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Abstract

Statistical Zero-knowledge proofs (Goldwasser, Micali and Rackoff, SICOMP 1989) allow a
computationally-unbounded server to convince a computationally-limited client that an input x
is in a language Π without revealing any additional information about x that the client cannot
compute by herself. Randomized encoding (RE) of functions (Ishai and Kushilevitz, FOCS 2000)
allows a computationally-limited client to publish a single (randomized) message, Enc(x), from
which the server learns whether x is in Π and nothing else.

It is known that SRE , the class of problems that admit statistically private randomized
encoding with polynomial-time client and computationally-unbounded server, is contained in
the class SZK of problems that have statistical zero-knowledge proof. However, the exact
relation between these two classes, and, in particular, the possibility of equivalence was left as
an open problem.

In this paper, we explore the relationship between SRE and SZK, and derive the following
results:

• In a non-uniform setting, statistical randomized encoding with one-side privacy (1RE) is
equivalent to non-interactive statistical zero-knowledge (NISZK). These variants were
studied in the past as natural relaxation/strengthening of the original notions. Our the-
orem shows that proving SRE = SZK is equivalent to showing that 1RE = SRE and
SZK = NISZK. The latter is a well-known open problem (Goldreich, Sahai, Vadhan,
CRYPTO 1999).

• If SRE is non-trivial (not in BPP), then infinitely-often one-way functions exist. The ana-
log hypothesis for SZK yields only auxiliary-input one-way functions (Ostrovsky, Structure
in Complexity Theory, 1991), which is believed to be a significantly weaker implication.

• If there exists an average-case hard language with perfect randomized encoding, then
collision-resistance hash functions (CRH) exist. Again, a similar assumption for SZK
implies only constant-round statistically-hiding commitments, a primitive which seems
weaker than CRH.

We believe that our results sharpen the relationship between SRE and SZK and illuminates
the core differences between these two classes.
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1 Introduction

Consider a “computationally-weak” client, Alice, which holds an input x ∈ {0, 1}n to a language,
or promise problem, Π which is beyond her computational power. We will be interested in the
following two related scenarios.

– Alice contacts a computationally-strong server Bob, and asks him to prove that x is a yes-
instance of Π. The server wishes to do so without revealing any additional information about
x that Alice cannot compute by herself. That is, we are interested in an interactive proof
system in which, for every yes-instance, the client is able to simulate her view without any
interaction with the server.

– Alice would like to send to the server Bob a single (randomized) message Enc(x) which allows
Bob to tell whether x is a yes-instance or a no-instance but hides any other information about
x. That is, the message Enc(x) should be private in the sense that all yes-instances (resp.,
no-instances) are mapped by Enc(x) to the same universal yes-distribution Simyes (resp.,
no-distribution Simno); In addition, Enc(x) should be correct (i.e., it should be possible to
decode membership in Π) and so the yes-distribution is required to be statistically-far from
the no-distribution.

The first setting is captured by the notion of zero-knowledge (ZK) proofs [GMR89], while the
second is captured by the notion of randomized encoding (RE) of functions [IK00, AIK04]. In
this paper, we model the client as a polynomial-time machine, the server as a computationally-
unbounded party, and ask for information-theoretic security.1 Problems that admit such a statistical
zero-knowledge proofs (resp., such statistical randomized encodings) give rise to the complexity class
SZK (resp., SRE).

The class SZK and its variants were extensively studied and we have relatively rich insights
about its power and structure including non-trivial upper-bounds (e.g., SZK ⊆ AM∩co-AM [AH87]),
complete problems [SV03, GV99], and closure properties [Oka00, Vad99]. Unfortunately, the status
of SRE is very different. Although randomized encoding are extensively used in cryptography (see
the surveys [App11, Ish13]), the class SRE was left relatively unexplored. The main known result
(observed in [App14]) is that

SRE ⊆ SZK.
That is, a statistical randomized encoding for a problem Π can be transformed into a statistical
zero knowledge proof system for the same problem. The exact relation between SRE and SZK,
and, in particular, the intriguing possibility that these two classes are actually equivalent was left
as an open problem. This question was recently addressed by Agrawal, Ishai, Khurana, and Paskin-
Cherniavsky [AIKP15] who provided an oracle separation between the two classes, in addition to
candidates for problems in SRE that are not solvable in (non-uniform) polynomial-time. As usual,
an oracle separation tells us that equivalence cannot be established via relativized techniques, and
so it essentially addresses the proof of equivalence (or technical barriers against it). However, such
separations tell us very little on the statement itself (SRE = SZK) and its potential implications
on the landscape of computational complexity.

1The literature contains many other natural choices for security (e.g., computational [AIK05]) and efficiency
(e.g., client with low parallel complexity and polynomial-time server [AIK04]). Following Agrawal, Ishai, Khurana,
and Paskin-Cherniavet [AIKP15], we view the current choice as a natural starting point for a complexity-theoretic
treatment.
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1.1 Our Results

In this paper, we continue the complexity theoretic study of SRE , as advocated by [AIKP15], and
further explore the exact relationship between SRE and SZK. We study variants of these classes,
prove their equivalence, and sharpen the difference between SRE and SZK. We also point out
several interesting complexity-theoretic implications of an equivalence between SRE and SZK.
Overall, we believe that our results shed light on the causes for which SZK is (seemingly) more
powerful than SRE .

1.1.1 Non-interactive ZK is equivalent to Semi-private RE

Zero-knowledge proofs differ from randomized-encoding in many aspects. Most notably, the flow of
information is reversed (Server-to-Client for ZK-proofs vs. Client-to-Sever for encodings). Let us
ignore this major difference and focus on two seemingly less important syntactic differences. First,
recall that REs are non-interactive while zero-knowledge proofs are allowed to use interaction.
Secondly, the privacy condition of REs should hold for both yes and no instances, whereas the ZK
condition is defined only with respect to yes-instances. In an attempt to make a “fair” comparison
between these two notions, we consider non-interactive zero-knowledge proofs (NISZK) [BFM88]
and statistical randomized encoding with one-sided privacy (1RE) [AIK04, AIK15].

The NISZK model, introduced by Blum, Feldman and Micali [BFM88], restricts the prover to
send a single message to the verifier at the expense of allowing the parties to share a common
reference string that was pre-sampled by a trusted (efficient) dealer.2 The notion of statistical
randomized encoding with one-sided privacy was introduced by Applebaum, Ishai, and Kushile-
vitz [AIK04] (under the term semi-private encoding) as a relaxation of REs in which the privacy
condition should hold only for yes-instances.

We show that the corresponding complexity classes NISZKpub and 1RE are essentially equiv-
alent.

Theorem 1.1. It holds that NISZKpub ⊆ 1RE and, in the non-uniform setting, 1RE ⊆ NISZKpub.

The “non-uniform” setting refers to the case where all efficient entities (the client, the dealer,
and the RE/SZK simulators) are modeled by polynomial-size circuits. The theorem shows that,
non-uniformly, the class NISZKpub is equivalent to the class 1RE . It is known that NISZKpub ⊆
SZK [PS05] and, by definition, we have that SRE ⊆ 1RE . Hence, together with Theorem 1.1, we
derive the following interesting picture (in the non-uniform setting):

SRE ⊆ 1RE = NISZKpub ⊆ SZK.

Note that if SZK collapses to SRE then all intermediate classes also collapse. This means that
the question of putting SZK inside SRE boils down to two separate questions: “Can statistical
zero-knowledge be made non-interactive?” (NISZKpub = SZK?) and “Can one-side privacy be
upgraded to full privacy?” (SRE = 1RE?). Nicely, each of these well motivated questions is “pure”

2Our description corresponds to the public-parameter model, which is widely used in the literature (see [PS05] and
references therein). This setting generalizes the original common random string (crs) model proposed by Blum
et al. [BFM88], in which the reference string is simply a uniformly random string of polynomial length. Fol-
lowing [CCKV08], we use the superscripts pub and crs to distinguish between these two variants. Observe that
NISZKcrs ⊆ NISZKpub.
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in the sense that it only addresses one object (either randomized encoding or zero-knowledge proofs).
We further mention that the first question (NISZK = SZK?) is a well-known open problem that
was studied before by [GSV99].3

1.1.2 Consequences of Randomized Encoding for Intractable Problems

Another way to compare SZK to SRE is by asking what are the consequences of the existence of
computationally-intractable problems in the class. For example, the following theorem was proven
by Ostrovsky.

Theorem 1.2 ([Ost91]). If SZK is not in BPP, then Auxiliary-Input One-way functions exist.4

Auxiliary-input one-way functions (ai-OWF) are keyed functions that achieve a very weak form
of one-wayness. Roughly speaking, for each adversary there exists a set of hard keys on which the
adversary fails to invert the function. (See [Gol01] for definition.) However, it may be the case that
there is no universal set of keys which is simultaneously hard for all efficient adversaries.

For SRE we prove (Section 6) the following stronger implication:

Theorem 1.3. If SRE is not in BPP, then infinitely-often one-way functions exist.

Infinitely-often one-way functions (io-OWFs) are essentially standard one-way functions except
that their hardness holds over a (universal) set of infinitely many input lengths. This notion is
considered to be significantly stronger than ai-OWFs. For example, while it is possible to construct
ai-OWFs based on the worst-case hardness of graph-isomorphism (GI), it is unknown how to obtain
io-OWF from such an assumption. By Theorem 1.3, such a GI-based io-OWF would follow from
the equivalence of SZK and SRE . More generally, a proof of such an equivalence would allow us to
base io-OWFs on worst-case hardness in SZK improving the 25-year old classical result of [Ost91].

Theorem 1.3 also explains why all the candidates of Agrawal et al. [AIKP15] for computationally-
hard problems in SRE imply the existence of one-way functions – Such an assumption is inherently
necessary to separate SRE from BPP.

We can further ask what are the implications of an average-case hard problem in these com-
plexity classes. Roughly speaking, a promise problem Π is average-case hard if it is equipped with
a probability distribution D such that no efficient algorithm can classify correctly an instance x
sampled from D with probability significantly better than 1/2. Ostrovsky’s result can be used to
prove that the existence of an average-case average-case hard language in SZK implies the exis-
tence of a one-way function. The following (stronger) theorem is implicit in the work of Ong and
Vadhan [OV08].

Theorem 1.4 (implicit in [OV08]). If there exists an average-case hard language in SZK then a
constant-round statistically-hiding commitments (CRSC) exists.

3More precisely, [GSV99] focused on the crs model, and provided several necessary and sufficient conditions for
the equality NISZKcrs = SZK.

4This theorem, and all the other results in this section, is formulated in the uniform setting. If one considers a
non-uniform variant of SZK, then the theorem holds by changing BPP to P/poly and by relaxing the notion of
AIOWFs to be computable by polynomial-size circuits. Similar modifications can be applied to the other theorems
of this section.
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As a general primitive, CRCS implies the existence of one-way functions, and is believed to be
strictly stronger due to the black-box separation of [HHRS15]. We derive a stronger implication if
we have randomized encoding for an average-case hard problem. Specifically, we consider the class
PRE of problems that admit perfect randomized encoding [AIK04] – a strong a variant of SRE
which achieves perfect correctness (zero-decoding error), perfect privacy (the simulators perfectly
simulates the encoding) and enjoys some additional syntactic properties. (See Section 4 for a formal
definition.)

Theorem 1.5. If there exists an average-case hard language in PRE then collision-resistance hash
functions (CRH) exist.

The proof of the theorem is sketched in Section 7. CRH imply CRSC but the converse is not
known to be true. Hence, this implication is seemingly stronger than the one proven in [OV08].
Extending this theorem to the case of SRE is left as an interesting open problem.

2 Our Techniques

We explain the high-level idea behind the proof of Theorem 1.1. It is instructive to note that
all the complexity classes SZK,NISZK, 1RE and SRE essentially capture different variants of
“statistical-distance” problems. Indeed, as we already saw, for a SRE-problem Π, the membership
of x boils down to determining whether the distribution Enc(x) is close to one of two distributions
Simyes and Simno which are statistically-far apart from each other. Notably, these distributions are
universal and they depend only on the problem Π (and not on the input x). The work of [SV03]
also shows that, for any SZK-problem Π, there exists an efficient mapping from an instance x to
a pair distributions (Ax, Bx) which are statistically-close if x is a yes-instance and statistically-
far otherwise. However, in contrast to the case of SREs, the distributions (Ax, Bx) are instance
dependent. In particular, two different yes-instances x and x′ may be mapped to completely different
pairs of distributions (Ax, Bx) and (Ax′ , Bx′).

In the intermediate notion of NISZK, one of the distributions, say B, corresponds to the
dealer’s distribution and so it becomes universal [SCPY98, GSV99].5 Correspondingly, all yes-
instances x are mapped to this single universal distribution, i.e., Ax ≈ B. (Ax essentially corre-
sponds to the simulated version of the public-parameter). For no-instances, the distribution Ax

may be instance-dependent. Similarly, for 1RE , only yes-instances are mapped by Enc(x) to some
universal yes-distribution Simyes, whereas the encoding of a no-instance Enc(x) may be instance-
dependent. Overall, the privacy properties of 1RE and the zero-knowledge properties of NISZK
match nicely. Still, there is one technical difference with respect to the requirements on the distri-
butions of no-instances.

In 1RE , correctness requires the existence of a single decoder that distinguishes between the
yes-distribution Simyes to all the no-distributions {Enc(x)}x∈Πno

. This means that Simyes is
“universally-far” from all the no-distributions. In contrast, the soundness property of NISZK
requires from every no-distribution Ax to be “disjoint” from B in the following sense: A random

sample from the universal distribution b
R← B should fall, with high probability, outside the support

of Ax. To prove Theorem 1.1 we should be able to move from “universal-farness” to “disjointness”

5Interestingly, in the crs model, this distribution is simply the uniform distribution and it is therefore also
problem-independent.
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and vice versa. While it is relatively straightforward to convert disjointness to universal-farness
(e.g., via parallel-repetition), the converse direction requires some work.

As a concrete (and somewhat simplified) example, imagine the case where we have a single
pair of distributions X and Y , where X outputs, with probability 1 − ε, a random n-bit string
whose first bit is 1, and, with probability ε, a random n-bit string whose first bit is 0. Assume
that Y does exactly the opposite. These distributions are (1 − 2ε)-far in statistical distance, but
they do not satisfy the disjointness property as their supports are equal. The key observation is to

note that a typical y
R← Y value, has much larger weight under Y compared to its weight under X.

When these distributions are implemented by circuits that use m random bits as inputs, this means
that the set of preimages Y −1(y) is likely to be significantly larger than the set X−1(y). In other
words, the entropy e1 of the conditional distribution [r|Y (r) = y] is larger than the entropy e2 of
the conditional distribution [r|X(r) = y]. Following the approach of [GSV99], we can turn these
distributions to be disjoint by hashing out about e1 ≪ e≪ e2 random bits from r, and appending
the result h(r) to the output. That is, we define a pair of new distributions by X ′ = (X(r), h, h(r))
and Y ′ = (Y (r), h, h(r)) where h is sampled from a 2-universal family of hash functions.6 One can

now show that for a typical y
R← Y (and most h’s), the conditional distribution [h(r)|Y (r) = y]

is almost uniform, whereas the conditional distribution [h(r)|X(y) = y] has small support. This
means that a random sample from Y ′ is likely to land out of the support of X ′, as required.

The actual construction introduces some additional technicalities. Most notably, it requires an
estimation on the amount of entropy of the distribution which is sampled by Simyes, the simulator
of the original encoding. We overcome this problem by treating this value as a non-uniform advice.
We note that this advice is short (of logarithmic length) and so one may hope to simply try all
possible values. The problem is that some of these values will violate the zero-knowledge property,
while others would violate soundness. Unfortunately, we do not know how to “combine” together
several faulty NISZK protocol into a single good protocol. The question of finding a way around
this problem and achieving a fully uniform reduction is left for future research.

2.1 A Broader Perspective

We mainly view our results as indicating that SRE and SZK are unlikely to be equal. How-
ever, from a broader point of view, our results may be interpreted as saying that the two classes
are actually close variants of each other. This is similar in spirit to a recent result (of the same
authors) [AR16] that reveals a close connection between private simultaneous message protocols
(PSM) [FKN94] and Zero-Information Arthur-Merlin (ZAM) protocols [GPW15]. PSMs and
ZAMs can be viewed as the communication-complexity analog of Randomized Encodings and Zero-
Knowledge proofs, where instead of limiting the computational power of the client, we split it into
two non-communicating (computationally-unbounded) parties Alice and Bob each holding different
parts of the input x = (xA, xB). It is shown in [AR16] that the communication complexity of ZAM
protocols is closely related to the randomness complexity of (variants of) PSMs, and vice versa.
This is conceptually similar to some of the current results (e.g., 1RE = NISZKpub) though the
computational setting introduces different technical challenges, and correspondingly it requires a
significantly different approach.

6More generally, we could use any seeded randomness extractor that extracts e almost uniform bits from any
e2-bit source.
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Organization. We begin with some standard preliminaries in Section 3. In Section 4 we provide
formal definitions of statistical zero knowledge proofs, statistical randomized encoding and their
variants. Theorem 1.1 is proved in Section 5, Theorem 1.3 in Section 6 and Theorem 1.5 in
Section 7.

3 Preliminaries

Basic Definitions. For a finite set S, let s
R← S denote an element that is sampled uniformly at

random from S, and let U(S) denote the corresponding random variable. The uniform distribution
over n-bit strings is denoted by Un. The support of a random variable X is the set supp(X) :=
{x | Pr[X = x] > 0}. The Shannon entropy of X is H(X) := −∑

z Pr[X = z] log Pr[X = z]. For
a distribution D, we let ⊗kD be the probability distribution over k-tuples where each element is
sampled independently according to D. Similarly, for a randomized algorithm F (x), we let ⊗kF (x)
be a k-tuple of k independent samples of F (x). We sometimes make the coins of a randomized

algorithm F explicit by writing F (x; r) where r
R← Us(x) denotes the random coins used on an input

x and s(x) denotes the randomness complexity of F on an input x, which, by default, is assumed
to solely depend on the length of x.

Statistical Distance. The statistical distance between a pair of random variables X and Y
distributed over the set Z is defined as

∆(X;Y ) :=
1

2

∑

z∈Z
|Pr[X = z]− Pr[Y = z]| .

Equivalently, ∆(X;Y ) = maxA |Pr[A(X) = 1]− Pr[A(Y ) = 1]| where the maximum ranges over
all Boolean functions A : Z → {0, 1}. We write ∆

x1
R←D1,...,xk

R←Dk

(F (x1, . . . , xk);G(x1, . . . , xk))

to denote the statistical distance between two random variables obtained as a result of sampling
xi’s from Di’s and applying the functions F and G to (x1, . . . , xk), respectively. We will use the
following properties of statistical distance and entropy.

Fact 3.1. Let X and Y be a pair of random variables. Then the following holds:

1. [Vad99, Fact 3.2.2] For every (possibly randomized) function F , we have that ∆(F (X);F (Y )) ≤
∆(X;Y ).

2. [Vad99, Fact 3.3.9] Let D be the range of X and Y , then |H(X)−H(Y )| ≤ (log |D|) ·
∆(X;Y ) + 1.

3. [Vad99, Lemma 3.1.15] For any integer q > 0, we have that 1 − 2 exp(−q(∆(X;Y ))2/2) ≤
∆(⊗qX;⊗qY ) ≤ q∆(X;Y ).

4. [SV03, Fact 2.5] Suppose that X = (X1, X2) and Y = (Y1, Y2) are distributed over a set D×E
such that: (a) X1 and Y1 are identically distributed; and (b) with probability greater than 1−ε

over x
R← X1, we have ∆(X2|X1=x, Y2|Y1=x) ≤ δ. Then ∆(X,Y ) ≤ ε+ δ.

5. (cf. Appendix A.1) If ∆(X;Y ) ≥ 1−ε, then, for any t > 1, it holds that Pr
x

R←X
[Pr[X = x] <

t · Pr[Y = x]] ≤ εt.
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Flattening. We will use the following notion of ∆-flat distributions from [GSV99].

Definition 3.2 (Flat Distributions). Let X be a distribution. An element x of supp(X) is called ε-
typical if |log(1/Pr[X = x])−H(X)| ≤ ε. We say that X is ∆-flat if for every t > 0 the probability
that an element chosen from X is (t ·∆)-typical is at least 1− 2−t

2+1.

A 0-flat distribution is uniform on its support, and is simply referred to as a flat distribution.
A natural way to flatten a distribution is via parallel repetition.

Lemma 3.3 (Flattening Lemma [Vad99, GSV99]). Let D be a distribution such that for all x from
supp(D) we have that D(x) ≥ 2−m. Then, for any k ∈ N, the distribution ⊗kD is (

√
k ·m)-flat.

Hashing. A family H of functions mapping a domain D to a range R is 2-universal [CW79] if
for every two elements x 6= y from D and a, b from R it holds that Pr

h
R←H[h(x) = a ∧ h(y) = b] =

1
|R|2 . We write Hn,m to denote a 2-universal family from {0, 1}n to {0, 1}m. There are efficient

constructions of 2-universal families of hash functions Hn,m that can be evaluated and sampled in
poly(n,m) time [CW79].

Lemma 3.4 (Leftover Hash Lemma [ILL89, GSV99]). Let H be a 2-universal family of hash
functions mapping a domain D to a range R. Let X be a flat distribution on D such that for all
x ∈ supp(X) we have that Pr[X = x] ≤ α/|R|. Then

∆
h

R←H
((h, h(X)); (h, U(R))) ≤ O(α1/3).

Sampling distributions via circuits. Let X be a circuit with m input and n output gates. We
will sometimes abuse notation and use X to denote the random variable X(Um) which corresponds
to the output distribution of the circuit induced by “feeding” a uniformly chosen n-bit input. We
let X−1(x) denote the set of preimages of x under X, i.e., X−1(x) := {r ∈ {0, 1}m | X(r) = x}.
Observe that Pr[X = x] = 2−m · |X−1(x)|.

4 NISZK and SRE
A promise problem [ESY84] Π is a pair of two non-intersecting sets of strings (Πyes,Πno). The
strings in Πyes are called yes-instances and the strings in Πno are called no-instances. Let χΠ(x)
be the characteristic function of Π which outputs 1 on yes-instances and 0 on no-instances. Note
that a promise problem is a generalization of a language L ⊆ {0, 1}∗, i.e., L is translated into a
promise problem ΠL where L corresponds to the set of yes-instances and {0, 1}∗ \L corresponds to
the set of no-instances. (See [Gol06] for a survey.)

Definition 4.1 (statistical randomized encoding [IK00, AIK04]). We say that an efficient ran-
domized algorithm Enc is a ε-private and δ-correct statistical randomized encoding of a promise
problem Π = (Πyes,Πno) (abbreviated (ε, δ)-SRE), if the following holds:

ε-privacy for yes-instances: There exists an efficient simulator Simyes such that for every yes-
instance xyes of length n from Π, ∆(Simyes(1

n);Enc(xyes)) ≤ ε(n).

ε-privacy for no-instances: There exists an efficient simulator Simno, such that for every no-
instance xno of length n from Π, ∆(Simno(1

n);Enc(xno)) ≤ ε(n).
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δ-correctness: There exists a computationally-unbounded decoder Dec, such that for every in-
stance x ∈ (Πyes ∪Πno) of length n, Pr[Dec(Enc(x)) 6= χΠ(x)] ≤ δ(n).

By default, ε(n) and δ(n) are required to be negligible functions.

Perfect Encoding [AIK04]. A randomized encoding which is 0-private (resp., 0-correct) is
called perfectly private (resp., perfectly correct). For an input of length n, let s(n) denote the
length of the random strings used by Enc and let t(n) be the output length of the encoding. A
perfectly private and perfectly correct randomized encoding whose simulators use s(n) coins, their

support satisfy supp(Simyes(1
n)) ∪ supp(Simno(1

n)) = {0, 1}t(n), and 1 + s(n) = t(n) is called
perfect. (See [AIK04] for an intuitive explanation of these requirements.)

One-sided Encoding [AIK04, AIK15]. A randomized encoding which is ε-private on yes-
instances and δ-correct is called one-sided (or semi-private) randomized encoding (denoted with
(ε, δ)-1RE)[AIK04, AIK15]. Clearly, any (ε, δ)-SRE is also (ε, δ)-1RE, though the converse does not
necessarily hold. A disjoint one-sided randomized encoding is an encoding which is ε-private on
yes-instances and, instead of standard correctness, it satisfies the following ρ-disjointness property:
For every no-instance xno of length n from Π, it holds that Pr[Simyes(1

n) ∈ supp(Enc(xno))] ≤ ρ(n).
We refer to such an encoding as (ε, ρ)-D1RE.

Definition 4.2 (non-interactive statistical zero-knowledge [BSMP91]). A non-interactive statis-
tical zero-knowledge proof system (NISZK) for a promise problem Π = (Πyes,Πno) is defined by
probabilistic algorithms Prov (prover), Ver (verifier), Deal (dealer), and Sim (simulator), such that
for every n-bit instance x the following holds

α-Completeness: If x ∈ Πyes then Pr[Ver(x, σ,Prov(x, σ)) 6= 1] ≤ α(n), where σ
R← Deal(1n).

β-Soundness: If x ∈ Πno then Pr[∃p : Ver(x, σ, p) = 1] ≤ β(n), where σ
R← Deal(1n).

γ-Zero-Knowledge: If x ∈ Πyes then the pair (σ, p) is γ(n)-close in statistical distance to the

pair (σ′, p′) where σ
R← Deal(1n), p

R← Prov(x, σ) and (σ′, p′)
R← Sim(x).

The algorithms Ver,Deal, and Sim are required to be efficient, while the prover’s algorithm Prov is
allowed to be computationally unbounded. By default, α, β and γ are assumed to be negligible in n.

Variants. In the special case where the dealer Deal(1n) samples σ uniformly from the set of
all strings of length r(n) (for some polynomial r(·)), the proof system is called an interactive
zero-knowledge proof system in the common random string model and is denoted by (α, β, γ)-
NISZK

crs [BFM88]. We will focus on the more general setting (defined above) where the dealer is
allowed to use any arbitrary (polynomial-time samplable) distribution. This setting is referred to
as the public parameter model and protocols in the model are denoted by (α, β, γ)-NISZKpub.7

Remark 4.3 (Efficiency: Uniformity vs. Non-Uniformity). Randomized encodings and non-interactive
statistical-zero knowledge proof systems can be defined either in the uniform setting where all ef-
ficient entities (encoder, RE-simulator, verifier, dealer, and NISZK-simulator) are assumed to be

7The class NISZK
pub was implicitly considered in [BDLP88], and was later referred to as NISZK in the auxiliary

string model [Dam00] and as protocol-dependent NISZK by [GB00]. Our terminology (NISZK in public parameter

model) is taken from [PS05].
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probabilistic polynomial-time algorithms, or in the non-uniform setting where these entities are
represented by probabilistic polynomial-time algorithms which take a non-uniform advice. We will
emphasize this distinction only when it matters (Theorem 5.1), and otherwise, (when the results
are insensitive to the difference) ignore it.

Definition 4.4 (Complexity classes). The complexity class SRE (resp., 1RE, NISZKpub) is the
set of all the promise problems that have an SRE (resp., 1RE, NISZKpub).

5 NISZKpub = 1RE
In this section we will prove Theorem 1.1. We start by showing that the notions of 1RE and D1RE

are equivalent in Section 5.1. Then, based on this equivalence we prove that NISZKpub = 1RE .
In the first part of the proof we show that NISZKpub ⊆ 1RE (cf. Section 5.2). In the second part
of the proof we show that 1RE ⊆ NISZKpub (cf. Section 5.3).

5.1 Equivalence of 1RE and D1RE

We start by showing how to convert a 1RE F for a promise problem Π into a D1RE G for the same
problem. The construction is inspired by the techniques of [GSV99]. The encoding G consists of
sufficiently many independent copies of F together with a hash of the randomness used to generate
the copies. In order to achieve disjointness, while keeping privacy, the length of the hash is chosen
such that for yes-instance the hash is close to uniform and in the case of no-instances the support
of the hash output is relatively small.

We note that this construction is non-uniform. That is, the length of the hash is chosen using
a non-uniform advice that depends on the entropy of the encoding distribution on yes-instances. It
is an interesting open question whether one can give a uniform construction achieving disjointness.

Theorem 5.1. If the promise problem Π has a (possibly non-uniform) 1RE F , then it also has a
non-uniform D1RE G. Moreover, if F is uniform then G can be implemented based on F and an
advice of O(logn) bits.

Proof. Let Π be a promise problem that has an ε-private and δ-correct 1RE F , where ε and δ are
negligible. Let SimF be the simulator showing the privacy of F on yes-instances. For an input
length of n, let m = m(n) = poly(n) denote the maximum bit-length of the randomness used by
SimF and F . We define a D1RE G(x) for Π as follows:

1. Parameters: q = 106nm2, m′ = qm.
2. Non-uniform advice ℓ := ⌈m′ −H(Sn)−√qn ·m− 2n⌉.
3. Input: x ∈ {0, 1}n.
4. Sample randomness r = (r1, . . . , rq)

R← {0, 1}m′

(where |ri| = m), and a pair-wise independent

hash function h
R← Hm′,ℓ.

5. Output ((F (x; r1), . . . , F (x; rq)), h, h(r)).

To simplify notation, we let Jx(r) = (F (x, r1), . . . , F (x, rq)) and write Jx to denote the distri-

bution induced by a uniform choice of r
R← Um′ . We let Sn = ⊗qSimF (1

n), and let H denote the
family Hm′,ℓ.
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We proceed with an analysis of the encoding G, starting with privacy. We define the simulator
SimG(1

n) to generate the random variable (Sn, U(H), Uℓ). Fix some yes-instance x of length n
from Π. Our goal is to show that the statistical distance ε′(n) between SimG(1

n) and G(x) is
upper-bounded by some negligible function. First observe that, by the triangle inequality, ε′ is
upper-bounded by

∆(SimG(1
n) ; (Jx, U(H), Uℓ)) + ∆((Jx, U(H), Uℓ) ; G(x)). (1)

By the ε-privacy of the original encoding and by Fact 3.1 item 3, the first summand satisfies

∆(SimG(1
n) ; (Jx, U(H), Uℓ)) = ∆((Sn, U(H), Uℓ) ; (Jx, U(H), Uℓ)) ≤ ∆(Sn, Jx) ≤ qε(n) = neg(n).

It is left to analyze the second summand in (1), i.e., to upper-bound the quantity

∆
r
R←{0,1}m′

,h
R←H

((Jx(r), h, Uℓ) ; (Jx(r), h, h(r))). (2)

Since the first entry is identically distributed in both distributions, it suffices to analyze the
statistical distance between the two tuples conditioned on the outcome of the first entry Jx. Indeed,
we prove the following claim.

Claim 5.2. With probability 1− 2−Ω(n) over z
R← Jx, it holds that

∆
r
R←{0,1}m′

,h
R←H

([Jx(r), h, Uℓ|Jx(r) = z] ; [Jx(r), h, h(r)|Jx(r) = z]) < 2−Ω(n). (3)

It follows (by Fact 3.1 item 4) that (2) is upper-bounded by 2−Ω(n).

Proof of Claim 5.2. Recall that on any input x the encoding F uses at most m random bits, and
so any element in its support has weight at least 2−m. Hence, due to the Flattening Lemma 3.3,

the distribution Jx is ∆-flat for ∆ =
√
qm. Since z

R← Jx is (
√
n∆)-typical with probability at least

1−O(2−n), it suffices to show that (3) holds for every (
√
n∆)-typical z.

Fix some (
√
n∆)-typical z from Jx and consider the distribution (Jx(r), h, h(r)) conditioned on

Jx(r) = z. The conditional distribution of r is uniform over the set J−1x (z). We will show below
that

log(|J−1x (z)|) ≥ ℓ+ n (4)

Therefore we can apply the Leftover Hash Lemma 3.4 to the distribution of r
R← J−1x (z) with

R = {0, 1}ℓ and α = 2−n, and conclude that the distribution of (Jx(r), h, h(r)) conditioned on
Jx(r) = z is O(2−n/3)-close to the distribution (z, U(H), Uℓ).

It remains to prove (4). First, we show that the entropies H(Jx) and H(Sn) are close. Indeed,
by the privacy of F , we have that ∆(SimF (1

n);F (x)) ≤ ε(n) and therefore (by Fact 3.1 item 3)

∆(Jx;Sn) ≤ qε(n). Hence, by Fact 3.1 item 2, we get that, for all sufficiently large n’s,

|H(Jx)−H(Sn)| ≤ m′qε(n) + 1 ≤ 2, (5)

where the second inequality follows by noting that ε(n) is negligible in n, and m′, q are polynomials
in n. Now, recall that z is (

√
n∆)-typical, and therefore log(|J−1x (z)|) ≥ m′ − H(Jx) −

√
n∆.

Plugging in (5) we conclude that

log(|J−1x (z)|) ≥ m′ −H(Sn)− 2−√n∆ ≥ ⌈m′ −H(Sn)−
√
n∆− 2n⌉

︸ ︷︷ ︸

=ℓ

+(n− 3) + n ≥ ℓ+ n,
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where the last inequality holds for n ≥ 3.

We move on to prove the disjointness property. Fix some no-instance x. Our goal is to upper-
bound

Pr [SimG(1
n) ∈ supp(G(x))] = Pr [(Sn, U(H), Uℓ) ∈ supp(G(x))] (6)

by some negligible function. For z
R← Sn, let E = E(z) be the event that |J−1x (z)| ≤ 2ℓ−n. By

marginalizing the probability, we can upper-bound (6) by

Pr
z
R←Sn,h

R←H,w
R←{0,1}ℓ

[(z, h, w) ∈ supp(G(x)) | E(z)] + Pr
z
R←Sn

[¬E(z)].

We will show that both the first and second summand are negligible in n.

Claim 5.3. Pr
z
R←Sn,h

R←H,w
R←{0,1}ℓ [(z, h, w) ∈ supp(G(x)) | E(z)] ≤ 2−n.

Proof. By definition supp(G(x)) = {(Jx(r), h, h(r)) | r ∈ {0, 1}m
′

, h ∈ H}. Therefore, for any fixed

z and h the probability, over w
R← {0, 1}ℓ, that the triple (z, h, w) lands in supp(G(x)) is exactly

|h(J−1x (z))|
2ℓ

≤ |J
−1
x (z)|
2ℓ

,

which is upper-bounded by 2ℓ−n/2ℓ = 2−n when we condition on E(z).

We conclude the proof by showing that for z
R← Sn the event E(z) happens almost surely.

Claim 5.4. Pr
z
R←Sn

[log |J−1x (z)| ≤ ℓ− n] ≥ 1− 2−Ω(n).

Proof. Call z good if
z is (

√
n∆)-typical, where ∆ =

√
qm, (7)

and
Pr[Sn = z] ≥ 2q/10 Pr[Jx = z]. (8)

We begin by showing that, except with probability 2−Ω(n), a random z
R← Sn is good. First, recall

that SimF (1
n) uses at most m random bits, and so any element in its support has weight at least

2−m. Hence, due to the Flattening Lemma 3.3, the distribution Sn is ∆-flat for ∆ =
√
qm which

implies that a random z
R← Sn satisfies (7) with probability at least 1 − 2−Ω(n). Next, we show

that, except with probability 2−Ω(n), a random z
R← Sn satisfies (8). Indeed, due to the correctness

property of F , we have that ∆(SimF (1
n);F (x)) ≥ 1/2 which implies (by Fact 3.1 item 3) that

∆(Sn, Jx) ≥ 1− 2 exp(−q/8). Applying Fact 3.1 item 5, we conclude that

Pr
z
R←Sn

[Pr[Sn = z] < tPr[Jx = z]] ≤ t · 2 exp(−q/8),

for any t ≥ 1. Taking t := 2q/10, and noting that

t · 2 exp(−q/8) ≤ 2t · 2−q/8 = 2 · 2q/10 · 2−q/8 = 2−q/40+1 = 2−Ω(n),
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we conclude that (8) holds for all but 2−Ω(n)-fraction of the z
R← Sn. It follows, by a union-bound,

that, except with probability 2−Ω(n), a random z
R← Sn is good.

Finally, we prove that for any good z it holds that log |J−1x (z)| ≤ ℓ− n. By definition

|J−1x (z)| = 2m
′ · Pr[Jx = z]

and by (8) the latter is upper-bounded by

2m
′−q/10 · Pr[Sn = z].

Recalling that Pr[Sn = z] ≤ 2−H(Sn)+
√
n∆ (since z is

√
n∆-typical) we conclude that

|J−1x (z)| ≤ 2m
′−q/10−H(Sn)+

√
n∆.

Hence, we get that

log |J−1x (z)| ≤ m′ −H(Sn) +
√
n∆− q/10 ≤ ⌈(m′ −H(Sn)−

√
n∆− 2n)⌉

︸ ︷︷ ︸

=ℓ

−n+ (3n+ 3
√
n∆− q/10)

︸ ︷︷ ︸

T

.

Since q = 106nm2 the expression T is always negative, and the claim follows.

This completes the proof of Theorem 5.1.

Now we show that if we repeat a D1RE polynomially many times we preserve the privacy of the
encoding on yes-instances and gain the correctness security property of 1RE.

Theorem 5.5. Let Π be a promise problem that has an ε-private and ρ-disjoint D1RE F , where
ε and ρ are negligible. Then, there exists G a 1RE for Π that is ε′-private and δ-correct, where ε′

and δ are negligible.

Proof. For an instance x of length n, we define a randomized encoding G(x) to be ⊗nF (x). Since
F is efficient, the encoding G is also efficient. We prove that G is a 1RE for Π.

privacy for yes-instances: Let SimF be the simulator showing the privacy of F on yes-instances.
Define SimG(1

n) := ⊗nSimF (1
n). Take any yes-instance x from Π. We have that

∆(SimG(1
n);G(x)) = ∆(⊗n

SimF (1
n);⊗nF (x)) ≤ n · ε(n),

where the last inequality holds due to Fact 3.1 item 3. Since ε(n) is negligible, we have that
ε′(n) := n · ε(n) is also negligible.

Correctness: Let Z =
⋃

x∈Πno
supp(G(x)). The decoder Dec on input s outputs 0 if s ∈ Z; and

outputs 1, otherwise. Clearly, a no-instance is always decoded correctly. For a yes instance x, we
upper-bound the decoding error by showing that Pr[G(x) ∈ Z] is negligible. Since G is ε′-private
on yes-instances, we have that

Pr[G(x) ∈ Z] ≤ Pr[SimG(1
n) ∈ Z] + ε′(n).

By ρ-disjointness, it holds that Pr[SimF (1
n) ∈ supp(F (xno))] ≤ ρ(n), for any no-instance xno. This

implies that if we repeat this experiment n times we get that Pr[SimG(1
n) ∈ supp(G(xno))] ≤ ρ(n)n.

By a union bound, we conclude that Pr[SimG(1
n) ∈ Z] ≤ 2nρ(n)n, which implies that

Pr[G(x) ∈ Z] ≤ 2nρ(n)n + ε′(n) ≤ neg(n).

The theorem follows.
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5.2 From NISZK
pub to 1RE

In this section we prove that NISZKpub ⊆ 1RE .
Theorem 5.6. NISZKpub ⊆ 1RE.
Proof. Let Π be a promise problem with (α, β, γ)-NISZKpub consisting of (Prov,Ver,Deal, Simzk),
where α, β, γ are negligible. By Theorem 5.5, it suffices to show that Π has a (ε, ρ)-D1RE Enc for
some negligible ε and ρ. For an n-bit string x, we define a randomized encoding Enc(x) as follows:

1. Compute (σ, p) = Simzk(x).
2. Compute the bit b = Ver(x, σ, p).
3. If b = 1 output σ, otherwise output a fixed string zn 6∈ supp(Deal(1n)).8

Observe that Enc is efficient because Simzk and Ver are efficient. We prove that Enc is a D1RE.

Privacy: We define Simyes(1
n) = Deal(1n) and prove that for any yes instance x the distribution

Simyes(1
n) is ε(n)-close to Enc(x) where ε(n) = α(n) + 2 · γ(n) = neg(n). Fix some yes-instance x

of length n. Due to the zero-knowledge property of NISZK, we have that

∆
σ

R←Deal(1n)

(Simzk(x), (σ,Prov(x, σ))) ≤ γ(n).

By the definition of the statistical distance, this implies that
∣
∣
∣
∣
∣

Pr
σ

R←Deal(n)

[Ver(σ, x,Prov(x, σ)) 6= 1]− Pr
(σ,p)

R←Simzk(x)

[Ver(σ, x, p) 6= 1]

∣
∣
∣
∣
∣
≤ γ(n).

Because of the correctness property of NISZK, we have that

Pr
σ

R←Deal(n)

[Ver(σ, x,Prov(x, σ)) 6= 1] ≤ α(n).

This implies that
Pr

(σ,p)
R←Simzk(x)

[Ver(σ, x, p) 6= 1] ≤ α(n) + γ(n).

The latter inequality means that in the execution of Enc(x) the bit b equals to 1 except with the
probability α(n) + γ(n). Hence, ∆(Enc(x); Simzk(x)[1]) ≤ α(n) + γ(n), where Simzk(x)[1] denotes
the first component of the tuple output by the simulator. Because of the zero-knowledge property
of NISZK and due to Fact 3.1 item 1, we have that ∆(Simzk(x)[1];Deal(1

n)) ≤ γ(n). Finally,
combining the last two inequalities, we get that

∆(Enc(x);Deal(1n)) ≤ α(n) + 2 · γ(n) = neg(n).

Disjointness: Let x be a no-instance of Π. Let E ⊆ supp(Deal(1n)) denote the set of the strings
admitting a proof for the no-instance x, i.e., E := {σ ∈ supp(Deal(1n)) | ∃p : Ver(σ, x, p) = 1}. By
Enc’s construction we have that supp(Enc(x)) ⊆ E ∪ {zn}. This implies that

Pr[Deal(1n) ∈ supp(Enc(x))] ≤ Pr[Deal(1n) ∈ E ∪ {zn}]
(⋆)
= Pr[Deal(1n) ∈ E] ≤ β(n),

8For example, such a z(n) can be efficiently constructed by appending a trailing 1 to the output of Deal(1n) and
setting z(n) to the all-zero string.
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where the last inequality follows from the soundness property of NISZK, and the equality (⋆) holds
because zn 6∈ supp(Deal(1n)).

5.3 From 1RE to NISZK
pub

Theorem 5.7. If the promise problem Π has a (possibly non-uniform) 1RE F , then it also has a
non-uniform NISZK

pub proof system. Moreover, if F is uniform then the NISZK
pub proof system

can be implemented based on F and an advice of O(log n) bits.

Proof. Let Π ∈ 1RE . Due to Theorem 5.1, there exists a non-uniform (ε, ρ)-D1RE Enc for Π such
that ε and ρ are negligible. Let s(n) denote the randomness complexity of the encoding Enc when
it is applied to an n-bit input x, and let Simre be the simulator showing the privacy of Enc on
yes-instances. We construct a proof system (Prov,Ver,Deal, Simzk) for Π as follows:

– Deal: Given 1n, the dealer outputs Simre(1
n).

– Prov: Given an n-bit input x and a string σ from Deal, the prover samples a random r ∈
{0, 1}s(n) subject to Enc(x, r) = σ, and sends it to the verifier. If no such r exists the prover
sends some arbitrary message.

– Ver: Given (x, σ, r), the verifier accepts if Enc(x, r) = σ, and other rejects.
– Simzk: Given x, the simulator Simzk samples a random r and outputs the pair (Enc(x, r), r).

We show that (Prov,Ver,Deal, Simzk) forms a NISZK for Π.

Completeness: Consider some yes-instance x of length n. Recall that, by the privacy of D1RE,
the simulator’s distribution Simre(1

n) is ε(n)-close to Enc(x), which implies that

Pr[Simre(1
n) ∈ supp(Enc(x))] ≥ 1− ε(n).

Hence, except with probability ε(n), for a string σ generated by Simre(1
n), the prover Prov can

find r, such that Enc(x, r) = σ.

Soundness: For all no-instances x of Π, we have that

Pr
σ

R←Deal(1n)

[∃p : V (x, σ, p) = 1] = Pr
σ

R←Simre(1n)

[σ ∈ supp(Enc(x))] ≤ δ(n),

where the last inequality follows from the disjointness property of Enc.

Zero Knowledge: For all yes-instances x of Π, we have that

∆
σ

R←Deal(1n)

(Simzk(x) ; (σ,Prov(x, σ))) = ∆
σ

R←Simre(1n),r
R←{0,1}s(n)

((Enc(x, r), r) ; (σ,Prov(x, σ)))

= ∆
σ

R←Simre(1n),r
R←{0,1}s(n)

((Enc(x, r),Prov(x,Enc(x, r))) ; (σ,Prov(x, σ)))

≤ ∆
σ

R←Simre(1n),r
R←{0,1}s(n)

(Enc(x, r);σ) ≤ ε(n),

where the second equality follows by recalling that Prov(σ) samples a random r subject to Enc(x, r) =
σ and so (Enc(x, r), r) is identically distributed to (Enc(x, r),Prov(x,Enc(x, r))), and the first in-
equality follows from Fact 3.1 item 1.
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6 If SRE is non-trivial then one-way functions exist

In this section we prove Theorem 1.3:

Theorem 1.3. If SRE is not in BPP, then infinitely-often one-way functions exist.

Proof. Assume that infinitely-often one-way functions do not exist. Impagliazzo and Luby [IL89]
showed that in this case every efficiently computable function g(x) can be “distributionally-inverted”
in the following sense: For every inverse polynomial α(·), there exists an efficient adversary A such
that, for random x ∈ {0, 1}n, the pair (x, g(x)) is α(n)-close to the pair (A(g(x)), g(x)). In other
words, for most x’s, A finds an almost uniform preimage of g(x). We refer to α as the deviation of
the inverter and set it to 1/10.

We will show that such an inverter allows to put SRE in BPP. Let Π be a promise problem
in SRE with ε-private δ-correct statistical encoding Enc for some negligible ε and δ. Let Simyes

and Simno be the simulators of the encoding and define Sim(1n, b) to be a “joint” simulator which
takes a single bit b ∈ {0, 1} as an input and outputs a sample from Simyes(1

n) if b = 1 and from
Simno(1

n) if b = 0. We decide Π via the following BPP procedure B: Given a string x ∈ {0, 1}n,
sample an encoding y

R← Enc(x) and α-distributionally invert the simulator Sim on the string y.
Take the resulting preimage (1n, b, r) (where r is the coins of the simulator) and output the bit b.9

We analyze the success probability of deciding Π with this procedure.

Claim 6.1. The procedure B decides Π with error probability of at most 1/6 + 5δ + ε+ α.

Proof. Let us focus on the case where x ∈ {0, 1}n is a yes-instance (the other case is symmetric).
First consider an “ideal” version B′ of the algorithm B in which (1) the string y is sampled from
Simyes(1

n) and (2) the distributional inversion algorithm is perfect and has zero deviation. Observe
that the gap between the error probability of the real algorithm B to the error probability of the
ideal algorithm B′ is at most ε+α (this is due to ε-privacy and to α-deviation of the actual inverter).
Hence, it suffices to show that the ideal version errs with probability of at most 1/6 + 5δ.

For a given encoding y, the ideal algorithm outputs the right answer b = 1 with probability
p1(y)

p0(y)+p1(y)
where p0(y) denotes the weight of y under Simno(1

n) and p1(y) denotes the weight of

y under Simyes(1
n). By the δ-correctness of the encoding and by Fact 3.1 item 5 (instantiated

with t = 5), it holds that, except with probability at most 5δ over y
R← Simyes(1

n), we have that
p1(y) ≥ 5p0(y). It follows, by a union bound, that the ideal algorithm errs with probability of at
most 5δ + 1/6, as required.

It remain to notices, that since δ and ε are negligible and α is an inverse polynomial, we have
that Π can be decided with success probability at least 2/3.

7 If PRE is hard on the average then CRH exist

In this section we will study the consequences of the existence of an average-case hard problem
Π ∈ PRE .

9We assume that the output of Sim(1n, b) uniquely determines the input length n and so the inverter must output
a triple with a “right” input length n. This is without loss of generality since we can always concatenate the input
length 1n to the encoding and to the output of Sim.
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Definition 7.1. We say that a promise problem Π = (Πyes,Πno) is hard on average if there exists
an efficient sampler S that given 1n outputs an n-bit instance of Π such that for every non-uniform
efficient algorithm A, ∣

∣
∣
∣
∣

Pr
x

R←S(1n)

[A(x) = χΠ(x)]− 1/2

∣
∣
∣
∣
∣
< neg(n).

We say that the problem has efficient Yes/No samplers if it is possible to efficiently sample from the
conditional Yes distribution Yn = [S(1n)|S(1n) ∈ Πyes] and from the conditional No distribution
Nn = [S(1n)|S(1n) ∈ Πno].

A collection of claw-free pseudo-permutations (CFPP) [GMR88, Dam87, Rus95] is a set of pairs
of efficiently computable functions f0, f1 : {0, 1}n → {0, 1}n for which it is hard to find a pair (u, v)
which forms a claw, i.e., f0(u) = f1(v), or a collapse, i.e., f b(u) = f b(v) and u 6= v. Collections
of claw-free permutations (CFPs) correspond to the special case where f0 and f1 are permutations
and so collapses simply do not exist.

Definition 7.2 (claw-free functions). A collection of pairs of functions consists of an infinite set
of indices, denoted I, finite sets Di for each i ∈ I, and two functions f0

i and f1
i mapping Di to

Di, respectively. Such a collection is called a claw-free pseudo-permutations if there exist three
probabilistic polynomial-time algorithms I, D, and F such that the following conditions hold:

Easy to sample and compute: The random variable I(1n) is assigned values in the set I ∩
{0, 1}p(n) for some polynomial p(·). For each i ∈ I, the random variable D(i) is distributed uni-
formly over Di. For each i ∈ I, b ∈ {0, 1} and x ∈ Di, F (b, i, x) = f b

i (x).

Hard to form claws: A pair (x, y) satisfying f0
i (x) = f1

i (y) is called a claw for index i. Let
Ci denote the set of claws for index i. It is required that for every probabilistic polynomial-time
algorithm A,

Pr
i
R←I(1n)

[A(i) ∈ Ci] < neg(n).

Hard to form collapses: A pair (x, y) satisfying f b
i (x) = f b

i (y) is called a collapse for an index
i and a bit b. Let Ti,b denote the set of collapses for (i, b). It is required that for every probabilistic
polynomial-time algorithm A and every b ∈ {0, 1},

Pr
i
R←I(1n)

[A(i) ∈ Ti,b] < neg(n).

If the last item holds for unbounded adversaries, i.e., f0
i and f1

i are permutations over Di, then the
collection is called a collection of claw-free permutations.

It is known that CFPP’s imply Collision-Resistant Hash functions (CRH) [Rus95]. We will
show that the existence of an average-case hard problem Π ∈ PRE implies the existence of CFPPs.
We begin with the simpler case in which Π has an efficient Yes/No samplers and show that, in this
case, we obtain a collection of claw-free permutations.

Theorem 7.3. If there exists an average-case hard language in PRE with efficient Yes/No samplers
then CFPs exist.

We will need the following simple claim.
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Claim 7.4. Let Π be a promise problem with perfect randomized encoding g whose simulators are
Simyes and Simno. Define the functions h0x, h

1
y which are indexed by a pair of instances (x, y) of Π

as follows:

h0x(r, b) =

{

g(x; r), if b = 0,

Simno(r), otherwise;
and h1y(r, b) =

{

g(y; r), if b = 0,

Simyes(r), otherwise;
(9)

Then the following holds for any n-bit strings x and y:

1. If x ∈ Πyes, then h0x is a permutation.
2. If y ∈ Πno, then h1y is a permutation.
3. If (x, y) ∈ Πno ×Πyes then Im

(
h0x

)
∩ Im

(
h1y

)
= ∅.

Proof. Let R0 and R1 denote Im(Simno) and Im(Simyes), respectively. Let s(n) denote the ran-
domness complexity of g and let t(n) denote the output length of g. Since g is a perfect randomized

encoding, we have that R0 ∩ R1 = ∅, R0 ∪ R1 = {0, 1}t(n), and t(n) = s(n) + 1. Consider the case

where x ∈ Πyes. Then h0x(·, 0) : {0, 1}s(n) → R1 is a bijection and h0x(·, 1) : {0, 1}s(n) → R0. Since

R0 ∩ R1 = ∅, the function h0x(·, ·) is a permutation on R0 ∪ R1 = {0, 1}t(n). Similarly, if y ∈ Πno,

the function h1y(·, ·) is a permutation on {0, 1}t(n).
In order to prove the third item, we observe that if x ∈ Πno, then Im

(
h0x

)
= R0; and if y ∈ Πyes,

then Im
(
h1y

)
= R1. This implies that for all (x, y) ∈ Πno ×Πyes it holds that Im

(
h0x

)
∩ Im

(
h1y

)
=

R0 ∩R1 = ∅.

We can now prove Theorem 7.3.

Proof of Theorem 7.3. Let Π be an average-case hard language with efficient Yes/No samplers
(Yn, Nn), and let g be a perfect randomized encoding for Π. For a pair of inputs (x, y) from Π, we
say that (x, y) is a (yes,no)-instance (resp., (no,yes)), if x is a yes-instance and y is a no-instance
(resp., if x is a no-instance and y is a yes-instance).

We construct a CFP family which is indexed by pairs (x, y) ∈ Πyes × Πno. Given a security

parameter 1n, an index (x, y) is chosen by sampling x
R← Yn and y

R← Nn. For each index (x, y) we let
f0
(x,y) ≡ h0x and f1

(x,y) ≡ h1y, where h
0
x and h1x are defined as in (9). Recall that the domain and range

of f b
x,y are {0, 1}t(n) where t(n) is the output length of g’s output. Clearly this collection is efficiently

samplable and efficiently computable. Moreover, since our sampler always samples a (yes,no)-
instance (x, y), it holds, due to Claim 7.4, that f0

(x,y) ≡ h0x and f1
(x,y) ≡ h1y are permutations on

{0, 1}t(n). We complete the proof by showing that claws are hard to find.
Recall that we assume that the distribution ensemble {Yn} is computationally indistinguishable

from {Nn}. By a standard hybrid argument, it follows that the pair (Yn, Nn) is computationally
indistinguishable from the pair (Yn, Yn) which, in turn, is computationally indistinguishable from
the pair (Nn, Yn). Now assume, for the sake of contradiction, that there exists an efficient algorithm

A that given (x, y)
R← (Yn, Nn) can find claws with non-negligible probability ε. We can use A to

distinguish (Yn, Nn) from (Nn, Yn) as follows: Given (x, y) call A(x, y) and output 1 if A’s output
(u, v) forms a collision under h0x and h1y. By assumption, the resulting distinguisher outputs 1 when

(x, y)
R← (Yn, Nn) with probability ε. In contrast, when (x, y)

R← (Nn, Yn), the distinguisher never
finds a claw since claws do not exist (due to Claim 7.4). Hence the distinguisher has a noticeable
advantage of ε, in contradiction to our assumption.
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We continue by considering the more general case where Π is hard on average but does not
admit efficient Yes/No samplers, and obtain, in this case, claw-free pseudo-permutations (whose
existence still implies collision-resistance hash functions).

Theorem 7.5. If there exists an average-case hard language in PRE then claw-free pseudo-
permutations (CFPP) exist.

Proof. The construction is identical to the one presented in Theorem 7.3, except that the index
(x, y) ∈ Π×Π is chosen by sampling both x and y independently from the distribution S(1n) over
which Π is average-case hard. By definition, the collection f b

(x,y) = hbx, where h is defined as in (9),
is efficiently samplable and efficiently computable. We verify that it is CFPP.

We begin by showing that f0
(x,y) = h0x is a pseudo-permutation (the case of f1

(x,y) is analogous).

Assume for the sake of contradiction that there is an algorithm A that can find collapses for f0
(x,y)

with a non-negligible probability ε. Using A we construct a new algorithm A′ that has a non-

negligible advantage in guessing χΠ(x) for x
R← S(1n). Given an input x

R← S(1n), the algorithm
A′ samples y ← S(1n), and then invokes A(x, y) to find a collapse (u, v) for f0

(x,y) = h0x. If A

finds a valid collapse (i.e., u 6= v and h0x(u) = h0x(v)), the algorithm A′ classifies the input x as a
no-instance and outputs 0; otherwise A′ outputs a random bit. Recall that when x is a yes-instance
the function h0x is a permutation, and so it does not have collapses. Hence, A′ outputs a correct
answer whenever A finds a collapse. Also, when a collapse is not found, the success probability of
A′ is 1/2. Hence, the overall success probability of A′ is

Pr
x

R←S(1n)

[A′(x) = χΠ(x)] = 1/2 · (1− ε) + 1 · ε = 1/2 + ε/2,

in contradiction to the average-case hardness of Π.
We move on to show that it is hard to find claws. Assume for the sake of contradiction that there

exists an efficient algorithm A that finds claws with a non-negligible probability ε. We construct a

new algorithm A′ that has a non-negligible advantage in guessing χΠ(x) for x
R← S(1n). Let

p = Pr
x

R←S(1n),y
R←S(1n)

[A(x, y) finds a claw |x ∈ Πno].

We distinguish between two cases based on the value of p.
First, consider the case where p ≥ ε/2. Then, by an averaging argument, there exists some

fixed no-instance x0 for which

Pr
y
[A(x0, y) finds a claw ] ≥ ε/2.

Recall that when the index is a (no,yes) pair there are no claws and so when A finds a claw, y

must be a no-instance We can therefore construct a non-uniform algorithm that decides y
R← S(1n)

as follows: Call A(x0, y) and output zero (“no”) if a collision is found and otherwise toss a random
coin. The success probability is at least ε/2 + (1− ε/2)/2 = 1/2 + ε/4.

Second, consider the case where p < ε/2. In this case, we determine whether x
R← S(1n) is a

yes-instance or a no-instance via the following procedure A′. Sample y
R← S(1n), and call A(x, y)
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if A returns a valid claw, outputs 1 (classify x as a yes instance); otherwise, output a random bit.
The success probability of A′ can be marginalized as follows:

Pr
x
[A′(x) succeeds ] = Pr

x,y
[A′(x) succeeds |A(x, y) finds a claw ] · ε

+ Pr
x,y

[A′(x) succeeds |A(x, y) doesn’t find a claw ] · (1− ε)

= Pr
x
[x ∈ Πyes|A(x, y) finds a claw ] · ε+ (1− ε)/2,

Therefore, it suffices to show that

Pr
x
[x ∈ Πyes|A(x, y) finds a claw ] ≥ 2/3 (10)

since this implies that A′ succeeds with probability of at least 2/3 · ε+ (1− ε)/2 = 1/2 + ε/6. To
prove (10), we upper-bound by 1/3 the probability of the complementary event:

Pr
x
[x ∈ Πno|A(x, y) finds a claw] =

Prx,y[A(x, y) finds a claw|x ∈ Πno] · Prx[x ∈ Πno]

Pr[A(x, y) finds a claw ]
≤ (ε/2) · (2/3)

ε
=

1

3
,

where the inequality follows by our assumption (p < ε/2) and by the fact that Prx[x ∈ Πno] < 2/3
(since otherwise the trivial adversary that always outputs 0 breaks the average-case hardness of Π
over S(1n)). The proof follows.
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A Omitted Proofs

A.1 Proof of Item 5 of Fact 3.1

We prove that if ∆(X;Y ) ≥ 1− ε, then, for any t > 1, it holds that Pr
x

R←X
[Pr[X = x] < t ·Pr[Y =

x]] ≤ εt.

Proof. We start by proving an additional claim:

Claim A.1. For any two distributions X,Y and a subset S of their domain, it holds that:

∆(X;Y ) ≤ 1−
∑

x∈S
min(Pr[X = x],Pr[Y = x]).

Proof.

2∆(X;Y ) =
∑

x

|Pr[X = x]− Pr[Y = x]|

=
∑

x 6∈S
|Pr[X = x]− Pr[Y = x]|+

∑

x∈S
|Pr[X = x]− Pr[Y = x]|

≤
∑

x 6∈S
Pr[X = x] +

∑

x 6∈S
Pr[Y = x] +

∑

x∈S
|Pr[X = x]− Pr[Y = x]|

=
∑

x

Pr[X = x] +
∑

x

Pr[Y = x]−
∑

x∈S
(Pr[X = x] + Pr[Y = y]− |Pr[X = x]− Pr[Y = x]|)

= 2− 2
∑

x∈S
min(Pr[X = x],Pr[Y = x]).

The last equality holds because
∑

x Pr[X = x] = 1 =
∑

x Pr[Y = x], and for all a, b we have that
a+ b− |a− b| = 2min(a, b).

Now we proceed to the proof of the lemma. Let S := {x | Pr[X = x] < t · Pr[Y = x]}. Due to
the claim, we have that

∆(X;Y ) ≤ 1−
∑

x∈S
min(Pr[X = x],Pr[Y = x]) (11)

We now give a lower bound for each summand min(Pr[X = x],Pr[Y = x]). Namely, we show
that

∀x ∈ S min(Pr[X = x],Pr[Y = x]) ≥ Pr[X = x]/t. (12)

By the construction of S, we have that for any x ∈ S Pr[Y = x] > Pr[X = x]/t. Hence,
min(Pr[X = x],Pr[Y = x]) ≥ min(Pr[X = x],Pr[X = x]/t). Since t > 1, we have that min(Pr[X =
x],Pr[X = x]/t) = Pr[X = x]/t. Combining inequalities 11 and reeq:part, we get that

∆(X;Y ) ≤ 1−
∑

x∈S
min(Pr[X = x],Pr[Y = x]) ≤ 1−

∑

x∈S
Pr[X = x]/t = 1− Pr[X ∈ S]/t

Recall that by assumption 1 − ε ≤ ∆(X;Y ), and therefore, we conclude that ε ≥ Pr[X ∈ S]/t
implying that Pr[X ∈ S] ≤ εt.
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