
Extractors for Sumset Sources

Eshan Chattopadhyay∗

Department of Computer Science,
University of Texas at Austin

eshanc@cs.utexas.edu

Xin Li
Department of Computer Science,

John Hopkins University
lixints@cs.jhu.edu

November 10, 2015

Abstract

We propose a new model of weak random sources which we call sumset sources. A sumset
source X is the sum of C independent sources X1, . . . ,XC , where each Xi is an n-bit source with
min-entropy k. We show that extractors for this class of sources can be used to give extractors for
most classes of weak sources that have been studied previously, including independent sources,
affine sources (which generalizes oblivious bit-fixing sources), small space sources, total entropy
independent sources, and interleaved sources. This provides a unified approach for randomness
extraction.

A known extractor for this class of sources, prior to our work, is the Paley graph function
introduced by Chor and Goldreich [CG88], which works for the sum of 2 independent sources,
where one has min-entropy at least 0.51n and the other has min-entropy O(log n). To the best
of our knowledge, the only other known construction is from the work of Kamp et al. [KRVZ11],
which can extract from the sum of exponentially many independent sources.

Our main result is an explicit extractor for the sum of C independent sources for some large
enough constant C, where each source has min-entropy polylog(n). We then use this extractor
to obtain the following results for other well studied classes of sources.

• Small-space sources: This is the class of sources generated by a small width branching
program. Previously the best known extractor by Kamp et al. [KRVZ11] requires min-
entropy k ≥ n1−δ even for space 1, where δ > 0 is a small constant. We improve the
min-entropy to k ≥ 2log

0.51(n)s1.1 for space s, which is no(1) for s = no(1).

• Affine Sources: This constitutes the class of sources that are uniform over some affine
subspace in Fn2 . A direct corollary of our sumset extractor gives an explicit affine extractor
for entropy polylog(n), matching the recent work of Li [Li15a].

• Interleaved Sources: We obtain new results on extracting from an unknown interleaving
of the bits of C independent sources. This model was studied by Raz and Yehudayoff
[RY11] in the context of proving circuit lower bounds, and subsequently by Chattopadhyay
and Zuckerman [CZ15b]. Previous results require at least one source to have min-entropy
(1 − δ)n for a small constant δ > 0. We give explicit extractors for the interleaving of a
constant number of sources each with polylogarithmic min-entropy.

We also give improved extractors for total entropy independent sources, introduced in [KRVZ11],
and a simple extractor for somewhere-2 sources, which generalizes the model of 2-independent
sources to a large collection of independent sources with the guarantee that at least two sources
contain polylogarithmic min-entropy.
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1 Introduction

The use of randomness is widespread in various branches of computer science, such as algorithms,
data structures, distributed computing, cryptography and many more. Most of these applications
in fact require the random bits to be uniform and uncorrelated. However, natural random sources
are often biased and only contain some small amount of entropy, and in cryptographic applications
even original uniform random sources can leak information to an adversary as a result of side
channel attacks. This motivates the broad area of randomness extraction, which deals with the
important problem of designing efficient algorithms (known as randomness extractors) that can
extract almost uniform random bits from defective random sources.

To formally define defective or weak random sources, we use the following standard model.

Definition 1.1. The min-entropy of a source X is defined to be: H∞(X) = minx{− log(Pr[X =
x])}. The min-entropy rate of a source X on {0, 1}n is defined to be H∞(X)/n. Any source X on
{0, 1}n with min-entropy at least k is called an (n, k)-source.

We use the standard statistical distance to measure the distance between two distributions.

Definition 1.2. The statistical distance between two distributions D1 and D2 over some universal
set Ω is defined as |D1 −D2| = 1

2

∑
x∈Ω |Pr[D1 = x]−Pr[D2 = x]|. We say D1 is ε-close to D2 if

|D1 −D2| ≤ ε and denote it by D1 ≈ε D2.

We are now ready to define extractors for a class of sources.

Definition 1.3. We say that an efficiently computable function f : {0, 1}n → {0, 1}m is an extrac-
tor for a class of sources X with error ε, if for any source X ∈ X , |f(X) −Um| ≤ ε. Here Um
denotes the uniform distribution on {0, 1}m.

Given the above definition, a natural goal would be to design a deterministic extractor for the
class of (n, k)-sources. However, a simple argument shows that such an extractor cannot exist
even for k = n − 1. This has motivated researchers to consider two different approaches. The
first approach is to allow the extractor to have a small uniform independent random seed, and
these extractors are called seeded extractors. Seeded extractors were first defined by Nisan and
Zuckerman [NZ96], and through a long line of research we now have almost optimal constructions
(e.g., [GUV09]). The second approach, which is the focus of this paper, is to design seedless
extractors for more restricted sources. Here, the goal is to identify the most general class of sources
that allows the construction of explicit deterministic randomness extractors. This question can be
dated back to von Neumann [vN51], and continued interest in this question over the past three
decades has led to many fascinating new techniques and results.

One important class of sources that has received a lot of attention is the class of multiple indepen-
dent sources. Such extractors are particularly useful for distributed computing and cryptographic
applications which involve multiple parties [KLRZ08,KLR09]. Here, the probabilistic method can
be used to show the existence of an extractor for 2 independent sources, each with min-entropy
log n+O(1). However to come up with an explicit extractor that matches this bound is extremely
challenging. By a long line of successful research [CG88, BIW06, BKS+10, Bou05, Raz05, Rao09a,
BRSW12,Li13b,Li13a,Li15c,CZ15a,Li15b], we now have extractors for 2 independent sources with
each source containing min-entropy logC n for some constant C > 1.

Many other interesting models have been investigated, and we briefly mention some examples
here. One well studied class of sources is known as bit fixing sources [CGH+85, KZ07, GRS06,
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Rao09b], which are sources that are obtained by fixing some unknown bits of a uniform random
string. Explicit extractors for such sources have found applications in exposure-resilient cryptog-
raphy [CGH+85, KZ07]. Generalizing these sources, another well studied class of sources is affine
sources [GR08,Bou07,Rao09b,Yeh11,BK12,Sha11,Li11,Li15a], which are the uniform distribution
over some unknown affine subspace of a vector space. Extractors for affine sources are shown to
be related to two-source extractors [BSZ11], and imply the best known lower bounds for general
Boolean circuits [DK11, FGHK15]. Other classes of sources that have been previously studied in-
clude samplable sources [TV00, Vio14], which are sources that are generated by small circuits or
efficient algorithms; interleaved sources [RY11, CZ15b], which are a generalization of independent
sources where the bits of the sources are mixed in some arbitrary order; and small-space sources
[KRVZ11], where the sources are generated by a small width branching program.

In this paper we propose a new model of weak sources which we call sumset sources. Informally,
this is the class of sources which are the sum (XOR) of independent sources. We show that most
of the classes of sources studied before (as we mentioned above), are either special cases in our new
model, or can be reduced to our new model. This further reduces the assumptions made on weak
sources, and provides a unified framework for designing extractors for well studied classes of sources.
We then construct explicit extractors for sumset sources and apply them to other classes of sources
studied before. In several cases we obtain substantial improvements over previous constructions.
We now formally define sumset sources.

1.1 Sumset Sources

Definition 1.4. For any two strings x, y ∈ {0, 1}n, define x+ y to be the bit wise XOR of the two
strings.

Definition 1.5 ((n, k, C)-sumset source). A weak source X is called an (n, k, C)-sumset source if
X = X1 + . . .+ XC , where X1, . . . ,XC are independent (n, k)-sources.

A well known extractor for this class of sources is based on the Paley graph function introduced
by Chor and Goldreich [CG88] and works for the sum of 2 independent sources, with one having
min-entropy at least > n/2 and the other having min-entropy > log n. On the other extreme,
the work of Kamp et al. [KRVZ11] shows how to extract when X is a sum of exponentially many
sources (C = 2O(n)). To the best of our knowledge, there is no other known explicit construction
for 2 ≤ C ≤ 2O(n). Further, it is not clear if one can use the probabilistic method to prove the
existence of such extractors.

Our main result is an explicit construction of an extractor for the sum of a constant number of
independent sources, each containing polylogarithmic min-entropy.

Theorem 1. There exist constants c, C > 0 and a small constant β > 0 such that for all n ∈ N
and k ≥ logc n, there exists a polynomial time computable extractor for (n, k, C)-sumset sources,
with error n−Ω(1) and output length kβ.

1.2 Relations and Applications to Other Sources

Independent Sources

The class of independent sources is clearly a special case of sumset sources. That is, if we view
the joint distribution of several independent sources as one source X, then X is also a sumset
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source. Thus, our construction in Theorem 1 also gives an extractor for a constant number of
independent sources with polylogarithmic min-entropy. If we can improve the construction and
obtain an explicit extractor for (n, k, 2)-sumset sources with k ≥ logc n, then this will also match
the two source extractors in [CZ15a,Li15b].

Small-Space Sources

As mentioned before, Trevisan and Vadhan [TV00] introduced the problem of constructing seedless
extractors for the class of samplable sources, where the weak random source is generated by a
computationally bounded algorithm. They constructed explicit extractors for such sources based
on strong but plausible complexity-theoretic assumptions. Subsequently, Kamp et al. [KRVZ11]
studied the problem of constructing seedless extractors for small-space sources, where the weak
source is generated by a small width branching program. We define this model more formally
below.

Definition 1.6. [KRVZ11] A space s source X is generated by taking a random walk on a branching
program of length n and width 2s, where each edge of the branching program is labelled with a
transition probability and a bit. Thus a bit of the source is generated for each step taken on the
branching program, and the source X is the concatenation of all the bits.

As observed in [KRVZ11], the model of small space sources generalizes many previously studied
sources, including von Neumann’s source of independent coin flips with unknown bias [vN51], the
finite Markov chain model studied by Blum [Blu86], a generalization of bit-fixing sources known as
symbol-fixing sources [KZ07], and sources consisting of many independent sources. However, the
class of affine sources appears not to be related to small space sources.

Using the probabilistic method, one can show that error ε extractors exist for space s sources
with min-entropy k ≥ 2s + log s + O(log(n/ε)). However, previously the best known explicit
extractor for space s sources is from the work of Kamp et al. [KRVZ11], which requires min-
entropy k ≥ γn and space s ≤ γ3n, where γ > n−δ for some small universal constant δ. In other
words, their extractor requires almost linear min-entropy even for sources with space as small as
1, while we know from the probabilistic method that for space O(log n) sources one can hope to
construct extractors for min-entropy O(log n). In addition, the techniques used in [KRVZ11] start
out by reducing to the so called total-entropy independent sources, and it can be shown that this
reduction has a fundamental bottleneck and cannot possibly go below min-entropy

√
n.

We show how to extract from space s sources when k ≥ 2log0.5+α(n)s1+10α, for any constant
α > 0. Thus for s = no(1), we only need min-entropy no(1). This significantly improves previous
results in terms of min-entropy requirement, and in particular break the

√
n min-entropy barrier.

Theorem 2. For any constant α > 0 and for all n, k, s ∈ N with k ≥ 2log0.5+α(n)s1+10α, there exists
a polynomial time computable extractor for space s sources on n bits with min-entropy at least k,
with error n−Ω(1) and output length kα.

We obtain our result by showing a reduction from the task of extracting from small-space sources
to the problem of extracting from sumset sources. We briefly describe the reduction below and refer
the reader to Section 3 for more details. Our extractor follows immediately from the reduction.

Note that as observed in [KRVZ11], if we partition a small space source into several blocks,
and condition on the event that the branching program generating the source reaches some specific
vertices at the end of each block, then the small space source becomes a convex combination
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of independent sources. This conditioning reduces the min-entropy of the source, but since the
branching program has small width we would expect that there is still much entropy left. However,
the problem is that the entropy could now be distributed in these blocks in some arbitrary way,
with the only guarantee being a lower bound on the total amount of entropy. This is referred to as
a total entropy source as in [KRVZ11]. The problem with the approach in [KRVZ11] is that one has
to use a fixed partition of the source, so that the blocks can be used as inputs to an extractor for
independent sources. This introduced a bottleneck of entropy

√
n, since if the block size is smaller

than
√
n then it could be the case that each block has entropy 1, while if the block size is larger

than
√
n then it could be the case that all entropy is concentrated in just one block.

We get around this obstacle by not relying on a fixed partition of the source. Instead, we
show that when the min-entropy satisfies k ≥ 2log0.5+α(n)s1+10α, the small space source is actually
2−k

Ω(1)
-close to a convex combination of (n, kα, C)-sumset sources. On a high level, we show this

reduction as follows. We first partition the small space source into some `� C blocks with `s� k,
and we condition on the fixing of the states of the random walk at the end of each block. This
leaves us ` independent blocks such that their total min-entropy is roughly k− `s. Now if for some
particular fixing, there are at least C blocks with min-entropy at least kα, then under this fixing the
source is an (n, kα, C)-sumset source. If not, then our key observation is that most of the entropy
(indeed, k − `s− `kα = k − o(k) entropy) will be concentrated in at most C − 1 blocks. Therefore
at least one block has min-entropy (k − o(k))/(C − 1). Thus, for this block the entropy rate will
be increased by a factor of roughly `/C. We can then fix all other blocks and repeat the argument
for this block. Specifically, we further divide the block into ` blocks and condition on the fixing of
the intermediate states. Then for any particular fixing, either it is an (n, kα, C)-sumset source or
the entropy rate of one block gets increased again by a factor of `/C. We note that the entropy
rate cannot be larger than 1, so we know at some point it has to be an (n, kα, C)-sumset source.
Therefore the original source is a convex combination of sumset sources. Notice here the partitions
are not fixed, but rather can be different for different fixings of the states.

Interleaved Sources

Raz and Yehudayoff [RY11] introduced a natural generalization of the class of independent sources,
which was called interleaved sources in a subsequent work by Chattopadhyay and Zuckerman
[CZ15b]. We now formally define this class of sources. Let σ : [n] → [n] be any permutation.
For any string w ∈ {0, 1}n, define the string s = wσ ∈ {0, 1}n such that sσ(i) = wi for i = 1, . . . , n.

Definition 1.7 (Interleaved Sources). Let X1, . . . ,XC be independent (n, k)-sources on {0, 1}n and
let σ : [Cn] → [Cn] be any permutation. Then Z = (X1 ◦ . . . ◦ XC)σ is an (n, k, C)-interleaved
source.

Besides being a natural generalization of independent sources, the original motivation for study-
ing these sources came from an application found by Raz and Yehudayoff [RY11] in proving lower
bounds for arithmetic circuits. Further such extractors give examples of explicit functions with high
best-partition communication complexity. Chattopadhyay and Zuckerman [CZ15b] also showed an
application to extracting from a generalization of small-space sources where the underlying branch-
ing program is any-order.

Using the probabilistic method, one can show that extractors exist for (n, k, C)-interleaved
sources with C = 2 and k = O(log n). However the known constructions are far from this in
terms of entropy requirement. The construction in [RY11] works for (n, k, C)-interleaved sources
for k > (1− δ)n and C = 2. This was subsequently improved in [CZ15b], where they required one
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source with min-entropy (1− δ)n and the other source with min-entropy O(log n).

Note that an (n, k, C)-interleaved source is also a special case of an (n, k, C)-sumset source, by
naturally extending each source in the definition to have bits 0 in all other positions. Using our
extractor for sumset sources, we thus substantially improve previous results in terms of min-entropy
requirement. In particular, we obtain explicit extractors that work for the interleaving of a constant
number of independent sources, each with polylogarithmic min-entropy.

Theorem 3. There exist constants c, C > 0 and a small constant β > 0 such that for all n,
k ∈ N with k ≥ logc n, there exists a polynomial time computable extractor for (n, k, C)-interleaved
sources, with error n−Ω(1) and output length kβ.

Proof. Suppose X on Cn is an interleaving of the independent sources X1, . . . ,XC (each on n
bits). Define independent sources Y1, . . . ,YC , each on Cn bits, such that Yi matches X on the
co-ordinates belonging to the source Xi, and Yi is fixed to 0 everywhere else. Hence X =

∑C
1 Yi

and thus, X is a (Cn, k, C)-sumset source. The result now follows from Theorem 1.

We note that, if we can improve our construction and obtain an explicit extractor for (n, k, 2)-
sumset sources with k ≥ logc n, then this will also give an explicit extractor for (n, k, 2)-interleaved
sources with k ≥ logc n.

Affine Sources

An affine source X on n bits with entropy k is the uniform distribution over some unknown affine
subspace of dimension k in {0, 1}n (viewing {0, 1}n as Fn2 1). This model generalizes oblivious bit-
fixing sources (where some of the bits are uniform and independent, while others are fixed) and thus
has received attention for its applications to cryptography. Affine extractors have also been used
by Viola [Vio14] to construct extractors for sources generated by NC0 and AC0 circuits. Further,
good affine extractors imply the best known circuit lower bounds [DK11,FGHK15].

Using the probabilistic method, one can show that affine extractors exist for entropy k =
O(log n). However until recently, the best known explicit constructions for affine extractor was
due to Bourgain [Bou07], who using sophisticated techniques from additive combinatorics and
gave an explicit extractor for min-entropy at least δn, for any constant δ. This construction was
subsequently slightly improved to entropy n/

√
log log n by Yehudayoff [Yeh11] and Li [Li11]. In

a very recent work, Li [Li15a] constructed the first explicit affine extractors for polylogarithmic
entropy.

We note that an affine source is also a special case of sumset source, since an affine subspace
of dimension k can be written as the sum of C affine subspaces of dimension k/C. Thus, as a
direct corollary of our extractor for sumset sources, we also obtain extractors for affine sources with
polylogarithmic min-entropy, matching the recent work of Li [Li15a].2

Corollary 1.8. There exists a constant c > 0 and a small constant β > 0 such that for all n, k ∈ N
with k ≥ logc n, there exists a polynomial time computable extractor for affine sources in {0, 1}n
with entropy k. The extractor has error n−Ω(1) and output length kβ.

Proof. Let X be an affine source with min-entropy k. Let v1, . . . , vk be a basis of X and b be the
shift vector. Let C be the constant in Theorem 1. For i ∈ [C], define the source Xi to be the

1In general, affine sources can be defined on any field Fq, but in this paper we focus on F2.
2The extractor construction is essentially the same as in [Li15a], but the analysis is different.
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uniform distribution on the linear subspace spanned by v(i−1)k/C+1 . . . , vik/C for i = 2, · · · , C, and
define X1 to be the uniform distribution on the affine subspace spanned by v1 . . . , vk/C with shift

vector b. Thus X =
∑C

j=1 Xi, where each Xi has min-entropy k/C and the Xi’s are independent.
Thus X is a (n, k/C,C)-sumset source, and we can now apply Theorem 1.

Total Entropy Independent Sources and Somewhere Entropy Independent Sources

As an intermediate model to extract from small space sources, [KRVZ11] introduced the above
mentioned total entropy independent sources. This is a collection of r independent sources of length
` such that the total min-entropy of all r sources is at least k. By the probabilistic method, one can
show that error ε extractors exist for total min-entropy k independent sources as long as k ≥ max{`,
log log(r/ε)}+log r+2 log(1/ε)+O(1).3 Essentially, k can be as small as `+log r+O(1). However,
the best known extractors in [KRVZ11] are far from this. Specifically, the extractors there need to
have either k ≥ Ω(r`) or k ≥ (2` log r)C for some constant C > 1.

We substantially improve these results by constructing a new extractor that only requires min-
entropy O(`) + polylog(r`), which comes close to the probabilistic bound. In particular, we have

Theorem 1.9. There exist constants c, C > 0 and a small constant β > 0 such that for all r, `, k ∈ N
with k ≥ C(` + logc(r`)), there exists a polynomial time computable extractor for r independent
sources over {0, 1}` with total min-entropy k, with error (r`)−Ω(1) and output length kβ.

To prove the theorem we show the following lemma.

Lemma 1.10. For any t, C ∈ N, let X1, · · · ,Xr ∈ ({0, 1}`)r be r independent sources over {0, 1}`
with total min-entropy k ≥ C(`+ t). Then there exists a partition of the r sources into C disjoint
subsets Y1, · · · ,YC such that each Yi has min-entropy at least t.

Proof. We prove the lemma by induction on C. For the case where C = 1, one can view the whole
set X1, · · · ,Xr as a partition Y1, and it is clear that Y1 has min-entropy k ≥ `+ t > t. Now suppose
the lemma holds for some C ∈ N, we show that it holds for C + 1.

First notice that for two independent sources X,Y, we have that H∞(X ◦ Y) = H∞(X) +
H∞(Y). Now, consider the smallest i such that X1 ◦ · · · ◦Xi has min-entropy at least t. We know
such an i exists because X1 ◦ · · · ◦Xr has min-entropy at least k ≥ (C + 1)(`+ t) > t. Since i is the
smallest, we know that X1 ◦ · · · ◦Xi−1 has min-entropy at most t. Note that Xi has min-entropy at
most `, thus X1 ◦· · ·◦Xi has min-entropy at most t+`. Next, since X1 ◦· · ·◦Xr has min-entropy at
least k ≥ (C+1)(`+ t), we know that Xi+1 ◦ · · · ◦Xr has min-entropy at least k− (t+ `) = C(t+ `).
Now we can apply the induction hypothesis and we see that there exists a partition of Xi+1 · · ·Xr

into C disjoint subsets such that each subset has min-entropy at least t. Put in X1 ◦ · · · ◦Xi we
get C + 1 disjoint subsets.

By setting t = logc(r`) and combining the lemma with Theorem 1, we immediately obtain
Theorem 1.9.

In order to extract from total entropy independent sources, [KRVZ11] actually argues that since
the total entropy is at least k, some of the independent sources will have entropy at least k′ (the
relation between k and k′ depends on the number of sources). Therefore, total entropy sources
reduce to independent sources where some of them have a certain amount of min-entropy. We call
such sources somewhere entropy independent sources.

3Note that k > ` is necessary, otherwise the entropy could be contained in just one source, making extraction
impossible.
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Definition 1.11. An (n, k, `)-somewhere-C source consists of ` independent sources X1, . . . ,X`,
each on n bits, such that at least C of the Xi’s have min-entropy at least k.

Note that C here needs to be at least 2. In this context, our extractor for sumset sources from
Theorem 1 actually gives an extractor for an (n, k, `)-somewhere-C source with k ≥ logc n for some
constants C, c > 1, and outputs kΩ(1) bits. Note that the number of sources ` here is irrelevant since
we can just take the sum of the sources and fix any other source that does not have min-entropy k.

In fact, we can use a simpler method to get a slightly stronger result. We show that we can
extract from (n, k, `)-somewhere 2 sources for k = polylog(n) and any integer ` (with the extractor
running in time poly(n, `)).

Theorem 1.12. There exists a constant c > 0 and a small constant β > 0 such that for all
n, k, ` ∈ N with k ≥ logc n, there exists an extractor computable in time poly(n, `) for (n, k, `)-
somewhere-2 sources, with error n−Ω(1) and output length Ω(k).

We provide the proof of Theorem 1.12 in Section 7.

1.3 Outline of Constructions

We now give an informal description of our extractor for sumset sources. On a very high level, our
extractor follows the same spirit of recent works on extractors [CZ15a, Li15b, Li15a]. That is, we
first convert our sumset source into a special non-oblivious bit-fixing source, which is a distribution
on N = nO(1) bits such that N −N δ bits are kα-wise independent, for some constants 0 < δ, α < 1.
We will then apply extractors for this source constructed in [CZ15a,Li15b].

To obtain such a non-oblivious bit-fixing source, it suffices to use two independent sources as
shown in [Li15c,CZ15a]. More specifically, if we have a somewhere random source4 withN rows such
that N − N δ rows are uniform, then by taking another independent source and using techniques
based on alternating extraction [DP07, DW09, Li13a, Li15c, Coh15, CGL15], one can obtain the
desired non-oblivious bit-fixing source.

However, in our case we do not have independent sources, but rather the sum of independent
sources. Our first observation is that, since sum is a linear operation, in this case alternating
extraction is still possible, as long as in each step the seeded extractor used is a linear seeded
extractor. Informally, a linear seeded extractor is a strong seeded extractor with the extra property
such that for any fixing of the seed, the output of the extractor is a linear function of the source.
This property has been used several times in the literature of extractors for affine sources, and
in particular alternating extraction between linearly correlated sources has been used by Li in his
recent construction of affine extractors [Li15a].

Now the problem is how to obtain the somewhere random source. The standard way is to use
a seeded extractor with seed length O(log n) (so that to keep the running time polynomial in n)
and try all possible values of the seed. Each seed will give an output and we can then concatenate
the output to form a matrix. This does indeed give us a somewhere random source, however there
are now two problems. First, we cannot just use any seeded extractor with seed length O(log n).
This is because we need to apply the seeded extractor to the sum of several independent sources,
and we need to keep the “sum” structure carefully for the purpose of alternating extraction later.
If we just use any seeded extractor, then after applying the extractor the “sum” structure may not
be preserved. Therefore, here again we need to use a linear seeded extractor. Luckily, we do have
linear seeded extractors with seed length O(log n), due to a construction in [Li15a].

4A somewhere random source is a matrix of random variables such that at least one row is uniform.
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Second, just doing this is not enough, since the error of the somewhere random source is not
good enough for our purpose. Specifically, in order to apply the extractor for non-oblivious bit-
fixing source we need the error to be negligibly small, while the error we obtained from a seeded
extractor with seed length O(log n) is only polynomially small. Note this is different from the affine
extractor construction in [Li15a], as in the case of affine sources one can show that if we use a
linear seeded extractor, then most of the rows in the somewhere random source actually have error
0. However for general weak random sources the best error one can hope for (even with a linear
seeded extractor) is 1/poly(n) if the seed length is O(log n).

To get around this, both [Li15c] and [CZ15a] used a sampling method. Specifically, they first
used an extractor (or a non-malleable extractor) with large seed length to achieve small error from
one source, and then use another independent source to sample from the rows of the somewhere
random source to bring down the number of rows. The first idea would be to try the same idea
here in our construction. That is, if X is the sum of two independent sources, then one can take
two linear seeded extractors Ext1,Ext2 such that Ext1 has large seed length, Ext2 has seed length
O(log n) and output length the same as the seed length of Ext1, and compute Ext1(X,Ext2(X, r))
for every possible choice r of Ext2’s seed. However, the problem now is that the sampling procedure
becomes correlated, and even with linear seeded extractors we do not know how to analyze it.

We thus turn to another approach, used by Li in his multi-source extractor [Li13a]. The idea is
that, assume that X = X1 + · · ·+XC is the sum of some constant C number of independent sources
(instead of just two independent sources). Then if we apply a linear seeded extractor to X, by the
property of the extractor for every fixed seed the output will also be the XOR of C independent
outputs from each Xi. If every output is ε-close to uniform for some error ε, then the error after the
XOR will be reduced to roughly εC . Thus, if we take C to be a large enough constant, this error
will be much smaller than 1/N where N is the number of rows in the somewhere random source.
At this point we can use a union-bound type argument to show that the somewhere random source
is actually NεC = 1/poly(n)-close to another somewhere random source where a large fraction of
the rows are truly uniform. Thus we can switch to the new somewhere random source and only
introduce an error of 1/poly(n).

Now, if we have one more independent source, that is X = X1 + · · · + XC + XC+1, then we
can apply alternating extraction between the somewhere random source and X itself, using linear
seeded extractors. An analysis similar to that of [Li15c,Coh15,Li15a] will show that at the end we
will obtain a kα-wise independent non-oblivious bit-fixing source as desired.

1.4 Open Problems

Our paper leaves open many natural questions. The most obvious question is to improve the output
length and error of our extractors. A further question is, can we improve the construction to give
an extractor for the sum of two independent sources with polylogarithmic min-entropy? This will
imply two-source extractors and extractors for the interleaving of two independent sources, as well
as improving some of the parameters in this paper. Again, a natural approach is to adjust the
sampling approach in [Li15c, CZ15a] to the case of sumset sources. Also, our extractor for small
space sources is not optimal, and there is still much room for improvement. Can we find a better
reduction from small space sources to sumset sources?

As shown in our paper, the model of sumset source and the extractors for this kind of source
seem to be very powerful, in the sense that it generalizes many previously studied sources and gives
improved extractors. Can we use our construction to give improved extractors for other sources?
Finally, a more general model would be to look at other functions of independent sources, rather
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than just looking at the sum. Indeed, this is a strict generalization of samplable sources, since any
source generated by some class of function where the input is the uniform string can be viewed as
the function applied to several independent sources.

1.5 Organization

In Section 3, we provide a reduction from small-space sources to sumset sources. We use Section
2 to introduce some necessary preliminaries and prior work. In Section 4, we prove one of our
main technical ingredients for designing extractors for sumset sources. In particular, we extend
the method of alternating extraction to correlated sources. Next, in Section 5, we show a method
of breaking correlations among random variables using another correlated source. As discussed
above, the work of Cohen [Coh15] showed how to do this but required an additional independent
source. Using these components and other explicit extractors from prior work, we provide explicit
extractors for sumset sources in Section 6. Finally, we prove Theorem 1.12 in Section 7.

2 Preliminaries

We use Um to denote the uniform distribution on {0, 1}m.
For any integer t > 0, [t] denotes the set {1, . . . , t}.
For a string y of length n, and any subset S ⊆ [n], we use yS to denote the projection of y to the
coordinates indexed by S.
We use bold capital letters for random variables and samples as the corresponding small letter,
e.g., X is a random variable, with x being a sample of X.

2.1 Linear Seeded Extractors

Definition 2.1. A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-seeded extractor if for
any source X of min-entropy k, |Ext(X,Ud)−Um| ≤ ε. Ext is called a strong seeded extractor if
|(Ext(X,Ud),Ud)−(Um,Ud)| ≤ ε, where Um and Ud are independent. Further, if for each s ∈ Ud,
Ext(·, s) : {0, 1}n → {0, 1}m is a linear function, then Ext is called a linear seeded extractor.

We use explicit constructions of linear seeded extractors.

Theorem 2.2 ([Tre01] [RRV02]). For every n, k,m ∈ N and ε > 0, with m ≤ k ≤ n, there exists
an explicit strong linear seeded extractor LExt : {0, 1}n × {0, 1}d → {0, 1}m for min-entropy k and

error ε, where d = O
(

log2(n/ε)
log(k/m)

)
.

A drawback of the above construction is that the seeded length is ω(log n) for sub-linear min-
entropy. A recent construction of Li [Li15a] achieves O(log n) seed length for even polylogarithmic
min-entropy.

Theorem 2.3 ([Li15a]). There exists a constant c > 1 such that for every n, k ∈ N with c log8 n ≤
k ≤ n and any ε ≥ 1/n2, there exists a polynomial time computable linear seeded extractor LExt : {0,
1}n × {0, 1}d → {0, 1}m for min-entropy k and error ε, where d = O(log n) and m ≤

√
k.

2.2 2-Source Extractors

We use explicit constructions of 2-source extractors from the recent work of Chattopadhyay and
Zuckerman [CZ15a], with subsequent improvement of the output length by Li [Li15b].
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Theorem 2.4 ([CZ15a,Li15b]). There exists a constant λ > 0 such that for all n ∈ N, there exists
a polynomial time computable 2-source extractor 2Ext : {0, 1}n×{0, 1}n → {0, 1}m, m = Ω(k), for
min-entropy k > logλ(n) and error n−Ω(1).

2.3 Extractors for Non-Oblivious Bit-fixing Sources

Definition 2.5. A distribution D on n bits is t-wise independent if the restriction of D to any t
bits is uniform. Further D is a (t, ε)-wise independent distribution if the distribution obtained by
restricting D to any t coordinates is ε-close to uniform.

Definition 2.6. A source X on {0, 1}n is called a (q, t)-non-oblivious bit-fixing source if there
exists a subset of coordinates Q ⊆ [n] of size at most q such that the joint distribution of the bits
indexed by Q = [n] \Q is t-wise independent. The bits in the coordinates indexed by Q are allowed
to arbitrarily depend on the bits in the coordinates indexed by Q.

If the joint distribution of the bits indexed by Q is (t, γ)-wise independent then X is said to be
a (q, t, γ)-non-oblivious bit-fixing source.

We use extractors for (q, t, γ)-non-oblivious bit fixing sources constructed in [CZ15a] with sub-
sequent improvement in the output length in [Li15b].

Theorem 2.7 ([CZ15a,Li15b]). There exists a constant λ and a small constant α > 0 such that for
any constant δ > 0, and for all n, q, t,m ∈ N satisfying q ≤ n1−δ, t ≥ logλ(n),m = tα, there exists
an explicit extractor bitExt : {0, 1}n → {0, 1}m for the class of (q, t, γ)-non-oblivious bit-fixing
sources with error n−Ω(1), where γ ≤ 1/nt+1.

2.4 Conditional Min-Entropy

Definition 2.8. The average conditional min-entropy of a source X given a random variable W
is defined as

H̃∞(X|W) = − log
(
Ew∼W

[
max
x

Pr[X = x|W = w]
])

= − log
(
E
[
2−H∞(X|W=w)

])
.

We recall some results on conditional min-entropy from the work of Dodis et al. [DORS08].

Lemma 2.9 ([DORS08]). For any ε > 0, Prw∼W

[
H∞(X|W = w) ≥ H̃∞(X|W)− log(1/ε)

]
≥

1− ε.

Lemma 2.10 ([DORS08]). If a random variable Y has support of size 2`, then H̃∞(X|Y) ≥
H∞(X)− `.

We require extractors that can extract uniform bits when the source only has sufficient condi-
tional min-entropy.

Definition 2.11. A (k, ε)-seeded average case seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m
for min-entropy k and error ε satisfies the following property: For any source X and any arbitrary
random variable Z with H̃∞(X|Z) ≥ k,

Ext(X,Ud),Z ≈ε Um,Z.

It was shown in [DORS08] that any seeded extractor is also an average case extractor.

Lemma 2.12 ([DORS08]). For any δ > 0, if Ext is a (k, ε)-seeded extractor, then it is also a
(k + log(1/δ), ε+ δ)-seeded average case extractor.
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2.5 Some Probability Lemmas

The following result on min-entropy was proved by Maurer and Wolf [MW97].

Lemma 2.13. Let X,Y be random variables such that the random variable Y takes at ` values.
Then

Pry∼Y

[
H∞(X|Y = y) ≥ H∞(X)− log `− log

(
1

ε

)]
> 1− ε.

Lemma 2.14 ([BIW06]). Let X1, . . . ,X` be independent random variables on {0, 1}m such that
|Xi −Um| ≤ ε. Then, |

∑`
i=1 Xi −Um| ≤ ε`.

3 A Reduction from Small-Space Sources to Sumset Sources

In this section, we show that a small-space source is close to a convex combination of sumset sources.
The idea is argue that either partitioning the source leads to a sumset source or results in increase
in min-entropy rate of one of the partitions. Thus by repeating this argument, it must be that at
some point we reach a sumset source, since otherwise we end up with a source with min-entropy
rate more than 1.

Lemma 3.1. For any constant α > 0 and any constant integer C ≥ 2, any space s source on n bits
with min-entropy k ≥ 2log0.5+α(n)s1+10α is 2−k

Ω(1)
-close to a convex combination of (n, k′, C)-sumset

sources, where k′ = kα.

Proof. Let ` = kα/2, ε1 = 2−k
α
, kth = kα be fixed parameters that we set with foresight. Let X be

a space s source on n bits with min-entropy at least k. We partition X into ` equi-sized blocks of
length n1 = n/`. Let Xi, denote the i’th block where i ∈ [`] (thus Xi is a source on n/` bits). We
now condition on the initial state of small-space branching program at each of these blocks, and let
ki denote the min-entropy in Xi after this conditioning. Observe that Xi’s are now independent
sources. It follows from Lemma 2.13 that with probability at least 1− ε1,

∑̀
i=1

ki ≥ k − `s− log(1/ε1). (1)

Consider any such good fixing of the states such that the above inequality holds. The proof now
goes via analysing two cases. Since we iterate this argument, each time with a new source, let
X1 = X and k(1) = k.
Case 1: |{i ∈ [`] : ki ≥ kth}| ≥ C. The proof is direct in this case. For simplicity, suppose
X1, . . . ,XC each have min-entropy at least kα. We fix the sources XC+1, . . . ,X`. Now, for each
i ∈ [C], define the source Yi on n bits whose projection onto the the i’th block is Xi and the
rest of the co-ordinates are fixed to 0. It follows that X = η +

∑C
i=1 Yi (for some constant string

η ∈ {0, 1}n) and hence is a (n, k′, C)-sumset source. Thus X is at distance at most ε1 from a convex
combination of such sumset sources.

Case 2: |{i ∈ [`] : ki ≥ kth}| < C. Using (1), it follows that there exists distinct C − 1 partitions,
say i1, . . . , iC−1 such that

C−1∑
j=1

kij ≥ k(1) − `(s+ kα)− log(1/ε1).
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Thus, by an averaging argument, it follows that there exists some j ∈ [C − 1], such that

kij ≥
k(1) − `(s+ kα)− log(1/ε1)

C − 1
.

Hence the source Xij (on n1 = n/` bits) has min-entropy rate

k(1) − `(s+ kα)− log(1/ε1)

C − 1
· `
n

Thus, using the fact that k(1) > (skα/2 + 2kα+α)1+α, the min-entropy rate of Xij is at least
k(1)`

2nC ,
and hence

H∞(Xij )

n1
≥ `

2C
· H∞(X1)

n
.

We now repeat the argument (i.e, analyzing the Cases 1 and 2) with X1 replaced by X2 = Xij

(and we fix all other sources). However, for different iterations of the argument, we do not change
values of the parameters `, ε, kth, and they are fixed to kα, 2−k

α
and kα respectively, where k =

H∞(X).

Suppose, if possible, that for h iterations of this argument, each time we end up in Case 2.
Thus, we now have a source Xh on n/`h bits with min-entropy rate at least ( `

2C )h · kn . To derive a
contradiction using the fact that the min-entropy rate is at most 1, we require

•
(
`

2C

)h · kn > 1,

• n
`h
≥ kα

• k
(2C)h

> (skα/2 + 2k2α)1+α.

(The first condition is to ensure that the min-entropy rate is more than 1, the second condition
ensures that the length of the source Xh is large enough and finally the third condition is a lower
bound the min-entropy of Xh, which is required when we apply our argument on Xh−1.)

Pick h = 1 + logn−log k
log `−log(2C) . It is easy to check that the first condition holds. Further the second

and third conditions follow from the fact that k > s1+10α2log0.5+α(n). Thus, it must be that in at
most h iterations of the argument, we are in Case 1 and hence X is close to a convex combination
of (n, k′, C)-sumset sources. We note that the statistical distance to the convex combination is at

most O
(
ε1

logn
log k

)
.

4 Alternating Extraction between Correlated Sources

The method of alternating extraction was introduced by Dziembowski and Pietrzak [DP07]. Since
its introduction, this technique has found applications in a variety of extractor constructions [DW09,
Li13a, Li15c, Coh15, CGL15, Li15a]. In this section we extend this method to the situation when
the sources playing the alternating extraction game are correlated.

We recall the method of alternating extraction. Assume that there are two parties, Quentin
with a source Q and a uniform seed S0, and Wendy with a source W. The protocol is an interactive
process between Quentin and Wendy, and starts off with Quentin sending the seed S0 to Wendy.
Wendy uses S0 and a strong seeded extractor Extw to extract a seed R0 using W, and sends R0
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back to Quentin. This constitutes a round of the alternating extraction protocol. In the next
round, Quentin uses a strong extractor Extq to extract a seed S1 from Q using S0, and sends it
to Wendy and so on. The protocol is run for h steps, where h is an input parameter. Thus, the
following sequence of random variables is generated:

S0,R0 = Extw( S0),S1 = Extq(Q,R0), . . . ,Su = Extq(Q,Rh−1),Rh = Extw(W,Sh).

Look-Ahead Extractor: We define the following look-ahead extractor:

laExt(W, (Q,S0)) = R1, . . . ,Rh.

We now prove a lemma establishing a property of the alternating extraction protocol similar
in spirit to many of the previous works that used this technique. However, in all previous uses of
alternating extraction (apart from [Li15a]), the sources Q and W in the protocol are assumed to be
independent. We show that such a protocol can be run between sources W = X + Z and Q = Y,
where Y and Z are arbitrarily correlated and X is independent of (Y,Z). We now formally state
this below.

Lemma 4.1. For any ε > 0 and any integers n1, n2, k, k1, t, d, h satisfying k1 ≥ k + 2(t+ 1)d(h+
1) + log(1/ε) and n2 ≥ k + 2(t+ 1)d(h+ 1) + log(1/ε), let

• X be an (n1, k1)-source, Y = Un2 and Z be a random variable on n1 bits.

• Y1, . . . ,Yt be random variables on n2 bits each, such that X is independent of {Y,Z,Y1,
. . . ,Yt}.

• S0 = Slice(Y, d) and for i ∈ [t], Si0 = Slice(Yi, d).

• LExt1 : {0, 1}n1 × {0, 1}d → {0, 1}d and LExt2 : {0, 1}n2 × {0, 1}d → {0, 1}d be (k, ε)-strong
linear seeded extractors.

• laExt(X + Z, (Y,S0)) = R1, . . . ,Rh, and for i ∈ [t], laExt(X + Z, (Yi,Si0)) = Ri
1, . . . ,R

i
h,

where laExt is executed with the linear seeded extractors LExt1,LExt2 for h rounds.

• Rj,X = LExt1(X,Sj) and Rj,Z = LExt1(Z,Sj), j ∈ [0, h].

Then,

1. for any j ≥ 0,

Sj , {Sg : g ∈ [0, j − 1]}, {Sig : g ∈ [0, j − 1], i ∈ [t]}, {Rg : g ∈ [0, j − 1]},
{Ri

g : g ∈ [0, j − 1], i ∈ [t]}
≈(4j+2)ε Ud, {Sg : g ∈ [0, j − 1]}, {Sig : g ∈ [0, j − 1], i ∈ [t]}, {Rg : g ∈ [0, j − 1]},

{Ri
g : g ∈ [0, j − 1], i ∈ [t]}.

2. for any j ≥ 0, conditioned on {Sg : g ∈ [0, j − 1]}, {Sig : g ∈ [0, j − 1], i ∈ [t]}, {Rg : g ∈ [0,
j − 1]}, {Ri

g : g ∈ [0, j − 1], i ∈ [t]},

• X is independent of {Y,Z,Y1, . . . ,Yt}.
• Sj and {Sij : i ∈ [t]} are deterministic functions of Y.
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• X has conditional min-entropy at least k + (t + 1)d(h + 1 − j) + log(1/ε) and Y has
conditional min-entropy at least k + 2(t+ 1)d(h+ 1− j) + log(1/ε).

3. for any j ≥ 0,

Rj ,Rj,Z, {Rg : g ∈ [0, j − 1]}, {Ri
j,Z : i ∈ [t]}, {Ri

g : g ∈ [0, j − 1], i ∈ [t]},
{Sg : g ∈ [0, j]}, {Sig : g ∈ [0, j], i ∈ [t]},Y, {Yi : i ∈ [t]},Z

≈4(j+1)ε Ud,Rj,Z, {Rg : g ∈ [0, j − 1]}, {Ri
j,Z : i ∈ [t]}, {Ri

g : g ∈ [0, j − 1], i ∈ [t]},
{Sg : g ∈ [0, j]}, {Sig : g ∈ [0, j], i ∈ [t]},Y, {Y i : i ∈ [t]},Z.

4. for any j ≥ 0, conditioned on Rj,Z, {Rg : g ∈ [0, j − 1]}, {Ri
j,Z : i ∈ [t]}, {Ri

g : g ∈ [0, j − 1],

i ∈ [t]}, {Sg : g ∈ [0, j]}, {Sig : g ∈ [0, j], i ∈ [t]},

• X is independent of {Y,Z,Y1, . . . ,Yt}.
• Rj and {Ri

j : i ∈ [t]} are deterministic function of X.

• X has conditional min-entropy at least k + (t + 1)d(h + 1 − j) + log(1/ε) and Y has
conditional min-entropy at least k + 2(t+ 1)d(h− j) + log(1/ε).

Proof. We prove the lemma by induction on j. The validity of the lemma when j = 0 is direct.
Thus, suppose that the lemma holds for j − 1 for some j ∈ [h] and we prove it for j.

Fix the following random variables:

Rj−1,Z, {Rg : g ∈ [0, j − 2]}, {Ri
j−1,Z : i ∈ [t]}, {Ri

g : g ∈ [0, j − 2], i ∈ [t]},
{Sg : g ∈ [0, j − 1]}, {Sig : g ∈ [0, j − 1], i ∈ [t]}.

By induction hypothesis, it follows that

• Rj−1 is 4jε-close to Ud on average and is a deterministic function of X.

• Y has conditional min-entropy k + 2(t+ 1)d(h+ 1− j) + log(1/ε) and is independent of X.

• X has conditional min-entropy k + (t+ 1)d(h+ 2− j) + log(1/ε).

Since Sj = LExt2(Y,Rj−1), it follows by Lemma 2.12 that Sj is (4j + 2)ε-close to Ud on average
conditioned on Rj−1. Thus we fix Rj−1 and observe that Sj is now a deterministic function of
Y. Next we fix {Ri

j−1 : i ∈ [t]} observing that, by induction hypothesis, they are deterministic

functions of X and hence does not affect Sj . As a result of this fixing, {Sij : i ∈ [t]} is now

a deterministic function of Y, and further X remains independent of {Y,Z,Y1, . . . ,Yt}. We
note that all the random variables fixed in this step are deterministic functions of X. Thus after
these fixings, by Lemma 2.10 and induction hypothesis, the conditional entropy of X is at least
k + (t + 1)d(h + 2 − j) − (t + 1)d + log(1/ε) = k + (t + 1)d(h + 1 − j) + log(1/ε). This concludes
the proof of (1) and (2).

We now prove (3) and (4). We continue to condition on the random variables that we have
fixed so far in our proof. We have,

• Sj is (4j + 2)ε-close to Ud on average and is a deterministic function of Y,

• X has average conditional min-entropy at least k + (t + 1)(h + 1 − j) + log(1/ε) and is
independent of Y,
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• Y has conditional min-entropy k + 2(t+ 1)d(h+ 1− j) + log(1/ε).

Thus, it follows by Lemma 2.12 that Rj,X = LExt1(X,Sj) is 4(j + 1)ε-close to Ud on average
conditioned on Sj . We fix Sj and note that Rj,X is now a deterministic function of X. Next,
we fix Rj,Z which is now a deterministic function of Z and hence does not affect Rj,X. Since
LExt1 is linear seeded, it follows that Rj = Rj,X + Rj,Z and Ri

j = Ri
j,X + Ri

j,Z. Thus Rj is

εj-close to Ud on average and is a deterministic function of X. We now fix {Sij : i ∈ [t]} which

is a deterministic function of Y, and next fix {Ri
j,Z : i ∈ [t]} which is a deterministic function of

Z. Thus, these additional fixings do not affect Rj . Finally observe that X remains independent
of {Y,Z,Y1, . . . ,Yt}. We note that all the random variables fixed in this step are deterministic
functions of {Y,Z,Y1, . . . ,Yt}. Thus after these fixings, by Lemma 2.10, the conditional entropy
of Y is at least k + 2(t + 1)d(h + 1 − j) − 2(t + 1)d + log(1/ε) = k + 2(t + 1)d(h − j) + log(1/ε).
This concludes the proof of induction and hence the lemma follows.

5 Breaking Correlations Using another Correlated Source

Let Y1, . . . ,Yt be correlated random variables. Using the method of alternating extraction in clever
ways, works by Li [Li13a] and Cohen [Coh15] gave two alternate ways of breaking correlations of
these random variables using an additional independent source X.

We show that it is possible to break the correlations even by using an additional correlated
source of the form X + Z, assuming X is independent of Z,Y1, . . . ,Yt (and Z is allowed to have
arbitrary correlations with Y1, . . . ,Yt).

Our idea is to adapt the method from [Coh15] to our setting. One key change is to use linear
seeded extractors in the alternating extraction steps. This allows us to use the result from Section 4
on alternating extraction between correlated sources. Our proof technique is similar to most proofs
that use alternating extraction and goes via careful conditioning of random variables.5

Algorithm 1 uses alternating extraction in a flip-flop way (introduced in [Coh15]). Algorithm 2
chains together several flip-flop steps and is called a local correlation breaker [Coh15]. As discussed
above, we instantiate these functions with linear seeded extractors.

Algorithm 1: flip-flop(yi, yij , w, b)

Input: Bit strings yi, yij , w = x+ z of length n1, n2, n1 respectively, and a bit b.

Output: Bit string yij+1 of length n2.

Subroutines: Let LExt1 : {0, 1}n1 × {0, 1}d → {0, 1}d, LExt2 : {0, 1}n2 × {0, 1}d → {0, 1}d
be (k, ε)-strong linear seeded extractors. Let LExt3 : {0, 1}n1 × {0, 1}d → {0, 1}n2 be a (k2,
ε)-strong linear seeded extractor.
Let laExt : {0, 1}n1 × {0, 1}n2+d → {0, 1}2d be a look-ahead extractor for an alternating
extraction protocol run for 2 rounds using LExt1,LExt2 as the seeded extractors.

1 Let si0,j = Slice(yij , d), laExt(w, (yij , s
i
0,j)) = ri0,j , r

i
1,j

2 Let yi1,j = LExt3(yi, rib,j)

3 Let si0,j = Slice(yi1,j , d), laExt(w, (yi1,j , s
i
0,j)) = ri0,j , r

i
1,j

4 Output yij+1 = LExt3(yi, ri1−b,j)

5It is also possible to use the method of [Li13a] but using [Coh15] gives us slightly better parameters.
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Algorithm 2: LCB(yi, w, id)

Input: Bit strings yi, w = x+ z, id of length n1, n1, h respectively.
Output: Bit string yh+1 of length n2.

1 Let yi1 = Slice(y, n2)
2 for j = 1 to h do
3 yij+1 = flip-flop(yi, yij , w, id[j])

4 end
5 Output yih+1.

The following is the main result of this section.

Theorem 5.1. For any ε > 0 and any integers n1, n2, k, k1, t, d, h satisfying k1 ≥ k+8tdh+log(1/ε),
n2 ≥ k + 3td+ log(1/ε), n1 ≥ k + 10tdh+ (4ht+ 1)n2 + log(1/ε), let

• X be an (n1, k1)-source, Y1 = Un1 and Z,Y2, . . . ,Yt be random variables on n1 bits each,
such that X is independent of {Z,Y1, . . . ,Yt}.

• id1, . . . , idt be bit strings of length h such that for each i ∈ [t], id1 6= idi.

• Yi
h+1 = LCB(Y,X + Z, idi) for i ∈ [t] where LCB is the function computed by Algorithm 2.

Then,
Y1
h+1,Y

2
h+1, . . . ,Y

t
h+1 ≈O(hε) Un2 ,Y

2
h+1, . . . ,Y

t
h+1.

Proof. Define the following sets for j ∈ [h]:

Indj = {i ∈ [2, h] : idi[j] 6= id1[j]}, Ind≤j = ∪jg=1Indg, Ind≤j = [t] \ Ind≤j .

We prove the following lemma from which Theorem 5.1 is direct by observing that Ind≤h = [2, t].

Lemma 5.2. For each j ∈ [h],

Y1
j+1, {Yi

j+1 : i ∈ Ind≤j} ≈O(jε) Un2 , {Yi
j+1 : i ∈ Ind≤j}.

Proof. Recall that Rc,j = LExt(X + Z,Sc,j) (for any c ∈ {0, 1} and j ∈ [h]). Define Rc,j,X =
LExt(X,Sc,j) and Rc,j,Z = LExt(Z,Sc,j). Since LExt is linear seeded, it follows that Rc,j =
Rc,j,X + Rc,j,Z. Similarly, define Rc,j,X = LExt(X,Sc,j) and Rc,j,Z = LExt(Z,Sc,j).

We prove the lemma by induction on j. In fact, we prove the following stronger statement:

For every j ∈ [0, h], conditioned on the random variables: {Yi
j+1 : i ∈ Ind≤j}, {Yi

g : g ∈ [j],

i ∈ [t]}, {Ri
0,j+1,Z : i ∈ Indj}, {Y

i
g : g ∈ [j], i ∈ [t]}, {Si0,g : g ∈ [j], i ∈ [t]}, {Si1,g : g ∈ [j], i ∈ [t]},

{Ri
0,g : g ∈ [j], i ∈ [t]}, {Ri

1,g : g ∈ [j], i ∈ [t]}, {Si0,g : g ∈ [j], i ∈ [t]}, {Si1,g : g ∈ [j], i ∈ [t]},
{Ri

0,g : g ∈ [j], i ∈ [t]}, {Ri
1,g : g ∈ [j], i ∈ [t]}

• Y1
j+1 is 6jε-close to Un2 on average

• X is independent of {Z,Y1, . . . ,Yt}.

• {Yi
j+1 : i ∈ [t]} is a deterministic function of {Z,Y1, . . . ,Yt}.
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• X has conditional min-entropy at least kj,X = k+8td(h−j)+log(1/ε) and Y1 has conditional
min-entropy at least kj,Y = k + 10td(h− j) + 4tn2(h− j + 1) + log(1/ε).

The base case of the induction when j = 0 is direct. Now suppose the above holds for some
j − 1 ≥ 0, and we prove it for j.

We fix the following random variables: {Yi
j : i ∈ Ind≤(j−1)}, {Yi

g : g ∈ [j − 1], i ∈ [t]},
{Yi

g : g ∈ [j − 1], i ∈ [t]}, {Ri
0,j,Z : i ∈ Indj−1}, {Si0,g : g ∈ [j − 1], i ∈ [t]}, {Si1,g : g ∈ [j − 1], i ∈ [t]},

{Ri
0,g : g ∈ [j − 1], i ∈ [t]}, {Ri

1,g : g ∈ [j − 1], i ∈ [t]}, {Si0,g : g ∈ [j − 1], i ∈ [t]}, {Si1,g : g ∈ [j − 1],

i ∈ [t]}, {Ri
0,g : g ∈ [j − 1], i ∈ [t]}, {Ri

1,g : g ∈ [j − 1], i ∈ [t]}. By induction hypothesis, we
have

• Y1
j is 6(j − 1)ε-close to Un2 on average.

• X is independent of {Z,Y1, . . . ,Yt}.

• {Yi
j : i ∈ [t]} is a deterministic function of {Z,Y1, . . . ,Yt}.

• X has conditional min-entropy at least kj−1,X = kj,X + 8td and Y1 has conditional min-
entropy at least kj−1,Y = kj,Y + 10td+ 4tn2.

We repeatedly use Lemma 2.12 when we argue about the remaining conditional min-entropy
in a random variable and do not explicitly mention this. Further, any random variable that we fix
is either a deterministic function of X or a deterministic function of {Z,Y1, . . . ,Yt}. Thus, we
always maintain that X is independent of {Z,Y1, . . . ,Yt} and again do not explicitly mention this.

We split the proof into two cases depending on the bit id1[j].

Case 1: Suppose id1[j] = 1 and hence Y
1
j = LExt3(Y1,R1

1,j). It follows that for all i ∈ Indj ,

idi[j] = 0 and Y
i
j = LExt3(Yi,Ri

0,j). Since {Yi
j : i ∈ Ind≤(j−1)} is fixed, it follows that for all

i ∈ Ind≤(j−1), Ri
0,j,X = LExt1(X,Si0,j) is a deterministic function of X. We fix the random variables

{Ri
0,j,X : i ∈ Ind≤(j−1)}, and X has conditional min-entropy at least kj,X + 7td. We now fix S1

0,j ,

{Si0,j : i ∈ Ind≤(j−1)}, {Ri
0,j,Z : i ∈ [t]} and by Lemma 4.1, it follows that (a) R1

0,j is (6j− 5)ε-close
to uniform on average and is a deterministic function of X, (b) X has conditional min-entropy at
least kj,X + 7td and Y1

j has conditional min-entropy at least k + td+ log(1/ε). We also note that

for each i ∈ Ind≤(j−1), Ri
0,j = Ri

0,j,X + Ri
0,j,Z is fixed.

Next we fix {Si1,j : i ∈ Ind≤(j−1)}, observing that it is now a deterministic function of {Yi : i ∈
[t]} and hence does not affect the distribution of R1

0,j . The conditional min-entropy of Y1
j after this

fixing is at least k+log(1/ε). We now fix R1
0,j , {Ri

0,j : i ∈ Ind≤(j−1)} and by Lemma 4.1, (a) S1
1,j is

(6j − 4)ε-close to uniform on average and is a deterministic function of Y1, (b) X has conditional
min-entropy at least kj,X + 6td and Y1

j has conditional min-entropy at least k + log(1/ε) .

Continuing in a similar fashion as above, we first fix {Ri
1,j,X : i ∈ Ind≤(j−1)}, which is a

deterministic function of X. The conditional min-entropy of X after this fixing is at least kj,X+5td.
We now fix the random variables S1

1,j , {Si1,j : i ∈ Ind≤(j−1)}, {Ri
1,j,Z : i ∈ [t]}, {Yi

j : i ∈ [t]} and by

Lemma 4.1, we have (a) R1
1,j is (6j−3)ε-close to uniform on average and is a deterministic function

of X, (b) X has conditional min-entropy at least kj,X + 5td.

We fix {Yi
j : i ∈ Ind≤(j−1)} which is deterministic function of {Yi : i ∈ [t]}, and R1

1,j continues

to remain close to Ud on average. We also fix {Yi
j : i ∈ Indj} observing that it is a deterministic
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function of {Yi : i ∈ [t]} (since we have fixed {Ri
0,j : i ∈ [t]} and for i ∈ Indj , Yi

j = LExt3(Yi,

Ri
0,j)). It follows that {Si0,j : i ∈ Ind≤j} is fixed and hence {Ri

0,j,Z : i ∈ Ind≤j} is a deterministic

function of Z. Thus, we fix {Ri
0,j,Z : i ∈ Ind≤j} without affecting the distribution of R1

1,j .

The conditional min-entropy of Y1 after this fixing is at least kj,Y + 2tn2 + 4td. Thus Y
1
j =

LExt3(Y1,R1
1,j) is (6j − 2)ε-close to Un2 on average conditioned on R1

1,j . We fix R1
1,j and thus

Y
1
j is now a deterministic function of Y1. We now fix {Ri

1,j,X : i ∈ Indj} which is a deterministic

function of X and note that this fixes {Ri
1,j : j ∈ Indj}. Further, since {Yi

j : i ∈ Ind≤j} is fixed, it

follows that for all i ∈ Ind≤j , R
i
0,j,X is a deterministic function of X. We fix the random variables

{Ri
0,j,X : i ∈ Ind≤j} and note that {Si1,j : i ∈ Ind≤j} is now fixed. Thus {Ri

1,j,X : i ∈ Ind≤j} is now

a deterministic of X. We fix {Ri
1,j,X : i ∈ Ind≤j} and Y

1
j continues to remain close to uniform on

average and X has conditional min-entropy at least kj,X + 2td.

We now fix S
1
0,j , {S

i
0,j : i ∈ Ind≤j}, {R

i
0,j,Z : i ∈ Ind≤j}, {Y

i
j : i ∈ Ind≤j} and by Lemma

4.1, it follows that (a) R
1
0,j is (6j − 1)ε-close to uniform on average and is a deterministic function

of X, (b) X has conditional min-entropy at least kj,X + 3td. Next we fix {Ri
1,j,Z : i ∈ Ind≤j}

which a deterministic function of Z and {Yi
j+1 : i ∈ Ind≤j} is now a deterministic function of

{Yi : i ∈ Ind≤j}. Thus, we fix {Yi
j+1 : i ∈ Ind≤j} and R

1
0,j continues to remain uniform on

average. It now follows that {Ri
0,j+1,Z : i ∈ Ind≤(j)} is a deterministic function of Z, and we fix it.

The conditional min-entropy of Y1 after this fixing is at least kj,Y and thus, Y1
j+1 = LExt3(Y1,

R
1
0,j) is 6jε-close to Un2 on average conditioned on R

1
0,j . We fix R

1
0,j which is a deterministic

function of X and thus Y1
j+1 is now a deterministic function of Y1. Now consider any i ∈ Ind≤j .

Since we have fixed R
i
0,j,Z and R

i
0,j = R

i
0,j,X + R

i
0,j,Z, it follows that R

i
0,j,X is a deterministic

function of X. Thus, we fix {Ri
0,j : i ∈ Ind≤j} without affecting the distribution of Y1

j+1. X has

conditional min-entropy at least kj,X+td after this fixing. Now, since Y
i
j is fixed, it follows that S

1
1,j

is fixed for each i ∈ [t]. Thus, for any i ∈ Ind≤j , R
i
1,j,X = LExt1(X,S

i
1,j) is a deterministic function

of X. We fix {Ri
1,j,X : i ∈ Ind≤j}, and observe that Y1

j+1 remains close to uniform on average

and X has conditional min-entropy at least kj,X. Thus, {Ri
1,j : i ∈ Ind≤j} is now a deterministic

function of Z and {Yi
j+1 : i ∈ Ind≤j} is a deterministic function of {Z,Y1, . . . ,Yt}. This concludes

the proof of this case.

Case 2: Suppose id1[j] = 0 and hence Y
1
j = LExt3(Y1,R1

0,j). Since {Yi
j : j ∈ Indj−1} is fixed,

it follows that {Ri
0,j,X : i ∈ Ind≤(j−1)} and {Ri

1,j,X : i ∈ Ind≤(j−1)} are deterministic functions of X

and we fix them without affecting the distribution of Y1
j . X has conditional min-entropy at least

kj−1,X + 6td after this fixing.

We now fix S1
0,j , {Si0,j : i ∈ Ind≤(j−1)}, R1

0,j,Z, {Ri
0,j,Z : i ∈ Ind≤(j−1)} and by Lemma 4.1, R1

0,j

is (6j − 5)ε-close to Ud on average and is a deterministic function of X. We next fix {Ri
1,j,Z : i ∈

Ind≤(j−1)}, {Yi
j : i ∈ Ind≤(j−1)}, and {Yi

j : i ∈ Ind≤(j−1)} observing that they are deterministic

functions of {Z,Y1, . . . ,Yt} and does not affect the distribution of R1
0,j . Further, {Ri

0,j,Z : i ∈
Ind≤(j−1)} is now a deterministic function of Z, and we fix it.

As a result of these fixings, Y1 has conditional min-entropy at least kj−1,Y + 5tdh + 2tn2.

Thus, Y
1
j is (6j − 4)ε-close to Un2 on average conditioned on R1

0,j . We fix R1
0,j and Y

1
j is now a
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deterministic function of Y1. We now fix {Ri
0,j,X : i ∈ Ind≤(j−1)} which is a deterministic function

of X and note that this fixes {Si0,j : i ∈ Ind≤(j−1)}. Thus {Ri
1,j,X : i ∈ Ind≤(j−1)} is now a

deterministic function of X and we fix it without affecting the distribution of Y
i
j . As a result of

this fixing {Ri
1,j : i ∈ Ind≤(j−1)} is a deterministic function of Z and hence {Yi

j : i ∈ Ind≤(j−1)}
is a deterministic function of {Z,Y1, . . . ,Yt}. Next, we fix {Ri

0,j : i ∈ Ind≤(j−1)} and {Ri
1,j : i ∈

Ind≤(j−1)}, noting that they are deterministic functions of X. X has conditional min-entropy at
least kj−1,X + 2td after these fixings.

We now fix S
1
0,j , {S

i
0,j : i ∈ Ind≤(h−1)}, R

1
0,j,Z, {Ri

0,j,Zi ∈ Ind≤(h−1)} and invoking Lemma 4.1,

it follows that R
1
0,j is (6j − 3)ε-close to uniform on average and is a deterministic function of X.

We now fix {Ri
1,j,Z : i ∈ Ind≤(j−1)} which a deterministic function of Z and note that this fixes

{Ri
1,j : i ∈ Ind≤(j−1)}. Further Y

1
j has conditional min-entropy at least k + td+ log(1/ε). We now

fix {Ri
0,j,X : i ∈ Ind≤(j−1)}, {S

i
1,j,X : i ∈ Ind≤(j−1)}, {R

i
1,j,X : i ∈ Ind≤(j−1)}, and by Lemma 4.1, it

follows that R
i
1,j is (6j − 1)ε-close to Ud on average and is deterministic function of X.

We now observe that {Yi
j+1 : i ∈ Ind≤j} is a deterministic function of {Z,Y1, . . . ,Yt} and

fix it without affecting the distribution of R
1
1,j . Next we fix {Ri

0,j,Z : i ∈ Ind≤j} which is now a

deterministic function of {Z,Y1, . . . ,Yt}. The conditional min-entropy of Y1 is at least kj,Y and

hence Yi
j+1 is 6jε-close to Un2 on average conditioned on R

1
1,j . We fix R

1
1,j and thus Y1

j+1 is now

a deterministic function of Y1. Thus we fix {Ri
1,j,X : i ∈ Ind≤j} and as a result {Y i

j+1 : i ∈ Ind≤j}
is now a deterministic function of {Z,Y1, . . . ,Yt}. Further X has conditional min-entropy at least
kj,X as a result of these fixings. This completes the proof of induction and the theorem follows.

6 Extractors for Sumset Sources

In this section we construct explicit extractors for (n, k, C)-sumset sources where k = polylog(n)
and C is a large enough constant.

Theorem 6.1 (Theorem 1 restated). There exists constants c, C > 0 and a small constant β1 > 0
such that for all n ∈ N, there exists a polynomial time computable extractor for (n, k, C+1)-sumset
sources, k ≥ logc(n), with error n−Ω(1) and output length kβ1.

We use the rest of the section to prove Theorem 6.1. We claim that the function computed
by Algorithm 3 is the required extractor. We first set up the parameters and ingredients used by
Algorithm 3.

• Let β = 1/20, t = kβ, ε = 1/n2.

• Let c = (λ+ 1)/β.

• Let LExt : {0, 1}n×{0, 1}d → {0, 1}n1 , n1 =
√
k, be the linear seeded extractor from Theorem

2.3 set extract from min-entropy k with error ε. Thus d = c1 log n, for some constant c1. Let
D = 2d = nc1 .

• Let C = c1 + 2, k′ = d2, ε1 = 1/D2t = 1/n2tc1 , n2 = k4β, k′′ = n2
2 = k8β, δ = (2c1 − 1)/2c1.
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• Let LExt1 : {0, 1}n1 × {0, 1}d1 → {0, 1}d1 and LExt2 : {0, 1}n2 × {0, 1}d1 → {0, 1}d1 be
instantiations of the linear seeded extractor from Theorem 2.2, both set to extract from min-
entropy k′ with error ε1. Thus, d1 = O(log2(k/ε1)) = O(t2 log2 n) and d2 = O(log2(k/ε1)) =
O(t2 log2 n). Finally let LExt3 : {0, 1}n1×{0, 1}d3 → {0, 1}n2 be an instantiation of the linear
seeded extractor from Theorem 2.2 set to extract from min-entropy k′′ with error ε1. Thus,
d3 = O(log2(n1/ε1)) = O(t2 log2 n). Let LCB be the function computed by Algorithm 2 using
these linear seeded extractors.

• Let bitExt : {0, 1}D → {0, 1}m, m = tα, be the extractor from Theorem 2.7 set to extract
from (q, t, γ)-non-oblivious sources where q = Dδ and γ = 1/Dt+1.

Algorithm 3: SUMExt(x)

Input: A bit string x = x1 + . . .+ xC+1, where each xi is a bit string of length n.
Output: A bit string of length m.

1 Let w be the n1 ×D boolean matrix whose ith row wi is given by LExt(x, si).

2 Let v be the n2 ×D boolean matrix whose ith row vi is given by LCB(wi, x, si).
3 Let r be the first column of the matrix v. Output bitExt(r).

We prove the following claims about the random variables computed in Algorithm 3 from which
Theorem 6.1 is direct.

Claim 6.2. V is 1/nO(1)-close to a somewhere-random source V′ containing a subset R of rows,
|R| ≥ D −Dδ such that the joint distribution of any t distinct rows in R is γ-close to Utm.

Proof. Since LExt is a strong seeded extractor, it follows that for any j ∈ [C], there exists a subset
Sj ⊂ {0, 1}d, |Sj | ≥ (1−

√
ε)D, such that for any s ∈ Sj LExt(X, sj) is

√
ε-close to Un1 . Thus, by

a union bound, it follows that there exists a set S ⊂ {0, 1}d,

|S| ≥ (1− C
√
ε)D > D −Dδ,

(the inequality follows by our choice of parameters) such that for any si ∈ S, LExt(Xj , si) is√
ε-close to Un1 for each j ∈ [C].

Since LExt is linear seeded, it follows that for any i ∈ [D], it follows that Wi = LExt(X, si) =(∑C
j=1 LExt(Xj , si)

)
+LExt(XC+1, si). Thus if si ∈ S, then by Lemma 2.14,

(∑C
j=1 LExt(Xj , si)

)
is εC/2-close to Un1 . Using a hybrid argument, it follows that W is DεC/2-close to a D×n1 matrix

W, whose ith row W
i

is equal to Wi if si /∈ S, and otherwise is given by Yi + LExt(XC+1, si),
where Yi follows the distribution Un2 . We note that the Yi’s can be arbitrarily correlated.

Thus, V is DεC/2-close to a D × n2-matrix V such that if si ∈ S, then the ith row V
i

is given
by LCB(Yi + LExt(XC+1, si),X, si).

Now consider any subset {si1 , . . . , sit} ⊂ S of size t. We claim that

(V
i1 , . . . ,V

it
) ≈O(tdε) Utm.

We fix the random variable {LExt(XC+1, si1), . . . ,LExt(XC+1, sit)}. As a result of this fixing,
XC+1 has min-entropy at least k − tn1 − log(1/ε) > k/2 with probability at least 1 − ε. Let
Z =

∑C
j=1 Xj .
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Thus,

(V
i1 , . . . ,V

it
) = (LCB(Y1 + a1,XC+1 + Z, si1), . . . ,LCB(Yt + at,XC+1 + Z, sit)),

where a1, . . . , at are some constants.

We now invoke Theorem 5.1 noting that the following conditions hold by our choice of param-
eters:

• XC+1 is independent of {Z,Y1, . . . ,Yt}.

• Each sig is a distinct bit string of length d.

• k/2 ≥ k′ + 8td1d+ log(1/ε).

• n2 ≥ k′ + 3td1 + log(1/ε).

• n1 ≥ k′ + 10td1d+ (4td+ 1)n2 + log(1/ε).

Thus,

(LCB(Y1 + a1,XC+1 + Z, si1), . . . ,LCB(Yt + at,XC+1 + Z, sit)) ≈O(dtε1) Utm.

We note that by our choice of parameters, the following inequalities hold:

• dtε1 < 1/Dt+2.

• εC/2D ≤ 1/n2.

The claim now follows from the fact the above argument holds for any arbitrary size t subset of S
and the fact that V is εC/2D-close to V.

Claim 6.3. V′ is 1/nO(1)-close to Um.

Proof. Follows directly from Claim 6.2 and Theorem 2.7.

7 Proof of Theorem 1.12

Proof of Theorem 1.12. Let 2Ext : {0, 1}n×{0, 1}n → {0, 1}m, m = k/10 be the 2-source extractor
from Theorem 2.4 set to extract from min-entropy k/2 with error ε = 1/nΩ(1). Define the function
Ext : {0, 1}`n → {0, 1}m as

Ext(x1, . . . , x`) =
∑

1≤i<j≤`
2Ext(xi, xj).

We claim that for any (n, k, `)-somewhere 2-source X = {X1, . . . ,X`},

|Ext(X)−Um| ≤ ε.

We prove this in the following way. Since the function Ext is symmetric, we can assume without
loss of generality that the sources X1 and X2 have min-entropy at least k each. Fix the sources
X3, . . . ,X`. Thus, after this fixing

Ext(X1,X2, x3 . . . , x`) = 2Ext(X1,X2) +

∑̀
j=3

2Ext(X1, xj)

+

∑̀
j=3

2Ext(X2, xj)

+ s,
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for some constant s ∈ {0, 1}m. Now, we observe that A =
(∑`

j=3 2Ext(X1, xj)
)

is a random

variable on {0, 1}m and is deterministic function of X1. Thus, we fix A, and using Lemma 2.13, X1

has min-entropy at least 0.9k−m with probability 1−2−k
0.1

. Similarly, B =
(∑`

j=3 2Ext(X2, xj)
)

is a random variable on {0, 1}m and is deterministic function of X2. Thus, we fix B, and X2 has
min-entropy at least 0.9k −m with probability 1− 2−k

0.1
. Thus, after this fixing

Ext(X) = 2Ext(X1,X2) + s′,

for some constant s′ ∈ {0, 1}m. Further X1 and X2 are still independent, each with min-entropy

at least 0.8k (with probability at least 1− 2−k
Ω(1)

). The result now follows since 2Ext is a 2-source
extractor for min-entropy k/2.
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