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Abstract

The study of seeded randomness extractors is a major line of research in theoretical computer
science. The goal is to construct deterministic algorithms which can take a “weak” random
source X with min-entropy k and a uniformly random seed Y of length d, and outputs a string
of length close to k that is close to uniform and independent of Y . Dodis and Wichs [DW09]
introduced a generalization of randomness extractors called non-malleable extractors (nmExt)
where nmExt(X,Y ) is close to uniform and independent of Y and nmExt(X, f(Y )) for any
function f with no fixed points.

We relax the notion of a non-malleable extractor and introduce what we call an affine-
malleable extractor (AmExt : Fn × Fd 7→ F) where AmExt(X,Y ) is close to uniform and inde-
pendent of Y and has some limited dependence of AmExt(X, f(Y )) - that conditioned on Y ,
(AmExt(X,Y ),AmExt(X, f(Y ))) is close to (U,A · U + B) where U is uniformly distributed in
F and A,B ∈ F are random variables independent of U .

We show under a plausible conjecture in additive combinatorics (called the Spectrum Dou-
bling Conjecture) that the inner-product function 〈·, ·〉 : Fn × Fn 7→ F is an affine-malleable
extractor. As a modest justification of the conjecture, we show that a weaker version of the
conjecture is implied by the widely believed Polynomial Freiman-Ruzsa conjecture.

We also study the classical problem of privacy amplification, where two parties Alice and
Bob share a weak secret X of min-entropy k, and wish to agree on secret key R of length m
over a public communication channel completely controlled by a computationally unbounded
attacker Eve. The main application of non-malleable extractors and its many variants has been
in constructing secure privacy amplification protocols.

We show that affine-malleable extractors along with affine-evasive sets can also be used
to construct efficient privacy amplification protocols. We show that our protocol, under the
Spectrum Doubling Conjecture, achieves near optimal parameters and achieves additional se-
curity properties like source privacy that have been the focus of some recent results in privacy
amplification.
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1 Introduction

The study of randomness extractors is a major line of research in theoretical computer science.
The goal is to construct deterministic algorithms which can take one or more “weak” random
sources and transform them into a “strong” random source, which typically means close to uniform.
The challenge is in coming with explicit constructions, as often it is easy to show that a random
construction is close to optimal. These constructions come in two flavours: the first are “simple”
or “natural” mathematical constructions, such as the inner product function; the others are more
complex constructions, usually obtained as a combination of a number of more basic constructions.
For a general background to extractors and their many applications, see e.g. [Sha02].

The focus of this paper is on the first family of “simple” mathematical constructions, and in
particular the inner product function. Let F = Fp be a finite field, and consider the inner product
function over Fn defined as 〈x, y〉 =

∑n
i=1 xiyi. For a random variable X taking values in Fn, its

min-entropy is defined as H∞(X) = − log(max Pr[X = x]). If H∞(X) = δ ·log |F|n = δ(n log p) then
we say X has min-entropy rate δ. It is well known since the work of [CG88] that the inner product
function is a two-source extractor for min-entropy rate 1/2. That is, if X,Y are two independent
random variables taking values in Fn, and H∞(X), H∞(Y ) � (n log p)/2, then 〈X,Y 〉 is close to
uniform in F. This bound of 1/2 on the min-entropy rate is tight, as can be seen be the following
example: take X to be uniform over a subspace of Fn of dimension n/2, and Y to be uniform over
the orthogonal subspace. The best known construction of two-source extractors, until very recently,
was by Bourgain [Bou05], who showed that by pre-encoding the input as (x, x2) ∈ F2n (at least
when the field has odd order) and computing the inner product over F2n, one can handle source of
min-entropy rate 1/2− ε0 for some absolute constant ε0 > 0.

The study of two-source extractors turns out to be related to a more recent notion of extractors,
called non-malleable extractors. These were defined by Dodis and Wichs [DW09] for the purpose of
designing privacy amplification protocols. They showed that such extractors would allow for optimal
protocols, and showed that a random construction achieves optimal parameters. However, they left
the challenge of explicit constructions open. Subsequent works [CRS12, Li12c, DY13, DLWZ14] gave
constructions for non-malleable extractors for min-entropy rate 1/2−ε0, based on the inner product
function and the construction of two-source extractor by Bourgain. Interesting enough, Li [Li12c]
showed a strong connection between non-malleable extractors and two-source extractors, thereby
giving evidence that it might be very difficult to construct non-malleable extractors for min-entropy
rate below 1/2 − ε0. In a recent breakthrough work, Chattopadhyay, Goyal and Li [CGL15] have
recently obtained a non-malleable extractor with min-entropy polylog(n log p). This was closely
followed by a another breakthrough result by Chattopadhyay and Zuckerman [CZ15], achieving an
efficient two-source extractor where each source has polylogarithmic min-entropy. Our focus in this
paper is to obtain much more modest results than these obtained by [CGL15, CZ15], however we
restrict ourselves to the use of very simple function - the inner-product function.

We note here that the inner product function, if considered as a potential non-malleable ex-
tractor with a source X ∈ Fn and uniform seed in Fn, still suffers from the barrier of orthogonal
subspaces, and hence is not a non-malleable extractor for any min-entropy rate. First, let us define
non-malleable extractors formally, specialized to the parameters of our function of interest, the
inner product function. A function E : Fn × Fn → F is a non-malleable extractor for min-entropy
rate k, if for any random variable X taking values in Fn with min-entropy k; for a seed S uniform
in Fn and independent of X; and for any function f : Fn → Fn, the joint distribution

(E(X,S), E(X, f(S))) ∈ F2

lies close to a distribution in the convex hull of {(U,U)} ∪ {(U, a) : a ∈ F}, where U = UF is the
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uniform distribution over F. That is, this family of distribution contains the case where the two
outputs are equal and uniform in F (which would be the case if say f is the identity function),
or where the first term is uniform in F and the second is independent of it (but not necessarily
uniform), or any convex combination of the above.

To see why the inner product function fails to be a non-malleable extractor, consider the fol-
lowing example. Let V ⊂ Fn be a subspace, let u ∈ Fn \ V and v ∈ V ⊥ be vectors such that
〈u, v〉 = 1. If we choose X uniform in the coset V + u and set f(S) = aS + bv for some a, b ∈ F
then approximately

(〈X,S〉, 〈X, f(S)〉) ∼ (U, aU + b) .

In this work, we define a weaker type of extractor, which we call affine-malleable extractor,
motivated by the above example. A distribution over F2 is said to be affine if it lies in the convex
hull of {(U, aU + b) : a, b ∈ F}. A function E : Fn × Fn → F is an affine-malleable extractor for
min-entropy rate k, if for any random variable X taking values in Fn with min-entropy k; for a seed
S uniform in Fn and independent of X; and for any function f : Fn → Fn, the joint distribution

(E(X,S), E(X, f(S))) ∈ F2

lies close to an affine distribution. We prove a number of results on affine-malleable extractors:

1. Affine-malleable extractors, combined with recent constructions of affine-evasive sets [ADL14,
Agg15], allow for optimal privacy amplification protocols. Thus, for the application in privacy
amplification they are as useful as non-malleable extractors.

2. The inner product function is an affine-malleable extractor for any constant min-entropy rate
δ > 0, assuming the dimension n is large enough. This is the main technical part of this work.

3. We give a conjecture in additive combinatorics that implies that the inner product function is
an affine-malleable extractor also for much smaller min-entropy, which implies near optimal
privacy amplification protocols.

The analysis of the inner product function, and in particular showing that it is an affine-
malleable extractor, relies on new properties of the spectrum of large sets, which we discuss next.

1.1 Spectrum of large sets

The analysis of the inner product function relies on analyzing the spectrum of subsets of Fn. For
a set A ⊂ Fn, its Fourier coefficients are defined as

1̂A(γ) =
∑
a∈A

ω〈γ,x〉, γ ∈ Fn,

where ω = exp(2πi/p) is a primite p-th root of unity. The spectrum of A is the set of large Fourier
coefficients,

Specε(A) =
{
γ ∈ Fn : |1̂A(γ)| > ε|A|

}
.

The spectrum of a set is extremely useful when studying arithmetic properties. Several properties
of it are well known and quite useful. Parseval’s identity allows to bound the size of the spectrum
if A is not too small,

|Specε(A)| 6 O

(
Fn

ε2|A|

)
.
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Chang’s theorem [Cha02] allows to bound the dimension of the large spectrum (a notion which we
do not formally define here) by

dim Specε(A) 6 O
(
log(Fn/|A|) · 1/ε2

)
.

An application of the Cauchy-Schwartz inequality shows that the spectrum has bounded statistical
doubling. That is, the sum of two random elements in the spectrum typically lies in the spectrum
with a smaller threshold,

Pr
γ1,γ2∈Specε(A)

[γ1 − γ2 ∈ Specε2/2(A)] > ε2/2.

For a proof and some extensions, see eg the work of Shkredov [Shk08]. For our purposes, it turns out
that the important property is to control the growth of the spectrum in addition. In the following,
for S ⊂ Fn let S+S = {s1 +s2 : s1, s2 ∈ S} and F ·S = {cs : c ∈ F, s ∈ S}. The following definition
will be crucial for us.

Definition 1. A set A ⊂ Fn has (ε, η)-controlled spectrum if

|F · Specε(A) + F · Specε(A)| 6 η|Fn|.

To see the relation to affine-malleable extractors, let X be uniform over a set A ⊂ Fn, let S
be uniform in Fn, and let f : Fn → Fn be a function. If (〈X,S〉, 〈X, f(S)〉) is not close to affine,
then this remains true if we fix S. That is, for a noticeable fraction of values s ∈ Fn, the joint
distribution

(〈X, s〉, 〈X, f(s)〉)
is also not close to affine. Hence, it must have a noticeable Fourier coefficient, which is equivalent
to

as+ bf(s) ∈ Specε(A)

for some a, b ∈ F not both zero and ε 6 p−O(1) which depends on the error parameters. In fact, the
set of Fourier coefficients cannot be one dimensional. If we consider

Λs := {(a, b) ∈ F2 : as+ bf(s) ∈ Specε(A)}

then Λs contains (a1, b1), (a2, b2) which are not scalar multiples of each other. So, if

a1s+ b1f(s) = γ1

a2s+ b2f(s) = γ2

where γ1, γ2 ∈ Specε(A), then
s = c1γ1 + c2γ2

for some c1, c2 ∈ S. As this is true for many choices of s ∈ Fn (say, more than an η fraction), we
get that

|F · Specε(A) + F · Specε(A)| > η|Fn|
and A does not have (ε, η)-controlled spectrum.

So, the question arises: can we hope that any large enough set has (ε, η)-controlled spectrum.
Applying Parseval’s identity we get the bound

|F · Specε(A) + F · Specε(A)| 6 |F|2|Specε(A)|2 6 p2
(
pn+1

ε2|A|

)2

.

The following is immediate from this.
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Theorem 1.1. Let p be a prime, n ∈ N, and 0 < ε < 1. For any A ⊆ Fn, such that |A| > 1
ε3
·pn/2+3,

|F · Specε(A) + F · Specε(A)| 6 ε · pn .

Again, this threshold of min-entropy rate 1/2 turns out to be tight, by a variant of the orthogonal
subspaces construction. If we take A = (Fn/2 × {0}n/2) ∪ ({0}n/2 × Fn/2) then it is easy to verify
that Spec1/2(A) = A and that Spec1/2(A) + Spec1/2(A) = Fn.

So, are we again stuck at the min-entropy rate 1/2 barrier? The answer is no. In the analysis
of affine-malleable extractors above, if we can partition A as A = ∪Ai, where each Ai has (ε, η)-
controlled spectrum, then the analysis would still work. That is, if we define Xi to be uniform on
Ai then

(〈Xi, S〉, 〈Xi, f(S)〉)

are each close to affine, and hence also (〈X,S〉, 〈X, f(S)〉) being a convex combination of these, is
also close to affine. The same would hold if the partition ∪Ai covered most of A. For example, in the
example mentioned above of A = (Fn/2×{0}n/2)∪({0}n/2×Fn/2) we would take A1 = Fn/2×{0}n/2
and A2 = {0}n/2 × Fn/2, both of which have a controlled spectrum.

So, the real question is the following: is it true that any large enough set A contains a subset
which has (ε, η)-controlled spectrum. If this is true, then the analysis would still work. We could
not prove it for smaller sets A. Two of the authors of this paper [HL15] showed a bound on
|Specε(A) + Specε(A)| for |A| � pn/2. It does not seem easy, however, to extend their results
to bound |F · Specε(A) + F · Specε(A)|. We show the following assuming the widely believed
polynomial Freiman-Ruzsa conjecture. We refer the reader to [BDL14] and the references therein
for a discussion of this conjecture.

Theorem 1.2. Assuming the PFR conjecture, we have that there is a universal constant C such

that for any A ⊆ Fn, such that |A| > 1
ε · p

n
√
C log p/ logn, then there exists a subset B ⊆ A such that

|F · Specε(B) + F · Specε(B)| 6 ε · pn . (1.1)

We conjecture that PFR conjecture might not precisely capture the difficulty of bounded the
doubling of the spectrum, and that Theorem 1.2 is far from tight. We believe that the above
holds for |A| sufficiently bigger than 1/ε, and when ε is sufficiently small. The reason we cannot
conjecture the above for |A| > (1/ε)O(1) is because of the following example. If B is any subset of
the hamming ball A = {x ∈ {0, 1}n :

∑
xi 6 log(1/ε)} then Specε(B) contains most vectors in Fn

with n/2 zeros, and hence |F · Specε(B) + F · Specε(B)| ≈ |Fn|. We conjecture that this example
gives the worst possible bound on the size of |A|.

Conjecture 1.3 (Spectrum Doubling Conjecture). For any A ⊆ Fn and any ε ∈ (0, 1/p) such that
|A| > nO(log(1/ε)) = (1/ε)O(log(n)), there is a subset B of A such that

|F · Specε(B) + F · Specε(B)| 6 ε · pn .

1.2 Privacy Amplification

One of the classical problems in information-theoretic cryptography is that of privacy amplification
(PA) [BBR88, Mau92, BBCM95]. In this, two parties, Alice and Bob, share a weak secret X
(of length N bits and min-entropy k < N) and wish to securely (with security bounded by ε)
agree on an ε-close to uniform secret key R of length m bits via a communication channel fully
controlled by the adversary, Eve. This problem arises in a number of applications, such as biometric
authentication, leakage-resilient cryptography, and quantum cryptography.
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In the case when the adversary is passive, i.e., only sees but does not modify the message(s)
sent over the channel, this problem can be easily solved in a single round using a strong extractor
Ext. This can be done by Alice sending a seed W for the extractor, and then Alice and Bob both
compute the secret Ext(X,W ) which is close to being uniformly random and independent of W by
the strong extractor property.

However, it becomes significantly more involved to design an efficient protocol that is secure for
the case when the adversary is active and can modify messages. This problem has been studied
extensively in the recent years [MW97, RW03, DKK+12, DW09, CKOR10, DLWZ14, CRS12, Li12c,
Li12a, Li12b, DY13, ADJ+14] with the goal of optimizing several natural quantities like (i) The
min-entropy k (ii) The entropy loss L = k −m (iii) The number of rounds of the protocol.

Prior Results. Existing one-round solutions [MW97, DKK+12] work for min-entropy k > N/2
and require large entropy loss L > N−k. It was shown by [DS02, DW09] that k > N/2 is necessary,
and that the large entropy loss of N − k is likely necessary, as well.

So, in order to achieve PA for k < N/2, we require at least two rounds. In a breakthrough
result, Dodis and Wichs [DW09] showed non-constructively that a two-round PA protocol exists
with optimal (up to constant factors) entropy loss L = Θ(log (1/ε)) for any k. This was achieved
by defining and showing existence of non-malleable extractors.

Since [DW09] could not construct a non-malleable extractor, they instead defined and con-
structed look-ahead extractors which was done using the alternating extraction protocol of Dziem-
bowski and Pietrzak [DP07]. Look-ahead extractor laExt is an extractor with weaker non-malleable
requirements where laExt(X,Y ) is allowed to have some limited dependence with laExt(X,A(Y )).
PA protocols using look-ahead extractors were constructed only for k > log2(1/ε). This protocol is

meaningful only in the scenario when the error ε = 2−O(
√
N) and so would not work if we require

a smaller error.
Subsequent works [DLWZ14, CRS12, Li12c, DY13] gave constructions for non-malleable ex-

tractors but none of these were for k < 0.499N . Very recently, a non-malleable extractor has been
constructed by Chattopadhyay et al [CGL15] for k = Ω(log2N + log2(1/ε)).

In another work, Li [Li12a] defined and constructed one such weaker notion called non-malleable
condensers nmCond, where he weakened the extractor requirement so that nmCond(X,Y ) is not
required to be close to uniform but rather only has a better min-entropy rate guarantee as compared
X. In a subsequent work [Li15], he improved the non-malleable condenser constructions thereby
giving two different PA protocols using non-malleable condensers with optimal entropy loss L =
Θ(log (1/ε)). However, one of these protocols works only for k > log2(1/ε), and the other only for
k > δN for any constant δ. We note here that in order to achieve the more useful security notion
of post-application authenticity 1 with the same entropy loss, we need to add one additional round
as observed by Aggarwal et al [ADJ+14].

Another related goal that has been considered in the literature [DS05, BF11, ADJ+14] for PA
protocols is that of source privacy. Intuitively, this property demands that the transcript of the
protocol (even together with the derived key R!) does not reveal any “useful information” about the
source X; or, equivalently (as shown by [DS05]), that the transcript does not reveal any information
at all about the distribution of X (beyond a lower bound k on its min-entropy). For active Eve, the
only works that considered this notion are [BF11, ADJ+14]. All protocols achieving source privacy
considered in these works are secure only for k > log2(1/ε), or for k > 0.499N .

1Intuitively, post-application authenticity requires that Eve cannot modify Bob’s last message and cause Alice to
output RA 6= RB , even if given Bob’s key RB . This is useful to protect against attacks where Bob might begin to
use his key and Eve can use this information to modify the last message sent to Alice.
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Result Entropy Rounds Entropy Loss Source Privacy

[DW09, ADJ+14] k = Ω(log (1/ε)) 2 Θ(log (1/ε)) YES
(non-explicit)

[DKK+12] k > n
2 1 n

2 + Θ(log (1/ε)) YES

[DW09] k = Ω(log2(1/ε)) 2 Θ(log2(1/ε)) NO

[Li15, ADJ+14] k = Ω
(
min

(
δn, log2(1/ε)

))
3 Θ(log (1/ε)) NO

[ADJ+14] k = Ω
(
min

(
δn, log2(1/ε)

))
5 Θ(log (1/ε)) YES

This work k = Ω̃(log (1/ε)) 2 Θ(log (1/ε)) YES
(assuming Conjecture 1.3)

Table 1: Comparison of our PA protocol with previous best-known protocols.

We note that in a typical PA application we would require the error to be significantly smaller

than 2−O(
√
N (if say N is not too large), in which case all protocols that work for min-entropy

above log2(1/ε) will be useless.

Our Result. Our PA protocol using an affine-malleable extractor and an affine-evasive set can
be described as follows. Like in the case of a passive Eve that we mentioned earlier, the aim of the
protocol is to enable Bob to send an authenticated copy of a seed W for a strong extractor Ext.
Bob chooses the seed W as a random element of an affine-evasive set S ⊂ F. In the first round
Alice sends a seed Y for the affine-malleable extractor amExt, which can possibly be changed by
the adversary to A(Y ) = Y ′. Then in the second round, Bob sends T = W + amExt(X,Y ′). As we
show in Section 4, by the definition of an affine-malleable extractor and an affine-evasive set, it is
hard for the adversary to change T to some T ′ = W ′ + amExt(X,Y ), where W ′ 6= W and W ′ is
an element of S. Moreover, since both the messages sent in the first round and in the second are
completely independent of X, we get source-privacy for free in this protocol.

We observe and give justification for the fact that the inner product function from Fn × Fn to
F for a large prime p is likely to be a good affine-malleable extractor. In fact, under a plausible
conjecture that we call the spectrum doubling conjecture, our 2-round PA protocol using the inner
product extractor as an affine-malleable extractor achieves near-optimal min-entropy and entropy
loss requirements.

Theorem 1.4. Assuming conjecture 1.3, there exists an explicit polynomial-time, two-round (k, ε)-
private, (k,m, ε)-secure privacy amplification protocol, where k > O(log (1/ε) logN), and k −m 6
(log (1/ε)).

A comparison of our result (under Conjecture 1.3) and the known results is summarized in
Table 1. All results achieve ε-secure post application robust PA protocols, where we assume that
ε = 2−n

c
where c is any constant in (0, 1). Also δ is assumed to be a constant.

1.3 Organization of this Paper

The paper is organized as follows. In Section 2, we introduce the mathematical preliminaries and
known primitives used for our construction. In Section 3, we show that the spectrum doubling
bound implies that the inner-product function is an affine-malleable extractor. In Section 4, we
formally introduce the problem of privacy amplification and give the construction and security
proof of our new 2 round privacy amplification protocol assuming an affine-malleable extractor. In
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Section 5 we prove Theorem 1.2, and then conclude with the implication on the construction of
affine-malleable extractors and our privacy amplification protocol.

1.4 Conclusions and Open Questions

In this work, we initiate the study of non-malleability properties of the inner-product function,
which is one of the first family of simple mathematical constructions of a randomness extractor.
We show, under a plausible conjecture, that even though 〈·, ·〉 : Fn×Fn 7→ F is not a non-malleable
extractor, it has strong non-malleability properties, i.e. that if X has sufficient min-entropy and Y
is uniform in Fn, then for any function f : Fn 7→ Fn, 〈X, f(Y )〉 has distribution close to an affine
function of 〈X,Y 〉.

Even though we do not achieve a non-malleable extractor, we manage to construct a PA protocol
(which is the main and most direct application of a non-malleable extractor) using this weaker
notion of a non-malleable extractor that we call an affine-malleable extractor along with an affine-
evasive set [Agg15]. We show that under Conjecture 1.3, our PA protocol achieves near optimal
parameters. In addition, in our protocol, we get the source privacy property for free unlike the
recent results of [BF11, ADJ+14] where the previous protocols had to be modified significantly
(thereby making them more complicated) in order to achieve source privacy.

We note that our protocol is the first protocol that under a reasonable conjecture achieves
privacy amplification with near optimal min-entropy. To the best of our knowledge, none of the
previous constructions could even be conjectured to achieve similar parameters.

This work leaves open several questions but the most interesting question motivated by this
work is to prove Conjecture 1.3. Even proving a weaker version of the conjecture like Theorem 1.2
without assuming the PFR conjecture will be very interesting. We would like to mention that we
have stated Conjecture 1.3 the way it is since this is the best bound for which we do not have a
counter-example. We encourage the reader to suggest a counter-example which would imply that
we will need to relax the lower bound on A.

2 Preliminaries

For a set S, we let US denote the uniform distribution over S. For an integer m ∈ N, we let Um
denote the uniform distribution over {0, 1}m, the bit-strings of length m. For a distribution or
random variable X we write x← X to denote the operation of sampling a random x according to
X. For a set S, we write s← S as shorthand for s← US .

Entropy and Statistical Distance. The min-entropy of a random variable X is defined
as H∞(X)

def
= − log(maxx Pr[X = x]). We say that X is an (n, k)-source if X ∈ {0, 1}n and

H∞(X) > k. For X ∈ {0, 1}n, we define the entropy rate of X to be H∞(X)/n. We also define
average (aka conditional) min-entropy of a random variable X conditioned on another random
variable Z as

H∞(X|Z)
def
= − log

(
Ez←Z

[
max
x

Pr[X = x|Z = z]
])

= − log
(
Ez←Z

[
2−H∞(X|Z=z)

])
where Ez←Z denotes the expected value over z ← Z. We have the following lemma.

Lemma 2.1 ([DORS08]). Let (X,W ) be some joint distribution. Then,

• For any s > 0, Prw←W [H∞(X|W = w) ≥ H∞(X|W )− s] ≥ 1− 2−s.

• If Z has at most 2` possible values, then H∞(X|(W,Z)) ≥ H∞(X|W )− `.
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The statistical distance between two random variables W and Z distributed over some set S is

∆(W,Z)
def
= max

T⊆S
|W (T )− Z(T )| = 1

2

∑
s∈S
|W (s)− Z(s)|.

Note that ∆(W,Z) = maxD(Pr[D(W ) = 1] − Pr[D(Z) = 1]), where D is a probabilistic function.
We say W is ε-close to Z, denoted W ≈ε Z, if ∆(W,Z) ≤ ε. We write ∆(W,Z|Y ) as shorthand for
∆((W,Y ), (Z, Y )), and note that ∆(W,Z|Y ) = Ey←Y ∆(W |Y = y, Z|Y = y).

Lemma 2.2. Let F = Fp be a finite field, and let A,B ∈ F be random variables. If ∆(A+α·B,UF) 6
ε for all α ∈ F, then ∆((A,B); (UF, B)) 6 ε · √p.

The proof uses the following inequality.

∀x1, . . . , xk > 0,

k∑
i=1

x2i 6

(
k∑
i=1

xi

)2

6 k

k∑
i=1

x2i (2.1)

Proof of Lemma 2.2. We first show the following claim.

Claim 2.3. Let C,D ∈ X be a pair random variables for some set X . Then if C ′, D′ are identically
distributed as C,D and independent from them, then

4∆((C,D) ; (UX , D)))2

|X |
6 Pr[C = C ′, D = D′]− Pr[D = D′]

|X |
6 4∆((C,D) ; (UX , D))2 .

Proof. We have

∑
x,y∈X

(
Pr[C = x,D = y]− Pr[D = y]

|X |

)2

=
∑
x,y∈X

Pr[C = x,D = y]2 −
∑
y∈X

Pr[D = y]2

|X |
,

and hence the result follows by Equation 2.1.

Now, let (A′, B′) be independent and identically distributed as (A,B). By Claim 2.3, we have
that for all α ∈ F,

Pr[A+ α ·B = A′ + α ·B′] 6 1

p
+ 4ε2 .

Summing over all α ∈ F, we have that

1 + 4pε2 >
∑
α∈F

Pr[A+ α ·B = A′ + α ·B′]

=
∑
α∈F

Pr[A+ α ·B = A′ + α ·B′|B = B′] · Pr[B = B′]

+
∑
α∈F

Pr[A+ α ·B = A′ + α ·B′|B 6= B′] · Pr[B 6= B′]

= |F| · Pr[A = A′|B = B′] · Pr[B = B′] + Pr[B 6= B′]

= pPr[A = A′, B = B′] + Pr[B 6= B′]

> 1 + 4∆((A,B); (UF, B))2 ,

using Claim 2.3.
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2.1 Known Primitives

Extractors. An extractor [NZ96] can be used to extract uniform randomness out of a weakly-
random value which is only assumed to have sufficient min-entropy. Our definition follows that of
[DORS08], which is defined in terms of conditional min-entropy.

Definition 2.4 (Extractors). An efficient function Ext : {0, 1}n×{0, 1}d → {0, 1}m is an (average-
case, strong) (k, ε)-extractor, if for all X,Z such that X is distributed over {0, 1}n and H∞(X|Z) ≥
k, we get

∆( (Z, Y,Ext(X;Y )) , (Z, Y, Um) ) 6 ε

where Y ≡ Ud denotes the coins of Ext (called the seed). The value L = k−m is called the entropy
loss of Ext, and the value d is called the seed length of Ext.

It is well known [RTS00] that the optimal entropy loss of an extractor is 2 log (1/ε) − O(1),
which is achieved by the famous Leftover Hash Lemma [HILL99] with seed length d = n. To reduce
the seed length to d = O((log (1/ε) + log k) log n), we can also use more sophisticated extractor
constructions, such as those in [GUV09, DKSS09]. Altentatively, we can extract m = (1 − δ)k
bits using asymptotically optimal seed length d = O(log (1/ε) + log n) [GUV09]. We will use the
following.

Theorem 2.5 ([HILL99]). There exists an efficient (k, ε)-extractor Ext : {0, 1}n × {0, 1}n →
{0, 1}k−2 log(1/ε)−O(1).

Affine-evasive Sets. Let F be a finite field. An affine-evasive set S ⊆ F is a large set which has
small intersection with affine shifts of itself. For a, b ∈ F2 define aS + b = {as+ b|s ∈ S}.

Definition 2.6. A non-empty set S ⊆ F is said to be a (γ, ν)-affine-evasive subset of F if |S| = γ|F|,
and for any (a, b) ∈ F2 \ {(1, 0)}, we have

|S ∩ (aS + b)| ≤ ν|S| .

The notion of affine evasive sets in this context initiated in [ADL13], where a somewhat lossy
construction was given. This was improved in a recent work of one of the authors of this pa-
per [Agg15].

Theorem 2.7 ([Agg15]). Let Fp be a prime field. There exists an efficiently samplable (γ, ν)-affine-
evasive subset S ⊂ Fp with γ = p−3/4+o(1) and ν = p−1/4+o(1).

3 Inner product is a candidate affine-malleable extractor

Affine-malleable Extractors. We first define the family of desired distributions.

Definition 3.1 (Affine distribution). Let F be a finite field. A distribution D taking values in
F× F is said to be an affine distribution if it is a convex combination of distributions of the form
(U, aU + b) where a, b ∈ F and U is the uniform distribution over F.

An affine malleable extractor is a seeded extractor, such that two correlated applications of it
on the same random source, with correlated seeds, are close to being an affine distribution.
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Definition 3.2 (Affine-Malleable Extractors). Let F be a finite field. An efficient function AmExt :
{0, 1}n × {0, 1}d → F is an (average-case) (k, ε)-affine-malleable extractor, if the following holds.
Let X ∈ {0, 1}n, Z ∈ Z be jointly distributed random variables such that H∞(X|Z) ≥ k. Let
Y ∈ {0, 1}d be uniform and independent. Let F : {0, 1}d × Z 7→ {0, 1}d be any adversarial
function. Then, there exist a random variable D = D(Y,Z) taking values in F × F, such that the
distribution D|Y = y, Z = z is affine for all y ∈ {0, 1}d, z ∈ Z, such that we have

∆ ((AmExt(X;Y ),AmExt(X;F(Y,Z))) ; D | Z, Y ) 6 ε.

Let F = Fp for the remainder of this section. We show that if for any large enough A ⊆ Fn,
there exists A′ ⊆ A such that Specε(A′) has small doubling, then the inner product over F is a

good affine-malleable extractor. In this section, fix ω = e
2πi
p .

Let φf (X,Y ) be the joint distribution 〈X,Y 〉, 〈X, f(Y )〉, and let D be the set of affine distri-
butions over F×F. We will use the following result from [ADL14]. This was shown in [ADL14] for
a different definition of φf , but the proof is the same.

Lemma 3.3. Let P ⊆ Fn × Fn. Let P1, . . . ,Pk be a partition of P. Assume that for all 1 6 i 6 k,

∆
(
φf (X,Y )|(X,Y )∈Pi ; D | Z, Y

)
6 εi.

Then

∆
(
φ(X,Y )|(X,Y )∈P ; D | Z, Y

)
6
∑

εi
|Pi|
|P|

.

We will need the following result that shows a connection between the statistical distance of
the inner product from uniform, and the spectrum of a set A.

Lemma 3.4. Let A ⊆ Fn, and let X be uniform over A. For all y ∈ Fn, if for some a ∈ F \ {0},
a · y ∈ Specε(A) then ∆(〈y,X〉, UF) > ε

2
√
p . Also if ∆(〈y,X〉, UF) >

ε
√
p

2 , then there exists an

a ∈ F \ {0} such that a · y ∈ Specε(A).

Proof. We have by the Parseval identity that

∑
c∈F

(
Pr[〈y,X〉 = c]− 1

p

)2

=
1

p

∑
a∈F\{0}

|E(ωa·〈y,X〉)|2 .

Using Equation 2.1, we get that

1

p
·∆(〈y,X〉, UF)2 6

1

4
·
∑
c∈F

(
Pr[〈y,X〉 = c]− 1

p

)2

6 ∆(〈y,X〉, UF)2 .

Also,
1

p
max

a∈F\{0}

∣∣∣E[ωa·〈y,X〉]
∣∣∣2 6 1

p

∑
a∈F\{0}

∣∣∣E[ωa·〈y,X〉]
∣∣∣2 6 max

a∈F\{0}

∣∣∣E[ωa·〈y,X〉]
∣∣∣2 .

Combining we get that√
1

4p
· max
a∈F\{0}

∣∣∣E[ωa·〈y,X〉]
∣∣∣ 6 ∆(〈y,X〉, UF) 6

√
p

4
· max
a∈F\{0}

∣∣∣E[ωa·〈y,X〉]
∣∣∣ .
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For A ⊆ Fn, X uniform in A, define Badε(A) ⊂ Fn to be the set of “bad” choices for the seed
as follows:

Badε(A) = {y ∈ Fn : ∃w ∈ Fn such that (〈X, y〉, 〈X,w〉) is not ε-close to an affine distribution}

We will show that if A has controlled spectrum, then Badε(A) is small. Recall that for S ⊂ Fn we
defined S + S = {s1 + s2 : s1, s2 ∈ S} and F · S = {c · s : c ∈ F, s ∈ S}.
Lemma 3.5. Let A ⊆ Fn. We have

Badε(A) ⊆ F · Specε′(A) + F · Specε′(A)

where ε′ = 2ε/p.

Proof. Let X be uniform in A. Let y, w ∈ Fn be such that (〈X, y〉, 〈X,w〉) is not ε-close to any
affine distribution. In particular this implies that for any c ∈ F, (〈X, y〉, 〈X,w + cy〉) is not ε-close
to the convex hull of distributions {(U, b) : b ∈ F}. By Lemma 2.2, this implies that for any c ∈ F,
there exist αc ∈ F such that 〈X, y+αc(w+cy)〉 is not (ε/

√
p)-close to uniform. Thus by Lemma 3.4,

there exist β,∈ F \ {0} such that y + αw = βγ1 for some γ1 ∈ Specε′(A). If α = 0, then y = βγ1,
and the claim is satisfied. So, we assume α 6= 0. Then, again by Lemma 3.4, y+α′(w+ 1

αy) = β′γ2,

for some γ2 ∈ Specε′(A). Solving for y gives that y = β′γ2 − β·α′
α · γ1.

Now, we proceed to the main result of this section.

Theorem 3.6. Fix ε, η > 0 and 1 6 k 6 n log p. Assume that for any A ⊆ Fn of size |A| > 2k we
have that there exists B ⊆ A such that

|F · Specε(B) + F · Specε(B)| 6 η|F|n.

Then for any δ > 0, 〈·, ·〉 : Fn × Fn is a (k + 2 log 1
δ , ε+ η + 2δ)-affine-malleable extractor.

Proof. Let X ∈ Fn, Z ∈ Z be jointly distributed random variables such that H∞(X|Z) ≥ k +
2 log 1/δ. Let Y ∈ Fn be uniform and independent. First, by lemma 2.1 we have that

Pr
z←Z

[H∞(X|Z = z) > k + log 1/δ] > 1− δ.

Fix z so that H∞(X|Z = z) > k + log 1/δ. It suffices to consider the case where the random
variable Xz = (X|Z = z) is distributed uniformly over a set A0 ⊆ Fn of size |A0| > 2k/δ. Define
B0,A1,B1,A2, . . . ,Bt−1,At iteratively as follows. For all i, let Bi be a subset of Ai such that

|F · Specε(Bi) + F · Specε(Bi)| 6 η|F|n.

and let Ai+1 = Ai \ Bi. We terminate for a t such that no such Bt exists. By the assumption,
|At| < 2k 6 δ|A0|. Thus,

A0 = B0 ∪ · · · ∪ Bt−1 ∪ At .
Let C′j = Badε(Bj) and Cj = Fn \ C′j . By Lemma 3.5, |C′j | 6 η|F|n. Consider the following partition
of A0 × Fn:

A0 × Fn =
t−1⋃
j=0

(Bj × Cj) ∪
t−1⋃
j=0

(Bj × C′j) ∪ At × Fn.

Let Xz,j = Xz|Xz∈Bj , and note that Xz,j is uniform in Bj . For any y ∈ Cj we know that
〈Xz,j , y〉, 〈Xz,j , w〉 is ε-close to affine for any w ∈ Fn, and in particular for w = F(y, z). Hence,
for any y ∈ Cj we have that φf (Xz,j , y) is ε-close to D. To conclude, note that Pr[(Xz, Y ) ∈
∪(Bj × C′j)] 6 η and Pr[(Xz, Y ) ∈ At × Fn] 6 δ. By Lemma 3.3, we have that

Ey∈Fn∆((〈Xz, y〉, 〈Xz,F(y, z)〉) | D) 6 ε+ η + δ.

The theorem follows by averaging over z ← Z.
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4 Privacy amplification protocol

We define a privacy amplification protocol (PA, PB), executed by two parties Alice and Bob sharing
a secret X ∈ {0, 1}N , in the presence of an active, computationally unbounded adversary Eve, who
might have some partial information E about X satisfying H∞(X|E) > k. Informally, this means
that whenever a party (Alice or Bob) does not reject, the key R output by this party is random and
statistically independent of Eve’s view. Moreover, if both parties do not reject, they must output
the same keys RA = RB with overwhelming probability.

More formally, we assume that Eve is in full control of the communication channel between
Alice and Bob, and can arbitrarily insert, delete, reorder or modify messages sent by Alice and
Bob to each other. In particular, Eve’s strategy PE actually defines two correlated executions
(PA, PE) and (PE , PB) between Alice and Eve, and Eve and Bob, called “left execution” and “right
execution”, respectively. We stress that the message scheduling for both of these executions is
completely under Eve’s control, and Eve might attempt to execute a run with one party for several
rounds before resuming the execution with another party. However, Alice and Bob are assumed to
have fresh, private and independent random tapes Y and W , respectively, which are not known to
Eve (who, by virtue of being unbounded, can be assumed to be deterministic). At the end of the
left execution (PA(X,Y ), PE(E)), Alice outputs a key RA ∈ {0, 1}m ∪ {⊥}, where ⊥ is a special
symbol indicating rejection. Similarly, Bob outputs a key RB ∈ {0, 1}m ∪ {⊥} at the end of the
right execution (PE(E), PB(X,W )). We let E′ denote the final view of Eve, which includes E and
the communication transcripts of both executions (PA(X,Y ), PE(E)) and (PE(E), PB(X,W ). We
can now define the security of (PA, PB). Our definition is based on [DLWZ14, ADJ+14].

Definition 4.1. An interactive protocol (PA, PB), executed by Alice and Bob on a communication
channel fully controlled by an active adversary Eve, is a (k, ε)-private, (k,m, ε)-privacy amplification
protocol if it satisfies the following properties whenever H∞(X|E) ≥ k:

1. Correctness. If Eve is passive, then Pr[RA = RB ∧ RA 6=⊥ ∧ RB 6=⊥] = 1.

2. Robustness. We start by defining the notion of pre-application robustness, which states that
even if Eve is active, Pr[RA 6= RB ∧ RA 6=⊥ ∧ RB 6=⊥] 6 ε.

The stronger notion of post-application robustness is defined similarly, except Eve is addition-
ally given the key RA the moment she completed the left execution (PA, PE), and the key
RB the moment she completed the right execution (PE , PB). For example, if Eve completed
the left execution before the right execution, she may try to use RA to force Bob to output
a different key RB 6∈ {RA,⊥}, and vice versa.

3. Extraction. Given a string r ∈ {0, 1}m∪{⊥}, let purify(r) be ⊥ if r =⊥, and otherwise replace
r 6=⊥ by a fresh m-bit random string Um: purify(r) ← Um. Letting E′ denote Eve’s view of
the protocol, we require that

∆((RA, E
′), (purify(RA), E′)) ≤ ε and ∆((RB, E

′), (purify(RB), E′)) ≤ ε

Namely, whenever a party does not reject, its key looks like a fresh random string to Eve.

4. Source Privacy. To define this property, we let FullOutput(X,E) denote the tuple (E′, RA, RB),
where Alice and Bob share a secret X and output keys RA and RB, respectively, and Eve
starts with initial side information E and ends with final view E′ at the end of the protocol.

We require that for any two distributions (X0, E) and (X1, E), where H∞(X0|E) ≥ k and
H∞(X1|E) > k, we have

∆(FullOutput(X0, E),FullOutput(X1, E)) ≤ ε

12



The quantity k − m is called the entropy loss and the quantity log(1/ε) is called the security
parameter of the protocol.

Our Protocol. We obtain the following result.

Theorem 4.2. Let F be a finite field. Assume that there exists

1. An efficiently samplable (γ, ν)-affine-evasive subset M of F.

2. An efficient (k1, ε
′)-extractor Ext : {0, 1}N ×M→ {0, 1}m.

3. An efficient (k2, ε
′)-affine-malleable extractor AmExt : {0, 1}N × {0, 1}d 7→ F.

Then there exists an explicit polynomial-time, two-round (k, ε)-private, (k,m, ε)-secure privacy am-
plification protocol, where

k > max(k1 + 2 log |F|, k2) ,

ε = 3ε′ + max(γ, ν) .

Proof. Using the given building blocks, the protocol is depicted as Protocol 1.

Alice: X Eve: E Bob: X

Sample uniformly random Y ∈ {0, 1}d
Y −−−−−−−−→ Y ′

Sample uniformly random W ′ ∈M
K ′ = AmExt(X;Y ′)
T ′ = W ′ +K ′

Set final RB = Ext(X;W ′)
T ←−−−−−−−− T ′

K = AmExt(X;Y )
W = T −K
If W /∈M, set RA = ⊥
Else set final RA = Ext(X;W )

Protocol 1: Our 2-round Privacy Amplification Protocol

Post-application Robustness. To have any chance of breaking robustness, Eve must choose T
such that W 6= W ′ because if W = W ′ then either RA = RB or RA =⊥. Thus, we assume W 6= W ′.

We have that K = AmExt(X,Y ) and K ′ = AmExt(X,Y ′) where Y ′ = Y ′(Y, Z). By the
definition AmExt,

(K,K ′), Y, Z ≈ε′ D,Y, Z

where D = D(Y, Z) has the property that D|Y = y, Z = z is an affine distribution for all y, z.
Next, W ′ is independent of D,Y, Z and H∞(X|D,Y, Z) > k − 2 log |F| > k1 since H∞(X|Z) > k,
Y is independent of X,Z and D is supported on F× F. Hence

(K,K ′), Y, Z,W ′, RB ≈2ε′ D,Y, Z,W
′, Um

where Um is the uniform distribution over {0, 1}m.
From now on, fix Y = y, Z = z. We have that D|Y = y, Z = z is a convex combination of

(U, aU + b) for a, b ∈ F, and U = UF. Furthermore, we have T = f(T ′) where f : Fp → Fp is some
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function (which may depend on y, z). Thus, it is sufficient to show that for all a, b ∈ F, and all
functions f : Fp → Fp,

Pr
(
f(W ′ + aU + b)− U ∈M ∧ f(W ′ + aU + b)− U 6= W ′

)
6 max(γ, ν) , (4.1)

where U is uniform in F. This is because Equation 4.1 implies that

Pr(RA 6= ⊥ ∧ W ′ 6= W ) 6 max(γ, ν) + 2ε′ ,

which implies post-application robustness. To prove Equation 4.1, we consider two cases.

CASE 1: a = 0. In this case, f(W ′ + aU + b)− U is uniform in F. From Definition 2.6

Pr
(
f(W ′ + aU + b)− U ∈M

)
= γ .

CASE 2: a 6= 0. Let C = W ′+aU + b. Note that C is independent of W ′ and uniform in F. Then

f(W ′ + aU + b)− U = f(C)− C −W ′ − b
a

.

Fix C = c, and let a′ = 1
a , b′ = f(c)− c−b

a . Thus it is sufficient to show the following:

Pr
(
a′W ′ + b′ ∈M ∧ a′W ′ + b′ 6= W ′

)
6 ν .

Note that if (a′, b′) = (1, 0), then a′W ′ + b′ = W ′. So, without loss of generality we assume
that (a′, b′) 6= (1, 0). Then, Definition 2.6 implies the result.

Extraction. Note that Y is independent of X. Thus, using Lemma 2.1,

H∞(X|Z, Y,K ′) > k − log |F| .

Thus, using the definition of Ext, we have that RB is ε′-close to uniform given the transcript of
Eve, E′ = Z, Y,W ′ +K ′. Also, with probability 1− 2ε′ −max(γ, ν), RA = RB or RA = ⊥. Thus,
conditioned on the event that RA = RB or RA = ⊥, RA is ε′ close to purify(RA) given E′. Thus,

∆((RA, E
′), (purify(RA), E′)) ≤ 3ε′ + max(γ, ν) .

Source Privacy. The source privacy follows easily from the following observations: RB is ε′-close
to uniform given the final transcript of Eve E′ = Z, Y, T ′. Also, Y, T ′ are uniform and independent
of X,Z. Finally note that by the robustness property, RB = RA if T ′ = T and RA = ⊥, otherwise
except with probability at most 2ε′ + max(γ, ν). Thus, the knowledge of RB doesn’t provide
any additional information than what can be concluded from (RA, E

′), except with probability
2ε′ + max(γ, ν). Thus

∆(FullOutput(X0, E),FullOutput(X1, E)) ≤ 2ε′ + max(γ, ν) + ε′ = 3ε′ + max(γ, ν) .
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5 Spectrum doubling

5.1 Weak Spectrum Doubling from PFR Conjecture

In this section, we prove Theorem 1.2. We will need the following approximate duality conjecture
that was proved in [BDL14] assuming the polynomial Freiman-Ruzsa conjecture.

Theorem 5.1. [BDL14, Theorem 6.3] Let V be a subspace of Fn of dimension r. Let A ⊆ V , and
let ε > p−

√
r. Then, assuming the polynomial Freiman Ruzsa conjecture, there exist a universal con-

stant c, and A′ ⊆ A and B′ ⊆ V such that |A′| > p−cr log p/ log r|A|, |B′| > p−cr log p/ log r|Specε(A) ∩
V |, and 〈a, b〉 = 0 for all a ∈ A′, and b ∈ B′.

Note that in Theorem 6.3 from [BDL14], the authors only considered the case when p is small,
and hence did not explicitly state the dependence of |A′| and |B′| on p.

Proof of Theorem 1.2. Let δ =
√
ε/p, α =

√
c log p/ log n, where c is the constant from Theo-

rem 5.1. We can assume that α < 1/100, since otherwise, the result holds trivially by choosing
C sufficiently larger than c. We will now show the result for C = c. If |Specε(A)| 6 δ · pn/2,
then clearly Equation 1.1 holds for B = A. So, without loss of generality, we assume that
|Specε(A)| > δ · pn/2. By Theorem 5.1, there exist A1 ⊆ A, B1 ⊆ Fn such that |A1| > 1

ε · p
(α−α2)n,

and |B1| > δ · pn(1/2−α2) > δ · pn/3, and every element of A1 is orthogonal to every element of B1.
Thus, A1 ⊂ V1 for a subspace V1 of size at most 1

δ · p
2n/3 < 1

δ2
· p2n/3. Now, repeating the

argument, we have that if |Specε(A1) ∩ V1| 6 δ ·
√
|V1|, then Equation 1.1 holds for B = A1. So,

without loss of generality, we assume that |Specε(A1)∩V1| > δ ·
√
|V1|. By Theorem 5.1, there exist

A2 ⊆ A1, B2 ⊆ V1 such that |A2| > 1
ε · p

(α−2α2)n, and |B2| > δ ·
√
|V1| · p−α

2n, and every element
of A1 is orthogonal to every element of B1.

Thus, A2 ⊂ V2 for a subspace V2 of size at most

1

δ
·
√
|V1| · pα

2n 6
1

δ2
· p4n/9 ,

as long as 2
3 ·

1
2 + α2 < (23)2.

Continuing in this manner, we get A2 ⊇ . . . ⊇ Ai such that either one of them already satisfies
Equation 1.1, or |Ai| > 1

ε · p
n(α−iα2), and it is contained in a subspace Vi of Fn of size at most

1

δ2
· p(2/3)in ,

as long as (23)i−1 · 12 + α2 < (23)i. This condition holds as long as i < imax = b3/2 log2/3 αc.
Now, we show that the above process terminates before i < imax, i.e., we find some j ∈ [imax]

such that B = Aj satisfies Equation 1.1. Note that the above algorithm for generating Ai, Vi
terminates before the smallest j such that

1

ε
· pn(α−jα2) >

1

δ2
· p(2/3)jn ,

which clearly holds for j = imax since for j = imax, the right hand side is less than p2

ε · p
n·α3/2

, and

the left hand side is greater than pnα/2 · 1ε .
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5.2 Applications

Affine-malleable Extractors. We first mention the results of applying spectrum doubling to
obtain affine-malleable extractors. By combining Theorem 3.6 and Theorem 1.1, we get the follow-
ing.

Theorem 5.2. For any ε > 0, and k > n log p
2 + O(log p + log(1/ε)), 〈·, ·〉 : Fn × Fn is a (k, ε)-

affine-malleable extractor.

Also, for going below entropy rate 1/2, by combining Theorem 3.6 with Theorem 1.2, we get
the following under the PFR conjecture.

Theorem 5.3. Assuming the PFR conjecture, we have that for any ε > 0, and

k > O(n log p
√

log p/ log n+ log(1/ε)) ,

〈·, ·〉 : Fn × Fn is a (k, ε)-affine-malleable extractor.

We can get the following further strengthening to obtain near optimal parameters under Con-
jecture 1.3.

Theorem 5.4. Assuming Conjecture 1.3, we have that for any ε > 0, and k > O(log(n log p) ·
log(1/ε)), 〈·, ·〉 : Fn × Fn is a (k, ε)-affine-malleable extractor.

Privacy Amplification. By instantiating Theorem 4.2 (where N = n log p) with the seeded
extractor from Theorem 2.5, the affine evasive sets from Theorem 2.7 and the affine-malleable
extractor from Theorem 5.2 with ε = 1/p, we obtain the following.

Theorem 5.5. For any N ∈ N, ε > 0, and for k > N/2 + O(log (1/ε)) there exists an explicit
polynomial-time, two-round (k, ε)-private, (k, k −O(log (1/ε)), ε)-secure privacy amplification pro-
tocol.

If instead, we instantiate with the affine-malleable extractor from Theorem 5.4, then we get
Theorem 1.4.
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