Likewise, corresponding to each subset $T \in\binom{[n]}{n-|I|}$ we group together the columns indexed by monomials m_{2} of the form

$$
m_{2}=X_{i_{1} j_{1}} X_{i 2 j_{2}} \ldots X_{i_{\ell} j_{\ell}}
$$

where $[n] \backslash I=\left\{i_{1}, i_{2}, \ldots, i_{\ell}\right\}$ and $T=\left\{j_{1}, j_{2}, \ldots, j_{\ell}\right\}$.
We know that that the matrix $L R$ has at least $n!/ s$ many 1 's, corresponding to the nonzero monomials of PER_{n} in M_{I}, and all other entries of $L R$ are zero.

The matrix $L R$ consists of different (S, T) blocks, corresponding to subsets $S \in\binom{[n]}{|I|}$ and $T \in\binom{[n]}{n-|I|}$. For each such S, only the $(S,[n] \backslash S)$ block has nonzero entries. All other blocks in the row corresponding to S or the columns corresponding to $[n] \backslash S$ are zero. Furthermore, we note that the number of entries in each $(S,[n] \backslash S)$ block is clearly bounded by $(|I|!)(n-|I|)$!. Therefore, as there are $n!/ s$ many 1 's in the matrix $L R$, there are at least

$$
\frac{n!}{s(n-|I|)!|I|!}=\frac{\binom{n}{|I|}}{s}
$$

nonzero $(S,[n] \backslash S)$ blocks, each of which contributes at least 1 to the rank of the matrix $L R$. Hence, the rank of the matrix $L R$ is lower bounded by $\frac{\binom{n}{||\mid}}{s}$.

Putting it together, we obtain

$$
s \geq \operatorname{rank}(L R) \geq \frac{\binom{n}{|I|}}{s}
$$

Hence $s \geq \sqrt{\binom{n}{|I|}} \geq \sqrt{\binom{n}{n / 3}}=2^{\Omega(n)}$, which completes the proof.

5.1 Set-multilinear circuits with few proof tree types

We now consider set-multilinear circuits with a different restriction on its proof tree types: Let C be a set-multilinear circuit computing a degree- d polynomial $f \in \mathbb{F}[X]$ for variable partition $X=\sqcup_{i=1}^{d} X_{i}$ such that the total number of proof tree types of any degree- d monomial in X^{d} is bounded by a polynomial in d. Can we prove superpolynomial lower bounds for such circuits?

We are able to show superpolynomial lower bounds in a more restricted case: when the number of proof trees is bounded by $d^{1 / 2-\epsilon}$ for some fixed $\epsilon>0$. More precisely, suppose C is a set-multilinear circuit that computes PER_{n} and C has at most $n^{1 / 2-\epsilon}$ proof tree types. Then we show that C is of size $2^{n^{\Omega(1)}}$. We first decompose C into a sum of $n^{1 / 2-\epsilon}$ many set-multilinear formulas C_{i} such that in each C_{i} all proof trees of all monomials have the same proof tree type. Then we convert each C_{i} into a set-multilinear ABP A_{i} such that in each layer of this ABP all the nodes are labeled by the same index set. We can now apply Corollary 12 to the sum of these A_{i} 's and obtain the claimed lower bound.

Lemma 29. Let C be a set-multilinear circuit of size s computing a degree-d polynomial $P \in \mathbb{F}[X]$. If all proof trees in C have the same proof tree type T, then C can be efficiently transformed into a set-multilinear formula C^{\prime} of size $s^{O(\log n)}$ such that in C^{\prime} too all proof trees have the same proof tree type T^{\prime}, where T^{\prime} depends only on T (and not on the circuit C).

Proof. We prove the lemma by induction on the size of the index set of the output gate of C (i.e., degree of P). At the input gates, where index set is a singleton set, it clearly holds. Suppose the index set of the output gate is of size at least 2 . Let T_{C} denote the unique proof tree type for all proof trees in C. Each node v of T_{C} is labelled by its index set $I_{v} \subseteq[d]$. As T_{C} is a binary tree, there is a vertex u such that $\frac{d}{3} \leq\left|I_{u}\right| \leq \frac{2 d}{3}$. Let $S_{u}=\left\{v \in C \mid I_{v}=I_{u}\right\}$. Let \hat{C}_{v} denote the set-multilinear circuit obtained from C by (i) setting to zero all the gates in $S_{u} \backslash\{v\}$, and (ii) replacing the gate v by the constant 1. Let Q_{v} denote the polynomial computed at the output gate of \hat{C}_{v}. Notice that its index set is $[n] \backslash I_{u}$. Let P_{v} denote the polynomial computed at a gate v of C. Then we can clearly write

$$
P=\sum_{v \in S_{u}} P_{v} Q_{v} .
$$

Let C_{v} denote the subcircuit of C with output gate v. Note that

$$
\frac{n}{3} \leq \operatorname{deg}\left(P_{v}\right), \operatorname{deg}\left(Q_{v}\right) \leq \frac{2 n}{3}
$$

Thus, for each $v \in S_{u}$ both P_{v} and Q_{v} are set-multilinear polynomials computed by set-multilinear circuits (C_{v} and \hat{C}_{v}, respectively) of size at most s. Furthermore, these circuits also have the property that all proof trees has the same proof tree type (otherwise, C would not have the property).

By induction hypothesis, for each $v \in S_{u}$ we have set-multilinear formulas F_{v} and \hat{F}_{v} such that:

- F_{v} and \hat{F}_{v} compute P_{v} and Q_{v}, respectively.
- The size of F_{v} as well as \hat{F}_{v} is bounded by $S^{O\left(\log \frac{2 n}{3}\right)}$.
- All proof trees in F_{v} have a unique proof tree type. All proof trees in \hat{F}_{v} have a unique proof tree type.

Furthermore, the circuit C has the following stronger property: suppose v and v^{\prime} are two gates with the same index set $I_{v}=I_{v^{\prime}}$. Then the unique proof tree type associated with subcircuit C_{v} is the same as the unique proof tree type for subcircuit $C_{v^{\prime}}$. Otherwise, the circuit C would not have a unique proof tree type associated with it.

Since all the subcircuits $C_{v}, v \in S_{u}$ have the same index set and thus same proof tree type associated to it, it follows by induction hypothesis that all the formulas $F_{v}, v \in S_{u}$ also have the same unique proof tree type. The same property holds for $\hat{C}_{v}, v \in S_{u}$ and hence $\hat{F}_{v}, v \in S_{u}$.

Therefore, each of the product polynomials $P_{v} Q_{v}, v \in S_{u}$, computed by the formulas $F_{v} \times \hat{F}_{v}, v \in S_{u}$, with a \times output gate, all have the same proof tree type. Thus, since $\left|S_{u}\right| \leq s$ the polynomial $P=\sum_{v \in S_{u}} P_{v} Q_{v}$ has a set multilinear formula C^{\prime} of size $\leq s\left(2 s^{O\left(\log \frac{2 n}{3}\right)}\right) \leq s^{O(\log n)}$ and all the proof trees of C^{\prime} have the same proof tree type T^{\prime}. Furthermore, it is clear that T^{\prime} depends only on T_{C}. This completes the proof of the theorem.

Lemma 30. Let C be a set-multilinear formula of size s computing degree d polynomial P, where all proof trees of C have the same proof tree type T. Then C can be transformed into a set-multilinear ABP such that at each layer $i \in[d]$ all gates of layer i is labelled by the same index set I_{i}. Furthermore, these index sets $I_{1}, I_{2}, \ldots, I_{d}$ depend only on T and not the formula C.
Proof. We show by induction on the size of given formula C.
Suppose the output gate of C is + , and C_{1} and C_{2} are the two subformulas. Since C has unique proof tree type T, both its subcircuits C_{1} and C_{2} also have the same unique tree type T. By induction hypothesis the two subformulas C_{1} and C_{2} of C with same proof tree T can be converted into ABPs A_{1}, A_{2} respectively s.t the index sets $I_{1}, I_{2}, \ldots, I_{d}$ is same for both ABPs. The "parallel composition" of these two ABPs yields the ABP for C with the same index sets.

Suppose output gate of C is \times. Since C has unique proof tree type T, both subcircuits C_{1} and C_{2} of C has unique proof tree types, say T_{1}, T_{2} respectively. Note that T_{1} and T_{2} are the left and right subtrees of T. By induction hypothesis both C_{1} and C_{2} have ABPs with the claimed property. Their "series composition" yields the desired ABP with a unique index set labeling each layer.

Theorem 31. Let $C=\sum_{i \in[r]} C_{i}$ be a set-multilinear circuit, where each C_{i} is set-multilinear, all proof trees of C_{i} have the same proof tree type, and $r=n^{\frac{1}{2}-\epsilon}$, $\epsilon>0$. If C computes $\mathrm{PER}_{n}\left(\right.$ or $\left.\mathrm{DET}_{n}\right)$ then some C_{i} is of size $\Omega\left(2^{\frac{n^{1 / 4}}{\log n}}\right)$.

Proof. The idea is to convert C into a narrow set multilinear ABPs and apply the lower bound for narrow set multilinear ABPs (Corollary 12). By Lemma 29, each circuit C_{i} can be converted into a set-multilinear formula C_{i}^{\prime} of unique proof tree type. By Lemma 30 this formula C_{i}^{\prime} can be transformed into a homogeneous d-layer set-multilinear ABP A_{i} such that at each layer $i \in[n]$ all the gates in layer i are labeled by the same index set I_{i}. Their sum $\sum_{i=1}^{r} A_{i}$ is a homogeneous d-layer set-multilinear ABP A such that at any layer $i \in[n]$ the number of different index sets $I_{i} \subseteq[n]$ labeling layer i is bounded by $n^{\frac{1}{2}-\epsilon}$.

The size of ABP A is bounded by $\sum_{i=1}^{r} s^{O(\log n)} \leq s^{O(\log n)}$ where s upper bounds the size of each C_{i}. By Corollary 12, any such set-multilinear ABP computing PER_{n} (or DET_{n}) requires $\Omega\left(2^{n^{1 / 4}}\right)$ size. Thus, $s^{O(\log n)} \geq \Omega\left(2^{n^{1 / 4}}\right)$, which implies that $s \geq \Omega\left(2^{\frac{n^{1 / 4}}{\log n}}\right)$. This completes the proof of the theorem.

Theorem 32. Let C be set multilinear circuit of size s computing the polynomial $P \in \mathbb{F}[X]$ of degree d such that the total number of proof tree types in C is $r \geq 0$. Then there are set-multilinear circuits $C_{i}, 1 \leq i \leq r$ such that $\sum_{i \in[r]} C_{i}$ computes P, each C_{i} is of size bounded by s, and in each C_{i} all its proof trees have the same type.

Proof. Let the proof tree types of C be $T_{1}, T_{2}, \cdots, T_{r}$. We will extract circuit C_{i} from C corresponding to proof tree type T_{i}. In C_{i}, we label 0 for all the outgoing edges of gates v in C whose index set $I_{v} \subseteq[n]$ is not equal to any of the index sets of proof tree T_{i}. Clearly, the proof trees of C_{i} are precisely all proof trees of proof tree type T_{i} present in circuit C and with the same coefficients. Therefore, $\sum_{i=1}^{r} C_{i}$ computes polynomial P. This completes the proof of theorem.

Combining Theorem 32 and 31, we have the following corollary.
Corollary 33. Let C be set multilinear circuit of size s computing the polynomial PER_{n} (or DET_{n}). If the total number of distinct proof tree types in C is bounded by $c=n^{\frac{1}{2}-\epsilon}, \epsilon>0$ then $s \geq \Omega\left(2^{\frac{n}{}_{\log n}^{1 / 4}}\right)$.

6 Summary and open problems

In this paper we investigated lower bound questions for certain set-multilinear arithmetic circuits and ABPs. By imposing a restriction on the number of set types for set-multilinear ABPs, or by restricting the number of proof trees in set-multilinear circuits, we could prove nontrivial lower bounds for the Permanent. We also showed a separation between set-multilinear circuits and interval multilinear circuits, assuming the SOS conjecture.

Some interesting open questions arise from our work: can we show lower bounds for $f(n)$-narrow set-multilinear ABPs for $f(n)=O(n)$? Another question is proving lower bounds for set-multilinear circuits with polynomially (or even $O(n))$ many proof trees computing PER_{n}.

Acknowledgment. We thank Joydeep Mukherjee for suggesting that Theorem 20 might be useful in the proof of Lemma 21 .

References

[DP09] Devdatt P. Dubhashi and Alessandro Panconesi, Concentration of measure for the analysis of randomized algorithms, Cambridge University Press, 2009.
[FS13] Michael A. Forbes and Amir Shpilka, Quasipolynomial-time identity testing of non-commutative and read-once oblivious algebraic branching programs, 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, 2013, pp. 243-252.
[HWY10] Pavel Hrubes, Avi Wigderson, and Amir Yehudayoff, Noncommutative circuits and the sum-of-squares problem, Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, 2010, pp. 667-676.
[Nis91] Noam Nisan, Lower bounds for non-commutative computation (extended abstract), STOC, 1991, pp. 410-418.
[RY08] Ran Raz and Amir Yehudayoff, Balancing syntactically multilinear arithmetic circuits, Computational Complexity 17 (2008), no. 4, 515-535.
[Sha00] D. B. Shapiro, Composition of quadratic forms, W. de Gruyter Verlag, 2000.
[SY10] Amir Shpilka and Amir Yehudayoff, Arithmetic circuits: A survey of recent results and open questions, Foundations and Trends in Theoretical Computer Science 5 (2010), no. 3-4, 207-388.
[VSBR83] Leslie G. Valiant, Sven Skyum, S. Berkowitz, and Charles Rackoff, Fast parallel computation of polynomials using few processors, SIAM J. Comput. 12 (1983), no. 4, 641-644.

[^0]: ${ }^{1}$ The same lower bound proof will work for the Determinant polynomial DET_{n}.

[^1]: ${ }^{2}$ The same lower bound result holds for DET_{n}.

