
Bipartite Perfect Matching is in quasi-NC

Stephen Fenner1, Rohit Gurjar∗2, and Thomas Thierauf∗2

1University of South Carolina
2Aalen University, Germany

November 9, 2015

Abstract

We show that the bipartite perfect matching problem is in quasi-NC2. That is, it
has uniform circuits of quasi-polynomial size and O(log2 n) depth. Previously, only an
exponential upper bound was known on the size of such circuits with poly-logarithmic
depth.

We obtain our result by an almost complete derandomization of the famous Isolation
Lemma when applied to yield an efficient randomized parallel algorithm for the bipartite
perfect matching problem.

1 Introduction

The perfect matching problem has been widely studied in complexity theory. It has been of
particular interest in the study of derandomization and parallelization. The perfect matching
problem, PM, asks whether a given graph contains a perfect matching.

The problem has a polynomial-time algorithm due to Edmonds [Edm65]. However, its
parallel complexity is still not completely resolved as of today. The problem can be solved by
randomized efficient parallel algorithms due to Lovász [Lov79], i.e., it is in RNC, but it is not
known whether randomness is necessary, i.e., whether it is in NC. The class NC represents the
problems which have efficient parallel algorithms, i.e., they have uniform circuits of polynomial
size and poly-logarithmic depth. For the perfect matching problem, nothing better than an
exponential-size circuit was known, in the case of poly-logarithmic bounded depth.

The construction version of the problem, Search-PM, asks to construct a perfect match-
ing in a graph if one exists. It is in RNC due to Karp et al. [KUW86] and Mulmuley et
al. [MVV87]. The latter algorithm applies the celebrated Isolation Lemma. Both algorithms
work with a weight assignment on the edges of the graph. A weight assignment is called
isolating for a graph G if the minimum weight perfect matching in G is unique, if one exists.
Mulmuley et al. [MVV87] showed that given an isolating weight assignment with polynomi-
ally bounded integer weights for a graph G, then a perfect matching in G can be constructed
in NC. To get an isolating weight assignment they use randomization. This is where the
Isolation Lemma comes into play.

∗Supported by DFG grant TH 472/4

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 177 (2015)

Lemma 1.1 (Isolation Lemma [MVV87]). For a graph G(V,E), let w be a random weight
assignment, where edges are assigned weights chosen uniformly and independently at random
from {1, 2, . . . , 2|E|}. Then w is isolating with probability ≥ 1/2.

Derandomizing this lemma means to construct such a weight assignment deterministically
in NC. This remains a challenging open question. A general version of this lemma, which
considers a family of sets and requires a unique minimum weight set, has also been studied.
The general version is related to the polynomial identity testing problem and circuit lower
bounds [AM08].

The Isolation Lemma has been derandomized for some special classes of graphs, e.g.,
planar bipartite graphs [DKR10, TV12], strongly chordal graphs [DK98], graphs with a small
number of perfect matchings [GK87, AHT07]. In this work, we make a significant step
towards the derandomization of the Isolation Lemma for bipartite graphs. In Section 3,
we construct an isolating weight assignment for these graphs with quasi-polynomially large
weights. Previously, the only known deterministic construction was the trivial one that used
exponentially large weights. As a consequence we get that for bipartite graphs, PM and
Search-PM are in quasi-NC2. That is, they can be solved by uniform Boolean circuits of
quasi-polynomial size and quadratic logarithmic depth.

In Section 4 we show that our approach also gives an alternate NC-algorithm for
Search-PM in bipartite planar graphs. This case already has known NC-algorithms [MN95,
MV00, DKR10]. Our algorithm is in NC3, while the previous best known upper bound is
already NC2 [MN95, DKR10].

Our result also gives an RNC-algorithm for PM in bipartite graphs which uses very few
random bits. The original RNC-algorithm of Lovász [Lov79] uses O(m log n) random bits.
This has been improved by Chari, Rohatgi, and Srinivasan [CRS95] to O(n logm/n) random
bits. They actually construct an isolating weight assignment using these many random bits.
To the best of our knowledge, the best upper bound today on the number of random bits
is (n + n logm/n) by Chen and Kao [CK97], that is, the improvement to [CRS95] was to
bring down the constant factor to two. In Section 5 we achieve an exponential step down to
O(log3 n) random bits. Note however, that we do not get an isolating weight assignment with
polynomially bounded weights.

We give a short outline of the main ideas of our approach. For any two perfect matchings,
the edges where they differ form disjoint cycles. For a cycle C, its circulation is defined to
be the difference of weights of two perfect matchings which differ exactly on the edges of C.
Datta et al. [DKR10] showed that a weight assignment which ensures nonzero circulation for
every cycle is isolating. It is not clear if there exists such a weight assignment with small
weights. Instead, we give nonzero circulations only to small cycles. Then, we consider the
union of minimum weight perfect matchings. In the bipartite case, this union is significantly
smaller than the original graph. In particular, at least half of its nodes have degree ≤ 2. We
keep repeating this procedure with weight assignments that give nonzero circulation to every
cycle with a small number of degree > 2 nodes. In each round, the number of degree > 2
nodes decreases by half. In log n rounds, we get a unique minimum weight perfect matching.

2

2 Preliminaries

2.1 Matchings and Complexity

By G(V,E) we denote a graph with vertex set V and edge set E. We consider only undirected
graphs in this paper. A graph is bipartite if there exists a partition V = L∪R of the vertices
such that all edges are between vertices of L and R. The girth of G is the length of the
shortest cycle in G. If G has no cycle, then the girth is defined to be infinite.

In a graph G(V,E), a matching M ⊆ E is a subset of edges with no two edges sharing an
endpoint. A matching which covers every vertex is called a perfect matching. For any weight
assignment w : E → Z on the edges of a graph, the weight of a matching M is defined to be
the sum of weights of all the edges in M , i.e., w(M) =

∑
e∈M w(e).

A weight function w is called isolating for G if there is a unique perfect matching of
minimum weight in G.

A graph G is matching-covered if each edge in G participates in some perfect matching.
In the literature, matching-covered is also called 1-extendable and these notions require G to
be connected. Note: in this paper, we use matching-covered also for non-connected graphs!

The perfect matching problem PM is to decide whether a given graph has a perfect match-
ing. Its construction version Search-PM is to compute a perfect matching of a given graph,
or to determine that no perfect matching exists.

Analogous to NC, Barrington [Bar92] defined the class quasi-NCk as the class of prob-

lems which have uniform circuits of quasi-polynomial size 2log
O(1) n and poly-logarithmic

depth O(logk n). Here, uniformity means that local queries about the circuit can be an-
swered in poly-logarithmic time (see [Bar92] for details). The class quasi-NC is the union of
classes quasi-NCk, over all k ≥ 0.

2.2 An RNC algorithm for Search-PM

Let us first recall the RNC algorithm of Mulmuley, Vazirani & Vazirani [MVV87] for the
construction of a perfect matching (Search-PM). Though the algorithm works for any
graph, we will only consider bipartite graphs here.

Let G be a bipartite graph with vertex partitions L = {u1, u2, . . . , un} and R =
{v1, v2, . . . , vn}, and weight function w. Consider the following n × n matrix A associated
with G,

A(i, j) =

{
2w(e), if e = (ui, vj) ∈ E,
0, otherwise.

The algorithm in [MVV87] computes the determinant of A. An easy argument shows that
this determinant is the signed sum over all perfect matchings in G:

det(A) =
∑
π∈Sn

sgn(π)

n∏
i=1

A(i, π(i)) (1)

=
∑

M perfect matching in G

sgn(M) 2w(M) (2)

Equation (2) holds because the product
∏n
i=1A(i, π(i)) is nonzero if and only if the per-

muation π corresponds to a perfect matching. Here sgn(M) is the sign of the corresponding

3

permutation. If the graph G does not have a perfect matching, then clearly det(A) = 0. How-
ever, even when the graph has perfect matchings, there can be cancellations due to sgn(M),
and det(A) may become zero. To avoid such cancellations, one needs to design the weight
function w cleverly. In particular, if G has a perfect matching and w is isolating, then
det(A) 6= 0. This is because the term 2w(M) corresponding to the minimum weight perfect
matching cannot be canceled with other terms, which are strictly higher powers of 2.

Given an isolating weight assignment for G, one can easily construct the minimum weight
perfect matching in NC. Let M∗ be the unique minimum weight perfect matching in G. For
every edge e ∈ E, compute the determinant of the matrix Ae associated with G − e. If the
term 2w(M

∗) disappears from det(Ae), then e ∈ M∗. Doing this in parallel for each edge, we
can find all the edges in M∗.

As already explained in the introduction, the Isolation Lemma delivers the isolating weight
assignment with high probability. Moreover, the weights chosen by the Isolation Lemma are
polynomially bounded. Therefore, the entries in matrix A have polynomially many bits. This
suffices to compute the determinant in NC2 [Ber84]. Hence, also the construction is in NC2.
Put together, this yields an RNC-algorithm for Search-PM.

2.3 Matching Polytope

Matchings are also one of the well-studied objects in polyhedral combinatorics. Matchings
have an associated polytope, called the perfect matching polytope. We use some properties
of this polytope to construct an isolating weight assignment. The perfect matching polytope
also forms the basis of one of the NC-algorithms for bipartite planar matching [MV00].

The perfect matching polytope PM(G) of a graph G(V,E) with |E| = m edges is a
polytope in the edge space, i.e., PM(G) ⊆ Rm. For any perfect matching M of G, consider
its incidence vector xM = (xMe)e ∈ Rm given by

xMe =

{
1, if e ∈M,

0, otherwise.

This vector is referred as a perfect matching point for any perfect matching M . The perfect
matching polytope of a graph G is defined to be the convex hull of all its perfect matching
points,

PM(G) = conv{xM |M is a perfect matching in G }.

Any weight function w : E → R on the edges of a graph G can be naturally extended
to Rm as follows: for any x = (xe)e ∈ Rm, define

w(x) =
∑
e∈E

w(e)xe.

Clearly, for any matching M , we have w(M) = w(xM). In particular, let M∗ be a perfect
matching in G of minimum weight. Then

w(M∗) = min{w(x) | x ∈ PM(G) }.

The following lemma gives a simple description of the perfect matching polytope of a bipartite
graph G which is well known, see for example [LP86].

4

Lemma 2.1. Let G be a bipartite graph and x = (xe)e ∈ Rm. Then x ∈ PM(G) if and only
if ∑

e∈δ(v)

xe = 1 v ∈ V, (3)

xe ≥ 0 e ∈ E, (4)

where δ(v) denotes the set of edges incident on the vertex v.

It is easy to see that any perfect matching point will satisfy these two conditions. In
fact, all perfect matching points are vertices of this polytope. The non-trivial part is to show
that any point satisfying these two conditions is in the perfect matching polytope [LP86,
Chapter 7]. For general graphs, the polytope described by (3) and (4) can have vertices
which are not perfect matchings. Thus, the description does not capture the perfect matching
polytope for general graphs.

2.4 Nice Cycles and Circulation

Let G(V,E) be a graph with a perfect matching. A cycle C in G is a nice cycle, if the
subgraph G − C still has a perfect matching. In other words, a nice cycle can be obtained
from the symmetric difference of two perfect matchings. Note that a nice cycle is always an
even cycle.

For a weight assignment w on the edges, the circulation cw(C) of an even length cycle
C = (v1, v2, . . . , vk) is defined as the alternating sum of the edge weights of C,

cw(C) = |w(v1, v2)− w(v2, v3) + w(v3, v4)− · · · − w(vk, v1)|.

The definition is independent of the edge we start with because we take the absolute value of
the alternating sum.

The circulation of nice cycles was one crucial ingredient of the isolation in bipartite planar
graphs given by Datta et al. [DKR10]. An important property is as follows: Let M1,M2 be
two perfect matchings such that their symmetric difference is precisely the nice cycle C. Then
we have cw(C) = |w(M1)−w(M2)|. That is, M1 and M2 have the same weight, if and only if
cw(C) = 0. Consequently, when all nice cycles have nonzero circulation, then the minimum
perfect matching is unique.

Lemma 2.2 ([DKR10]). Let G be a graph with a perfect matching, and let w be a weight
function such that all nice cycles in G have nonzero circulation. Then the minimum perfect
matching is unique. That is, w is isolating.

We will construct an isolating weight function for bipartite graphs. However, our weight
function will not necessarily have nonzero circulation on all nice cycles. We start out with a
weight assignment which ensures nonzero circulations for a small set of cycles in a black-box
way, i.e., without being able to compute the set efficiently. The following lemma describes a
standard trick for this.

Lemma 2.3 ([CRS95]). Let G be a graph with n nodes. Then, for any number s, one can
construct a set of O(n2s) weight assignments with weights bounded by O(n2s), such that for
any set of s cycles, one of the weight assignments gives nonzero circulation to each of the s
cycles.

5

Proof. Let us first assign exponentially large weights. Let e1, e2, . . . , em be some enumeration
of the edges of G. Define a weight function w by w(ei) = 2i−1, for i = 1, 2, . . . ,m. Then
clearly every cycle has a nonzero circulation. However, we want to achieve this with small
weights.

We consider the weight assignment modulo small numbers, i.e., the weight functions
{w mod j | 2 ≤ j ≤ t } for some appropriately chosen t. We want to show that for any
fixed set of s cycles {C1, C2, . . . , Cs}, one of these assignments will work, when t is chosen
large enough. That is, we want

∃j ≤ t ∀i ≤ s : cw mod j(Ci) 6= 0.

This will be true provided

∃j ≤ t :
s∏
i=1

cw(Ci) 6≡ 0 (mod j).

In other words,

lcm(2, 3, . . . , t) -
s∏
i=1

cw(Ci).

This can be achieved by setting lcm(2, 3, . . . , t) >
∏s
i=1 cw(Ci). The product

∏s
i=1 cw(Ci) is

upper bounded by 2n
2s. Furthermore, we have lcm(2, 3, . . . , t) > 2t for t ≥ 7 (see [Nai82]).

Thus, choosing t = n2s suffices. Clearly, the weights are bounded by t = n2s.

3 Isolation in Bipartite Graphs

In this section we present our main result, an almost efficient parallel algorithm for the perfect
matching problem.

Theorem 3.1. For bipartite graphs, PM and Search-PM are in quasi-NC2.

Our starting point is Lemma 2.2 which requires nonzero circulations for all nice cycles.
Recall that the construction algorithm requires the weights to be polynomially bounded. As
the number of nice cycles can be exponential in the number of nodes, even the existence of
such a weight assignment is not immediately clear. Nonetheless, Datta et al. [DKR10] give
a construction of such a weight assignment for bipartite planar graphs. For general bipartite
graphs, this is still an open question.

Our approach is to work with a weight function which gives nonzero circulation to only
small cycles. Lemma 2.3 describes a way to find such weights. The cost of this weight assign-
ment is proportional to the number of small cycles. Further, it is a black-box construction
in the sense that one does not need to know the set of cycles. It just gives a set of weight
assignments such that one of them has the desired property.

3.1 Union of Minimum Weight Perfect Matchings

Let us assign a weight function for bipartite graph G which gives nonzero circulation to all
small cycles. Consider a new graph G1 obtained by the union of minimum weight perfect
matchings in G. Our hope is that G1 is significantly smaller than the original graph G. Note

6

that it is not clear if one can efficiently construct G1 from G. This is because the determinant
of the bi-adjacency matrix with weights in equation (1) from Section 2.2 can still be zero. As
we will see, we do not need to construct G1, it is just used in the argument. Our final weight
assignment will be completely black-box in this sense.

The following lemma is the main reason why our technique is restricted to bipartite graphs:
it shows that the graph G1 constructed from the minimum weight perfect matchings in G
contains no other perfect matchings than these. In Figure 1, we give an example that this
does not hold in general graphs.

Lemma 3.2. Let G(V,E) be a bipartite graph with weight function w. Let E1 be the union
of all minimum weight perfect matchings in G. Then every perfect matching in the graph
G1(V,E1) has the same weight – the minimum weight of any perfect matching in G.

Proof. We use the description of the perfect matching polytope for bipartite graphs from
Lemma 2.1. Let q be the weight of a minimum weight perfect matching in G. Recall that

min{w(x) | x ∈ PM(G) } = q.

The intersection of PM(G) with the hyperplane H(x) = {x | w(x) = q } is a face F of the
polytope.

One can describe a face of a polytope by replacing some of the inequalities in the descrip-
tion of the polytope by equalities. For the perfect matching polytope, the inequalities are
given by (4). Thus, for the face F there exists a set S ⊆ E such that for any x = (xe)e, we
have x ∈ F if and only if ∑

e∈δ(v)

xe = 1 v ∈ V, (5)

xe ≥ 0 e ∈ E \ S, (6)

xe = 0 e ∈ S. (7)

Clearly, for any minimum weight perfect matching M , its matching point xM satisfies the
above three conditions as it lies on the face F . In particular, equation (7) implies that
S ∩M = ∅. It follows that

E1 ∩ S = ∅. (8)

Now, consider any perfect matching M ′ in the graph G1(V,E1). By equation (8), we have
M ′ ∩ S = ∅. Hence its matching point xM

′
satisfies equation (7). Since xM

′
represents a

perfect matching, it also satisfies (5) and (6). Thus, we have xM
′ ∈ F . Hence, w(M ′) =

w(xM
′
) = q.

Next, we show that G1 is significantly smaller than G. As all the perfect matchings in G1

have the same weight, every nice cycle in G1 has zero circulation. The following lemma proves
an even stronger statement: every cycle in G1 has zero circulation. It essentially comes from
the fact that all cycles are in the linear span of nice cycles. Note that G1 is matching-covered,
as it is a union of perfect matchings.

Lemma 3.3. Let H be a matching-covered bipartite graph. Let w be a weight function such
that every perfect matching in H has the same weight. Then for each cycle C in H, we have
cw(C) = 0.

7

0

1

1

1

0
0

0
0

0

Figure 1: A non-bipartite weighted graph where every edge is contained in a minimum
perfect matching of weight 1. However, the graph also has a perfect matching of weight 3.
That is, Lemma 3.2 does not hold for non-bipartite graphs.

Proof. Let the weight of each perfect matching be q. Any point x in the perfect matching
polytope PM(H) is a convex combination of perfect matchings. Therefore its weight w(x)
must also be q.

Let x1,x2, . . . ,xt be all the perfect matchings points of H, i.e., the corners of PM(H).
Consider the average point x ∈ PM(H) of the matching points,

x =
x1 + x2 + · · ·+ xt

t
.

Because each edge participates in a perfect matching, every coordinate of x = (xe)e is nonzero.
Now, consider a cycle C in H with edges (e1, e2, . . . , ep) in cyclic order. We show that when
we move from point x along the cycle C, we remain inside the perfect matching polytope.
This technique of moving along the cycle has been used by Mahajan and Varadarajan [MV00].
To elaborate, consider a new point y = (ye)e ∈ Rm such that for all e ∈ E,

ye =

{
xe + (−1)i ε, if e = ei, for some 1 ≤ i ≤ p,
xe, otherwise,

for some ε > 0. We choose ε to be small enough so that ye ≥ 0 for all e ∈ E. Clearly, the
vector x− y has nonzero coordinates only on cycle C with alternating ε and −ε. Hence,

|w(x− y)| = ε · cw(C). (9)

We argue that y fulfills the conditions of Lemma 2.1 and therefore also lies in the perfect
matching polytope. Because ye ≥ 0 for all e ∈ E, it satisfies inequality (4) from Lemma 2.1.
It remains to show that y also satisfies∑

e∈δ(v)

ye = 1 v ∈ V. (10)

To see this, let v ∈ V . We consider two cases:

1. v 6∈ C. Then ye = xe for each edge e ∈ δ(v). Thus, we get (10) from equation (3) for x.

2. v ∈ C. Let ej and ej+1 be the two edges from C which are incident on v. By definition,
yej = xej + (−1)j ε and yej+1 = xej+1 + (−1)j+1 ε. For any other edge e ∈ δ(v), we have
ye = xe. Combining this with equation (3) for x, we get that y satisfies (10) for v.

We conclude that y lies in the polytope PM(H). Hence, w(y) = q. It follows that w(x−y) =
w(x)− w(y) = q − q = 0. From equation (9), we conclude that cw(C) = 0.

8

We apply Lemma 3.3 to graph G1. Recall that by our weight function, each small cycle
in G has a nonzero circulation. Therefore G1 has no small cycles. The following lemma states
this in a slightly more general form which will be required later.

Lemma 3.4. Let G be a bipartite graph with weight assignment w such that some cycles
C1, C2, . . . , Ct in G have nonzero circulations. Then the graph G1, obtained by the union of
minimum weight perfect matchings in G, does not have any of the cycles C1, C2, . . . , Ct.

We want to argue that the number of edges in G1 has significantly decreased from that
in G. We use the following result of Alon, Hoory, & Linial [AHL02] which states that the
nodes of graphs with no small cycles have a small average degree.

Theorem 3.5 ([AHL02]). Let H be a graph with n nodes, average degree d ≥ 2 and girth g.
Then,

n ≥ 2(d− 1)g/2−1.

The proof is fairly easy for graphs where each node has degree ≥ d: do a breadth-first
search of the graph starting from an arbitrary node until depth g/2− 1. When one reaches a
node v via an edge e, there are ≥ d− 1 edges incident on v other than e. So, the search looks
like a (d− 1)-ary tree of depth g/2− 1. As there are no cycles of length < g, all the nodes in
the tree should be distinct, which are ≥ 2(d− 1)g/2−1. This gives us the desired bound. Alon
et al. generalized the argument to average degree ≥ d.

If we put g = 4 log n− 2 in Theorem 3.5 and take logarithms on both sides, we get

log n ≥ 2(log n− 1) log(d− 1) + 1

1 ≥ 2 log(d− 1)

2 ≥ (d− 1)2

1 +
√

2 ≥ d.

Hence, the length of small cycles in our weighting scheme is chosen to be 4 log n−2. Then G1

has average degree < 2.5.

Corollary 3.6. Let H be a graph with girth g ≥ 4 log n−2. Then H has average degree < 2.5.

It follows that at least a constant fraction of the nodes in G1 have degree ≤ 2. Hence,
one can say that the graph G1 has significantly fewer edges than G. Now, the plan is to
repeat this procedure for G1 with a new weight function. However, G1 has no small cycles.
The standard cycle length counts the number of nodes in a cycle. The idea now is to count
instead the number of degree > 2 nodes in a cycle. This can also be viewed as contracting
degree 2 nodes with their neighbors and then considering again small cycles. When we give
nonzero circulations to these cycles in G1 and again take the union of minimum weight
perfect matchings, these cycles disappear from G1. This, in turn, means that the number
of degree > 2 nodes further reduces by a constant fraction. We continue this for O(log n)
rounds until all cycles disappear and a single perfect matching remains. Now, we put all the
ingredients together and formally define our weight assignment.

3.2 Constructing the Weight Assignment

Let G(V,E) = G0 be the given bipartite graph with n nodes. Define ` = 4 log n− 2. Let w0

be a weight function that gives nonzero circulation to all cycles containing < ` nodes of

9

degree > 2 in G0. Let k be the number of rounds for which we need to construct weight
assignments. We will define subgraphs Gi and weight assignments wi, for i = 1, 2, . . . , k,
which will be obtained in successive rounds.

Gi: the union of minimum weight perfect matchings in Gi−1 according to weight wi−1.

wi: a weight function such that any cycle in Gi with < ` nodes of degree > 2 has nonzero
circulation.

Our final weight function w will be a combination of w0, w1, . . . , wk. We combine them in
a way that the weight assignment in a later round does not interfere with the order of perfect
matchings given by earlier round weights. Let B be a number greater than the weight of any
edge under any of these weight assignments. Then, define

w = w0B
k + w1B

k−1 + · · ·+ wkB
0. (11)

Clearly, the precedence decreases from w0 to wk. That is, for any two perfect matchingsM1

and M2 in G0, we have w(M1) < w(M2), if and only if there exists an 0 ≤ i ≤ k such that

wj(M1) = wj(M2), for j < i,

wi(M1) < wi(M2).

The number k of rounds is chosen to be the minimum number such that the number of
degree > 2 nodes in the graph Gk is less than `. We will see later that k = O(log n). First,
we prove that the weight assignment w is isolating in G0.

Lemma 3.7. The weight assignment w defined in (11) is isolating for G0.

Proof. We split the proof in a sequence of claims. By the definition of the graphs Gi and the
weight functions wi, we have:

Claim 1. For any 1 ≤ i ≤ k, any two perfect matchings in Gi have the same weight according
to wj, for all j < i.

We first prove the isolation in the last round.

Claim 2. w is isolating in Gk.

Proof. As the number of nodes in Gk with degree > 2 is < `, the weight assignment wk gives
a nonzero circulation to each cycle in Gk. From Lemma 3.4, the union of minimum weight
perfect matchings in Gk has no cycles. In other words, it has a unique minimum weight
perfect matching according to wk.

From Claim 1, all perfect matchings in Gk have equal weight according to wj , for all
j < k. Thus, Gk has a unique minimum weight perfect matching according to w. This proves
Claim 2.

Next we claim that the final weight w of the perfect matchings is decreasing in subsequent
rounds.

Claim 3. For any 1 ≤ i ≤ k, let M1 be a perfect matching in Gi and M2 be a perfect matching
in Gi−1 which is not in Gi. Then w(M1) < w(M2).

10

Proof. From the construction of Gi and Lemma 3.2, it follows that

wi−1(M1) < wi−1(M2).

From Claim 1, we have wj(M1) = wj(M2) for all j < i − 1. Due to the precedence of the
weight assignments, we get that w(M1) < w(M2). This proves Claim 3.

From Claim 3 we get that all the minimum weight perfect matchings in G0 according to w
come from Gk. Putting this together with Claim 2, we get the that w is isolating in G0. This
proves the lemma.

Next we want to give a bound on the number k of rounds we need. We show that in each
round the number of nodes with degree > 2 decreases by half. For some i ≥ 1, let U ⊆ V
be the set of degree > 2 nodes in Gi−1. Now, wi−1 assigns nonzero circulation to every cycle
in Gi−1 which has less than ` nodes from U . From Lemma 3.4, the union of minimum weight
perfect matchings (i.e., Gi) has none of these cycles. Now, we want to show that at least half
of the nodes in U have degree ≤ 2 in Gi.

Lemma 3.8. Let G(V,E) be a graph with n nodes. Let U ⊆ V be its set of degree > 2 nodes.
Let G1(V,E1) be a matching-covered subgraph of G such that any cycle in G1 contains at least
` = 4 log n− 2 nodes from U . Then at least half of the nodes in U have degree ≤ 2 in G1.

Proof. Let T = V − U be the set of nodes of degree ≤ 2 in G. In the following, by degree of
a node we mean its degree in G1.

Observe first that any node of degree 1 in G1 can only be connected to a node of degree 1.
That is, they form a connected component in G1 that consists of a single edge. This is
because G1 is matching-covered. We delete all degree 1 nodes from G1.

For the degree 2 nodes in T , let us identify them with one of their two neighbors. In
more detail, let (u0, u1, u2, . . . , up+1) be a path in G1, for some p ≥ 1, such that the nodes
u0, up+1 are in U and the nodes u1, u2, . . . , up are from T and have degree 2. Delete the nodes
u1, u2, . . . , up and add an edge (u0, up+1) as shown in Figure 2. Note that u0 and up+1 cannot
have another path with nodes only coming from T , because by our assumption, any cycle
in G1 has many nodes from U .

u1u0 u2 u0 u2

Figure 2: A degree 2 node contracted with its neighbor.

In summary, we deleted all nodes in T and the nodes of degree 1 in U from G1. Let G′1
be the resulting graph. Hence, the nodes in G′1 are exactly those nodes in U whose degree
is > 1 in G1. Note that the degree of any node in G′1 is the same as in G1, as one can see in
Figure 2.

By the assumption of the lemma, any cycle in G′1 has length ≥ ` . From Corollary 3.6 we
have that G′1 has average degree < 2.5. As G′1 does not have any degree 1 nodes, it follows
that at least half of its nodes have degree 2. This, in turn, means that at least half the nodes
in U have degree ≤ 2 in G1.

11

We apply Lemma 3.8 to Gi−1 and Gi.

Corollary 3.9. For each 1 ≤ i ≤ k, the number of degree > 2 nodes in Gi is at most half of
that in Gi−1.

We want a value of k such that Gk has fewer than ` nodes of degree > 2. Clearly,
k = log n− 1 suffices. Now, the only thing that remains is to bound the values of the weights
assigned. First we bound the number of cycles which have a small number of degree > 2
nodes.

Lemma 3.10. In a graph with n nodes, the number of cycles with < ` nodes of degree > 2
is ≤ n`.

Proof. We have n choices for the first node of the cycle. If the first node has degree 2 then
the cycle has to contain both its neighbors. Hence, there is a unique choice for the second
node. Otherwise there are at most n choices for the second node. In general, if the recently
chosen node has degree 2, then there is just one choice for the next node. Otherwise there
are at most n choices. As there are fewer than ` nodes of degree > 2 in the cycle, the number
of choices made will be bounded by n`−1. Combined with the choices for the first node we
get the bound of n`.

It remains to bound the number of weight assignments we need to try and the values
of the weights. From Lemma 3.10, we get that wi needs to give nonzero circulation to at
most n4 logn−2 cycles for each 0 ≤ i ≤ k. Hence, the set of weight assignments we get from
Lemma 2.3 has size O(n4 logn) and the weights involved are bounded by O(n4 logn). For each
weight assignment wi, one needs to try all choices given by Lemma 2.3, as we do not know
which one would work. This means, in total, we need to try O(n4(k+1) logn) = O(n4 log

2 n)
weight assignments. Recall that the number B is the highest weight assigned by any wi.
Hence, we have B = O(n4 logn). Therefore the weights in the assignment w in equation (11)

are bounded by nO(log2 n). In other words, the weights have O(log3 n) bits. Moreover, it is
straightforward to see that these weight assignments can be constructed in quasi-NC1 with
circuit size 2O(log3 n).

Lemma 3.11. In quasi-NC1, one can construct a set of O(n4 log
2 n) weight functions [n] ×

[n]→ N, where the weights have O(log3 n) bits, such that for any given bipartite graph with 2n
nodes, one of the weight functions is isolating.

Up to this point, we can conclude that the existence of a perfect matching in bipartite
graphs can be decided in quasi-NC2. But we can even construct a perfect matching: recall
the construction algorithm of Mulmuley et al. [MVV87] from Section 2.2. They compute
the determinant of the bi-adjacency matrix that has entry 2w(e) for edge e. As our weights
have O(log3 n) bits, the determinant entries have quasi-polynomial bits. This determinant

can still be computed in parallel, but with quasi-polynomial (2O(log3 n)) size circuits. In
particular, it can be computed in quasi-NC2 by the algorithm of Berkowitz [Ber84]. Thus,

our construction algorithm is in quasi-NC2 with circuit size 2O(log3 n). This finishes the proof
of Theorem 3.1.

12

4 Bipartite Planar Graphs

The Search-PM problem already has some known NC-algorithms in the case of bipartite
planar graphs [MN95, MV00, DKR10]. The one by Mahajan and Varadarajan [MV00] is in
NC3, while the other two are in NC2. Our approach from the previous section can be modified
to give an alternate NC-algorithm for this case, in NC3 however.

The weights in our scheme in Section 3.2 become quasi-polynomial for two reasons: (i)
we want nonzero circulation for all cycles of length < 4 log n− 2, and (ii) we need to combine
the different weight functions from log n rounds using a different scale.

To solve the first problem we observe that for the planar case, it suffices to give nonzero
circulation to constant length cycles. To see this, recall that Euler’s polyhedron formula gives
a linear bound on the number of edges of a planar graph (see for example [Har69, Corollary
11.1(a)]).

Theorem 4.1. Let H be a planar graph with n ≥ 3 nodes, m edges, and girth g ≤ n. Then

m ≤ g

g − 2
(n− 2)

The case not covered by Theorem 4.1 is when H has no cycles. Then we have m ≤ n− 1.
Recall that the average degree of a graph is d = 2m/n. By Theorem 4.1, we get

d =
2m

n
≤ 2g

g − 2

n− 2

n
<

2g

g − 2
. (12)

We want d < 2.5. By equation (12) this holds for g ≥ 10. Note also that if a graph has no
cycles, then the average degree is < 2. Hence, we get the following consequence for planar
graphs, which is analogous to Corollary 3.6.

Corollary 4.2. Let H be a planar graph with girth g ≥ 10. Then H has average degree < 2.5.

Since there are only polynomially many cycles of length < 10, one can ensure nonzero
circulations for them with polynomially bounded weights by Lemma 2.3.

To solve the second problem, we use the fact that in planar graphs, one can count the
number of perfect matchings of a given weight in NC2 by the Pfaffian orientation tech-
nique [Kas67, Vaz89]. As a consequence, we can actually construct the graphs Gi in each
round in NC2. Thereby we avoid having to combine the weight functions from different rounds.

In more detail, in the i-th round, we need to compute the union of minimum weight perfect
matchings inGi−1 according to wi−1. For each edge e, we decide in parallel if deleting e reduces
the count of minimum weight perfect matchings. If yes, then edge e should be present in Gi.
As it takes log n rounds to reach a single perfect matching, the algorithm is in NC3.

5 An RNC-Algorithm with Few Random Bits

We can also present our result for bipartite perfect matching in an alternate way. For PM,
instead of quasi-NC, we can get an RNC circuit but with only poly-logarithmically many
random bits.

Theorem 5.1. For bipartite graphs, there is an RNC-algorithm for PM which uses O(log3 n)
random bits.

13

The rest of this section is devoted to prove Theorem 5.1. In our algorithm from Section 3,
there are two reasons that we need quasi-polynomially large circuits: (i) we need to try
quasi-polynomially many different weight assignments and (ii) each weight assignment has
quasi-polynomially large weights.

To solve the first problem, we modify Lemma 2.3 to get a random weight assignment
which works with high probability.

Lemma 5.2 ([CRS95, KS01]). Let G be a graph with n nodes. there is a random weight
assignment on the edges which uses O(log ns) random bits and assigns weights with O(log ns)
bits such that for any set of s cycles, it gives nonzero circulation to each of the s cycles, with
probability at least 1− 1/n.

Proof. We follow the construction of Lemma 2.3 and give exponential weights modulo small
numbers. Here, we use only prime numbers as moduli. Recall the weight function w defined
by w(ei) = 2i−1. Let us choose a random number p among first t prime numbers. We take our
random weight assignment to be w mod p. We want to show that with high probability this
weight function gives nonzero circulation to every cycle in {C1, C2, . . . , Cs}. In other words,∏s
i=1 cw(Ci) 6≡ 0 (mod p). As the product is bounded by 2n

2s, it has at most n2s prime
factors. Let us choose t = n3s. This would mean that a random prime works with probability
at least (1− 1/n). As the t-th prime can only be as large as 2t log t, the weights are bounded
by 2t log t = O(n3s log ns), and hence have O(log ns) bits. A random prime with O(log ns)
bits can be constructed using O(log ns) random bits (see [KS01]).

Recall from Section 3.2 that for a bipartite graph G with n nodes, we had k = log n
rounds and constructed one weight function in each round. We do the same here, however,
we use the random scheme from Lemma 5.2 to choose the weight functions w0, w1, . . . , wk.
The probability that all of them provide nonzero circulation on their respective set of cycles
≥ 1− (k + 1)/n ≥ 1− log n/n using the union bound.

Now, instead of combining them to form a single weight assignment, we use a different
variable for each weight assignment. We modify the construction of matrix A from Section 2.2.
For variables x0, x1, . . . , xk, define

A(i, j) =

{
x
w0(e)
0 x

w1(e)
1 · · ·xwk(e)

k , if e = (ui, vj) ∈ E,
0, otherwise.

From arguments similar to those in Section 2.2, one can write

det(A) =
∑

M perfect matching in G

sgn(M)x
w0(M)
0 x

w1(M)
1 · · ·xwk(M)

k ,

where sgn(M) is the sign of the corresponding permutation. From the construction of the
weight assignments it follows that if the graph has a perfect matching then the lexicograph-
ically minimum term in det(A) comes from a unique perfect matching. Thus, we get the
following lemma.

Lemma 5.3. det(A) 6= 0 ⇐⇒ G has a perfect matching.

Recall that by Lemma 3.10, each wi needs to give nonzero circulation to O(n4 logn−2)
cycles. Thus, the weights obtained by the scheme of Lemma 5.2 will use O(log2 n) bits.

14

Hence, the polynomial computed by det(A) will have quasi-polynomially degree. To avoid
this, we split the weights into log n bit chunks of length r = O(log n) each. For 0 ≤ i ≤ k
and 0 ≤ j ≤ r, define wij ’s to be the unique weight functions which satisfy the following two
conditions for each edge e:

wij(e) < n,

wi(e) =

r∑
j=0

wij(e)n
j .

For variables {yij}i,j , define the matrix A′ by

A′(i, j) =

{∏k
i=0

∏r
j=0 y

wij(e)
ij , if e = (ui, vj) ∈ E,

0, otherwise.

Clearly, substituting yij = xn
j

i in A′ gives us A. Hence, we get the following.

Lemma 5.4. det(A′) 6= 0 ⇐⇒ det(A) 6= 0.

Now, det(A′) is a polynomial of individual degree < n2 with O(log2 n) variables, as both k
and r are O(log n). To test if det(A′) is nonzero one can apply the standard randomized poly-
nomial identity test [Sch80, Zip79, DL78]. That is, to plug-in random values for variables yij ,
independently from {1, 2, . . . , n3}. If det(A′) 6= 0, then the evaluation is nonzero with high
probability.

Number of random bits: For a weight assignment wi, we need O(log ns) random bits
from Lemma 5.2, where s is O(n4 logn−2) by Lemma 3.10. Thus, the number of random bits
required for all wi’s together is O(k log2 n) = O(log3 n). Finally, we need to plug-in log n
random bits for each yij . This again requires O(log3 n) random bits.

Complexity: The weight construction involves taking exponential weights modulo small
primes by Lemma 5.2. Primality testing can be done in NC, as the numbers involved
have O(log2 n) bits [Rab80]. Thus, the weight assignments can be constructed in NC. More-
over, the determinant with polynomially bounded entries can be computed in NC.

In summary, we get an RNC-algorithm that uses O(log3 n) random bits as claimed in
Theorem 5.1.

Discussion

The major open question remains whether one can do isolation with polynomially bounded
weights. Our construction requires quasi-polynomial weights for two reasons: (i) we work
with O(log n)-length cycles and (ii) it takes log n rounds to reach a unique perfect matching
and the graphs obtained in the successive rounds cannot be constructed. To get polynomially
bounded weights one needs to circumvent both these problems.

For non-bipartite graphs, the isolation question is open even in the planar case. For this
case, our approach fails in its first step: Lemma 3.2 no longer holds as demonstrated in
Figure 1. Can one assign weights in a way which ensures that the union of minimum weight
perfect matchings is significantly smaller than the original graph?

It needs to be investigated if our ideas can lead to isolation in other objects. For example,
isolation of paths in a directed graph, which is related to the NL versus UL question.

15

Acknowledgements

We would like to thank Manindra Agrawal and Nitin Saxena for their constant encouragement
and very helpful discussions. We thank Arpita Korwar for discussions on some techniques
used in Section 5.

References

[AHL02] Noga Alon, Shlomo Hoory, and Nathan Linial. The moore bound for irregular
graphs. Graphs and Combinatorics, 18(1):53–57, 2002.

[AHT07] Manindra Agrawal, Thanh Minh Hoang, and Thomas Thierauf. The polynomially
bounded perfect matching problem is in NC2. In 24th International Symposium on
Theoretical Aspects of Computer Science (STACS), volume 4393 of Lecture Notes
in Computer Science, pages 489–499. Springer Berlin Heidelberg, 2007.

[AM08] Vikraman Arvind and Partha Mukhopadhyay. Derandomizing the isolation lemma
and lower bounds for circuit size. In Approximation, Randomization and Combi-
natorial Optimization. Algorithms and Techniques, 11th International Workshop,
APPROX, and 12th International Workshop, RANDOM, pages 276–289, 2008.

[Bar92] David A. Mix Barrington. Quasipolynomial size circuit classes. In Proceedings
of the Seventh Annual Structure in Complexity Theory Conference, pages 86–93,
1992.

[Ber84] Stuart J. Berkowitz. On computing the determinant in small parallel time using a
small number of processors. Information Processing Letters, 18(3):147 – 150, 1984.

[CK97] Zhi-Zhong Chen and Ming-Yang Kao. Reducing randomness via irrational num-
bers. In Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of
Computing (STOC), pages 200–209, New York, NY, USA, 1997. ACM.

[CRS95] Suresh Chari, Pankaj Rohatgi, and Aravind Srinivasan. Randomness-optimal
unique element isolation with applications to perfect matching and related prob-
lems. SIAM Journal on Computing, 24(5):1036–1050, 1995.

[DK98] Elias Dahlhaus and Marek Karpinski. Matching and multidimensional matching
in chordal and strongly chordal graphs. Discrete Applied Mathematics, 84(13):79
– 91, 1998.

[DKR10] Samir Datta, Raghav Kulkarni, and Sambuddha Roy. Deterministically isolating
a perfect matching in bipartite planar graphs. Theory of Computing Systems,
47:737–757, 2010.

[DL78] Richard A. Demillo and Richard J. Lipton. A probabilistic remark on algebraic
program testing. Information Processing Letters, 7(4):193 – 195, 1978.

[Edm65] Jack Edmonds. Path, trees, and flowers. Canadian Journal of Mathematics,
17:449467, 1965.

16

[GK87] Dima Grigoriev and Marek Karpinski. The matching problem for bipartite graphs
with polynomially bounded permanents is in NC (extended abstract). In 28th
Annual Symposium on Foundations of Computer Science (FOCS), pages 166–172,
1987.

[Har69] Frank Harary. Graph Theory. Addison-Wesley Series in Mathematics. Addison
Wesley, 1969.

[Kas67] Pieter W. Kasteleyn. Graph theory and crystal physics. Graph Theory and Theo-
retical Physics, pages 43–110, 1967.

[KS01] Adam Klivans and Daniel A. Spielman. Randomness efficient identity testing of
multivariate polynomials. In Proceedings on 33rd Annual ACM Symposium on
Theory of Computing, pages 216–223, 2001.

[KUW86] Richard M. Karp, Eli Upfal, and Avi Wigderson. Constructing a perfect matching
is in random NC. Combinatorica, 6(1):35–48, 1986.

[Lov79] László Lovász. On determinants, matchings, and random algorithms. In Funda-
mentals of Computation Theory, pages 565–574, 1979.

[LP86] László Lovász and Michael D. Plummer. Matching Theory. (North-Holland math-
ematics studies). Elsevier Science Ltd, 1986.

[MN95] Gary L. Miller and Joseph Naor. Flow in planar graphs with multiple sources and
sinks. SIAM Journal on Computing, 24:1002–1017, 1995.

[MV00] Meena Mahajan and Kasturi R. Varadarajan. A new NC algorithm for finding a
perfect matching in bipartite planar and small genus graphs (extended abstract).
In STOC’00: Proceedings of the thirty-second annual ACM symposium on Theory
of computing, pages 351–357, New York, NY, USA, 2000. ACM.

[MVV87] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy
as matrix inversion. Combinatorica, 7:105–113, 1987.

[Nai82] Mohan Nair. On chebyshev-type inequalities for primes. The American Mathemat-
ical Monthly, 89(2):126–129, 1982.

[Rab80] Michael O. Rabin. A probabilistic Algorithm for Testing Primality. Journal of
Number Theory, 1980.

[Sch80] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial
identities. J. ACM, 27(4):701–717, October 1980.

[TV12] Raghunath Tewari and N. V. Vinodchandran. Green’s theorem and isolation in
planar graphs. Information and Computation, 215:1–7, 2012.

[Vaz89] Vijay V. Vazirani. NC algorithms for computing the number of perfect matchings
in K3,3-free graphs and related problems. Information and Computing, 80(2):152–
164, 1989.

17

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings
of the International Symposiumon on Symbolic and Algebraic Computation, EU-
ROSAM ’79, pages 216–226. Springer-Verlag, 1979.

18

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

