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Abstract

Affine-invariant codes are codes whose coordinates form a vector space over a finite field and which are
invariant under affine transformations of the coordinate space. They form a natural, well-studied class
of codes; they include popular codes such as Reed-Muller and Reed-Solomon. A particularly appealing
feature of affine-invariant codes is that they seem well-suited to admit local correctors and testers.

In this work, we give lower bounds on the length of locally correctable and locally testable affine-
invariant codes with constant query complexity. We show that if a code C ⊂ ΣKn

is an r-query locally
correctable code (LCC), where K is a finite field and Σ is a finite alphabet, then the number of codewords
in C is at most exp(OK,r,|Σ|(n

r−1)). Also, we show that if C ⊂ ΣKn

is an r-query locally testable code
(LTC), then the number of codewords in C is at most exp(OK,r,|Σ|(n

r−2)). The dependence on n in these
bounds is tight for constant-query LCCs/LTCs, since Guo, Kopparty and Sudan (ITCS ‘13) construct
affine-invariant codes via lifting that have the same asymptotic tradeoffs. Note that our result holds for
non-linear codes, whereas previously, Ben-Sasson and Sudan (RANDOM ‘11) assumed linearity to derive
similar results.

Our analysis uses higher-order Fourier analysis. In particular, we show that the codewords corre-
sponding to an affine-invariant LCC/LTC must be far from each other with respect to Gowers norm
of an appropriate order. This then allows us to bound the number of codewords, using known decom-
position theorems which approximate any bounded function in terms of a finite number of low-degree
non-classical polynomials, upto a small error in the Gowers norm.
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1 Introduction

Error-correcting codes which admit local algorithms are of significant interest in theoretical computer science.
A code is called a locally correctable code (LCC) if there is a randomized algorithm that, given an index i and
a received word w close to a codeword c in Hamming distance, outputs ci by querying only a few positions
of w. A code is called a locally testable code (LTC) if there is a randomized algorithm that, given a received
word w, determines whether w is in the code or whether w is far in Hamming distance from every codeword,
based on queries to a small number of locations of w. The number of positions of the received word queried
is called the query complexity of the LCC or LTC.

The notions of local correctability and local testability have a long history in computer science by now.
Also called “self-correction”, the idea of local correction originated in works by Lipton [Lip90] and by Blum
and Kannan [BK95] on program checkers. LCCs are closely related to locally decodable codes (LDCs), where
the goal is to recover a symbol of the underlying message when given a corrupted codeword, using a small
number of queries [KT00]. LDCs and LCCs have found applications in private information retrieval schemes
[CKGS98, BIW07] and derandomization [STV99]. See [Yek11] for a detailed survey on LDCs and LCCs.
Research on LTCs implicitly started with Blum, Luby, and Rubinfeld’s seminal discovery [BLR93] that
the Hadamard code is an LTC with query complexity 3; they were first formally defined by Goldreich and
Sudan in [GS06]. LTCs have been used (implicitly and explicitly) in many contexts, most notably in the
construction of PCP’s [AS98, ALM+98, Din07].

In spite of the wide interest in them, some basic questions about LCCs and LTCs remain unanswered.
We restrict ourselves throughout to the setting where the query complexity is a constant (independent of the
length of the code) and consider the tradeoff between query complexity and code length. The current best
constant-query LCCs have exponential length, while the current best constant-query LTCs have near-linear
length but they are quite complicated [BS08, Din07, Mei09, Vid15]. Getting subexponential length LCCs or
linear length LTCs with constant query complexity are major open problems in the area.

Intuitively, for LCCs and LTCs with constant query complexity, there must be a lot of redundancy in
the code, since every symbol of the codeword must satisfy local constraints with most other symbols in the
codeword. A systematic way to generate redundancy is to make sure that the code has a large group of
invariances∗. Formally, given a code C ⊂ ΣN of length N over alphabet Σ, a codeword c ∈ C can be naturally
viewed as a function c : [N ]→ Σ. Then, we say that C is invariant under a set G ⊂ {[N ]→ [N ]}† if for every
π ∈ G and codeword c ∈ C, c ◦ π also describes a codeword c′ ∈ C. Now, the key observation is that if for
every codeword c ∈ C, if there is a constraint among c(i1), . . . , c(ik) for some i1, . . . , ik ∈ [N ], then for every
c ∈ C, there must also be a constraint among c(π(i1)), . . . , c(π(ik)) for any π in the invariance set G, since
c ◦π is itself another codeword. Hence if G is large, the presence of one local constraint immediately implies
presence of many and suggests the possibility of local algorithms for the code. This connection between
invariance and correctability/testability was first explicitly examined by Kaufman and Sudan [KS08]. One
is then motivated to understand more clearly the possibilities and limitations of local correctors/testers for
codes possessing natural symmetries.

We focus on affine-invariant codes, for which the domain [N ] is an n-dimensional vector space Kn over a
finite field K and the code C ⊂ {Kn → Σ} is invariant under affine transformations A : Kn → Kn. Affine
invariance is a very natural symmetry for “algebraic codes” and has long been studied in coding theory
[KLP67]. The study of affine-invariant LCCs and LTCs was initiated in [KS08] and has been investigated in
several follow-up works [BS11, Guo13, BRS12, GSVW15]. The hope is that because affine-invariant codes
have a large group of invariance and, at the same time, are conducive to non-trivial algebraic constructions,
they may contain a code that improves current constructions of LCCs or LTCs.

The current best parameters for constant-query affine-invariant LCCs and LTCs are achieved by the lifted
codes of Guo, Kopparty and Sudan [GKS13]. They construct an affine-invariant code F ⊂ {Fn2` → F2} with
exp(Θ(nr−2)) codewords that is an (r−1)-query LCC and an r-query LTC, where r = 2`. The Θ(·) notation
hides factors that depend on r but not n. For LCCs, the same asymptotic tradeoff between query complexity

∗A quite different way to generate redundancy is through tensoring; see [BS04]. Invariances and tensoring are essentially
the only two “generic” reasons known to cause local correctability/testability.
†{A→ B} and BA denote the set of all functions from A to B.
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and code length is achieved by the Reed-Muller code. For every r ≥ 2, the Reed-Muller code of order r − 1
(i.e., polynomials over Fq on n variables of total degree ≤ r − 1 with q > r) is an affine-invariant r-query
LCC with exp(Θ(nr−1)) codewords. In fact, even if we drop the affine-invariance requirement, Reed-Muller
codes and the construction of [GKS13] achieve the best known codeword length for constant query LCCs‡.

In this work, we show that the parameters for the lifted codes of [GKS13] are, in fact, tight for affine-
invariant LCCs/LTCs in {Kn → Σ} for any fixed finite field K and any fixed finite alphabet Σ.

Theorem 1 (Main Result, informal).

(i) Let C ⊂ {Kn → Σ} be an r-query affine-invariant LCC. Then |C| ≤ exp
(
OK,r,|Σ|(n

r−1)
)
.

(ii) Let C ⊂ {Kn → Σ} be an r-query affine-invariant LTC. Then |C| ≤ exp
(
OK,r,|Σ|(n

r−2)
)
.

1.1 Related Work

Ben-Sasson and Sudan in [BS11] obtained a similar result as Theorem 1, when the code is assumed to be
linear, i.e., when the codewords form a vector space. They showed that if C ⊂ {Kn → F} is an (r− 1)-query
locally correctable or r-query locally testable linear, affine-invariant code, where K and F are finite fields of
characteristic p > 0 with K an extension of F, then the dimension of C as a vector space over F is at most
(n logp |K|)r−2. When K is fixed (as in [GKS13]’s construction of constant query LCCs/LTCs), the result of
[BS11] is a very special case of our Theorem 1. On the other hand, [BS11]’s result also applies when the size
of K is growing (as long as K extends F), whereas ours does not.

There are several works which study lower bounds for constant query LCCs [KT00, GKST02, DS07,
KdW03, BDYW11, BDSS11, Woo12, DSW14]. For general (non-affine-invariant) LCCs, tight lower bounds
are known only for 2-query LCCs. Kerendis and deWolf [KdW03] prove that if C ⊂ {{0, 1}n → Σ} is a
2-query LCC§, then |C| ≤ exp(O(n|Σ|5)). This is tight for constant Σ and achieved by the Hadamard code.
For r-query LCCs where r > 2, the lower bounds known are much weaker. The best known bounds, due
to [KdW03, Woo07], show that if C ⊂ {{0, 1}n → {0, 1}} is an r-query LCC, then

|C| ≤ exp
(

2n/(1+1/(dr/2e+1))+o(n)
)
.

Higher-order Fourier analysis was applied to other problems in coding theory in [BL15b, TW14].

1.2 Proof Overview

Our arguments are based on standard techniques from higher-order Fourier analysis [Tao12], but they are
new in this context. We show that if an affine-invariant code is an r-query LCC, then its codewords are far
from each other in the Ur-norm, the Gowers norm of order r. Similarly, we show that the codewords of an
affine-invariant r-query LTC are far from each other in the Ur−1-norm. Therefore, we can upper bound the
number of LCC/LTC codewords in terms of the size of a net that is fine enough with respect to the Gowers
norm of an appropriate order. We bound the size of such a net by explicitly constructing one using a standard
decomposition theorem (analogous to Szemerédi’s regularity lemma): any bounded function f : Kn → C
can be approximated, upto a small error in the Gowers norm, by a composition of a bounded number of
low-degree non-classical polynomials [TZ12].

The way we argue that two codewords f and g of an r-query LCC are far in the Gowers norm is that
if ‖f − g‖Ur < ε, then for small enough ε (with respect to r, |Σ| and correctness probability), the local
corrector when applied to f can act as if it is applied to g. The argument is, briefly, as follows. On the one
hand, the codewords f and g must be far in Hamming distance, because the definition of LCC implies that
there is a unique codeword close to any string. So, with constant probability over choice of y ∈ Kn, the local

‡In contrast, there exist non-affine-invariant LTCs of constant query complexity and inverse polylogarithmic rate. This
corresponds to an LTC with exp(N/polylog(N)) codewords, where N is the code length, while the affine-invariant LTC of
[GKS13] and Reed-Muller codes have exp(polylog(N)) codewords for constant query complexity.
§Their lower bound also holds for the weaker notion of locally decodable dode (LDC)
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corrector’s guess for f(y) must differ from g(y). On the other hand, we can lower bound by a constant the
probability of the event that the corrector outputs g(y) when it queries coordinates of f , because f and g
are close in the ‖ · ‖Ur norm. This last calculation uses the affine invariance of the code and the generalized
von Neumann inequality, which bounds by ‖f0‖Uk the expectation over z1, . . . , zm ∈ Kn of the product∏k
i=0 fi(Li(z1, . . . , zm)), where the Li’s are arbitrary linear forms so that no two are linearly dependent and

fi : Kn → C are arbitrary functions with |fi| ≤ 1.
The argument for r-query LTCs is similar. Suppose f and g are close in the ‖ · ‖Ur−1 norm. Consider the

random function H such that for every x independently, H(x) equals f(x) with probability 1/2 and g(x) with
probability 1/2. H itself is far from a codeword with high probability. But we show that since the local tester
accepts f , it will also accept H ◦ ` for a random invertible affine map ` : Kn → Kn with good probability.
This implies that with good probability, H ◦ ` is close to a codeword and by affine-invariance, H itself is
close to a codeword which gives a contradiction. To draw this conclusion, we again use the generalized von
Neumann inequality as well as a hybrid argument.

Organization. Section 2 contains preliminaries that lay the foundations of our analysis. Section 3 proves
the first part of our main result about LCCs, while Section 4 proves the second part about LTCs.

2 Preliminaries

2.1 Error-correcting codes

Let X be a finite set called the set of coordinates and Σ be an other finite set called the alphabet. Let ΣX

denote the set of all functions from X → Σ. A subset C ⊂ ΣX is called a code and its elements are called
codewords.

Definition 1 (Hamming distance). Given f, g ∈ ΣX , we define the normalized Hamming distance between f
and g is defined as ∆(f, g) := Prx∈X [f(x) 6= g(x)] where x is uniformly chosen from X . For a code C ⊂ ΣX ,
we define the minimum distance of C as minf,g∈C,f 6=g ∆(f, g).

Let NΣ = {q : Σ→ R≥0 :
∑
i∈Σ q(i) = 1} denote the probability simplex on Σ. We embed Σ into NΣ by

sending i ∈ Σ to ei which is the ith coordinate vector in RΣ. This also lets us extend functions f : X → Σ
to f̂ : X → NΣ using the embedding. We call f̂ the simplex extension of f . Now given f, g ∈ ΣX , we can
write the Hamming distance between them as

∆(f, g) = 1− Pr
x∈X

[f(x) = g(x)] = 1− Ex∈X 〈f̂ , ĝ〉

where 〈·, ·〉 is the standard inner product in RΣ.

Definition 2 (Affine invariance). Let X be a finite dimensional vector space over some finite field K, then
C ⊂ ΣX is called affine invariant if for every f ∈ C and every invertible affine map ` : X → X , f ◦ ` ∈ C.

Locally correctable and testable codes are defined formally in Sections 3 and 4 respectively.

2.2 Higher order Fourier analysis

Fix a finite field Fp of prime order p, and let K = Fq where q = pt for a positive integer t. K is then a vector
space of dimension t over Fp. We denote by Tr : K→ Fp the trace function:

Tr(x) = x+ xp + xp
2

+ · · ·+ xp
t−1

.

Also, we use | · | to denote the obvious map from Fp to {0, 1, . . . , p− 1}.
Given functions f, g : Kn → C, we define their inner product as 〈f, g〉 = Ex[f(x)g(x)] where x is chosen

uniformly from Kn. We define ‖ · ‖p-norm on such functions as ‖f‖p = Ex[|f(x)|p]1/p. We say a function
f : Kn → C is bounded if |f | ≤ 1. Let T denote the circle group R/Z and e : T → C be the map given by
e(x) = exp(2πix).
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Definition 3 (Non-classical Polynomials). A non-classical polynomial of degree< d is a function f : Kn → T
if

∀h1, h2 · · · , hd ∈ Kn Dh1
Dh2
· · ·Dhd

f = 0

where Dh is the difference operator defined as Dhf(x) = f(x+ h)− f(x). For such an f , the function e(f)
is called a non-classical phase polynomial of degree < d.

Let α1, · · · , αt ∈ K be a basis for K when viewed as a vector space over Fp. It is known [TZ12, BB15] that
non-classical polynomials of degree ≤ d are exactly those functions P : Kn → T which have the following
form:

P (x1, . . . , xn) = θ +
∑
k≥0

∑
0≤di,j<p ∀i∈[n],j∈[t];

0<
∑n

i=1

∑t
j=1 di,j≤d−k(p−1)

cd1,1,...,dn,t,k

∏n
i=1

∏t
j=1 |Tr(αjxi)|di,j

pk+1
(mod 1) (1)

for some cd1,1,...,dn,t,k ∈ {0, 1, · · · , p− 1} and θ ∈ T. Next, we define the Gowers norm for arbitrary functions
f : Kn → C.

Definition 4 (Gowers uniformity norm [Gow01]). For a function f : Kn → C, the Gowers norm of order r,
denoted by ‖ · ‖Ur , is defined as

‖f‖Ur = (Ex,h1,··· ,hr∈Kn [∆h1∆h2 · · ·∆hrf(x)])
1/2r

where ∆h is the multiplicative difference operator defined as ∆hf(x) = f(x+ h)f(x).

The Gowers norm is an actual norm when r ≥ 2. It also satisfies a useful monotonicity property: for any
function f : Kn → C,

|E[f(x)]| = ‖f‖U1 ≤ ‖f‖U2 ≤ · · · ≤ ‖f‖Ur ≤ · · · ≤ ‖f‖∞.

See [Tao12] for more on Gowers norm. Observe that if f : Kn → C is a non-classical phase polynomial of
degree < r then ‖f‖Ur = 1. The inverse Gowers theorem is a partial converse to this. It shows that the
Gowers norm of order r of a function is in direct correspondence with its correlation with non-classical phase
polynomials of degree < r. In particular:

Lemma 1 (Inverse Gowers theorem [TZ12]). For any bounded f : Kn → C, if ‖f‖Ur > δ then there exists
a non-classical polynomial P of degree < r such that

| 〈f, e(P )〉 | ≥ c(δ,K, r)

where c(δ,K, r) is a constant depending only on δ,K, r.

A linear form on m variables is a vector L = (w1, · · · , wm) ∈ Km that is interpreted as a function
L : (Kn)m → Kn via the map (x1, · · · , xm) 7→

∑m
i=1 wixi. A key reason that the Gowers norm is use-

ful in applications is that if a function has small Gowers norm of the appropriate order, then it behaves
pseudorandomly in a certain way with respect to linear forms.

Lemma 2 (Generalized von Neumann inequality (Exercise 1.3.23 in [Tao12])). Let f0, f1, f2, · · · , fk : Kn →
C be bounded functions and let L = {L0,L1, · · · ,Lk} be a system of k + 1 linear forms in m variables such
that no form is a multiple of another. Then

|Ez1,··· ,zm∈Kn [

k∏
i=0

fi(Li(z1, · · · , zm))]| ≤ min
0≤i≤k

‖fi‖Uk

See Appendix A for proof.

4



2.3 A net for Gowers norm

The goal of this section is to establish the following claim.

Theorem 2 (ε-net for Ur norm). The metric induced by the ‖ · ‖Ur norm on the space of all bounded
functions {f : Kn → C} has an ε-net of size exp(Oε,K,r(n

r−1)).

For the proof, we need the following definitions.

Definition 5 (Polynomial factors). A polynomial factor B is a sequence of non-classical polynomials P1, ..., Pk :
Kn → T. We also identify it with the function B : Kn → Tk mapping x 7→ (P1(x), ..., Pk(x)). The partition
induced by B is the partition of Kn given by {B−1(y) : y ∈ Tk}. The complexity of B is the number of defining
polynomials, |B| = k. The degree of B is the maximum degree among its defining polynomials P1, · · · , Pk.
A function f : Kn → C is called B-measurable if it is constant in each cell of the partition induced by B or
equivalently f can be written as a τ(P1, · · · , Pk) for some function τ : Tk → C.

Definition 6 (Conditional expectations). Given a polynomial factor B, the conditional expectation of f :
Kn → C over B, denoted by E[f |B], is the B-measurable function defined by

E[f |B](x) = Ey∈B−1(B(x))[f(y)].

Definition 7 (Factor refinement). Given two polynomial factors B,B′, we say B′ is a refinement of B,
denoted by B′ � B, if every cell in the partition induced by B′ is contained in some cell in the partition
induced by B.

The definition of refinement immediately implies:

Lemma 3 (Pythagoras theorem). Let B,B′ be polynomial factors such that B′ � B, then for any function
f : Kn → C,

‖E[f |B′]‖22 = ‖E[f |B]‖22 + ‖E[f |B′]− E[f |B]‖22.

The next claim shows that any bounded function is “close” to being measurable by a polynomial factor
of bounded complexity. Precisely:

Lemma 4 (Decomposition Theorem). Any bounded f : Kn → C can be approximated in ‖ · ‖Ur by a
function of a small number of degree < r non-classical polynomials i.e. for any ε > 0, there exists non-
classical polynomials P1, P2, · · · , Pk of degree < r with Pi(0̄) = 0 ∀i and a bounded function τ : Tk → C such
that

‖f − τ(P1, P2, · · · , Pk)‖Ur ≤ ε

where k = k(ε,K, r) is a constant depending only on ε,K, r.

Proof. The proof is similar to the proof of the Quadratic Koopman-von Neumann decompostion which is
Prop 3.7 in [Gre06] but using the full Inverse Gowers Theorem (Lemma 1) and similar claims are implicit
elsewhere, but for completeness, we give the proof.

The main idea is to approximate the function f using its conditional expectation over a suitable poly-
nomial factor B of degree < r. We will start with the trivial factor B0 = (1) and iteratively construct more
refined partitions Bi � Bi−1 until we find a factor Bk which satisfies ‖f − E[f |Bk]‖Ur ≤ ε. To bound the
number of iterations needed to achieve this, we will show that the energy ‖E[f |Bi]‖22 which is bounded above
by 1, increases by a fixed constant in every step.
Suppose that after step i − 1, we still have ‖f − E[f |Bi−1]‖Ur > ε. Let g = f − E[f |Bi−1], then by the
inverse Gowers theorem (Lemma 1), we have some non-classical polynomial Pi of degree < r such that
| 〈g, e(Pi)〉 | ≥ κ = c(ε, p, r). We can assume that Pi(0̄) = 0. Refine the factor Bi−1 by adding the polynomial
Pi to obtain Bi � Bi−1. Now consider the energy increment,

‖E[f |Bi]‖22 − ‖E[f |Bi−1]‖22 = ‖E[f |Bi]− E[f |Bi−1]‖22 = ‖E[g|Bi]‖22
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where we used the Pythagoras theorem(Lemma 3) and the fact that E
[
E[f |Bi−1]

∣∣Bi] = E[f |Bi−1] since
Bi � Bi−1. So

κ2 ≤ |E[g · e(Pi)]|2 =
∣∣E[E[g · e(Pi)|Bi]

]∣∣2 =
∣∣E[e(Pi)E[g|Bi]

]∣∣2
≤ ‖E[g|Bi]‖21 ≤ ‖E[g|Bi]‖22 = ‖E[f |Bi]‖22 − ‖E[f |Bi−1]‖22.

Thus the energy increases by κ2 every step. But since the energy is bounded above by 1, the process should
end in a finite number of steps k ≤ 1

κ2 . So ‖f − E[f |Bk]‖Ur ≤ ε, but since E[f |Bk] is Bk-measurable, we can
write E[f |Bk] = τ(P1, · · · , Pk) for some function τ with |τ | = |E[f |Bk]| ≤ |f | ≤ 1.

We are now ready to prove Theorem 2.

Proof of Theorem 2. Recall that K is an extension field of dimension t over a prime field Fp. The ε-net
will be the set N of all functions of the form τ(P1, · · · , Pk) where P1, · · · , Pk are degree < r non-classical
polynomials with zero constant terms, τ : Tk → C is a bounded function and k = k(ε, p, r) is the constant
given by Lemma 4. But we will not include all possible bounded τ : Tk → C. Firstly by Equation 1,
P1, · · · , Pk take values only in 1

prZ/Z. Next we will discretize the set {z ∈ C : |z| ≤ 1} into the ε-lattice

i.e. we will only consider maps τ : ( 1
prZ/Z)k → {z ∈ C : |z| ≤ 1} ∩ ε(Z + iZ). The number of such maps is

bounded by (4/ε2)p
rk

.
By Equation 1, a non-classical polynomial of degree < r in n variables with zero constant term can be

represented by ≤
(
nt+r−1
r−1

)
r coefficients in {0, 1, · · · , p− 1}. So the number of such non-classical polynomials

is bounded by exp
(
Or,K(nr−1)

)
. Combining both the bounds,

|N | ≤ exp
(
Or,K(nr−1)

)k · (4/ε2)p
rk

= exp
(
Oε,K,r(n

r−1)
)
.

We will now prove that N is a 3ε-net. Given any f : Kn → [−1, 1], using Lemma 4, there is a function
τ(P1, · · · , Pk) such that

‖f − τ(P1, P2, · · · , Pk)‖Ur ≤ ε.
If we consider the τ̃ ∈ N by rounding values real and imaginary parts of τ to the nearest multiple of ε, we
get

‖f − τ̃(P1, P2, · · · , Pk)‖Ur ≤ ‖f − τ(P1, P2, · · · , Pk)‖Ur + ‖τ(P1, P2, · · · , Pk)− τ̃(P1, P2, · · · , Pk)‖Ur

≤ ε+ ‖τ(P1, P2, · · · , Pk)− τ̃(P1, P2, · · · , Pk)‖∞ ≤ 3ε.

3 Locally Correctable Codes

We begin by defining locally correctable codes formally. Note that the definition below differs from the
conventional one in terms of a local correction algorithm and adversarial errors (see, for instance, [Yek11]);
however, our definition is certainly weaker. Therefore, this makes our lower bounds stronger.

Definition 8 (Locally Correctable Code (LCC)). An (r, δ, τ) LCC is a code C ⊂ ΣX with the following
property:
For each x ∈ X there is a distribution Mx over r-tuples of distinct¶ coordinates such that whenever f̃ ∈ ΣX

is δ-close to some codeword f ∈ C in Hamming distance,

Pr
(y1,··· ,yr)∼Mx

[Dx,y1,··· ,yr (f̃(y1), f̃(y2), · · · , f̃(yr)) = f(x)] ≥ 1− τ

where Dx,y1,··· ,yr : Σr → Σ, called the decoding operator, depends only on x, y1, · · · , yr.
If furthermore X is a vector space and C is affine invariant then we call it an affine invariant LCC.
¶WLOG we can assume the tuples have distinct coordinates by adding dummy coordinates and modifying the decoding

functions Dx,y1,··· ,yr
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Remark 1. Let |Σ| = m, WLOG we can assume that Σ = {1, 2, · · · ,m}. Then we can extend functions

f : X → Σ to f̂ : X → Nm. The decoding operators D : Σr → Σ can also be extended to D̂ : Nrm → Nm as
follows: For z1, · · · , zr ∈ Nm define

D̂(z1, · · · , zr) =
∑

1≤`1,··· ,`r≤m

eD(`1,··· ,`r)(z1)`1 · · · (zr)`r

where ej stands for the jth coordinate vector in Rm and (zj)` is the `th coordinate of the vector zj. Now we
can rewrite the decoding condition as:

E(y1,··· ,yr)∼Mx
[
〈
f̂(x), D̂x,y1,··· ,yr (f̂(y1), f̂(y2), · · · , f̂(yr))

〉
] ≥ 1− τ.

First, we make the observation that any LCC must have good minimum distance.

Lemma 5. Let C ⊂ ΣX be an (r, δ, τ) LCC with τ < 1/2, then the minimum distance of C is at least 2δ.

Proof. Let f, g ∈ C be two distinct codewords such that ∆(f, g) < 2δ. Let h be the midpoint of f and g i.e.
h is δ-close to both f and g. Let x ∈ X be such that f(x) 6= g(x). By the LCC property,

Pr
(y1,··· ,yr)∼Mx

[f(x) = Dx,y1,··· ,yr (h(y1), · · · , h(yr))] ≥ 1− τ

Pr
(y1,··· ,yr)∼Mx

[g(x) = Dx,y1,··· ,yr (h(y1), · · · , h(yr))] ≥ 1− τ.

This is a contradiction when τ < 1
2 . Therefore every two codewords must be at least 2δ apart.

Now, we are ready to prove our main result of this section.

Theorem 3 (Lower bound for LCCs). Let C ⊂ ΣKn

be an (r, δ, τ) affine-invariant LCC where τ < 2δ
3 . Then

|C| ≤ exp
(
Oδ,K,r,|Σ|(n

r−1)
)
.

Proof. Let |Σ| = m. Let N be an ε/2-net for the space of all bounded functions {f : Kn → C} with the
metric induced by ‖ · ‖Ur -norm where ε = 2δ

3mr . Given a bounded f : Kn → C, define

φ(f) := argminh∈N ‖f − h‖Ur

(break ties arbitrarily). Since N is an ε/2 net, we have ‖f − φ(f)‖Ur ≤ ε/2. Define Ψ : C → Nm as

Ψ(f) := (φ(f̂1), · · · , φ(f̂m))

where f̂i : Kn → R≥0 is the ith coordinate function of the simplex extension f̂ : Kn → Nm of f . We claim
that Ψ is one-one which implies that |C| ≤ |N |m. Now using Theorem 2, the required bound follows. Suppose
that Ψ is not one-one. Let f, g ∈ C be two distinct codewords such that Ψ(f) = Ψ(g). This implies that

∀ i ∈ [m] ‖f̂i − ĝi‖Ur ≤ ‖f̂i − φ(f̂i)‖Ur + ‖ĝi − φ(ĝi)‖Ur ≤ ε.

By affine invariance of C, f ◦ ` ∈ C for all invertible affine maps ` : Kn → Kn. So by the local correction
property,

Pr
`,y0,(y1,··· ,yr)∼My0

[f ◦ `(y0) = Dy0,y1,··· ,yr (f ◦ `(y1), · · · , f ◦ `(yr))] ≥ 1− τ

where ` ranges uniformly over all invertible affine maps from Kn → Kn and y0 ranges uniformly over Kn.
Now consider the following difference:

Pr
`,y0,(y1,··· ,yr)∼My0

[f ◦ `(y0) = Dy0,y1,··· ,yr (f ◦ `(y1), · · · , f ◦ `(yr))]

− Pr
`,y0,(y1,··· ,yr)∼My0

[g ◦ `(y0) = Dy1,··· ,yr (f ◦ `(y1), · · · , f ◦ `(yr))]

= E`Ey0E(y1,··· ,yr)∼My0

[〈
f̂ ◦ `(y0), D̂y0,y1,··· ,yr (f̂ ◦ `(y1), · · · , f̂ ◦ `(yr))

〉
−
〈
ĝ ◦ `(y0), D̂y1,··· ,yr (f̂ ◦ `(y1), · · · , f̂ ◦ `(yr))

〉]
= Ey0E(y1,··· ,yr)∼My0

[
E`
[〈
f̂ ◦ `(y0)− ĝ ◦ `(y0), D̂y0,y1,··· ,yr (f̂ ◦ `(y1), · · · , f̂ ◦ `(yr))

〉]]
.
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Now we fix y0, y1, · · · , yr and show that inner expectation is small for each tuple (y0, y1, · · · , yr). Let us
denote D = Dy0,y1,··· ,yr for brevity. Let t = rank(y0, y1, · · · , yr), thus there exist independent vectors

v1, · · · , vt ∈ Kn such that for every 0 ≤ i ≤ r, yi =
∑t
j=1 λijvj for some fixed λij ∈ K. The action of a

random invertible affine map ` can be approximated by sampling z0, z1, · · · , zt ∈ Kn uniformly and mapping
yi 7→ z0 +

∑t
j=1 λijzj since with probability 1− on(1), z1, · · · , zt will be independent. Therefore,

E`
[〈
f̂ ◦ `(y0)− ĝ ◦ `(y0), D̂y0,y1,··· ,yr (f̂ ◦ `(y1), · · · , f̂ ◦ `(yr))

〉]
=on(1) Ez0,z1,··· ,zt∈Kn

〈(f̂ − ĝ)(z0 +

t∑
j=1

λ0jzj), D̂

f̂(z0 +

t∑
j=1

λ1jzj), · · · , f̂(z0 +

t∑
j=1

λrjzj)

〉
= Ez0,z1,··· ,zt∈Kn

〈(f̂ − ĝ)(z0 +

t∑
j=1

λ0jzj),

 ∑
1≤`1,··· ,`r≤m

eD(`1,··· ,`r)

r∏
i=1

f̂`i(z0 +

t∑
j=1

λijzj)

〉
= Ez0,z1,··· ,zt∈Kn

 ∑
1≤`1,··· ,`r≤m

(f̂ − ĝ)D(`1,··· ,`r)(z0 +

t∑
j=1

λ0jzj) ·
r∏
i=1

f̂`i(z0 +

t∑
j=1

λijzj)


≤

 ∑
0≤`1,··· ,`r≤m−1

‖(f̂ − ĝ)D(`1,··· ,`r)‖Ur

 ≤ mrε

where the first inequality is obtained by applying generalized von Neumann inequality (Lemma 2) to each
term. Therefore

Pr
`,y0,(y1,··· ,yr)∼My0

[g ◦ `(y0) = Dy1,··· ,yr (f ◦ `(y1), · · · , f ◦ `(yr))]

≥ Pr
`,y0,(y1,··· ,yr)∼My0

[f ◦ `(y0) = Dy1,··· ,yr (f ◦ `(y1), · · · , f ◦ `(yr))]−mrε ≥ 1− τ − 2δ/3.

On the other hand,

Pr
`,y0,(y1,··· ,yr)∼My0

[g ◦ `(y0) = Dy1,··· ,yr (f ◦ `(y1), · · · , f ◦ `(yr))]

≤ Pr
`,y0,(y1,··· ,yr)∼My0

[g ◦ `(y0) = f ◦ `(y0)] + Pr
`,y0,(y1,··· ,yr)∼My0

[f ◦ `(y0) 6= Dy1,··· ,yr (f ◦ `(y1), · · · , f ◦ `(yr))]

≤ Pr
x

[f(x) = g(x)] + τ ≤ 1− 2δ + τ (By Lemma 5)

This is a contradiction when τ < 2δ
3 .

4 Locally Testable Codes

We start by defining locally testable codes in a formulation convenient for our use.

Definition 9 (Locally Testable Code (LTC)). An (r, δ, τ) LTC is a code C ⊂ ΣX with minimum distance at
least δ and the following property:
There is a distribution M over r-tuples of distinct‖ coordinates such that for each codeword f ∈ C,

Pr
(y1,··· ,yr)∼M

[Dy1,··· ,yr (f(y1), f(y2), · · · , f(yr)) = 1] ≥ 3/4

‖WLOG we can assume the tuples have distinct coordinates by adding dummy coordinates and modifying the decoding
functions Dy1,··· ,yr
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and for every g ∈ ΣX which is τ -far away from every codeword,

Pr
(y1,··· ,yr)∼M

[Dy1,··· ,yr (g(y1), f(y2), · · · , f(yr)) = 1] ≤ 1/4

where Dy1,··· ,yr : Σr → {0, 1}, called the testing operator, depends only on y1, · · · , yr.
If furthermore X is a vector space and C is affine-invariant then we call it an affine invariant LTC.

Remark 2. Let |Σ| = m, WLOG we can assume that Σ = {1, 2, · · · ,m}. We can extend f : X → Σ to

f̂ : X → Nm. The testing operator D : Σr → {0, 1} can also be extended to D̂ : Nrm → [0, 1] as follows: For
z1, · · · , zr ∈ Nm define

D̂(z1, · · · , zr) =
∑

1≤`1,··· ,`r≤m

D(`1, · · · , `r)(z1)`1 · · · (zr)`r . (2)

Now we can rewrite the probability in terms of expectation as:

Pr
(y1,··· ,yr)∼M

[Dy1,··· ,yr (f(y1), · · · , f(yr)) = 1] = E(y1,··· ,yr)∼M[D̂y1,··· ,yr (f̂ ◦ `(y1), · · · , f̂ ◦ `(yr))]

We are now ready to prove the main result of this section.

Theorem 4 (Lower bound for LTC’s). Let C ⊂ ΣKn

be an (r, δ, δ/3) affine invariant LTC, then |C| ≤
exp

(
Oδ,K,r,|Σ|(n

r−2)
)
.

Proof. Let |Σ| = m. The proof is very similar to that of Theorem 3. Let N be an ε/2-net for the space of
all bounded functions {f : Kn → C} with the metric induced by ‖ · ‖Ur−1 -norm where ε = 1/2rmr. Define
Ψ : C → Nm as in the proof of Theorem 3, it is enough to show that Ψ is one-one. Suppose that Ψ is not
one-one. Then there exists f, g ∈ C which are distinct such that Ψ(f) = Ψ(g). This implies that

∀ i ∈ [m] ‖f̂i − ĝi‖Ur−1 ≤ ε.

By affine invariance of C, f ◦ ` ∈ C for all invertible affine maps ` : Kn → Kn. So

E`E(y1,··· ,yr)∼M[Dy1,··· ,yr (f ◦ `(y1), f ◦ `(y2), · · · , f ◦ `(yr))] ≥ 3/4

where ` ranges over all invertible affine maps from Kn → Kn. Let H ∈ ΣX be a random word where for each
coordinate x ∈ X independently,

H(x) =

{
f(x) w.p. 1/2

g(x) w.p. 1/2

Define ĥ : X → Nm as ĥ(x) = EH [Ĥ(x)] = f̂(x)+ĝ(x)
2 where f̂ , ĝ are the simplex extensions of the original

f, g. So ∀ i ∈ [m] ‖f̂i − ĥi‖Ur−1 = ‖f̂i − ĝi‖Ur−1/2 ≤ ε/2. We will now show that the test accepts H ◦ ` with
good probability when ` is a random invertible affine map from Kn → Kn.

EHE`E(y1,··· ,yr)∼M[Dy1,··· ,yr (f ◦ `(y1), · · · , f ◦ `(yr))−Dy1,··· ,yr (H ◦ `(y1), · · · , H ◦ `(yr))]

= EHE`E(y1,··· ,yr)∼M[D̂y1,··· ,yr (f̂ ◦ `(y1), · · · , f̂ ◦ `(yr))− D̂y1,··· ,yr (Ĥ ◦ `(y1), · · · , Ĥ ◦ `(yr))]

= E`E(y1,··· ,yr)∼M[D̂y1,··· ,yr (f̂ ◦ `(y1), · · · , f̂ ◦ `(yr))− D̂y1,··· ,yr (ĥ ◦ `(y1), · · · , ĥ ◦ `(yr))]
(by using the multilinear expansion of D̂y1,··· ,yr (Equation 2) and taking expectation over H)

= E(y1,··· ,yr)∼M

[
E`
[
D̂y1,··· ,yr (f̂ ◦ `(y1), · · · , f̂ ◦ `(yr))− D̂y1,··· ,yr (ĥ ◦ `(y1), · · · , ĥ ◦ `(yr))

]]
Now we fix y1, · · · , yr and show that inner expectation is small for each tuple (y1, · · · , yr). Let us denote
D = Dy1,··· ,yr for brevity. Let t = rank(y1, · · · , yr), thus there exist independent vectors v1, · · · , vt ∈ Kn such

that for every 1 ≤ i ≤ r, yi =
∑t
j=1 λijvj for some fixed λij ∈ K. The action of a random invertible affine
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map ` can be approximated by sampling z0, z1, · · · , zt ∈ Kn uniformly and mapping yi 7→ z0 +
∑t
j=1 λijzj

since with probability 1− on(1), z1, · · · , zt will be independent. Therefore,

E`
[
D̂y1,··· ,yr (f̂ ◦ `(y1), · · · , f̂ ◦ `(yr))− D̂y1,··· ,yr (ĥ ◦ `(y1), · · · , ĥ ◦ `(yr))

]
=on(1) Ez0,··· ,zt∈Kn

D̂(f̂(z0 +

t∑
j=1

λ1jzj), · · · , f̂(z0 +

t∑
j=1

λrjzj))−D(ĥ(z0 +

t∑
j=1

λ1jzj), · · · , ĥ(z0 +

t∑
j=1

λrjzj))


= Ez0,z1,··· ,zt∈Kn

 ∑
1≤`1,··· ,`r≤m

D(`1, · · · , `r)

 r∏
i=1

f̂`i(z0 +

t∑
j=1

λijzj)−
r∏
i=1

ĥ`i(z0 +

t∑
j=1

λijzj)


≤ r ·mr · ε

2
=

1

4

where the last line is obtained by forming hybrids i.e. writing

f̂`1 · f̂`2 · · · f̂`r − ĥ`1 · ĥ`2 · · · ĥ`r = (f̂`1 − ĥ`1) · f̂`2 · · · f̂`r + ĥ`1 · (f̂`2 − ĥ`2) · · · f̂`r + · · ·+ ĥ`1 · ĥ`2 · · · (f̂`r − ĥ`r )

and using Lemma 2 for each term. Therefore

EHE`E(y1,··· ,yr)∼M[Dy1,··· ,yr (H ◦ `(y1), · · · , H ◦ `(yr))]

≥ E`E(y1,··· ,yr)∼M[Dy1,··· ,yr (f ◦ `(y1), · · · , f ◦ `(yr))]−
1

4
≥ 3

4
− 1

4
=

1

2
.

By Markov inequality,

1

4
≤ Pr

H

[
E`E(y1,··· ,yr)∼M[Dy1,··· ,yr (H ◦ `(y1), · · · , H ◦ `(yr))] ≥

1

3

]
≤ Pr

H

[
∃` E(y1,··· ,yr)∼M[Dy1,··· ,yr (H ◦ `(y1), · · · , H ◦ `(yr))] ≥

1

3

]
≤ Pr

H

[
∃` ∆(H ◦ `, C)] ≤ δ

3

]
(by the soundness of the tester)

= Pr
H

[
∆(H, C)] ≤ δ

3

]
(since ` is invertible and C is affine invariant)

Let H = Supp(H) be the set of words between f and g i.e. the set of all words e ∈ ΣKn

such that e(x) = f(x)
or e(x) = g(x) for all x ∈ Kn. We have |H| = 2∆(f,g)n. Since the distribution of H is uniform in H, we
proved that at least 1

4 fraction of words in H contain a codeword in their δ/3 neighborhood, let H′ ⊂ H
denote this subset. Therefore the δ/6 neighborhoods around the points in H′ must be disjoint or else two
distinct codewords will be < δ close to each other. The number of words in H which lie in a Hamming ball
of radius δ/6 around a point of H′ is

δn/6∑
i=0

(
∆(f, g)n

i

)
≥ 2H(δ/6∆(f,g))∆(f,g)n−o(n) ≥ 2H(δ/6)∆(f,g)n−o(n)

where H(·) is the binary entropy function. By a packing argument, we can upper bound the size of H′ as

|H′| ≤ 2∆(f,g)n

2H(δ/6)∆(f,g)n−o(n)
= o(|H|).

This contradicts the fact that |H′| ≥ |H|/4.
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5 Concluding Remarks

In this work, we proved tight lower bounds for constant query affine-invariant LCCs and LTCs when the
number of queries r, underlying field K and the alphabet Σ are constant. However the constants in the
bounds we obtain are of Ackermann-type in r, |K|, |Σ| because of the use of higher-order Fourier analysis.
Improving the dependence on these parameters is an open problem which might require new ideas. In a
recent work, Bhowmick and Lovett [BL15a] obtain a “bias implies low rank” theorem for polynomials over
growing fields. This might be a first step towards proving a variant of the inverse Gowers theorem (Lemma 1)
for growing field size, which could then be used to make our lower bounds extend to the case of growing field
size.

We also remark that our lower bounds work for any LCC or LTC where the queries are obtained as fixed
linear combinations of uniformly chosen points from Kn. Affine-invariant codes are a natural class of local
codes where this is true. Relaxing these conditions to get lower bounds for a more general class of LCCs or
LTCs is an open problem.
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A Proof of generalized von Neumann inequality (Lemma 2)

Since the lemma is not stated in the form we want in [Tao12], we will include a proof here for completeness.
To prove Lemma 2, we need the following lemma first.

Lemma 6 (Exercise 1.3.22 in [Tao12]). Let f : Kn → C be a function, and for each 1 ≤ i ≤ k, let
gi : (Kn)k → C be a bounded function which is independent of the ith coordinate of (Kn)k. Then,

|Ex1,··· ,xk∈Kn [f(x1 + x2 + · · ·+ xk)

k∏
i=1

gi(x1, · · · , xk)]| ≤ ‖f‖Uk
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Proof. The proof is by induction on k and using Cauchy-Schwarz inequality repeatedly. The case k = 1 is
true by definition of ‖ · ‖U1 .∣∣∣∣∣Ex1,··· ,xk∈Kn

[
f(x1 + x2 + · · ·+ xk)

k∏
i=1

gi(x1, · · · , xk)

]∣∣∣∣∣
=

∣∣∣∣∣Ex2,··· ,xk

[
g1(x1, · · · , xk)Ex1

[
f(x1 + x2 + · · ·+ xk)

k∏
i=2

gi(x1, · · · , xk)

]]∣∣∣∣∣
(since g1 doesn’t depend on x1)

≤

∣∣∣∣∣Ex2,··· ,xk

[
Ex′1

[
f(x′1 + x2 + · · ·+ xk)

k∏
i=2

gi(x
′
1, x2, · · · , xk)

]
Ex1

[
f̄(x1 + x2 + · · ·+ xk)

k∏
i=2

ḡi(x1, x2, · · · , xk)

]]∣∣∣∣∣
1/2

(By Cauchy-Schwarz inequality and the fact that |g1| ≤ 1)

=

∣∣∣∣∣Ex1,h1

[
Ex2,··· ,xk

[
∆h1

f(x1 + x2 + · · ·+ xk)

k∏
i=2

gi(x1 + h1, x2, · · · , xk)ḡi(x1, x2, · · · , xk)

]]∣∣∣∣∣
1/2

(By substituting x′1 = x1 + h1)

≤
∣∣∣Ex1,h1

[
Eh2,··· ,hk,z [∆hk

· · ·∆h1f(x1 + z)]
1/2k−1

]∣∣∣1/2
(By induction hypothesis and the definition of Gowers norm)

≤ |Ex1,h1,h2,··· ,hk,z [∆hk
· · ·∆h1f(x1 + z)]|1/2

k

(By Jensen’s inequality)

= |Eh1,h2,··· ,hk,z [∆hk
· · ·∆h1

f(z)]|1/2
k

= ‖f‖Uk

Proof of Lemma 2. By symmetry, it is enough to show that

|Ez1,··· ,zm∈Kn [f0(L0(z1, · · · , zm))

k∏
i=1

fi(Li(z1, · · · , zm))]| ≤ ‖f0‖Uk .

We will make a linear change of variables so that we can use Lemma 6 to get the required bound. For each
1 ≤ i ≤ k, since L0 is not a multiple of Li, there exists a vector vi ∈ Km such that L0(vi) = 1 and Li(vi) = 0.

Now we make the following change of variables: (z1, · · · , zm)→ (x1, · · · , xm) +
∑k
i=1 yiv

T
i where x1, · · · , xm

and y1, · · · , yk are the new variables which range over Kn.

|Ez1,··· ,zm∈Kn [f0(L0(z1, · · · , zm))

k∏
i=1

fi(Li(z1, · · · , zm))]|

=

∣∣∣∣∣∣Ex1,··· ,xm,y1,··· ,yk∈Kn

f0

L0(x1, · · · , xm) +
∑
j∈[k]

yj

 ∏
i∈[k]

fi

Li(x1, · · · , xm) +
∑

j∈[k]\{i}

yjLi(vj)

∣∣∣∣∣∣
(By change of variables and linearity of Li)

≤ Ex1,··· ,xm∈Kn

∣∣∣∣∣∣Ey1,··· ,yk∈Kn

f0

L0(x1, · · · , xm) +
∑
j∈[k]

yj

 ∏
i∈[k]

fi

Li(x1, · · · , xm) +
∑

j∈[k]\{i}

yjLi(vj)

∣∣∣∣∣∣


≤ ‖f0‖Uk (By Lemma 6)
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