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Abstract

Reducibility between different cryptographic primitives is a fundamental problem in modern
cryptography. As one of the primitives, traitor tracing systems help content distributors recover
the identities of users that collaborated in the pirate construction by tracing pirate decryp-
tion boxes. We present the first negative result on designing efficient traitor tracing systems
via black-box constructions from symmetric cryptographic primitives, e.g. one-way functions.
More specifically, we show that there is no secure traitor tracing scheme in the random oracle
model, such that `k · `2c ≥ Ω̃(n), where `k is the length of user key, `c is the length of ciphertext
and n is the number of users, under the assumption that the scheme does not access the oracle
to generate user keys. To our best knowledge, almost all the practical (non-artificial) crypto-
graphic schemes (not limited to traitor tracing systems) via black-box constructions satisfy this
assumption. Thus, our negative results indicate that most of the standard black-box reductions
in cryptography cannot help construct a more efficient traitor tracing system.

We prove our results by extending the connection between traitor tracing systems and dif-
ferentially private database sanitizers to the setting with random oracle access. After that,
we prove the lower bound for traitor tracing schemes by constructing a differentially private
sanitizer that only queries the random oracle polynomially many times. In order to reduce the
query complexity of the sanitizer, we prove a large deviation bound for decision forests, which
might be of independent interest.

1 Introduction

Traitor tracing systems, introduced by Chor, Fiat, and Naor [CFN94], are broadcast encryption
schemes that are capable of tracing malicious “traitor” coalitions aiming at building pirate decryp-
tion devices. Such schemes are widely applicable to the distribution of digital commercial content
(e.g. Pay-TV, news websites subscription, online stock quotes broadcast) for fighting against copy-
right infringement. In particular, consider a scenario where a distributor would like to send digital
contents to n authorized users via a broadcast channel while users possess different secret keys that
allow them to decrypt the broadcasts in a non-ambiguous fashion. Clearly, a pirate decoder, built
upon a set of leaked secret keys, could also extract the cleartext content illegally. To discourage such
piracy in a traitor tracing system, once a pirate decoder is found, the distributor can run a tracing
algorithm to recover the identity of at least one user that collaborated in the pirate construction.

As a cryptographic primitive, traitor tracing system, together with its various generalizations,
has been studied extensively in the literature (e.g., [BF99; FT99; SNW00; NNL01]). Considerable
efforts have been made on the construction of more efficient traitor tracing scheme from other
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primitives, in terms of improving two decisive performance parameters – the length of user key and
the length of ciphertext. To illustrate, we exhibit in Table 1 the relation between cryptographic
assumptions and the performance of the fully collusion resistant traitor tracing systems where
tracing succeeds no matter how many users keys the pirate has at his disposal.

Hardness Assumption User Key Length Ciphertext Length Reference

No Assumption Õ(n2) O(1)1 [BN08]

Existence of One-Way Functions O(1) Õ(n) [CFN94; Ull13]

Bilinear Group Assumptions2 O(1) Õ(
√
n) [BSW06]

Indistinguishability Obfuscation O(1) (log n)O(1) [BZ14]

Table 1: Some previous results on fully collusion resistant traitor tracing systems.

Obviously, as we illustrate in Table 1, more efficient traitor tracing schemes can be constructed
based on stronger assumptions. Nonetheless, it is natural to ask whether the known constructions
can be made more efficient if we only rely on the most fundamental cryptographic assumption –
the existence of one-way functions. Impagliazzo and Rudich [IR89] first studied this type of ques-
tions in the context of key agreement. They observed that for most constructions in cryptography,
the starting primitive is treated as an oracle, or a “black-box” and the security of the constructed
scheme is derived from the security of the primitive in a black-box sense. Based on this observation,
they showed that a black-box construction of key agreement built upon one-way functions implies a
proof that P 6= NP . This approach has been subsequently adopted in investigating the reducibility
between other cryptographic primitives, such as one-way permutations [KSS00], public-key encryp-
tion [GKM+00; GGKT05], universal one-way hash functions [KST99]. In particular, in the context
of traitor tracing, the question is whether there exists a more efficient traitor tracing scheme via
black-box constructions based on one-way functions. In this paper, we focus on this problem and
provide a partial answer to it.

1.1 Our Results

We consider traitor tracing systems in the random oracle model [BR93], which is an ideal model
using one way functions in the strongest sense. In this model, the constructed cryptographic
scheme can access a random oracle O which can be viewed as a fully random function. In spite of
the criticism on its unjustified idealization in practical implementations [CGH98], the random oracle
model seems to be an appropriate model and a clean way to establish lower bounds in cryptography
(e.g. [IR89; BMG07]). As there is no security measure defined on the oracle, one common way to
prove security for oracle based constructions is to rely on the fully randomness of the oracle and
the restriction on the number of queries the adversary (even computationally unbounded) can ask.

Our main result is a lower bound on the performance of traitor tracing systems satisfying a
property we call IndKeys. Roughly speaking, a cryptographic scheme is said to be IndKeys if
the scheme does not use the black-box hardness of the starting primitive to generate private keys.
Here we give an informal definition of the IndKeys property for any cryptographic systems and
defer the formal definition tailored for traitor tracing systems to Section 2.

1All terms in the table including O(1) terms should depend on the security parameters.
2Specifically, they need to assume the Decision 3-party Deffie-Hellman Assumption, the Subgroup Decision As-

sumption and the Bilinear Subgroup Decision Assumption.
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Definition 1.1 (informal). Let Π(·) be a cryptographic scheme that takes other cryptographic
primitives or ideal random functions as oracles. We say that Π(·) is IndKeys if Π(·) does not
access the oracles while generating private keys.

Remark. It should be emphasized that the IndKeys property does not require any independence
between the public keys and the oracles. Indeed, some of the known black-box constructions
of cryptographic primitives use the black-box hardness to generate public keys, (e.g. one time
signature [Lam79]), but the private keys are still generated independent of the oracles as requested in
IndKeys. To our best knowledge, almost all the practical (or non-artificial) cryptographic schemes
via black-box reductions are IndKeys. Thus, our negative result for IndKeys systems shows that
most of the standard black-box reductions in cryptography cannot help to construct a more efficient
traitor tracing system. At last, as the IndKeys property is defined on all cryptographic schemes, it
might be helpful to investigate the technical limitations of known black-box reductions and derive
more lower bounds for other primitives.

In this paper, we show a lower bound on the performance (or efficiency) of the IndKeys traitor
tracing systems in terms of the lengths of user keys and ciphertexts. We summarize the main
theorem informally as follows and defer the rigorous statement to Section 2.

Theorem 1.2 (informal). Let Π
(·)
TT be a secure traitor tracing system that is IndKeys, then

`k · `c2 ≥ Ω̃(n)

where `k is the length of user key, `c is the length of ciphertext and n is the number of users.

1.2 Our Approach

We prove our results by building on the connection between traitor tracing systems and differentially
private sanitizers for counting queries discovered by Dwork et al. [DNR+09]. Informally, a database
sanitizer is differentially private if its outputs on any two databases that only differ in one row,
are almost the same. Dwork et al. showed that any differentially private and accurate sanitizer
(with carefully calibrated parameters) can be used as a valid pirate decoder to break the security
of traitor tracing systems. Intuitively, a pirate decoder can be viewed as a sanitizer of databases
consist of leaked user keys (see Table 2).

Pirate Decoder # of users user keys ciphertexts messages Tracing Algo.
Sanitizer database size data rows counting queries answers Adversary
Notation n {0, 1}`k {0, 1}`c {0, 1} Trace

Table 2: The analogy between pirate decoders and sanitizers.

Built upon this connection, we show the lower bound on traitor tracing systems by constructing a
sanitizer in the random oracle model. We first build a natural extension of sanitizers and differential
privacy in presence of random oracles in Section 3. The main difference from standard definitions is
that we relax the accuracy requirement by asking sanitizer to be accurate with high probability w.r.t.
the random oracle. That is, an accurate sanitizer under our definition can be not (probabilistic)
accurate for some oracle but must be accurate for most oracles. This relaxation allows us to derive
a query-efficient sanitizer.

Our sanitizer is developed upon the median mechanism designed by Roth and Roughgarden
[RR10], which maintains a set D of databases and for each counting query: 1) compute the results
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of the query for all databases in D; 2) Use the median med of these results to answer the query if
med is close to the answer a∗ of the true database ; 3) If not, output a∗ added with a Laplacian
noise and remove the databases in D whose result of the query is not close to a∗. Note that when
computing med , the median mechanism need to query the oracle for all databases in D whose size
might be exponential in `k. Thus, it will make exponentially many queries to the oracle.

We design a query-efficient implementation of the median mechanism by using the expectations
of query results (taken over all oracles) to compute med without querying the real oracle. Our
mechanism would be accurate if the answers are concentrated around their expectations taken over
all random oracles. Unfortunately, such concentration property does not hold for arbitrary queries
and databases. But fortunately, we can show that it holds if there is no “significant” variables in
the decryption (or query answering). More specifically, we generalize the deviation bound proved
in [BIL12] where they required the size of the database (decision forest) to be relatively larger than
the “significance” of the variable (see formal definitions in Section 6). Our bound does not make
this requirement and is much more applicable. We prove this bound by generalizing two previous
deviation bounds proved by Beck, Impagliazzo, and Lovett [BIL12] and Gavinsky et al. [GLSS15].
Note that the IndKeys property is essential in our proof since the deviation bound only holds for
uniformly distributed oracles.

To put it together, our mechanism maintains a set of databases D and for each counting query:
a) remove the variables which are significant for most databases in D; b) privately check whether
the decryption process corresponding to the true database has a significant variable; c) if there is
a significant variable x∗, output the noisy true answer and remove the databases that do not view
x∗ as a significant variable; d) otherwise, compute the median med among all expected answers of
databases in D; e) if med is close to true answer, use it to answer the query; f ) otherwise, output
the noisy answer and remove databases in D whose expected answer is not close to the true answer.

1.3 Related Work

Starting with the seminal paper by Impagliazzo and Rudich [IR89], black-box reducibility between
primitives has attracted a lot of attention in modern cryptography. Reingold, Trevisan, and Vadhan
[RTV04] revisited existing negative results and gave a more formal treatment of the notions of black-
box reductions. In their notions, our results can be viewed as a refutation of the fully black-box
reduction of IndKeys traitor tracing systems to one-way functions. Our usage of the random oracle
model also follows the work by Barak and Mahmoody-Ghidary [BMG07], where they proved lower
bounds on the query complexity of every black-box construction of one-time signature schemes
from symmetric cryptographic primitives as modeled by random oracles. To our best knowledge,
there is no lower bound results on the performance of traitor tracing systems prior to our work.

Differential privacy, as a well studied notion of privacy tailored to private data analysis was first
formalized by Dwork et al. [DMNS06]. They also gave an efficient sanitizer called Laplace Mechanism
that is able to answer n2 counting queries. A remarkable following result of Blum, Ligett, and Roth
[BLR08] shows that the number of counting queries can be increased to sub-exponential in n
by using the exponential mechanism of McSherry and Talwar [MT07]. Subsequently, interactive
mechanisms, with running time in polynomial of n and universe size, are developed to answer
sub-exponentially many queries adaptively by Roth and Roughgarden [RR10] (median mechanism)
and Hardt and Rothblum [HR10] (multiplicative weights mechanism). On the other hand, based
on the connection between traitor tracing systems and sanitizers, Ullman [Ull13] proved that no
differentially private sanitizer with running time in polynomial of n and the logarithm of the
universe size can answer Θ̃(n2) queries accurately assuming one-way functions exist. Our sanitizer
constructions are inspired by the above mechanisms and also rely on the composition theorem of
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differentially private mechanisms by Dwork, Rothblum, and Vadhan [DRV10]. Thus, our results
can be viewed as an application of advanced techniques of designing differentially private sanitizer
in proving cryptographic lower bounds.

This paper is also technically related to previous deviation bounds on Boolean decision forests.
Gavinsky et al. [GLSS15] showed that for any decision forest such that every input variable appears
in few trees, the average of the decision trees’ outputs should concentrate around its expectation
when the input variables are distributed independently and uniformly. Similar bounds have also
been proved by Beck, Impagliazzo, and Lovett [BIL12] for low depth decision tress but with a
weaker “average” condition (see Section 6). As an application, they used this deviation bound
to show that AC0 circuits can not sample good codes uniformly. By a finer treatment on the
conditions stated in the above two works, we are able to prove a more general deviation bounds for
decision forests, which we believe should have other applications.

2 Traitor Tracing Systems

In this section, we give a formal definition of traitor tracing systems in the random oracle model
and state our main theorem. For any security parameter κ ∈ N, an oracle can be viewed as a
Boolean function O : {0, 1}`o(κ) :→ {0, 1}, where `o is a function from N to N.

Definition 2.1. Let n, m, `k, `c, and `o be functions : N → N, a traitor tracing system in the
random oracle model denoted by ΠTT with n users, user-key length `k, ciphertext length `c, m tracing
rounds and access to an oracle with input length `o, also contains the following four algorithms.
We allow all the algorithms to be randomized except Dec.

• GenO(1κ), the setup algorithm, takes a security parameter κ as input and a Boolean function
O : {0, 1}`o(κ) → {0, 1} as an oracle, and outputs n = n(κ) user-keys k1, . . . , kn ∈ {0, 1}lk(κ).
Formally, k = (k1, . . . , kn)←R GenO(1κ).

• EncO(k, b), the encrypt algorithm, takes n user-keys k and a message b ∈ {0, 1} as input, and
outputs a ciphertext c ∈ {0, 1}lc(κ) via querying an oracle O. Formally, c←R EncO(k, b).

• DecO(ki, c), the decrypt algorithm takes a user-key ki and a ciphertext c as input, and outputs
a message b ∈ {0, 1} via querying an oracle O. Formally, b = DecO(ki, c).

• TraceO,P
O

(k), the tracing algorithm, takes n user-keys k as input, an oracle O and a pirate
decoder POas oracles, and makes m(κ) queries to PO, and outputs the name of a user i ∈ [n].

Formally, i←R TraceO,P
O

(k).

Formally, ΠTT = (n,m, `k, `c, `o, Gen
(·), Enc(·), Dec(·), Trace(·,·)).

For simplicity, when we use the notation ΠTT without any specification, we also mean all these
functions and algorithms are defined correspondingly. We also abuse the notations of functions of
κ to denote the values of functions when κ is clear from the context, (e.g., n denotes n(κ)).

Intuitively, the pirate decoder P can be viewed as a randomized algorithm that holds a set
of user-keys kS = (ki)i∈S with S ⊆ [n]. The tracing algorithm Trace is attempting to identify
a user i ∈ S by making queries to P interactively. In particular, in each round j ∈ [m], Trace
submits a ciphertext cj to P and then P answers a message b̂j ∈ {0, 1} based on all the previous

ciphertexts c1, . . . , cj . Formally, b̂j ←R PO(kS , c1, . . . , cj). Note that we allow the tracing algorithm
to be stateful. That our lower bounds apply to stateful Traitor Tracing Systems makes our results
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stronger. Given a function `o and a security parameter κ, let Ounif denote the uniform distribution
over all oracles with size `o(κ), i.e. the uniform distribution for all Boolean functions with input
{0, 1}`o(κ). We also abuse Ounif to denote the support of this distribution. As a pirate decoder, P
should be capable of decrypting ciphertext with high probability as defined formally as follows.

Definition 2.2. Let ΠTT be a traitor tracing system and P(·) be a pirate decoder, we say that P is
m-available if for every S ⊆ [n] s.t. |S| ≥ n− 1,

Pr
O∼Ounif ,k←RGen

O(1κ)

cj←RTrace
O,P (k,̂b1,...,̂bj−1)

b̂j←RPO(kS ,c1,...,cj)

[
∃j ∈ [m], b ∈ {0, 1}(

∀i ∈ S, DecO(kj , cj) = b
)
∧ (̂bj 6= b)

]
≤ neg(n(κ))

Similarly, a traitor tracing system should decrypt the ciphertext correctly.

Definition 2.3. A traitor tracing system ΠTT is said to be correct if for all oracle O, user i ∈ [n]
and message b ∈ {0, 1},

Pr
k←RGen

O(1κ)

c←REnc
O(k,b)

[DecO(ki, c) = b] = 1

In addition, we require the traitor tracing system to be efficient in terms of the number of queries
it makes. In particular, we use QC(AO) to denote the query complexity of AO, i.e. the number of
queries AO makes to O.

Definition 2.4. A traitor tracing system ΠTT is said to be efficient if for any oracle O with in-
put size `o(κ) and for any pirate decoder P, the query complexity of GenO, EncO, DecO, TraceO

are in polynomial of their input size respectively. Formally, QC(GenO) = poly(κ), QC(EncO) =
poly(n, `k), QC(DecO) = poly(`k, `c) and QC(TraceO,P) = poly(n,m, `k).

Note that we do not make any restriction on the computational power of the traitor tracing systems.
Obviously, any computationally efficient ΠTT is also query efficient but the other direction does not
hold. That our lower bounds apply to efficient ΠTT in the above definition makes our results
apply to computational efficient ΠTT directly. Similarly, we say a pirate decoder P is efficient if
QC(PO) = poly(n, `k, `c) in each round of its interaction with Trace.

Definition 2.5. A traitor tracing system ΠTT is said to be secure if for any m(κ)-available pirate
decoder P and S ⊆ [n(κ)],

Pr
O∼Ounif

k←RGen
O

[TraceO,P
O(kS)(k) 6∈ S] ≤ o

(
1

n(κ)

)

Definition 2.6 (IndKeys). A traitor tracing system ΠTT is said to be IndKeys if for all a security
parameter κ ∈ N and any two oracles O and O′, the distribution of k generated by GenO(1κ) and
GenO

′
(1κ) are the same distribution. Equivalently, conditioned on any particular user-keys k, the

oracle O can still be viewed as a random variable drawn from Ounif .

Remark. Note that all known traitor tracing systems via black-box hardness are IndKeys. The
scheme designed by with `k = O(n2κ) and `c = O(κ) does not require oracles and the one designed
by Chor, Fiat, and Naor [CFN94] and modified by Ullman [Ull13] with `k = O(κ) and `c = O(nκ)
does not need the oracle to generate private keys.
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The following theorem is our main theorem whose proof is deferred to Section 4 and 5.

Theorem 2.7. In the random oracle model, for any θ > 0, there is no efficient, correct and secure

traitor tracing system Π
(·)
TT which is IndKeys, such that for any security parameter κ ∈ N,

`k(κ) · `c(κ)2 ≤ n(κ)1−θ.

3 Differentially Private Sanitizers in Random Oracle Model

In this section, we formally define differentially private sanitizers for counting queries in random
oracle model by extending the standard definitions. After that we show its connection with traitor
tracing systems by slightly modifying the proofs in [DNR+09] and [Ull13]. For ease of presentation,
we reuse the notations used in Section 2, (e.g. n,m, `k, `c, `o) to denote their counterparts in the
context of private date analysis.

A counting query on {0, 1}`k is defined by a deterministic algorithm q(·) where given any oracle
O : {0, 1}`o → {0, 1}, qO is a Boolean function {0, 1}`k → {0, 1}. Abusing notation, we define
the evaluation of the query q(·) on a database D = (x1, . . . , xn) ∈ ({0, 1}`k)n with access to O to
be qO(D) = 1

n

∑
i∈[n] q

O(xi). Let Q be a set of counting queries. A sanitizer M(·) for Q can be

viewed as a randomized algorithm takes a database D ∈ ({0, 1}`k)n and a sequence of counting

queries q(·) = (q
(·)
1 , . . . , q

(·)
m ) ∈ Qm as input and output a sequence of answers (a1, . . . , am) ∈ Rm

by accessing an oracle O. We consider interactive mechanisms, that means M(·) should answer
each query without knowing subsequent queries. More specifically, the computation of ai can only

depends on the first i queries, i.e. (q
(·)
1 , . . . , q

(·)
i ). One might note that our definition differs from

the traditional definition of sanitizers by allowing both sanitizers and queries to access oracles.
Actually, this kind of sanitizers are defined in such a specific way which makes them useful in
proving the hardness for the traitor tracing systems defined in Section 2. It is also not clear for us
if it has any real application in the context of privately data analysis. Here we use the term “query”
in two ways, one referring to the query answered by the santizer and the other one meaning the
query sent by algorithms to oracles. Without specification, only when we say “query complexity”
or “query efficient”, we are referring the oracle queries.

We say that two databases D,D′ ∈ ({0, 1}`k)n are adjacent if they differ only on a single row.

We use q(·) = (q
(·)
1 , . . . , q

(·)
m ) to denote a sequence of m queries. Next, we give a natural extension

of differential privacy to the setting with oracle access.

Definition 3.1. A sanitizer M(·) for a set of counting queries Q is said to be (ε, δ)-differentially
private if for any two adjacent databases D and D′, oracle O, query sequence q(·) ∈ Qm and any
subset S ⊆ Rm,

Pr[MO(D,qO) ∈ S] ≤ eε Pr[MO(D′,qO) ∈ S] + δ

If M(·) is (ε, δ)-differentially private for some constant ε = O(1) and δ = o(1/n), we will drop the
parameters ε and δ and just say that M(·) is differentially private.

Proposition 3.2 (Lemma 3.7 from [HR10]). The following condition implies (ε, δ)-differential
privacy. For any two adjacent databases D and D′, oracle O and any query sequence q(·) ∈ Qm,

Pr
a←RMO(D,qO)

[∣∣∣∣log

(
Pr[MO(D,qO) = a]

Pr[MO(D′,qO) = a]

)∣∣∣∣ > ε

]
≤ δ

Moreover, a sanitizer should answer any sequence of queries accurately with high probability.
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Definition 3.3. A sanitizer M(·) is said to be (α, β)-accurate for a set of counting queries Q if
for any database D

Pr
O∼Ounif

[
∀q(·) ∈ Qm,

∥∥MO(D,qO)− qO(D)
∥∥
∞ ≤ α

]
≥ 1− β

If M(·) is (α, β)-accurate for some constant α < 1/2 and β = o(1/n10), we will drop parameters α
and β and just say that M(·) is accurate.

Finally, we consider the query complexity of sanitizers. Clearly, a sanitizer cannot be query
efficient if the evaluation of some counting query q(·) is not query efficient. Let QEnf be the set of
all efficient queries, i.e. for any database D = ({0, 1}`k)n and any oracle O, any qO(D) ∈ QEnf

can be evaluated in poly(n, `k, `c) number of queries to O. A sanitizer is said to be efficient if for
any oracle O, database D and any query sequence q(·) ∈ QmEnf, MO(D,qO) can be computed in
poly(n,m, `k) number of queries to O.

Theorem 3.4. Given functions n,m, `k, `c and `o : N→ N, if for any query set Q ⊆ QEnf with size
|Q| ≤ 2`c(κ), there exists an efficient, differentially private and accurate sanitizer for any database
D ∈ ({0, 1}`k(κ))n(κ) and any m-query sequence in Qm, then there exists no efficient, correct and
secure traitor tracing system ΠTT = (n,m, `k, `c, `o, Gen, Enc, Dec, Trace).

Remark. The proof idea is similar to [DNR+09; Ull13], that is if there exist such a santizer and
a traitor tracing system, we can slightly modify the sanitizer to be an available pirate decoder for
the traitor tracing system. The only technical difference is that the traitor tracing system and the
sanitizer defined here have access to a random oracle O. So we need to modify the proof in [Ull13]
to accommodate these oracle accesses and the definitions in Section 2 and Section 3.

Proof. Assume there exist such a traitor tracing system ΠTT and a sanitizer M. We define the
pirate decoder P as follows. The database of M is the set of user keys hold by the pirate decoder.
For each ciphertext sent from Trace to P, we use M to answer it and then return 1 is the answer
is at least 1/2 and return 0 otherwise.

Clearly, the P is efficient and available since M is efficient and accurate. Let S = {ki}i∈[n].

Now consider two experiments: in the first one, we run Trace on P(·)(S, ·). Since Trace is secure,
there must exist a user i∗ such that

Pr
O∼Ounif

k←RGen
O

[TraceO,P
O(S)(k) = i∗] ≥ 1

n(κ)
− o

(
1

n(κ)

)

Let S′ = S \ {i∗}. We run the second experiments on Trace and P(·)([n] \ {i∗}, ·). Since M is
differentially private for any O ∈ Ounif , we have

Pr
O∼Ounif

k←RGen
O

[TraceO,P
O(S′)(k) = i∗] ≥ Ω

(
1

n(κ)

)

To complete the proof, notice that since i∗ 6∈ S′, a secure ΠTT can only output i∗ with probability
o(1/n(κ)), a contradiction.
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4 Lower bounds on Traitor Tracing Systems

In this section, we exhibit the proof of a weaker version of Theorem 2.7. That is, there is no
efficient, correct and secure traitor tracing system such that `k(κ) · `c(κ)2 ≤ n(κ)

1
3
−θ for any

θ > 0. Assume to the contrary that there exists such a system ΠTT, let qπ denote the maximum
query complexity of DecO(k, c) over all database k, ciphertext c and oracle O. We will construct
an efficient, differentially private and accurate sanitizer M for any m queries from the query set
{Dec(·)(·, c) | c ∈ {0, 1}`c} and any database D ∈ ({0, 1}`k)n (inspired by [RR10; HR10]). In this
section, we abuse the notation Dec(·)(k, c) to denote the function 1

n ·
∑

i∈[n] Dec
(·)(ki, c). Before

describing the santizer, we first define significant variable for decryption.

Definition 4.1. Given a database k ∈ ({0, 1}`k)n, a decrypt algorithm Dec(·) and a ciphertext c,
we say a variable x ∈ {0, 1}`o is β-significant for Dec(·)(ki, c) if

Pr
O∼Ounif

[
DecO(ki, c) queries x

]
≥ β

We say x is β-significant for Dec(·)(k, c), if x is β-significant for at least one ki ∈ k. We say x is
(α, β)-significant for Dec(·)(k, c), if x is β-significant for at least αn entries of k.

Our sanitizer is described as Algorithm 1 by setting the parameters σ, α, β to be

σ = nθ/3
√
`k
n
, α =

1

`cnθ
, β =

1

54n4q3
π

The intuition behind the calibration of parameters is that we need the condition that α dominates
σ`k. Since `k · `c2 ≤ n

1
3
−θ, by simple calculation, we have α/(σ`k) ≥ nθ/6.

The main idea is to maintain a set of potential databases denoted by Dj for each round j. Note
that the IndKeys property of the system guarantees that conditioned on any particular database,
the oracles are always distributed uniformly. This allows us to focus on the available databases not
the database and oracle pairs. For each ciphertext cj , the sanitizer consists of three phases. In phase
1, we examine all x ∈ {0, 1}`o and determine a set (denoted by Wj) of significant variables which is
queried with probability at least β/2 over randomness over all O ∈ Ounif and k ∈ Dj−1. Roughly
speaking, we pick all variables which is significant for most databases. It should be emphasized
that even some variables are not picked in this phase, they might be significant for some database.
Then for each variable in Wj , we query O∗ on it and simplify the decrypt algorithm by fixing the
value of this specific variable. Note that, this phase does not depend on the true database k∗ so it
is clear that there is no privacy loss here. On the other hand, as we will show in Lemma 4.2, the
total number of queries we ask to the oracle O∗ in this phase is polynomial in n.

In phase 2, we check if the Dec(·)(k∗, cj) has (α, β)-significant variables by using a variant of
exponential mechanism. If there is a significant variable, the santizer outputs âj the true answer
with a noise and modify Dj . If there is no (α, β)-significant variables, the sanitizer run phase 3,
where it “guesses” the answer by using the median of database set D′j−1 which is the set of all
databases in Dj−1 which has no (α, β)-significant variables. The sanitizer outputs the guess med j
if it is close to the true answer. Otherwise, the sanitizer outputs âj and modify Dj .

4.1 Efficiency Analysis

Lemma 4.2. The query complexity of Algorithm 1 is O(n`kqπ/β) which is polynomial in n.

9



Algorithm 1: Sanitizer for Traitor Tracing Lower Bound

Input: n,m, an oracle O∗ : {0, 1}`o → {0, 1}, a database D∗ = {k∗1, . . . , k∗n} with
k∗i ∈ {0, 1}`k , a sequence of queries

(
Dec(·)(·, c1), . . . , Dec(·)(·, cm)

)
with cj ∈ {0, 1}`c

Output: A sequence of answers ans1, . . . , ansm with aj ∈ R or a fail symbol FAIL
1 Initialize D0 ← the set of all databases of size n over {0, 1}`k ;

2 for each query Dec(·)(·, cj) where j = 1, . . . ,m do
3 Sample a noise ∆aj ∼ Lap(σ);

4 Compute the true answer aj ← DecO
∗
(k∗, cj) and the noisy answer âj ← aj + ∆aj ;

/* Phase 1: Fix significant variables by querying O∗ */

5 Initialize the set of significant variables Wj ← ∅;
6 repeat foreach x ∈ {0, 1}`o \Wj do
7 if Prk∼Unif(Dj−1),O∼Ounif

[DecO(ki, cj) queries x for some ki ∈ k] ≥ β/2 then

8 Query O∗ on x and fix x to be O∗(x) in Dec(·)(·, cj);
9 Wj ←Wj ∪ {x};

10 until Wj is not changed in the last iteration;
/* Phase 2: Examine whether k∗ has (α, β)-significant variables. */

1212 Uj ← {x /∈Wj | ∃k ∈ Dj−1 s.t. x is β-significant for Dec(·)(k, cj)};
13 foreach x ∈ Uj do

14 Sj(x)← {k∗i | x is β-significant for Dec(·)(k∗i , cj)};
15 Sample ∆Ij(x) ∼ Lap(σ);
16 Ij(x)← |Sj(x)|/n;

17 Îj(x)← Ij(x) + ∆Ij(x);

18 x∗j ← argmax{Îj(x)};
19 if Îj(x

∗
j ) ≥ α/2 then

20 uj ← 1; if
∑j

t=1 ut > n`k then abort and output FAIL;

21 Dj ← Dj−1 \ {k |x∗j is not β-significant for Dec(·)(k, cj)};
22 Output ansj ← âj ;

23 else /* Phase 3: Check whether the median is a good estimation. */

24 D′j−1 ← Dj−1 \ {k | ∃x ∈ {0, 1}`o \Wj , x is (α, β)-significant for Dec(·)(k, cj)};
25 med j ← the median value of EO∼Ounif

[DecO(k, cj)] among all k ∈ D′j−1;

26 if |med j − âj | > 0.2 then

27 uj ← 1; if
∑j

t=1 ut > n`k then abort and output FAIL;
28 Dj ← D′j−1 \ {k | |âj − EO∼Ounif

[DecO(k, cj)]| > 0.2};
29 Output ansj ← âj ;

30 else uj ← 0; Dj ← Dj−1; Output ansj ← med j ;

10



Proof. Let x = (x1, . . . , xqπ) be a sequence of qπ oracle variables where xi ∈ {0, 1}`o and b =
(b1, . . . , bqπ) be a sequence of qπ bits where bi ∈ {0, 1}. We define an indicator function of x,b, O
and k as follows.

1x,b(O,k) =

{
1 if DecO(k, cj) queries x1, . . . , xqπ sequentially and b is O’s values on x

0 otherwise.

Then we define a potential function Φ =
∑

x,b

∑
O∈Ounif ,k∈Dj−1

1x,b(O,k). Clearly, the value of Φ

at the beginning of Phase 1 is at most 2n`kqπ since |Dj−1| ≤ 2n`k and for any particular k and cj ,
the number of all possible query histogram of Dec(·)(k, cj) is at most 2qπ .

We will show that when fixing a variable x ∈Wj such that

Pr
k∼Unif(Dj−1),O∼Ounif

[DecO(ki, cj) queries x for some ki ∈ k] ≥ β/2

the value of Φ will decrease by a factor (1− β/4). This is because fixing the value of x will kill all
pair of O and k such that DecO(k, cj) queries x but O is not consistent to O∗ on x. Since Φ can
be less than 1, there are at most O(n`kqπ/β) elements in Wj .

4.2 Utility Analysis

In this section, we show that the sanitizer is (1/3,neg(n))-accurate. We use c = (c1, . . . , cm) to
denote a sequence of m ciphertexts. LetMO(k, c) be the sanitizer described as Algorithm 1 running
on database k and ciphertext sequence c. We first show that with high probability, âj is close to
aj for all round j.

Lemma 4.3. For any O∗ ∈ Ounif , any database k∗ ∈ ({0, 1}`k)n and any sequence of m ciphertexts
c ∈ ({0, 1}`c)m,

Pr
â←RMO∗(k∗,c)

[∃j ∈ [m], |âj − aj | > 0.1] ≤ neg(n)

Proof. Since ∆aj is drawn from Lap(σ), Pr[|∆aj | > 0.1] ≤ e−0.1/σ = neg(n). The lemmas follows
by using union bound on all j ∈ [m].

Then we show that with high probability, the phase 2 can successfully detect the significant
variable in Dec(·)(k∗, cj) for all round j.

Lemma 4.4. In the execution of Algorithm 1, for any round j where Dec(·)(k∗, cj) has a (α, β)-
significant variable after Phase 1,

Pr
[
Îj(x

∗
j ) < α/2

]
< neg(n)

Proof. Let τ be maxx{Ij(x)}. Note that τ ≥ α since Dec(·)(k∗, cj) has a (α, β)-significant variable.
So we have

Pr[τ + Lap(σ) < α/2] <
1

2
· e−

α
2σ = neg(n)

The lemma follows the fact that Îj(x
∗
j ) < α/2 implies τ + Lap(σ) < α/2.

Before bounding the failure probability of the sanitizer, we first exhibit a large deviation bound
for decision forest whose proof is deferred to Section 6.
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Proposition 4.5. For any cj ∈ {0, 1}`c and k ∈ ({0, 1}`k)n, if there is no (α, β)-significant variable
in Dec(·)(k, cj) then for any δ1 > 0 and δ2 > 0,

Pr
O∗∼Ounif

[∣∣∣∣DecO∗(k, cj)− E
O∼Ounif

[
DecO

∗
(k, cj)

]∣∣∣∣ > δ1 + hδ2 + n2h
√
β

]
≤ e−2δ2

1/α + h8e−δ
2
2/β

where h is the query complexity of Dec(·)(k, cj).

Lemma 4.6. For any database k∗ ∈ ({0, 1}`k)n, if there is no (α, β)-significant variables in
DecO(k∗, c), then

Pr
O∗∼Ounif

[
∃c ∈ {0, 1}`c ,

∣∣∣∣DecO∗(k∗, c)− E
O∼Ounif

[
DecO(k∗, c)

]∣∣∣∣ > 0.1

]
≤ neg(n)

Proof. Let T = 0.1, by Proposition 4.5 (setting δ1 = T/3, δ2 = T/(3qπ), h = qπ) and noting that
β = T/(3n4q3

π),

Pr
O∗∼Ounif

[∣∣∣∣DecO∗(k∗, c)− E
O∼Ounif

[
DecO(k∗, c)

]∣∣∣∣ > T

]
≤ 2e−T

2/(9α) + 2q8
πe
−2Tn4qπ/3

By taking union bound over all c ∈ {0, 1}`c , the lemma follows that α = 1/(`cn
θ).

Remark. Note that the statement of Lemma 4.6 requires that, with high probability, for all ci-
phertext c ∈ {0, 1}`c , DecO∗(k∗, c) should concentrate around the expectation. One might wonder
whether this requirement is too stringent as the sanitizer only answers m (which may be far less
than 2`c) queries. Unfortunately, it seems that this condition cannot be relaxed because the m
queries asked by the adversary might depend on the oracle O∗. So when considering all O∗, the
number of possible queries can be much greater than m.

In order to bound the failure probability of the sanitizer, we divide all the query rounds 1, . . . ,m
into three types.

• Type 1: Dec(·)(k∗, cj) has a (α, β)-significant variable. So âj is used to answer the query.

• Type 2: The median med j is not close to âj . So âj is used to answer the query.

• Type 3: The mechanism use med j to answer the query.

We say a round is bad if it is in Type 1 or 2 otherwise it is said to be good.

Lemma 4.7. For any database k ∈ ({0, 1}`k)n,

Pr
O∗∼Ounif

[
∀c ∈ ({0, 1}`c)m, the number of bad (Type 1 or 2) rounds in MO∗(k, c) > n`k

]
≤ neg(n)

Proof. We fist show that, in any bad round j, the size of Dj will shrink at least a factor of 2, i.e.
|Dj | ≤ |Dj−1|/2. Consider any Type 1 round j. Let x∗j be the significant variable picked at this
round. Since x∗j 6∈Wj , ∑

O∈Ounif ,k∈Dj−1

1DecO(k,cj) queries x∗j
≤ |Dj−1| · |Ounif | · β/2
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On the other hand, since Dj is obtained by removing all database k where x∗j is not β-significant
for Dec(k, cj), we have ∑

O∈Ounif ,k∈Dj−1

1DecO(k,cj) queries x∗j
≥ |Dj | · |Ounif | · β

Combine above two inequalities, we have |Dj | ≤ |Dj−1|/2. Consider any Type 2 round j. Suppose
|Dj | > |Dj−1|/2 ≥ |D′j−1|/2. By the definition of Dj and med j , we have |med j − âj | ≤ T which
contradicts the fact that j is a Type 2 round.

Next we show that k∗ ∈ Dm with probability 1 − neg(n) by induction on j. Clearly, k∗ ∈ D0.
If j is Type 1, in order to show k∗ /∈ Dj−1 \ Dj , it suffices to show that x∗j is β-significant for

Dec(·)(k∗, cj) with probability 1 − neg(n). For any x which is not β-significant for Dec(·)(k∗, cj)n,
we have Ij(x) = 0. Thus, a

Pr[Îj(x) ≥ α/2] ≤ 1

2
e−α/2σ

On the other hand, |Uj | is at most 2`kβ/qπ since

|Uj | · |Ounif | · β ≤
∑

O∈Ounif ,k∈Dj−1,x 6∈Wj

1DecO(k,cj) queries x ≤ |Dj−1| · |Ounif | · qπ

By taking union bound over all x ∈ Uj , we have the probability that x∗j is not β-significant for

Dec(·)(k∗, cj) is at most |Uj | · e−α/2σ ≤ 2`kβ/qπ · e−α/2σ. Since α/(σ`k) ≥ nθ/6, this probability is
negligible.

If j is Type 2, Lemma 4.4, k∗ ∈ D′j−1 with probability at least 1− neg(n). Then by Lemma 4.3

and Lemma 4.6, with probability at least 1−neg(n), |âj−aj | ≤ 0.1 and
∣∣aj − EO∼Ounif

[
DecO(k∗, cj)

]∣∣ ≤
0.1. Thus, k∗ /∈ D′j−1 \ Dj by triangle inequality. If j is Type 3, it is obvious since Dj−1 = Dj .

Putting it all together, the lemma follows the facts that |D0| = 2n`k , |Dm| ≥ 1 with probability
1− neg(n) and |Dj | ≤ |Dj−1|/2 for all bad rounds.

Lemma 4.8. (Utility) Algorithm 1 is (0.3,neg(n))-accurate, i.e., for any database k∗ ∈ ({0, 1}`k)n,

Pr
O∗∼Ounif

[
∀c ∈ ({0, 1}`c)m,∀j ∈ [m], |ansj − aj | < 0.3

]
≥ 1− neg(n)

where ansj is the answer outputted byMO∗(k∗, c) at round j and aj is the true answer DecO
∗
(k∗, cj).

Remark. Actually, the outermost probability should also take over the random coins inM, i.e. the
randomness from the Laplace noises. We omit this for the ease of presentation since these random
coins are independent from the choice of O∗ and c.

Proof. By the description of Algorithm 1, if the sanitizer succeeds, |ansj − âj | ≤ 0.2 for all round
j. Thus the lemma follows from Lemma 4.7 and Lemma 4.3.

4.3 Privacy Analysis

Our goal in this section is to demonstrate that, Algorithm 1 is (ε,neg(n))-differentially private.
We first simplify the output of our sanitizer as a vector v, which will be shown to determines the
output transcript of the sanitizer.

vj =


âj , x

∗
j if round j is Type 1

âj ,⊥ if round j is Type 2
⊥,⊥ if round j is Type 3

13



Claim 4.9. Given the oracle O∗ and v, the output of Algorithm 1 can be determined.

Proof. By the description of Algorithm 1, the only variable (or information) passed from round
j − 1 to round j is Dj−1. So it suffices to show that given v, the adversary can recover Dj for
all j ∈ [m]. We prove this by induction on j. Clearly, it holds when j = 0. Given Dj−1, Dj can
be construct as follows. Since Phase 1 does not use any information about k∗, the adversary first
simulate it by querying O∗ on significant variables and simplifying DecO(,̇cj). Next, if v = (âj , x

∗
j ),

Dj ← Dj−1 \ {k |x∗j is not β-significant for Dec(·)(k, cj)}. If v = (âj ,⊥), Dj ← D′j−1 \ {k | |âj −
EO∼Ounif

[DecO(k, cj)]| > 0.2}. If v = (⊥,⊥), Dj ← Dj−1. Obviously, this Dj is exactly is the same
one used in Algorithm 1. Finally, we need to argue the case where the sanitizer outputs FAIL. It is
not hard to see, the santizer fails only if vj 6= (⊥,⊥) for more than n`k number of rounds. So the
adversary can recognize the failure of the santizer.

Fix an oracle O∗ and two adjacent databases k,k′ ∈ ({0, 1}`k)n. Let A and B denote the output
distributions of our sanitizer when run on the input database k and k′ respectively. We also use A
and B to denote their probability density function dA and dB. The support of both distributions
is denoted by V = ({⊥}∪R, {⊥}∪{0, 1}`o)n. For any v ∈ V, we define the loss function L : V → R
as

L(v) = log

(
A(v)

B(v)

)
By Proposition 3.2, it suffices to show that

Pr
v∼A

[L(v) > ε] < neg(n)

Given a transcript v, by chain rule,

L(v) = log

(
A(v)

B(v)

)
=
∑
j∈[m]

log

(
Aj(vj | v<j)
Bj(vj | v<j)

)

where Aj(vj | v<j) is the probability density function of the conditional distribution of Algorithm 1
outputting vj , conditioned on v<j = (v1, . . . , vj−1).

Now fix a round j ∈ [m] and v<j . We define two borderline events on the noise values ∆Ij(x) and

∆aj . Let E1 be the event that Îj(x
∗
j ) > α/2−σ and E2 be the event that |âj−med j | > T−σ. It should

be emphasized that given v<j , both E1 and E2 are events only depends on the Laplacian noises
{∆Ij(x)}x∈Uj and ∆aj . Equivalently, E1 is the event that {∆Ij(x)}x∈Uj is in the set of noises such

that Îj(x
∗
j ) > α/2−σ and E2 is the event that ∆aj > T −σ+med j−aj or ∆aj < medj−aj−T +σ.

Before proceeding, we first state two obvious probability facts.

Claim 4.10. For any µ ∈ R and σ > 0, Pr[Lap(σ) > µ | Lap(σ) > µ− σ] ≥ 1/e and Pr[Lap(σ) <
µ | Lap(σ) < µ+ σ] ≥ 1/e.

Proof. We only prove the first inequality. The second follows similar arguments. If µ ≥ σ, the
probability is

1
2e
−µ/σ

1
2e
−(µ−σ)/σ

= 1/e

If µ ∈ (0, σ), the probability is
1
2e
−µ/σ

1− 1
2e
−(µ−σ)/σ

≥
1
2e
1
2

= 1/e
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If µ ≤ 0, the probability is
1− 1

2e
µ/σ

1− 1
2e

(µ−σ)/σ
≥ 1

2

Claim 4.11. Let A,B,C,D be four random events such that Pr[A ∧B] = 0. Then

Pr[A ∨B | C ∨D] ≥ min{Pr[A | C],Pr[B | D]}

Proof.

Pr[A ∨B | C ∨D] = Pr[A | C ∨D] + Pr[B | C ∨D]

≥ Pr[A | C] Pr[C | C ∨D] + Pr[B | D] Pr[D | C ∨D]

≥ min{Pr[A | C],Pr[B | D]} · (Pr[C | C ∨D] + Pr[D | C ∨D])

≥ min{Pr[A | C],Pr[B | D]}

In the following lemma, we show that conditioned on E1 ∨ E2, with probability at least 1/e, a
round j is a bad round.

Lemma 4.12. Pr [j is of Type 1 | E1] ≥ 1/e and Pr
[
j is of Type 2 | E1, E2

]
≥ 1/e

Proof. Note that j is of Type 1 iff Îj(x
∗
j ) ≥ α/2. So by Claim 4.10,

Pr
[
Îj(x

∗
j ) ≥ α/2 | Îj(x∗j ) ≥ α/2− σ

]
= Pr[Lap(σ) ≥ α/2− Sj(x∗j )/n | Lap(σ) ≥ α/2− Sj(x∗j )/n− σ] ≥ 1/e

Similarly, conditioned on E1, j is of Type 2 iff âj −med j > T or âj −med j < −T . By Claim 4.10,

Pr [âj −medj ≤ −T | âj −med j ≤ −(T − σ)] ≥ 1/e

Pr [âj −med j ≥ T | âj −med j ≥ T − σ] ≥ 1/e

Since T ≥ σ, the second part of the lemma follows by combining the above two inequalities.

Then in the following three lemmas, we show upper bounds on the privacy loss for three cases
E1 ∧ E2, E1 ∧ E2 and E1.

Lemma 4.13. For every vj ∈ V,

log

(
Aj(vj | E1, E2,v<j)

Bj(vj | E1, E2,v<j)

)
= 0

Proof. Conditioned on E1 and E2, we have Îj(x
∗
j ) ≤ α/2 − σ and |âj −med j | ≤ T − σ. Then the

round j must be of Type 3 for both k and k′ since |aj − a′j | ≤ 1/n and |Ij(x)− I ′j(x)| ≤ 1/n.

Lemma 4.14. For every vj ∈ V,

log

(
Aj(vj | E1, E2,v<j)

Bj(vj | E1, E2,v<j)

)
≤ 1

σn
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Proof. Following similar argument in Lemma 4.13, the round j cannot be Type 1 for k and k′.
For any vj ∈ (R,⊥), the sanitizer outputs vj is either with probability 0 for both k,k′ or with
probabilities differing by an e1/σn ratio. Similarly, for vj = (⊥,⊥), the probabilities by k and k′

differ by an e1/σn ratio since |aj − a′j | ≤ 1/n.

Lemma 4.15. For every vj ∈ V,

log

(
Aj(vj | E1,v<j)

Bj(vj | E1,v<j)

)
≤ 3

σn

Proof. If vj ∈ (R, {0, 1}`o), let vj = (a∗, z). We couple the random noise ∆Ij(x) and ∆I ′j(x) for all

x ∈ Uj \{z}. Let h and h′ denote maxx∈Uj\{z}{Îj(xj)} and maxx∈Uj\{z}{Î ′j(xj)} respectively. Then
we have,

Aj(vj | E1,v<j) = Pr[aj + ∆aj = a∗ ∧∆Ij(z) ≥ max{α/2, h} − Ij(z) | E1,v<j ]

Bj(vj | E1,v<j) = Pr[a′j + ∆a′j = a∗ ∧∆I ′j(z) ≥ max{α/2, h′} − I ′j(z) | E1,v<j ]

Thus the ratio between the above two probabilities is at most e
3
σn since |aj − a′j | ≤ 1/n, |Ij(z) −

I ′j(z)| ≤ 1/n and |h− h′| ≤ 1/n.
If vj ∈ (⊥∪R,⊥), the santizer outputs vj only if the round j is not of Type 1. Similarly to the

above argument, it is not hard to see that the probabilities that the round j is not of Type 1 for k
and k′ differ at a e2/σn ratio. Then the lemma follows the similar arguments in Lemma 4.13 and
Lemma 4.14.

Combining all the above three cases, we are able to bound expected privacy loss for each round
j by using the following two propositions.

Proposition 4.16 (Lemma 3.2 in [DRV10]). For any two distributions A,B on a common
support V, if

sup
v∈V

∣∣∣∣log

(
A(v)

B(v)

)∣∣∣∣ ≤ ε
then

E
v∼A

[
log

(
A(v)

B(v)

)]
≤ 2ε2

Proposition 4.17 (Convexity of KL Divergence). Let A,B,A1, B1, A2, B2 be distributions over
a common probability space such that for some λ ∈ [0, 1], A = λA1 + (1 − λ)A2 and B =
λB1 + (1− λ)B2. Then

E
v∼A

[
log

(
A(v)

B(v)

)]
≤ λ E

v∼A1

[
log

(
A1(v)

B1(v)

)]
+ (1− λ) E

v∼A2

[
log

(
A2(v)

B2(v)

)]
Lemma 4.18. For all j ∈ [m],

E
[
log

(
Aj(vj | v<j)
Bj(vj | v<j)

)]
≤ 9

(σn)2
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Proof. Applying Proposition 4.16 to Lemma 4.13, Lemma 4.14 and Lemma 4.15, we have

E
[
log

(
Aj(vj | E1, E2,v<j)

Bj(vj | E1, E2,v<j)

)]
= 0

and E
[
log

(
Aj(vj | E1, E2,v<j)

Bj(vj | E1, E2,v<j)

)]
≤ 1

(σn)2

and E
[
log

(
Aj(vj | E1, E2,v<j)

Bj(vj | E1, E2,v<j)

)]
≤ 9

(σn)2

Then we can express Aj(vj | v<j) as a convex combination in the form

Pr[E1, E2 | v<j ]Aj(vj | E1, E2,v<j)+Pr[E1, E2 | v<j ]Aj(vj | E1, E2,v<j)+Pr[E1 | v<j ]Aj(vj | E1,v<j)

and express Bj(vj | v<j) similarly. By Proposition 4.17,

E
[
log

(
Aj(vj | v<j)
Bj(vj | v<j)

)]
≤ 9

(σn)2
· Pr[E1 ∨ E2 | v<j ]

The lemma follows the fact that any probability is at most 1.

We say a round j is a borderline round if in this round, either E1 or E2 occurs. The following
lemma gives a bound on the number of borderline round.

Lemma 4.19. Let m′ be the number of borderline rounds in Algorithm 1.

Pr[m′ > n1+θ/3`k] ≤ neg(n)

Proof. By Claim 4.11 and Lemma 4.12,

Pr [j is a borderline round | j is Type 1 or Type 2] ≥ 1/e

Thus, E[m′] ≤ e ·n`k. Note that the noises added in each round are independent from other rounds.
Hence, by Hoeffding’s bound, the lemma follows.

Proposition 4.20 (Azuma’s Inequality). Let A1, . . . , Am be real-valued random variables such
that for every i ∈ [m],

1. Pr[|A1| ≤ α] = 1, and

2. for every (a1, . . . , an) ∈ Supp(A1, . . . , Am),

E[Ai|A1 = a1, . . . , Ai−1 = ai−1] ≤ β.

Then for any z > 0, we have

Pr

[
m∑
i=1

Ai > mβ + z
√
m · α

]
≤ e−z2/2

Lemma 4.21. Algorithm 1 is (ε,neg(n))-differently private.
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Proof. We apply Proposition 4.20 the set of m′ borderline rounds. Let J ⊂ [m] be the set of
borderline rounds. For each j ∈ J , let

Xj = log

(
Aj(vj | v<j)
Bj(vj | v<j)

)
.

Note that E[Xj |v<j ] ≤ 9/(σn)2, |Xj | ≤ 3/(σn) and L(v) =
∑

j∈J Xj . By Proposition 4.20 (setting

α = 3/(σn), β = 9/(σn)2 and z = nθ/7n),

Pr[L(v) > 9m′/(σn)2 + 3nθ/7
√
m′/(σn)] < neg(n)

Since m′ ≤ n1+θ/6`k with probability 1− neg(n), we have

9m′/(σn)2 + 3nθ/7
√
m′/(σn) ≤ 9`kn

1+θ/3

`kn1+2θ/3
+

3nθ/7+θ/6
√
n`k

nθ/3
√
n`k

= o(1)

5 Improved Lower Bound

In this section, we show how to improve the bound proved in Section 4 to Ω̃(n) by modifying the
sanitizer and the proof a bit. Suppose `k · `c2 ≤ n1−θ. Set parameters σ, α, β to be

σ = nθ/3
√
`k
n
, α =

1

`cnθ
, β =

1

54n4q3
π

Since `k · `c2 ≤ n1−θ, by simple calculation, we have α/σ ≥ nθ/6.
We modify the definition of Uj in the line 12 of Algorithm 1 as follows.

Algorithm 1 : Uj ← {x /∈Wj | ∃k ∈ Dj−1 s.t. x is β-significant for Dec(·)(k, cj)}
New Algorithm : Uj ← {x /∈Wj | x is β-significant for Dec(·)(k∗, cj)}

The efficiency of the new sanitizer follows Lemma 4.2. The only difference in utility analysis is
in the proof of Lemma 4.7 where we show k∗ ∈ Dm if j is Type 1. In the new algorithm, this is
straight forward since x∗j ∈ Uj must be a β-significant variable for Dec(·)(k∗, cj).

In the privacy analysis, the only difference is that the new definition of Uj does depend on
the true database. Given any adjacent databases k,k′, we fix a round j and v<j . Let U and U ′
denote the set Uj when the sanitizer running on k and k′ respectively. We also use x∗ and x∗′

to denote the variable x∗j = argmaxx{Îj(x)} for k and k′ respectively. Let Hj be the event that
there exists x ∈ U \ U ′ such that ∆Ij(x) ≥ α/2 − σ − 1/n or there exists x ∈ U ′ \ U such that
∆I ′j(x) ≥ α/2− σ − 1/n.

Lemma 5.1. Pr[Hj |v<j ] ≤ neg(n)

Proof. First, note that |U| ≤ qπ/β since

|U| · |Ounif | · β ≤
∑

O∈Ounif ,x 6∈Wj

1DecO(k,cj) queries x ≤ |Ounif | · qπ

On the other hand, since ∆Ij(x) is drawn from Lap(σ) and α/σ ≥ nθ/6,

Pr[∆Ij(x) ≥ α/2− σ − 1/n] ≤ 1

2
· e−(α/2−σ)/σ = neg(n)

The lemma follows by taking union bound over all x ∈ U \ U ′ and applying similar arguments for
x ∈ U ′ \ U .
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We define another random variable A′j such that dtv(Aj , A
′
j) ≤ neg(n) and Hj never occurs

with respect to A′j (similar ideas has been also used in proving Theorem 3.5 of [DRV10]). Observe

that, conditioned on Hj , E1 implies x∗, x∗′ ∈ U ∩ U ′ and E1 implies the round j is not Type 1
for both k and k′. Let L′(v) be the analogues of L(v) by replacing Aj by A′j for all j ∈ [m].
Clearly dtv(L,L

′) ≤ m · neg(n) = neg(n). Following the proof of Lemma 4.21, we can show
Pr[L′(v) ≥ ε] ≤ neg(n) for any ε = Ω(1). Thus Pr[L(v) ≥ ε] ≤ neg(n) follows.

6 Large Deviation Bound for Decision Forests

In this section, we show the large deviation bound for Dec(·)(k, cj) for any given k ∈ ({0, 1}`k)n

and cj ∈ {0, 1}`c . Intuitively, a decrypt algorithm Dec(·)(ki, cj) can be viewed as a decision tree and
similarly, Dec(·)(k, cj) represents a decision forest (see formal definition below). So throughout this
section, we will use the terms like decision trees/forest instead of decrypt algorithms to present our
result on large deviation bound for decision forest.

A decision tree D is a binary tree whose internal nodes are labeled with Boolean variables while
leaves labeled with 0 or 1. Given an input assignment a = (a1, . . . , am) ∈ {0, 1}n to the variables
x1, . . . , xm, the value computed by D on this input a is denoted by D(a). This value D(a) is the
value of the leaf at a path on D determined in the following way. The path starts from the root of
D and then moves to the left child if the current internal node is assigned 0 and to right otherwise.
A variable xi is said to be queried by D(a) if the corresponding path passes through a node labeled
xi. Clearly, every xi can only be queried by D(a) at most once.

A decision forest F is a collection of |F| decision trees. For any assignment a of x, F(a) denotes
the |F|-dimensional vector computed by F on a, whose ith component is the value computed by
the ith tree. We use w(F(a)) to denote the fractional hamming weight of F(a), i.e.,

w(F(a)) =

∑
Dj∈F Dj(a)

|F|
.

In most cases, we assume the assignment a are drawn from the uniform distribution on {0, 1}m.
We also use the shorthand notations Pra and Ea to denote the probability and expectation when
a are uniformly distributed when it is clear from the context. We may also abuse the Pra or Ea

inside another Pra or Ea to denote the probability or expectation corresponding to another random
variable when it is not ambiguous, e.g. Pra

[
w(F(a)) > Ea[w(F(a))]

]
.

Definition 6.1 ((α, β)-significant). For a decision forest F and an input x, a Boolean variable xi
is said to be (α, β)-significant if at least α fraction of trees D in F satisfy Pra

[
D(a) queries xi

]
≥ β.

For comparison, we discuss the difference between the above definition and the notion called
“average significance” used in [BIL12]. Recall that the average significance of xi on F is defined as

1

|F|
·
∑
D∈F

Pr
a

[
D(a) queries xi

]
.

Obviously, if xi is (α, β)-significant, the average significance of xi is at least α · β. On the other
hand, if xi is not (α, β)-significant, it can be shown that the average significance of xi is at most
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α+ β. To see this, let F1 ⊆ F be the set of trees D such that Pra[D(a) queries xi] ≥ β.

1

|F|
·
∑
D∈F

Pr
a

[D(a) queries xi] ≤
1

|F|

∑
D∈F1

Pr
a

[D(a) queries xi] +
∑

D∈F\F1

Pr
a

[D(a) queries xi]


≤ 1

|F|

|F1|+
∑

D∈F\F1

β

 ≤ α+ β

We restate two theorems from [GLSS15] and [BIL12] in our terms.

Theorem 6.2 (Theorem 1.1. in [GLSS15]). Let F be a decision forest that has no (α, 0)-
significant variable and n be |F|. Then for any δ > 0,

Pr
a

[∣∣∣w(F(a))− E
a
[w(F(a))]

∣∣∣ ≥ δ] ≤ e−2δ2/α

Theorem 6.3 ([BIL12]). Let F be a decision forest of height at most h that has no (β, β)-
significant variable. Then for any δ > 0,

Pr
a

[∣∣∣w(F(a))− E
a
[w(F(a))]

∣∣∣ ≥ hδ] ≤ h8e−δ
2/β

We state the main theorem that we will prove in this section.

Theorem 6.4. Let F be a decision forest of height at most h that has no (α, β)-significant variable.
Then for any δ1 > 0 and δ2 > 0,

Pr
a

[∣∣∣w(F(a))− E
a
[w(F(a))]

∣∣∣ > δ1 + hδ2 + n2h
√
β
]
≤ e−2δ2

1/α + h8e−δ
2
2/β

For the rest of this section, we fix F to be a decision forest of size n and height h, which has no
(α, β)-significant variables. Let S denote the set of all variables xi such that there exists D ∈ F ,
Pra[D(a) queries xi] ≥

√
β. Clearly, |S| ≤ nh/

√
β. We use S̄ to denote the complement set of S

and aS to denote the partial assignment truncated on S.

Definition 6.5 (pruning). Let FP be the pruned forest of F defined as follows. For each variable
xi ∈ S and D ∈ F , if Pra[D(a) queries x] ≤ β, we deleted xi from the corresponding tree in FP
and instead replaced with leaves assigning the value 0.

We only show one side of the Theorem 6.4, i.e.

Pr
a

[
w(F(a)) < E

a
[w(F(a))]− δ1 − hδ2 − n2h

√
β
]
≤ e−2δ2

1/α + h8e−δ
2
2/β

The proof of the other side is symmetric by changing the definition of pruning to replacing xi by 1.
The proof sketch of Theorem 6.4 can be described as follows. Note that for any assignment a,

w(F(a)) ≥ w(FP(a)). On the other hand, Ea[w(FP(a))] ≥ Ea[w(F(a))]−nβ ·nh/
√
β since pruning

each variable in |S| decreases the expectation value at most βn and |S| ≤ nh/
√
β. Hence, to prove

Theorem 6.4, it suffices to prove that w(FP(a)) is close to Ea[w(FP(a))] with high probability, which
can be established in two steps. We first show that, in Lemma 6.6, for any partial assignment aS̄ ,
w(FP(aS ,aS̄)) is close to EaS [w(FP(aS ,aS̄))] with high probability (w.r.t. the randomness of aS).
Then in Lemma 6.7, we prove that with respect to the randomness of aS̄ , EaS [w(FP(aS ,aS̄))] is
close to Ea[w(FP(a))] with high probability. Therefore, Theorem 6.4 follows union bound.
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Lemma 6.6. For any partial assignment aS̄ and δ > 0,

Pr
aS

[∣∣∣∣w(FP(aS ,aS̄))− E
aS

[w(FP(aS ,aS̄))]

∣∣∣∣ ≥ δ] ≤ e−2δ2
1/α

Proof. Given an assignment aS̄ , it is not hard to see that the decision forest FP(xS ,aS̄), which
only takes xS as input, has no (α, 0)-significant variable. Otherwise, such variable must be (α, β)-
significant in F . Hence the lemma follows Theorem 6.2.

Lemma 6.7. For any δ > 0,

Pr
aS̄

[∣∣∣∣EaS [w(FP(aS ,aS̄))
]
− E

a
[w(FP(a))]

∣∣∣∣ ≥ hδ] ≤ h8e−δ
2/β

Before proving Lemma 6.7, we define an operation on FP .

Definition 6.8 (truncating). Let FT be a truncated forest of FP with size 2|S| · |FP |. For each
tree D ∈ FP , there are 2|S| trees in FT that corresponds to all possible assignments of xS.

Proof. We first show that there is no (
√
β,
√
β)-significant variables in FT . Note that all the

variables in FT are in S̄. Assume to the contrary that there exists xi ∈ S̄ that is (
√
β,
√
β)-

significant. Then∑
D∈FP

Pr
a

[D(a) queries xi]/n =
∑

DT ∈FT

Pr
aS̄

[DT (aS̄) queries xi]/(n · 2|S|) ≥
√
β ·
√
β = β

which implies there is a D ∈ FP such that Pra[D(a) queries xi] ≥ β. This is a contradiction with
the definition of S̄.

Thus, by Theorem 6.3,

Pr
aS̄

[∣∣∣∣w(FT (aS̄))− E
aS̄

[w(FT (aS̄))]

∣∣∣∣ ≤ hδ] ≤ h8e−δ
2/β

Therefore, the lemma follows the fact that w(FT (aS̄)) = EaS [w(FP(aS ,aS̄))].

Proof of Theorem 6.4. Combining Lemma 6.6 and Lemma 6.7, with probability at least 1−e−2δ2
1/α−

h8e−δ
2
2/β, we have w(FP(a)) ≥ Ea[w(FP(a))]− δ1−hδ2. Then the theorem follows that w(F(a)) ≥

w(FP(a)) and Ea[w(FP(a))] ≥ Ea[w(F(a))]− n2h
√
β.
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