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Abstract

Motivated by cryptographic applications, we study the notion of bounded indistinguishability,
a natural relaxation of the well studied notion of bounded independence.

We say that two distributions µ and ν over Σn are k-wise indistinguishable if their pro-
jections to any k symbols are identical. We say that a function f : Σn → {0, 1} is ε-fooled
by k-wise indistinguishability if f cannot distinguish with advantage ε between any two k-wise
indistinguishable distributions µ and ν over Σn.

We are interested in characterizing the class of functions that are fooled by k-wise indistin-
guishability. While the case of k-wise independence (corresponding to one of the distributions
being uniform) is fairly well understood, the more general case remained unexplored.

When Σ = {0, 1}, we observe that whether f is fooled is closely related to its approximate
degree. For larger alphabets Σ, we obtain several positive and negative results. Our results
imply the first efficient secret sharing schemes with a high secrecy threshold in which the secret
can be reconstructed in AC0. More concretely, we show that for every 0 < σ < ρ ≤ 1 it is
possible to share a secret among n parties so that any set of fewer than σn parties can learn
nothing about the secret, any set of at least ρn parties can reconstruct the secret, and where
both the sharing and the reconstruction are done by constant-depth circuits of size poly(n). We
present additional cryptographic applications of our results to low-complexity secret sharing,
visual secret sharing, leakage-resilient cryptography, and eliminating “selective failure” attacks.

1 Introduction

For a finite alphabet Σ, a distribution µ over Σn is k-wise independent if its projection to every
k coordinates is uniform. There is a large body of work studying bounded independence, namely,
the conditions under which a given function f : Σn → {0, 1} cannot distinguish between any
distribution on n bits that is k-wise independent and the uniform distribution with advantage ε, for
various choices of ε and k. Classes of functions that are fooled by bounded independence include
combinatorial rectangles [24], small-depth circuits [36, 8, 45, 9, 51], and sign polynomials [20, 21],
to name a few.
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In this work we consider a relaxation of bounded independence that we call bounded indis-
tinguishability. Two distributions µ and ν over Σn are k-wise indistinguishable if for all subsets
S ⊆ [n] of size k, the projections µ|S and ν|S of µ and ν to the coordinates in S are identical. For
instance, if µ (resp., ν) is uniform over n-bit strings whose parity is 0 (resp., 1), then µ and ν are
both (n− 1)-wise independent and hence are also (n− 1)-wise indistinguishable. However, if we let
µ′ = µ ◦ µ (i.e., a concatenation of two identical copies of µ) and similarly ν ′ = ν ◦ ν, then µ′ and
ν ′ are still (n− 1)-wise indistinguishable but are not even 2-independent.

Bounded indistinguishability arises naturally in cryptographic applications that involve secret
sharing or secure multiparty computation. We will be interested in the complexity of distinguishing
between two k-wise indistinguishable distributions.

Definition 1.1. For ε ∈ (0, 1), we say that a function f : Σn → {0, 1} is ε-fooled by k-wise indis-
tinguishability if for any two k-wise indistinguishable distributions µ and ν over Σn,

|Pr[f(µ) = 1]− Pr[f(ν) = 1]| ≤ ε.

Our goal is to understand which functions f are fooled by k-wise indistinguishability. For
instance, polylogarithmic independence fools all AC0 circuits [9]. Is this also the case for polylog-
arithmic indistinguishability?

We start by observing that over the binary alphabet Σ = {0, 1}, whether f is fooled by k-wise
indistinguishability is closely related to the approximate degree of f , a notion introduced in the
seminal work of Nisan and Szegedy [40]. This connection is central to our work so we formalize
it next. The ε-approximate degree of a function f : {0, 1}n → {0, 1} is defined to be the smallest
degree of a real-valued polynomial p : {0, 1}n → R such that |f(x)−p(x)| ≤ ε for every x ∈ {0, 1}n.

Theorem 1.2. For every n, k, ε ∈ (0, 1), and f : {0, 1}n → {0, 1}, the following are equivalent:

1. f is not ε-fooled by k-wise indistinguishability.

2. The ε/2-approximate degree of f is bigger than k.

Proof. It follows from linear programming duality (see for example §3 in [48] or Theorem 1 in [11])
that 2. is equivalent to the following statement:

3. There exists a function g : {0, 1}n → R such that (i)
∑

x∈{0,1}n g(x)f(x) > ε/2, (ii)
∑

x |g(x)| =
1, and (iii)

∑
x g(x)

∏
i∈S xi = 0 for every set S ⊆ [n] of size at most k (including the empty

set).

We now show that 1. and 3. are equivalent. To see that 1. implies 3., we assume without loss
of generality that Pr[f(µ) = 1]− Pr[f(ν) = 1] > ε and set g(x) = 1

2C (µ(x)− ν(x)), where C is the
statistical distance between µ and ν. The first two requirements for g are immediate. The third
requirement follows from k-wise indistinguishability of µ and ν.

To see that 3. implies 1., set µ(x) = 2 max{g(x), 0} and ν(x) = 2 max{−g(x), 0}. Since∑
g(x) = 0 and

∑
|g(x)| = 1, we have

∑
µ(x) =

∑
ν(x) = 1 and so µ and ν are probability

distributions. Condition (i) implies that Pr[f(µ) = 1] − Pr[f(ν) = 1] > ε. Finally, by linearity we
have that condition (iii) implies that µ and ν are indistinguishable by k-juntas so they are k-wise
indistinguishable.
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As a corollary, we get a similar connection between being non-trivially fooled by bounded
indistinguishability and threshold degree, a notion introduced in the classical work of Minsky and
Papert [38]. Recall that the threshold degree of a function f : {0, 1}n → {0, 1} is the smallest
degree of a real-valued polynomial p : {0, 1}n → R such that the sign of p(x) corresponds to f(x)
for every x ∈ {0, 1}n.

Corollary 1.3. For every n, k and f : {0, 1}n → {0, 1}, the following are equivalent:

1. There is a pair of k-wise indistinguishable distributions µ, ν that are perfectly distinguished
by f , namely |Pr[f(µ) = 1]− Pr[f(ν) = 1]| = 1.

2. The threshold degree of f is bigger than k.

Combining the above with known results on approximate degree, we conclude that bounded
indistinguishability over Σ = {0, 1} behaves very differently from bounded independence. For
example, O(1)-wise independence suffices to 1/3-fool the OR function on n bits, but Ω(

√
n)-wise

indistinguishability is required, due to the corresponding lower bound on the approximate degree of
OR [40]. This answers the aforementioned question of whether polylogarithmic indistinguishability
fools AC0 in the negative. A separation of Ω(n) is achieved by the Majority function: O(1)-wise
independence suffices to 1/3-fool this function [20], but Ω(n)-wise indistinguishability is required
by Paturi’s lower bound [43].

We turn to study the case of larger alphabets Σ. Here the equivalence with previously studied
notions seems to break down. We restrict the attention to alphabets of the form Σ = {0, 1}s,
viewing the function f as being computed by a circuit with sn input bits. This setting comes up
naturally in cryptographic applications, as explained below. But first we remark that, over such
larger alphabets, we construct “simple” functions f that are not fooled by k-wise indistinguishability
for much larger values of k than what is known for Σ = {0, 1}. For example, over Σ = {0, 1}poly(n)

we show that (n − n/poly log n)-wise indistinguishability does not (1 − 2−n)-fool AC0 (Theorem
1.4), and that 0.99n-wise indistinguishability does not 0.99-fool DNF (Corollary 2.10). In contrast,
over alphabet Σ = {0, 1} it is only known that Ω̃(n2/3)-wise indistinguishability does not fool AC0

(by work of Aaronson and Shi [2] and Theorem 1.2).

1.1 Secret sharing schemes

A secret sharing scheme allows a dealer to share a secret between n parties, so that any k parties
learn nothing about the secret from their shares whereas any r parties can reconstruct the secret
from their shares. Unlike the case of threshold secret sharing, where r = k + 1, we allow a bigger
gap between r and k. Such secret sharing schemes are often referred to as ramp schemes.

We are interested in the computational complexity of sharing and (especially) reconstructing
secrets. A simple secret sharing scheme for k = n− 1 and r = n shares a bit s into n bits s1, . . . , sn
that are random subject to the restriction that their parity is s. This scheme cannot be implemented
by constant depth circuits (in the class AC0) as reconstruction requires computing the parity of n
bits. Other secret sharing schemes, such as Shamir’s [47], employ linear functions over finite fields
and suffer from the same limitation.

A pair of k-wise indistinguishable distributions (µ, ν), together with a function f that can tell
the two distributions apart, can be viewed as a secret sharing scheme for a one-bit secret: Shares
of 0 and 1 are samples of µ and ν, respectively, and f is the reconstruction algorithm. Applying
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this connection together with techniques for sampling by constant-depth circuits, we obtain the
following secret sharing scheme in the class AC0.

Theorem 1.4 (Secret sharing in AC0). Let d be a constant. For every n and δ there exist:

• Sharing in AC0: circuits S0, S1 of constant depth and size poly(n, log 1/δ) that sample (n −
n/(log n)d)-wise indistinguishable distributions µ, ν over Σn, Σ = {0, 1}poly(n),

• Reconstruction in AC0: a circuit R of size poly(n) and depth d+O(1) such that Pr[R(µ) =
0] ≥ 1− δ and Pr[R(ν) = 1] ≥ 1− δ.

Moreover, the circuits S0, S1, and R can be constructed deterministically in time polynomial in n
and log 1/δ.

Theorem 1.4 gives an explicit construction, but requires that all n parties participate in re-
construction. If one does not insist on a fully explicit construction and settles for a probabilistic
construction that fails with negligible probability, the secrecy-recovery gap can be moved to an
arbitrary location: In Theorem 2.13 we obtain an AC0 secret sharing scheme that provides se-
crecy against any σn parties and allows reconstruction by any ρn parties for any pair of constants
0 ≤ σ < ρ ≤ 1 and sufficiently large n.

We obtain several other schemes with incomparable features. If we do not insist on sharing in
AC0 and only require that reconstruction be done in AC0, then we can achieve similar results with
perfect reconstruction (δ = 0). This variant builds on Corollary 1.3 and known results on the thresh-
old degree of DNF [38]. Alternatively, we can strengthen Theorem 1.4 by allowing an AC0 sharing
algorithm that indicates failure with probability δ, but otherwise supports perfect reconstruction.
In Corollary 2.10, we improve the reconstruction function complexity to a polynomial-size DNF
formula (with terms of size O(log n)), at the cost of a small constant reconstruction error and a
slightly worse secrecy threshold.

Finally, we complement the above positive results with some negative results, showing limita-
tions of secret reconstruction by disjunctions of juntas (Theorem 2.18) or small decision trees (The-
orem 2.20). In particular, the negative results imply that the positive result of Corollary 2.10 for
DNF reconstruction does not hold if the secrecy threshold is much closer to n or if the DNF is
restricted to have a polynomial-size decision tree.

Techniques. In §2 we rephrase known results on approximate degree in the language of secret
sharing using the connection in Theorem 1.2. The resulting schemes have AC0 reconstruction, but
achieve somewhat poor secrecy (k ≤ n2/3) and do not come with algorithms for sampling the shares.
In §2.1 we show that the distributions of the shares can be sampled in AC0. Then, in §2.2 we give
a reduction that trades alphabet size for secrecy, allowing us to derive our main positive results.
This reduction makes use of unbalanced disperser graphs. Our negative results, presented in §2.4,
are obtained by reducing the large alphabet to a binary alphabet using a suitable set system, and
then using Fourier analysis for obtaining the negative result in the binary case.

Related work. The randomized encoding technique of Applebaum et al. [7] can transform any
secret sharing scheme into one where the shares are sampled by circuits in which each output
depends on a fixed number of random bits (i.e, in the class NC0), but at the cost of further
increasing the complexity of reconstruction. Druk and Ishai [22] and Cramer et al. [16] consider the
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question of minimizing the circuit size of secret sharing. They construct near-threshold schemes
(i.e., with r = (1 + ε) · k) in which sharing and reconstruction can be performed by circuits of
size O(n); however, the depth of these circuits is logarithmic in n. The above results left open
the existence of nontrivial secret sharing schemes in which reconstruction can be done by constant
depth circuits or by other “simple” nonlinear functions, even when the computational complexity
of sharing the secret is unbounded.

1.2 Visual cryptography

Naor and Shamir [39] initiated the study of “visual cryptography” — a method for sharing secrets
which allows for a physical implementation using transparencies. It can be phrased as a secret
sharing scheme with `-bit shares, where reconstruction proceeds by first applying bitwise-OR to
the shares and then applying an approximate threshold function (with constant fractional threshold
gap). The bitwise-OR is implemented by physically stacking transparencies, and the approximate
threshold function is implemented by visually distinguishing between `-tuples of bits (pixels) that
have a low Hamming weight and those that have a high Hamming weight. The ratio between the
threshold gap and ` is referred to as the contrast.

It is known that the optimal contrast of such visual schemes vanishes exponentially with the
secrecy parameter k [39, 34], assuming that one requires sharp threshold reconstruction by any
subset of r = k+1 parties. The latter assumption has been made in all works on visual cryptography
we are aware of.

In §2.3 we give a visual “ramp scheme” that allows a quadratic gap between the secrecy and
reconstruction thresholds:

Theorem 1.5 (Visual secret sharing). For every n and r there exists a pair of distributions µ, ν
over {0, 1}n that are Ω(

√
r)-wise indistinguishable so that for every subset S ⊆ [n] of size r,

|Pr[OR(µ|S) = 1]− Pr[OR(ν|S) = 1]| ≥ 0.2.

Moreover, µ and ν are samplable by explicit circuits S0, S1 of constant depth and size polynomial
in n.

The benefits are a dramatic improvement in contrast, making it independent of k and visually
noticeable even for large k, as well as shorter (1-bit) shares and simpler reconstruction. The latter
two properties are also achieved by other probabilistic visual schemes from the literature [35, 15].
However, this is the first visual scheme whose (probabilistic) contrast does not vanish exponentially
with k. To give a better sense of the achievable parameters, in Appendix A we give some specific
parameter choices along with an image demonstrating the level of contrast we achieve.

1.3 Additional cryptographic applications

The above positive results for secret sharing rely on functions f that are not fooled by bounded
indistinguishability. Such functions can be used to recover a secret from its shares. We observe that
when f is fooled by bounded indistinguishability, this has positive consequences for leakage-resilient
cryptography. Concretely, in every implementation of a cryptographic primitive that guarantees
local secrecy, in the sense that different values of the underlying secrets induce k-wise indistin-
guishable distributions of the internal state, leaking the output of f on the internal state does not
compromise the secrets.
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Therefore all secret sharing schemes with a sufficiently high secrecy parameter k protect the
secret against global leakage functions that output few bits, where each output bit has a low
approximate degree (significantly smaller than k). More concretely:

Theorem 1.6. There exists a universal constant C such that the following holds. Let µ, ν be k-wise
indistinguishable distributions over {0, 1}n. Let L : {0, 1}n → {0, 1}t be a leakage function such
that the 1/3-approximate degree of each of its t outputs is at most d. Then the statistical distance
between L(µ) and L(ν) is bounded by δ, provided that k ≥ Cdt(t+ log 1

δ ).

This theorem can be applied to leakage functions whose outputs are computed by small decision
trees or disjunctions of small juntas. It can also be applied to establish leakage resilience of protocols
for secure multiparty computation and the related object of “private circuits.” See §3.1 and §3.2
for more details and concrete applications.

Eliminating selective failure attacks. The above applications can be relevant to any f : Σn →
{0, 1} that is fooled by bounded indistinguishability. We show that the special case where f = OR
can be useful for eliminating so-called “selective failure” attacks. A selective failure attack is an
attack that makes a computation fail only if the input satisfies some predicate. Such attacks enable
an adversary to tamper with the computation and learn a bit of information about the secret input
even when the tampering is detected and the output is replaced by an indication of failure. Selective
failure attacks arise in different areas of cryptography and are often difficult to protect against.

We propose the following natural methodology for protecting against such attacks. Suppose
that the computation of g(w) can be reduced to n sub-computations g1(w1), . . . , gn(wn), where
each k of the wi jointly hide w. The computation of g via this reduction fails if at least one of
the sub-computations fails. Assume further that an adversary tampers with each sub-computation
gi by choosing an arbitrary function of Fi(wi) that determines whether this sub-computation fails.
Then, a corollary of Theorem 1.6 (with t = 1 and L = OR) is that if k �

√
n (the approximate

degree of OR), then no tampering strategy can significantly correlate the event of failure with w. In
§3.3 we describe a simple concrete application of this methodology to eliminating selective failure
attacks in error-detecting coding schemes.

Organization. In §2 we present our results on secret sharing. In §2.4 we prove our negative
results and in §3 we give the details of the additional cryptographic applications described above.
In Appendix D we discuss an approximate notion of bounded indistinguishability.

2 Secret sharing

In this section we prove our results on secret sharing. Our starting observation is that bounded
indistinguishability is closely related to the complexity of secret sharing. Specifically, the distribu-
tions µ and ν over Σn capture the joint distributions of shares obtained by sharing the secrets 0
and 1, respectively. The k-wise indistinguishability of the distributions corresponds to the parties
gaining no information from any k shares. However, if bounded indistinguishability does not fool
some function f : Σn → {0, 1} we can think of f as the reconstruction function that maps the
shares back to the secret.
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In this setting it is natural to think of the distinguishing advantage as being close to (and ideally
equal to) one. We will be interested in the complexity of the function f as well as the complexity
of sampling µ and ν.

A different connection between secret sharing and approximation theory is obtained in the visual
cryptography literature [39] (see also [34] and the citations therein). However, it was confined to
analyzing the so-called contrast of visual cryptography schemes.

We give next a formal definition of secret sharing for a one-bit secret.1

Definition 2.1. An (n, k, r) bit secret sharing scheme with alphabet Σ, reconstruction function
f : Σr → {0, 1} and reconstruction advantage α is a pair of k-wise indistinguishable distributions
µ and ν over Σn such that µ and ν are k-wise indistinguishable but for every set S of size r we
have Pr[f(µ|S) = 1] − Pr[f(ν|S) = 1] ≥ α. Here µ|S is the projection of µ to the symbols in S,
and similarly for ν. The secret sharing scheme has perfect reconstruction if α = 1. The scheme is
explicit if f is explicit and there are explicit algorithms to sample µ and ν.

As mentioned earlier, the distributions µ and ν are the joint distributions of shares obtained
by sharing the secret 0 and 1, respectively. We sometimes omit reference to the alphabet when
Σ = {0, 1} and omit r from the notation when r = n.

We note that Item 1. in Theorem 1.2 is equivalent to the assertion that there exists an (n, k)
bit secret sharing scheme (with r = n and one-bit shares) with reconstruction function f having
reconstruction advantage ε. Item 1. in Corollary 1.3 is equivalent to the assertion that there exists
a similar scheme with perfect reconstruction.

Theorem 1.2, combined with the body of works on approximate and threshold degree immedi-
ately gives the following consequences.

Corollary 2.2. The following secret sharing schemes over Σ = {0, 1} exist:

1. An (n,Ω(
√
δn)) bit secret sharing scheme with reconstruction by OR with advantage 1 − δ,

for any δ.

2. An (n,Ω(n)) bit secret sharing scheme with reconstruction by majority with constant advan-
tage.

3. An (n,Ω((n/ log n)2/3) bit secret sharing scheme with reconstruction by the element distinct-
ness DNF and constant reconstruction advantage.

4. An (n,Ω(n1/3)) bit secret sharing scheme with perfect reconstruction by the DNF ANDn1/3 ◦
ORn2/3.

5. An (n,Ω(
√
n)) bit secret sharing scheme with perfect reconstruction by some AC0 function.

Proof. The schemes follows by Theorem 1.2 and the following works: 1. by Nisan and Szegedy [40]
and refinements by Bun and Thaler [11] (Proposition 14); 2. by Paturi [43]; 3. by Aaronson and
Shi [2]; 4. by Minsky and Papert [38]; and 5. by Sherstov [49].

These results show that for an interesting range of parameters, the reconstruction procedure
of a secret sharing scheme can be implemented by simple functions, and in particular by constant
depth circuits.

1Restricting the attention to a one-bit secret is without loss of generality; an `-bit secret can be shared by invoking
a scheme for a one-bit secret ` times in parallel.
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Bounded independence versus bounded indistinguishability. In many secret sharing schemes
(e.g., Shamir’s scheme [47] over a field of characteristic 2), the distributions µ and ν are not only
k-wise indistinguishable but also k-wise independent. Such distributions cannot be distinguished by
AC0 functions and sign polynomials of degree 2 unless k is at most polylogarithmic in n. In contrast,
the above examples give examples of k-wise indistinguishable distributions that are distinguishable
by such function even when k grows polynomially with n.

Remark 2.3. Aaronson [1] considers a different relaxation of bounded independence that has a
dramatic effect on distinguishability by AC0 functions. He considers distributions where for any
k bits the probability that those bits take any fixed value is within ε2−k of 2−k and gives a family
of depth 3 polynomial-size circuit that distinguishes such a distribution from a uniform one with
constant advantage for any k and ε = k · poly log(n)/n.

2.1 Sampling the shares in AC0

In this section we show the existence of secret sharing schemes in which sharing the secret can be
performed by constant-depth circuits, i.e., in the class AC0, and reconstructing the secret can be
done by a “simple” function. (As discussed in §1.1, the problem of minimizing the complexity of
sharing alone is much simpler and can be solved via the techniques of [7].)

We start by showing how to sample distributions that are exponentially close to the k-wise
indistinguishable distributions corresponding to the schemes we described. In Appendix C we give
a refinement that gives distributions that are (exactly) k-wise indistinguishable, i.e., we achieve
perfect secrecy.

Theorem 2.4. For schemes 1. to 4. in Corollary 2.2 there exist pairs of circuit families of constant
depth and size polynomial in n and log(1/ε) that sample distributions within statistical distance ε
of µ and ν, respectively.

We leave the existence of efficient samplers for scheme 5. as an open question.
Note that we can achieve statistical distance ε = 2−n

c
for any constant c with circuits of size

poly(n). The reason for this loss in statistical distance is that our distributions over the shares
have probability masses that may not be powers of two, and so if we want to sample them using
random bits we have to incur some slight error.

We now give the proof of this theorem. Our analysis relies on known explicit constructions of
“dual polynomials,” i.e., of the function g in Item 3. in Theorem 1.2. This area of research has
been quite active since Špalek [50] gave the first explicit dual polynomial for OR.

Let Γ be a group of permutations acting on [n]. Then Γ also acts on {0, 1}n by permuting the
coordinates. The next claim is immediate.

Claim 2.5. Let Γ be a group of permutations on [n]. Assume f(x) = f(σx) for all x ∈ {0, 1}n
and all σ ∈ Γ. If (µ, ν) is an (n, k, r) bit secret sharing scheme with reconstruction function f and
advantage α, then so is (µ, ν) where

µ(x) = Eσ∼Γ[µ(σx)] and ν(x) = Eσ∼Γ[ν(σx)].

In particular, if f is symmetric under permutation of its input coordinates, then the distributions
µ and ν can be assumed to assign the same probability to all strings of the same Hamming weight.
These n+ 1 probabilities can be found in polynomial time by solving a linear program.
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Moreover, we argue that in such a case µ is AC0-samplable; the same argument applies to ν.
Let µ′ be the distribution on Hamming weights induced by µ. To sample from µ, we first sample a
weight w ∈ {0, . . . , n} from µ′, then output a random permutation of the string 1w0n−w. Both of
these steps can be implemented in AC0; cf. [53].

Therefore secret sharing with reconstruction by OR and majority can both be implemented in
AC0.

A description of the bit sharing scheme for element distinctness can be extracted from the work
of Bun and Thaler [12]. They first construct a bit secret sharing scheme for a partial function f
whose inputs are strings of length N over an alphabet Σ of size O(N). In the yes inputs of f all
symbols are distinct, while in the no inputs all symbols occur exactly twice. Their distributions µ
and ν are supported on strings where m/a symbols occur exactly a times and (N −m)/b symbols
occur exactly b times for various choices of m, a, b.

We can represent the input to f as a binary string x1 . . . xN ∈ ({0, 1}Σ)N , where xi is an
indicator vector for the i-th input symbol of f . Under this representation, f is a partial boolean
function from {0, 1}|Σ|·N to {0, 1}. By Claim 2.5 we may assume µ and ν are invariant over both
permutations of the alphabet and permutations of the input positions. Now µ and ν can be sampled
by first sampling (m, a, b) from the marginal distribution, then writing down an arbitrary string
with the correct counts, and applying random permutations to both the alphabet and the input
positions. All of these steps can be implemented in AC0. The bit secret sharing scheme for OR
is obtained by projecting the entries of µ and ν on random subsets of size n, which can also be
implemented by sampling a random permutation.

An explicit description of the bit sharing scheme for the Minsky-Papert function can be ex-
tracted from the work of O’Donnell and Servedio [42] (Appendix A). They first sample an integer
t of magnitude at most n1/3 (even for µ, odd for ν) then choose an independent random string of
Hamming weight (t− i)2 in the i-th block. Both steps can be implemented in AC0.

2.2 Trading alphabet size for secrecy

We now give a general method of composing secret sharing schemes. We will apply this method to
improve the secrecy of the above schemes at the cost of an increase in alphabet size and a slight
increase in depth of the reconstruction. Our construction makes use of disperser graphs.

Definition 2.6. A n×m bipartite graph G with left degree d is a (k, ε) disperser if any subset of
[n] of size k has at least (1− ε)n neighbors in [m].

The loss in reconstruction efficiency is related to the degree d of the disperser. So we obtain
the best results with Zuckerman’s construction of dispersers with degree linear in log n/ε.

Theorem 2.7 (Theorem 1.9 of [54] with α = 1/2). For every constant δ, and for every n and ε
there is an explicit (nδ, ε) disperser G with d = O(log n/ε) and m = δn/2.

We now show how to turn an (n, k) secret sharing scheme L over alphabet {0, 1} into a (m,m−
εm) secret sharing scheme R over alphabet {0, 1}n. The alphabet is actually {0, 1}d

′
where d′ is

the maximum right-hand side degree of the disperser graph. It is possible to obtain d′ close to the
average degree nd/m, but in our settings this will always be nΩ(1) and so for simplicity we do not
optimize this parameter.

The parties of L and R are associated to the left and right vertices of the bipartite graph
respectively. To share a bit in R, first sample shares for L and label each left vertex v ∈ [n] by its
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corresponding share s(r) ∈ {0, 1}. Now for each of the d edges e1, . . . , ed incident to r, choose a
bit s(ei) at random conditioned on s(e1)⊕ · · · ⊕ s(ed) = s(r). The share s(w) of each right vertex
w ∈ [m] is the concatenation of the edge-shares s(e) over all its ≤ n incident edges e.

To reconstruct, apply the process in reverse: First distribute s(w) for w ∈ [m] to its incident
edges, then calculate s(v), v ∈ [n] as s(e1)⊕· · ·⊕ s(ed) and output f(s(1), . . . , s(n)), where f is the
reconstruction function of L.

Lemma 2.8. If G is a (k, ε) disperser graph and L is a (n, k) secret sharing scheme then R is a
(m,m− εm) secret sharing scheme with the same reconstruction advantage.

Proof. It is easy to see that the reconstruction advantage is preserved. Next we argue secrecy.
For contradiction, assume that L is k-secret but R is not (n − εn)-secret. Then there exists

a subset S ⊆ [m] of size ≤ m − εm such that the parties in S can distinguish shares of 0 from
shares of 1. Consider the joint distribution of the shares assigned to all the edges incident to S.
If any vertex v ∈ [n] has a neighbor outside S, then the edge-shares associated to v’s neighbors
inside S are uniformly random and independent of all the other edge-shares incident to S (even
conditioned on all the values s(v)). Therefore, the two distributions must be distinguishable even
when restricted to those edges whose right vertices have all their neighbors in S. Let T be the set
of all such right vertices. Then the shares of S in L are determined by the shares of T in R. By the
disperser property of G, T has size at most k, so the shares in T are indistinguishable, contradicting
our assumption.

We note that Alon et al. [4] applied a similar construction to amplify the distance of linear
error-correcting codes, while Damg̊ard et al. [19] used it (in more general form) for improving the
tolerance of multiparty computations. Both these applications make use of dispersers (in fact,
expanders) G that are balanced (with m = n) and of constant degree d. In contrast, we apply it
to unbalanced graphs whose left degree is logarithmic in the number of vertices.

If we set k = nα for some constant α > 0, we obtain the following consequence. Here f ◦XORd
denotes a function that can be computed by composing f by XORs over d inputs.

Theorem 2.9. Let α > 0 be a constant. Suppose that there exists a (n, nα) secret sharing scheme
with reconstruction function f : {0, 1}n → {0, 1} over alphabet {0, 1}. Then there exists a (m, (1−
ε)m) secret sharing scheme over alphabet {0, 1}n with reconstruction function of the type f ◦XORd
with d = O((log n)/ε) and m = Ω(nα).

We now have all the pieces to prove Theorem 1.4.

Proof. (of Theorem 1.4) Instantiate Theorem 2.9 with Item 4 in Corollary 2.2. The reconstruction
function involves computing parities on poly log n bits which can be done in AC0. To sample the
shares efficiently use Theorem C.1.

Several other schemes are possible. We highlight the following one in which reconstruction is
done by a DNF, although it is not perfect.

Corollary 2.10. For every constant ε > 0, there is an explicit (n, (1− ε)n)-secret sharing scheme

with reconstruction error ε over the alphabet {0, 1}poly(n) with reconstruction by a poly(n)-size DNF
with terms of size O(log n).

Proof. Instantiate Theorem 2.9 with Item 1 in Corollary 2.2. The reconstruction function is an OR
of O((n/ log n)2) XORs of size O((log n)/ε), which can be computed by a polynomial-size DNF.
The shares can be sampled in AC0 by Theorem 2.4.
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2.3 Reconstruction by a subset of the parties

In this section we give several secret sharing schemes that allow for reconstruction by a subset of
the parties. Our starting point is the secret sharing scheme with reconstruction by the OR function.

Claim 2.11. For every r, δ, and n there is an explicit (n,Ω(
√
δn), r) bit secret sharing scheme

with reconstruction by OR with advantage at least r/n− δ.

Here, by OR we mean the class of OR functions on subsets of r input bits. We will need the
following fact which is implicit in the proof of Theorem 1.2.

Remark 2.12. Without loss of generality, the distributions µ and ν can be assumed to have disjoint
support.

Proof. (of Claim 2.11) Let (µ, ν) be any (n, k) bit sharing scheme for OR with reconstruction
advantage 1−δ. By Remark 2.12 and Claim 2.5 we may assume µ and ν are disjoint and symmetric,
so ν(0n) = 1− δ and all strings in the support of µ have nonzero Hamming weight. For any subset
of r parties, the probability that they jointly observe a nonzero entry under ν is then at most δ. By
symmetry of µ, the probability that they observe nonzero entry under µ is at least r/n. Therefore
Pr[f(µ) = 1]− Pr[f(ν) = 1] ≥ r/n− δ.

If we set δ = r/2n we obtain an (n,Ω(
√
r), r) bit secret sharing scheme with reconstruction by

OR with advantage δ = r/2n. In the next result we make this advantage constant.
We now prove Theorem 1.5, namely the existence of a (n,Ω(

√
r), r) bit secret sharing scheme

with reconstruction by OR with constant advantage.

Proof. (of Theorem 1.5) First we construct a scheme over alphabet {0, 1}1/δ for δ = 2n/r which
we assume to be an integer. To share a zero and a one respectively, sample 1/δ independent shares
using the scheme in Claim 2.11 and give the i-th party the i-th bit from each copy. By the proof
of Claim 2.11 for any Ω(

√
r) parties the OR of their i-th copies of their shares of one and zero

evaluate to 1 with probability at least 1− (1− 2δ)1/δ and at most 1− (1− δ)1/δ, respectively. The
difference between these two numbers is always positive and tends to 1/e− 1/e2 as 1/δ increases.

To reduce the alphabet to binary, we replace each party’s share by the OR of its constituent
bits.

If we allow for more complexity in reconstruction and larger shares, the gap between the secrecy
and reconstruction parameters can be improved and the reconstruction error can be made negligible.

Theorem 2.13. For every pair of constants 0 ≤ σ < ρ ≤ 1 and sufficiently large m there exists a
(m,σm, ρm) bit secret sharing scheme with reconstruction by circuits of size polynomial in m and

depth 4 and advantage 1− 2−m
c

for any constant c over alphabet Σ = {0, 1}poly(m).

To prove Theorem 2.13, we apply the composition method from §2.2 using a bipartite graph
with the following dispersion properties.

Claim 2.14. For all constants δ > 0 and 0 ≤ σ < ρ ≤ 1, and every sufficiently large n there exist
numbers m = nΩ(1), r ≤ n, and d = O(log n) and an n ×m bipartite graph G with left degree d
such that

1. For every subset S ⊆ [m] of size at most σm, the set of vertices in [n] all of whose neighbors
are in S has size at most rδ (i.e., G is a (rδ, 1− σ)-disperser), and
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2. For every subset R ⊆ [m] of size at least ρm, the set of vertices in [n] all of whose neighbors
are in R has size at least r.

We then amplify the reconstruction error in Theorem 1.5 using the following claim.

Claim 2.15. For every integer t, if there exists a (m, k, r) bit secret sharing scheme with recon-
struction by size s and depth d circuits and constant advantage over alphabet Σ then there exists
a (m, k, r) bit secret scheme with reconstruction by circuits of size st+ poly(t) and depth d+ 2 and
advantage 1− 2−Ω(t) over alphabet Σt.

Proof. (of Theorem 2.13) We apply the construction described in §2.2 to the (n,Ω(
√
r), r) scheme

from Theorem 1.5 and the graph from Claim 2.14 with δ = 0.49. Secrecy follows from Theorem 2.9.
Reconstruction proceeds as in §2.2, except that only those parties in [n] that have received all of
their shares participate in the process. By property 2 of Claim 2.14, if at least ρm parties on the
right participate in the reconstruction then at least r parties on the left receive all their share and
the secret is reconstructed with constant advantage. By Claim 2.15 with t = mc, the advantage
can be amplified to 1− 2−m

c
as desired.

Proof. (of Claim 2.14) We show that a random graph has both properties with nonzero probability.
Choose each of the d neighbors of each left vertex independently and uniformly at random. For a
fixed set S ⊆ [m] of size σm, the expected number of left vertices all of whose neighbors are in S
equals nσd. By the multiplicative Chernoff-Hoeffding bound and a union bound, the probability
that there exists a set S and a set of left vertices of size 2nσd all of whose neighbors are in S is at
most 2m exp(−nσd/8). By a similar argument, the probability that there exists a set R ⊆ [m] of size
ρm such that fewer than nρd/2 vertices have all their neighbors in R is at most 2m exp(−nρd/3).

We set d = logρδ/σ(21+δn1−δ), r = (ρ/σ)d/(1−δ), and m = brδ/2c. This choice of parameters

ensures that nρd/2 = r, 2nσd = rδ, and r,m = nΩ(1). Moreover, both probabilities of interest tend
to zero at the rate exp(−Ω(rδ)) = exp(−nΩ(1)) so a graph with the desired properties exists for
sufficiently large n.

Proof. (of Claim 2.15) For every pair of constants 0 ≤ ` < h ≤ 1, Ajtai [3] shows the existence of
a Boolean function family ApxMaj of depth 3 and size polynomial in its input such that ApxMaj
accepts all strings of relative Hamming weight at least h and rejects all strings of relative Hamming
weight at most `. These circuits are made explicit in [52].

Let S be the assumed secret sharing scheme. Choose h and ` so that the success probability of
reconstructing a one from its shares in S bounds h strictly from above and the failure probability of
reconstructing a zero in S bounds ` strictly from below. To share a bit, sample k independent copies
of shares of S and give the i-th party the i-th bit of each copy. To perform the reconstruction, first
apply the reconstruction algorithm for S for each copy, then apply ApxMaj to all k reconstructed
bits.

The secrecy of S is inherited by construction. We now analyze the probability of correct
reconstruction by r parties. By the multiplicative Chernoff bound, the probability that fewer than
hk copies of S reconstruct a one correctly, or that more than `k copies of S reconstruct a zero
incorrectly, is 2−Ω(k). If this does not happen, ApxMaj correctly recovers the secret bit.
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2.4 Limitations

In this section we prove negative results on the existence of secret sharing schemes, or equivalently
positive results on functions being fooled by bounded indistinguishability. Our main technical
contribution consists of proving negative results that hold even over large alphabets Σ. However,
we first start with the case Σ = {0, 1} because this provides motivation and is useful for larger Σ.

In the case Σ = {0, 1} we note an upper bound of n(1−1/poly log n) on the approximate-degree
of AC0. While it follows from standard Fourier-analytic techniques, we are not aware that it has
been observed before. In terms of secret sharing schemes it shows that the secrecy is at most
n(1− 1/poly log n) if reconstruction is to be done in AC0.

Claim 2.16. Every function f : {0, 1}n → {0, 1} that has a size s depth d circuit has n−h/2-
approximate degree n− h for h = Ωd(n/(log s)d−1(log n)).

Proof. We will work with the function F : {−1, 1}n → {−1, 1} given by F (X) = 1−2f((1 +X)/2).
We construct a polynomial P : {−1, 1}n → R that approximates F pointwise within 2n−h/2. Let

P (X) =
∑

S⊆[n],|S|≤n−h
F̂ (S)

∏
i∈S

Xi,

where F̂ (S) = E[F (X)
∏
i∈S Xi] are the Fourier coefficients of F , see e.g. O’Donnell’s book [41] for

background.
H̊astad [28] shows that |F̂ (S)| ≤ 2−c|S|/(log s)d−1

, where c is some constant that depends only on
d. For every X ∈ {−1, 1}n,

|F (X)− P (X)| =
∣∣∣∑

S : |S|>n−h
f̂(S)

∏
i∈S

Xi

∣∣∣
≤
∑

S : |S|>n−h
|f̂(S)| ≤ nh · 2−c(n−h+1)/(log s)d−1

,

which is at most 2n−h/2 for h = min{n/2, cn/4(log s)d−1(log n)}.

The following upper bound on the approximate degree of the OR function was obtained by
Kahn, Linial, and Samorodnitsky [33]. The special case δ = 1/3 was first established by Nisan and
Szegedy [40].

Lemma 2.17. For every n and δ, the δ-approximate degree of OR on n bits is O(
√
n log(1/δ)).

It follows from Theorem 1.2 that there does not exist a (n, ω(
√
n log(1/δ)) secret sharing scheme

over the alphabet {0, 1} with reconstruction by OR and advantage δ.
We now derive two negative consequences for secret sharing schemes with more complex recon-

struction functions and over alphabets of arbitrary size.

Theorem 2.18. For every Σ of the form {0, 1}s and all n,m, d, h such that h ≤ n/(3 lnn ·
exp(6

√
ln(2m) · ln d)) if f : Σn → {0, 1} is an OR of m functions each of which depends on at

most d inputs then there is no (n, n− h) secret sharing scheme with reconstruction function f and
advantage 1/3.

In particular, Theorem 2.18 shows that if reconstruction is done by a DNF of size m = poly(n)
and with terms of size d = no(1) then the secrecy must be at most n− h = n− n1−o(1).

The proof of the theorem relies on the following combinatorial claim.
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Claim 2.19. For every N , M , n, m, d, and h such that h lnn,M lnN + 1 ≤ n/(3dM (2m)M/N )
and every collection S of m subsets of [n], each of size d, there exists a collection T of N subsets
of [n] such that

1. for every set S ∈ S there is at least one set T ∈ T such that S is a subset of T , and

2. for every M sets T1, . . . , TM ∈ T , |T1 ∪ · · · ∪ TM | < n− h.

Proof. (of Theorem 2.18) Suppose for contradiction that such a secret sharing scheme S exists. Let
Si ⊆ [n] be the set of variables in the i-th term of f and S = {S1, . . . , Sn}. For N = logd(2m),
M = 2

√
N , and sufficiently large n the set system T = {T1, . . . , TN} given by Claim 2.19 exists.

Assign to each term t of f a single set T (t) ∈ T that covers it as guaranteed by Property 1 of the
Claim.

Consider the following N -party secret sharing scheme T for OR. To share, first run the secret
sharing for S and evaluate each term t of f using the shares as inputs. Then assign each party i
in T the OR of all the terms t such that T (t) = Ti. To reconstruct take the OR of all the shares of
T . By construction, this equals f evaluated on the shares of S, so T has the same reconstruction
advantage as S.

By Property 2 of Claim 2.19, each collection of M parties of T observes fewer than n−h shares
of S, so T is an (N,M) secret sharing scheme. By Lemma 2.17 T cannot have reconstruction
advantage 1/3, so neither can S.

Proof. (of Claim 2.19) We choose the M sets of T at random such that each element in [n] is
included in each set in T independently with probability 1− q for q = (1/d)(1/2m)1/N . On the one
hand, by a union bound, the probability that some set S ∈ S fails to be covered by any set of T is
at most m(qd)N , which is at most 1/2 by our choice of q. On the other hand, by a union bound,
the probability that property 2 is violated is at most(

N

M

)
·
(

n

n− h

)
·
(
1− qM

)n−h ≤ exp
(
M lnN + h lnn− (n− h)qM

)
≤ exp

(
M lnN + h lnn− (2n/3)qM

)
≤ 1/e

by the assumed inequality. By a union bound, both desired properties are satisfied with probability
at least 1− 1/2− 1/e > 0.

Next we obtain a stronger negative result in the case in which the reconstruction is done by a
decision tree.

Theorem 2.20. Let Σ = {0, 1}s. If f : Σn → {0, 1} has a binary decision tree with at most S
leaves then there is no (n, ω(

√
n log(S/ε)))-bit secret sharing scheme with reconstruction function

f and advantage ε.

In particular, a secret sharing scheme with constant advantage and whose reconstruction func-
tion is a polynomial-size decision tree can only be secure against coalitions of O(

√
n log n) parties.

Proof. First assume f is an OR of a subset of literals. If a secret sharing scheme with reconstrcution
function f , secrecy parameter ω(

√
n(log 1/δ)), and advantage δ existed, then a scheme with the
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same parameters would exist for a binary alphabet as each party’s shares can be replaced by the
respective OR of the relevant literals, contradicting Lemma 2.17. By symmetry the same conclusion
holds for ANDs of subsets of literals.

If f has a decision tree with ≤ S leaves, then we can write f as a sum of at most S ANDs of
literals, one for each path in the decision tree that leads to a 1-leaf. This sum is over the reals yet
it will always take a boolean value because at most one AND will evaluate to one. If there existed
a secret sharing scheme with reconstruction function f , advantage ε and the desired properties, by
a hybrid argument one of the constituent ANDs would have advantage ε/S in the same scheme.
Setting δ = ε/S yields the desired conclusion.

3 Additional cryptographic applications

In this section we present additional applications of our results on bounded indistinguishability in
cryptography. These applications can be viewed as different instances of leakage-resilient cryptog-
raphy..

The broad goal of leakage-resilient cryptography is to maintain the security of cryptographic
primitives even if partial information about their secrets is leaked to an adversary. The type of
information being leaked is typically captured by a leakage function L : {0, 1}n → {0, 1}t taken
from a leakage class L, where the input for L represents the internal (secret) state of the primitive
and its output represents the partial information available to the adversary. For simplicity we will
start by considering the case of single-bit leakage (i.e., t = 1) and later extend the results to the
more general case.

Our motivating observation is that if two possible distributions of secret states are k-wise indis-
tinguishable, and moreover k-wise indistinguishability implies L-indistinguishability, then obtaining
leakage-resilience against L reduces to obtaining resilience against k-local leakage, namely the class
of all projection functions P : {0, 1}n → {0, 1}k. Obtaining provable security against k-local leakage
is typically much easier than obtaining provable security against bigger leakage classes, and can be
achieved via standard techniques for secret sharing and secure multiparty computation (MPC).

The above observation may be relevant to any cryptographic scheme that maintains a sufficient
level of local secrecy. We illustrate its usefulness by presenting applications in the contexts of secret
sharing, error detecting codes, and private circuits.

3.1 Leakage-resilience of secret sharing schemes

The implication 1. =⇒ 2. in Theorem 1.2 can be reformulated in the following equivalent way.

Claim 3.1. Let µ, ν be k-wise indistinguishable distributions over {0, 1}n. Let L : {0, 1}n → {0, 1}
be a leakage function whose ε-approximate degree is at most k. Then

|Pr[L(µ) = 1]− Pr[L(ν) = 1]| ≤ ε.

Claim 3.1 implies that every (m, k) bit secret sharing scheme over Σ = {0, 1}` is resilient against
leakage functions L : {0, 1}m` → {0, 1} whose approximate degree is at most k. The same holds for
secret sharing schemes with bigger secrets.

Many secret sharing schemes from the literature are in fact k-wise independent for a large value
of k, in the sense that any k bits in µ and ν are uniformly distributed. This is the case, for instance,
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for Shamir’s scheme [47] over fields of characteristic 2. In such a case one can appeal to stronger
results about bounded independence. For instance, Braverman’s theorem [9] implies resilience to
every AC0 leakage function L even when k is polylogarithmic in n, whereas the approximate degree
of some AC0 functions is known to be as big as Ω(n2/3). One could also apply similar results in the
case of biased k-wise independence, namely µ and ν are k-wise indistinguishable and moreover every
k bits are independently distributed (but may each have a different bias). See, e.g., Lemma 5.2
in [14] for the case of OR distinguishers.

However, there are cases in which it is undesirable or even impossible to guarantee a high level of
independence. For instance, when considering secret sharing schemes with special properties, such
as ones supporting multiplication, bounded independence may come at a significant price [13, 44].
Alternatively, the shares of a k-wise independent secret sharing scheme may be subject to local
encoding or to adversarial tampering, after which they are no longer k-wise independent but are
still k-wise indistinguishable.

Finally, we extend Claim 3.1 to the case of a leakage function L with t output bits. For
convenience, we restate Theorem 1.6 from the Introduction.

Theorem 3.2. There exists a universal constant C such that the following holds. Let µ, ν be k-wise
indistinguishable distributions over {0, 1}n. Let L : {0, 1}n → {0, 1}t be a leakage function such
that the 1/3-approximate degree of each of its t outputs is at most d. Then the statistical distance
between L(µ) and L(ν) is bounded by δ, provided that k ≥ Cdt(t+ log 1

δ ).

Proof. Using an indistinguishability variant of Vazirani’s statistical XOR lemma (cf. [31, Lemma 1]),
it suffices to prove that every L′ : {0, 1}n → {0, 1} obtained by taking the parity of a subset of the
outputs of L, we have |Pr[L′(µ) = 1]− Pr[L′(ν] = 1]| ≤ δ′ where δ′ = δ · 2−t/2. Using Lemma B.2,
the 1/3-approximate degree of each such L′ is O(dt) and by Lemma B.1 its approximate degree is
O(dt log 1

δ′ ). Applying Claim 3.1, k = Ω(dt(t+ log 1
δ )) suffices to guarantee that the distinguishing

advantage of L′ is bounded by δ′ as required.

3.2 Private circuits

We now describe an application of Claim 3.1 to private circuits, a computational model for leakage-
resilient cryptography. We consider the simpler stateless variant of private circuits with encoded
inputs and outputs (see, e.g., [32, Section 3] and [29, Section 4.1]) and privacy with respect to a
general leakage class L. Informally, such a private circuit is a (possibly randomized) boolean circuit
that transforms a randomly encoded input into a randomly encoded output while providing the
guarantee that the output of any L-leakage on the n circuit wires reveals essentially nothing about
the input. More formally:

Definition 3.3. ((L, ε)-private circuit) A private circuit for g : {0, 1}ni → {0, 1}no is defined by
a triple (I, C,O), where

• I : {0, 1}ni → {0, 1}n̂i is a randomized input encoder;

• C is a deterministic or randomized boolean circuit with input ŵ ∈ {0, 1}n̂i , output ŷ ∈
{0, 1}n̂o , and n wires;

• O : {0, 1}n̂o → {0, 1}no is a deterministic output decoder.
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For a leakage function L : {0, 1}n → {0, 1}t and ε > 0, we say that (I, C,O) is an (L, ε)-private
implementation of g if the following requirements hold.

• Correctness: For any input w ∈ {0, 1}ni we have Pr[O(C(I(w))) = g(w)] = 1], where the
probability is over the randomness of I and (possibly) C.

• Privacy: For any w,w′ ∈ {0, 1}ni , the statistical distance between L(C[I(w)]) and L(C[I(w′)])
is at most ε, where C[x] denotes the (randomized) values of the n wires of C on input x.

For a class L of leakage functions, we say that (I, C,O) is an (L, ε)-private implementation of g if it
is an (L, ε)-private implementation of g for every L ∈ L, and that it is a k-private implementation
of g if it is an (L, 0)-private implementation of g for the class L of projection functions that output
k bits of the input.

Without any requirements on I and O, the above definition can be satisfied by having I compute
a leakage-resilient secret sharing of the input which is passed by C directly to the decoder. To rule
out such a solution we require the encoder and the decoder to be universal (i.e., depend only on
ni, no and the circuit size of g and not on g itself). Furthermore, we would like the decoder size to
be considerably smaller than the circuit size of g. These requirements effectively force C to perform
the bulk of the computation in a leakage-resilient manner.

While there are asymptotically efficient constructions of k-private circuits obtained via MPC
techniques [32, 18, 29], much less is known about defending against larger leakage classes. We use
the connection between approximate degree and bounded indistinguishability to bootstrap from
k-private circuits to (L, ε)-private circuits for larger classes L. More accurately, we show that in
many cases k-privacy automatically implies (L, ε)-privacy for a large L and negligible ε. A similar
result for a special type of leakage called “noisy leakage” was obtained in [23]. The parameters
of the leakage-resilient circuits we obtain via bounded indistinguishability are quite limited, since
our approach requires the privacy threshold k to be rather close to the circuit size. An interesting
research direction is to obtain better parameters by exploiting additional structural properties of
the distributions induced by private circuit constructions.

A direct application of Claim 3.1 is the following.

Claim 3.4. Let L : {0, 1}n → {0, 1} be a leakage function whose ε-approximate degree is at most
k. Suppose that (I, C,O) is a k-private implementation of g with |C| = n. Then (I, C,O) is also
an (L, ε)-private implementation of g.

To apply the above claim, we combine MPC-based constructions of k-private circuits with known
bounds on approximate degree. Any general-purpose n-party MPC protocol with security against
k passively corrupted parties can be converted into a k-private circuit in the following way. First,
the input encoder I splits the input among k+1 virtual parties (or more) with secrecy threshold k.
Then C implements the next-message functions of an MPC protocol for computing k+ 1 shares of
the output of g from the shares of the input. Finally, the output decoder D recovers the output of g
from the shares. The size of C corresponds to the computational complexity of the MPC protocol.

To obtain meaningful corollaries, we need k to be quite close to |C|. Using a passive-secure
variant of an MPC protocol from [18] with n = O(k) parties (see [26]), the size of C can be as small
as |C| = Õ(s + kh + k2), where s and h are the size and depth of a boolean circuit computing g,
respectively. However, even when h is small, this is not good enough for our purposes because the
additive k2 term imposes a super-quadratic gap between k and |C|. We eliminate the quadratic
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term by replacing a sub-protocol for generating random shared secrets, from which the quadratic
term originates, by an input encoder of size Õ(s + k) that directly produces the outputs of this
sub-protocol. This yields the following theorem.

Theorem 3.5. [18, 29, 26] Any g : {0, 1}ni → {0, 1}no that can be computed by a circuit Cg of
size s and depth h admits a k-private implementation (I, C,O), with circuit sizes |I| = Õ(s + k),
|C| = Õ(s+kh), and |O| = Õ(no+k). Furthermore, the construction is explicit: circuits computing
I and O can be computed efficiently given k, ni, no, |Cg|, and C can be computed efficiently given k
and Cg.

For functions g with low-depth circuits, the gap between |C| and k can be made small enough to
imply privacy against nontrivial leakage classes that have low approximate degree. For simplicity
we state the following corollary for functions g in NC. (Here and in the following we abuse notation
by using a single function to implicitly denote an infinite class of functions with varying input
lengths and circuit sizes.)

Corollary 3.6. Let L : {0, 1}n → {0, 1} be a leakage function whose ε-approximate degree is at
most k. Then any NC-function g : {0, 1}ni → {0, 1}no of circuit size s admits an (L, ε)-private
implementation (I, C,O), where |I| = Õ(s + k), |C| = Õ(s + k), and |O| = Õ(no + k), assuming
that n = |C|.

Combining the above corollary with known bounds and conjectures on approximate degree,
we obtain private circuits secure against several low-complexity leakage classes whose efficiency
improves over previous constructions from [25, 46, 37]. Concretely, in the latter constructions each
gate is implemented by a separate gadget whose size grows (at least) quadratically with a statistical
security parameter σ. As a result, the size of C grows multiplicatively with σ2. In contrast, our
approach yields private circuits for NC functions that can have a better dependence on σ.

Before formulating the general statements, we illustrate the choice of parameters with an exam-
ple. Suppose we consider OR-leakage, whose 1/3-approximate degree for input length n is O(n1/2).
This implies a 2−σ-approximate degree of k = O(σn1/2). Applying the previous corollary with this
value of k to a boolean NC function g with circuit size s, we can get an (OR, 2−σ)-private circuit
implementation (I, C,O) for g, where I and C are of size Õ(s) and O is of size Õ(σs1/2), as long
as σ ≤ s1/2. (The latter restriction guarantees that we can simultaneously satisfy |C| = Õ(s + k)
and k = O(σ · |C|1/2).) For σ = s1/2 we get 2−σ-security with |C| = Õ(s), whereas previous
constructions require |C| > s · σ2 = s2 for achieving the same level of security. A smaller choice of
σ can be used to reduce the size of the decoder.

Generalizing the above example, we get the following.

Claim 3.7. Let L : {0, 1}n → {0, 1} be a leakage function whose 1/3-approximate degree is at
most d(n). Then, for every function σ(s) such that σ(s) ≤ s/d(s), every NC-function g : {0, 1}ni →
{0, 1}no of circuit size s admits an (L, 2−σ(s))-private implementation (I, C,O), where |I| = Õ(s),
|C| = Õ(s), and |O| = Õ(no + σ(s) · d(s)).

Combining the above claim with known or conjectured upper bounds on approximate degree,
we get the following corollary.

Corollary 3.8. Any NC-function g : {0, 1}ni → {0, 1}no of circuit size s admits an (L, 2−σ)-private
implementation (I, C,O), where |I| = Õ(s), |C| = Õ(s), and |O| = Õ(no + k), for the following
choices of L, σ, and k:
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1. L is the class of decision trees of size S, k = σ
√
s log(S), and σ ≤

√
s/ log(S).

2. L is the class of read-once DNF (or CNF) formulas, k = σs1/2, and σ ≤ s1/2.

3. L is the entire class AC0, k = σsc, and σ ≤ s1−c, assuming that all AC0 functions on n-bit
inputs have a 1/3-approximate degree of O(nc) for some constant c < 1.

Proof. The corollary follows from the previous claim, known bounds on approximate degree, and
the fact that if the 1/3-approximate degree of L is k then its 2−σ-approximate degree is O(σk) (cf.
[20, Claim 3.8]). The degree bounds required for items 1. and 2. follow from Theorem 2.20 and
Ambainis et al. [6], respectively.

Extension to multi-bit leakage. The above corollary can be extended to leakage functions L
with t bits of output by relying on Theorem 1.6 instead of Claim 3.1. The general form of the
corollary can be obtained by replacing each occurrence of σ with σt2.

The case of disjunctive leakage. Private circuits that resist disjunctive leakage, namely an
OR of an arbitrary subset of wires or their negations, have found applications to constant-round
secure two-party computation [30]. While it was shown in [30] that every k-private circuit can be
transformed into such a disjunction-resilient circuit with a constant multiplicative overhead to the
circuit size, this transformation is nontrivial and has a significant concrete cost. We note that for
the purpose of this application it is essential that the encoder be small, and thus Corollary 3.8 is
not useful even for the case of NC circuits.

Instead, we rely on the following corollary of Claim 3.1 to show that the same k-private circuits
to which the transformation from [30] was applied are in fact already resilient against disjunctive
leakage.

Claim 3.9. Let µ, ν be k-wise indistinguishable distributions over Σn for Σ = {0, 1}`. Let L :
{0, 1}`n → {0, 1} be a disjunctive leakage function. Then

|Pr[L(µ) = 1]− Pr[L(ν) = 1]| ≤ 2−Ω(k/
√
n).

Proof. By decomposing L into n disjunctive functions that operate separately on each `-bit symbol,
L(µ) and L(ν) can be written as OR(µ′) and OR(ν ′) (respectively), where µ′ and ν ′ are k-wise indis-
tinguishable distributions over {0, 1}n. The claim then follows from Claim 3.1 and the approximate
degree of OR.

The k-private circuits employed in [30] are based on MPC protocols that resist a constant
fraction of corrupted parties. As such, they have the property that their N wires can be partitioned
into n “symbols” in Σ = {0, 1}N/n, such that the wire distributions on different inputs are k-wise
indistinguishable over Σ for k = Ω(n). Thus, Claim 3.9 implies that these k-private circuits achieve
a good level of disjunctive resilience without any modification.

3.3 Eliminating selective failure attacks

We illustrate the usefulness of Claim 3.1 with L = OR for eliminating selective failure attacks.
While we focus here on a specific application to protecting coding schemes against such attacks,
our approach is quite general and can apply to other instances of the selective failure problem.
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We start by defining a notion of “fairness” in coding schemes that detect errors in the presence of
tampering.

Consider a probabilistic coding scheme Π = (E,D) where E encodes an `-bit message x into
an m-tuple of symbols (y1, . . . , ym) in Γm and D decodes (possibly modified) symbols (y′1, . . . , y

′
m)

into a message x′ or a symbol ⊥ which indicates that an error has been detected. We require that
if no tampering occurs, then D outputs the correct message x (with probability 1). For a class T
of tampering attacks T : Γ→ Γ, we say that Π is (T , ε) error detecting if for every T1, . . . , Tm ∈ T
and every message x, we have Pr[D(y′1, . . . , y

′
m) 6∈ {x,⊥}] ≤ ε, where (y′1, . . . , y

′
m) is obtained by

first letting (y1, . . . , ym)← E(x) and then letting y′i = Ti(yi). For instance, algebraic manipulation
detection (AMD) codes [17] can be viewed as a special case of the above definition, where Γ is an
Abelian group and T is the class of functions that add a fixed group element to their input.

The above definition does not rule out a correlation between the event that the decoderD detects
an error (by outputting ⊥) and the message x. Furthermore, such a correlation may depend on the
choice of tampering functions Ti. This may be utilized by an attacker to obtain an unfair advantage
over honest parties, where the attacker learns partial information about x from the output of the
decoder even when the attack causes decoding to fails. Such correlation attacks are harmful in
cases where the decoder is uncorrupted and all parties (including the attacker) can only observe its
output. This is the case for some natural cryptographic applications of AMD codes (see, e.g., [27]).

To eliminate such correlations, one can impose the following additional ε-fairness require-
ment: For every T1, . . . , Tm ∈ T there is 0 ≤ δ ≤ 1 such that for every message x we have
|Pr[D(y′1, . . . , y

′
m) = ⊥]− δ| ≤ ε, where (y′1, . . . , y

′
m) is as above.

While there are constructions of AMD codes that satisfy the additional fairness requirement
with good parameters, it is not clear a-priori that every (T , ε) error detecting scheme (E,D) can
be converted into one that also respects the fairness requirement, let alone with a small loss in
efficiency and security.

A natural idea for enforcing fairness is by using an encoding scheme (Ê, D̂) defined as follows.
To encode a message x ∈ {0, 1}L, first apply an (n, k) (string) secret sharing scheme to the message
x, resulting in an n-tuple of `-bit shares (x1, . . . , xn), and then apply E independently to each
share xi. To decode, first invoke D on each of the n (possibly modified) m-tuples (y′i1 , . . . , y

′i
m). If

at least one of the n outputs is ⊥, output ⊥; otherwise apply the reconstruction function of the
secret sharing scheme to recover x from the n outputs.

Claim 3.10. (Ê, D̂) is a (T , εn) error detecting scheme with ε′-fairness, for ε′ = 2−Ω(k/
√
n).

Proof. First observe that for D̂ to output an incorrect message x′ ∈ {0, 1}L, at least one of the
n invocations of D must output an incorrect share. Hence, this probability is bounded by εn as
required.

We turn to analyze fairness. Given a fixed choice of local tampering functions, let W (x) denote
the distribution over {0, 1}n obtained by the following experiment: (1) apply Ê to encode the
message x; (2) apply to each symbol of the encoding the corresponding tampering function; (3)
apply D̂ to the corrupted symbols; (4) output w ∈ {0, 1}n such that wi = 1 if the output of the ith
instance of D in the invocation of D̂ was ⊥, and wi = 0 otherwise. Note that the probability that
D̂ outputs ⊥ on message x is exactly Pr[OR(W (x)) = 1].

The crucial observation is that for any two messages x, x′, the distributions W (x) and W (x′)
are k-wise indistinguishable. This follows from the k-wise indistinguishability of the shares and the
locality of the tampering. Applying Claim 3.1 with L = OR the claim follows.
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Note that by choosing a secret sharing scheme in which each k shares are independent, one could
apply a stronger version of Claim 3.1 (see Lemma 5.2 in [14]) that obtains a 2−Ω(k) bound for
the case of biased k-wise independence. However, Claim 3.1 applies to an arbitrary secret sharing
scheme.

There are quite a few cryptographic protocols that face a similar type of “selective failure”
attacks, where the event that some failure is detected may be correlated with secrets that need to
be protected. We expect our methodology to be more broadly useful for protecting against such
attacks.
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A Parameters for visual scheme

We demonstrate some specific parameter choices for our visual secret sharing scheme. For given
k and α, the corresponding entry in the next table gives the minimum value of n for which an
(n, k) bit secret sharing scheme for OR with distinguishing advantage (i.e., contrast) α exists. To
compute these exact parameters we formulated the problem as a linear program and used the
CVXOPT linear programming solver to perform the calculation. The images were recovered from
instantiations of the scheme with parameter settings k = 8, n = 21 and k = 8, n = 46, respectively.

k α = 0.1 α = 0.3

2 3 4
3 4 8
4 7 13
5 9 19
6 13 26
7 16 35
8 21 46
9 26 57

B Useful properties of approximate degree

We rely on the following two lemmas on approximate degree. The first lemma (cf. [20, Claim 3.8])
shows that approximation quality can be traded for degree.

Lemma B.1. Let 0 < ε′ < ε ≤ 1/3. Suppose that the ε-approximate degree of f is k. Then the
ε′-approximate degree of f is O(k · log ε

ε′ ).

The second lemma relates the approximate degree of the parity of t functions to a bound on
their approximate degree. It follows by composing the functions using a “robust” polynomial for
parity of degree O(t) [10]. A simpler bound, obtained by applying Lemma B.1 and multiplying the
t approximations, adds an additional log t-factor to the degree.

Lemma B.2. Let f1, f2, . . . , ft be boolean functions whose 1/3-approximate degree is at most k.
Then the 1/3-approximate degree of f = f1 ⊕ f2 ⊕ · · · ⊕ ft is O(kt).

C Sharing in AC0 with perfect secrecy

In this section we describe ways to maintain perfect secrecy while still generating the shares in
AC0. Let p be a distribution over {0, 1}n. We say that a distribution q over {0, 1}n ∪{⊥} is ε-near
p if Pr[q =⊥] ≤ ε and p equals q|q 6=⊥, i.e., q conditioned on the event q 6=⊥. We think of ‘⊥’ as
failure and we generally use the word ‘near’ to indicate sampling with failure.

Theorem C.1. For schemes 1. to 4. in Corollary 2.2 the following holds. Let µ and ν be the
distributions on {0, 1}n of the shares of 0 and 1 respectively. Let c be an integer. There exists
explicit AC0 circuits of size polynomial in n that sample distributions µ⊥ and ν⊥ such that:

1. (Secrecy) If µ and ν are k-wise indistinguishable then so are µ⊥ and ν⊥.
2. (Reconstruction) µ⊥ and ν⊥ are ε-near µ and ν, respectively, for ε = 2−n

c
.
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By Item 1. we achieve perfect secrecy, and Item 2. guarantees that reconstruction works up to
a small error.

Proof. (of Theorem C.1) For simplicity let us consider the scheme for OR. As mentioned earlier,
in this case µ and ν are symmetric. Let µ′ and ν ′ be the corresponding distributions on Hamming
weights. By inspection of the dual polynomial for OR, see [50], the probability mass functions of
µ′ and ν ′ is at any point a multiple of 1/m, where m is an integer with poly(n) bits.

We now describe the near sampler for µ. First, pick a uniform number in {0, 1}n
′

where n′ ≥ m.
If the number is bigger than m then output ⊥. Otherwise, use that to compute a sample i of µ′.
This involves computing ‘≤’, which can be done in AC0. Then the task is to output a uniform string
of Hamming weight i. Because AC0 can nearly sample the uniform distribution of permutations of
[n], cf. [53], this uniform string can indeed be sampled. The same process is applied to ν.

Conditioned on not failing, the process is sampling µ and ν as desired. What remains to be
seen is that the probability of outputting ⊥ does not depend on whether we are nearly sampling µ
or ν. This holds by inspection. Indeed, in the first step we fail in either case if we obtain a number
that is larger than m. In the second the failure probability is that of the sampler of a uniform
permutation, which is independent of which distribution we are sampling.

D Exact vs. almost bounded indistinguishability

In this Appendix we show that k-wise indistinguishability is “robust to noise” in the following sense:
Any pair of distributions that are “almost” k-wise indistinguishable is close to a pair of truly k-wise
indistinguishable distributions. Alon, Goldreich, and Mansour proved an analogous statement for
k-wise independence (Theorem 2.1 in [5]).

Theorem D.1. Let µ and ν be two distributions on {−1, 1}n. Suppose that no test T : {−1, 1}k →
{0, 1} on k bits can distinguish µ and ν with advantage bigger than ε. Then there exist two distri-
butions µ∗ and ν∗ such that µ∗ has statistical distance ≤ 2εnk from µ, ν∗ has statistical distance
≤ 2εnk from ν, and µ∗ and ν∗ are k-wise indistinguishable.

Proof. For a subset I of [n] let χI : {−1, 1}n → {−1, 1} be χI(x) =
∏
i∈I xi. It suffices to prove

the conclusion for the tests χI where |I| ≤ k. This is because if
∑

x(µ′(x)− ν ′(x))T (x) ≥ α, then

writing T in Fourier expansion we have
∑

I T̂I
∑

x(µ′(x) − ν ′(x))χI(x) ≥ α, and so there exists a
test χI giving advantage at least α/2k.

For a function f : {−1, 1}n → R we write [f, I] for
∑

x f(x)χI(x), and call it the I coefficient
of f . We “adjust” the coefficients of µ and ν by repeating the following step. Let I ⊆ [n] be a
non-empty subset of size at most k. By hypothesis, |[µ− ν, I]| = α ≤ ε. Without loss of generality
let [µ, I] ≤ [ν, I]. Set µ′ := µ + α(χI + 1)/2n, and ν ′ := ν + α/2n. Now we have [µ′ − ν ′, I] =
0, while [µ′ − ν ′, J ] = [µ − ν, J ] for J 6= I. Moreover, note that

∑
x |µ′(x)| =

∑
x |µ(x)| + α,∑

x |µ(x)− µ′(x)| = α, and that the same holds for ν.
Repeating the adjustment ≤ nk times, we get two non-negative functions µ′ and ν ′ such that

[µ′ − ν ′, I] = 0 for every I of size at most k, and
∑

x |µ(x)− µ′(x)| ≤ εnk, and the same for ν ′, and
also

∑
x |µ′(x)| =

∑
x |ν ′(x)| = 1 + σ, for some 0 ≤ σ ≤ εnk.

Finally, let µ∗ = µ/(1 + σ) and ν∗ = ν/(1 + σ). We have [µ∗ − ν∗, I] = 0 for every I of size at
most k. The distance of µ∗ from µ is ≤ (1 + σ)−1(

∑
x |µ(x)− µ∗(x)|+ σ

∑
x µ(x)) ≤ 2εnk, and the

same for ν.
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