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Abstract

In order to formally understand the power of neural commytime first need to crack the frontier of
threshold circuits with two and three layers, a regime tlagttheen surprisingly intractable to analyze.

We prove the first super-linear gate lower bounds and thesfistr-quadratic wire lower bounds for
depth-two linear threshold circuits with arbitrary weighand depth-three majority circuits computing
an explicit function.

e We prove that for alle > \/log(n)/n, the linear-time computable Andreev’s function cannot
be computed on &1/2 + ¢)-fraction of n-bit inputs by depth-two linear threshold circuits of
o(£°n%2/1og®n) gates, nor can it be computed withe3n®2/log’/2n) wires.

This establishes an average-case “size hierarchy” fosliold circuits, as Andreev’s function is
computable by uniform depth-two circuits ofn®) linear threshold gates, and by uniform depth-
three circuits 0fO(n) majority gates.

e We present a new function iR based on small-biased sets, which we prove cannot be com-
puted by a majority vote of depth-two linear threshold ditcwith o(n3/2/ log® n) gates, nor with
o(n®2/log’/?n) wires.

e We give tight average-case (gate and wire) complexity te$oit computing PARITY with depth-
two threshold circuits; the answer turns out to be the sanfieratepth-two majority circuits.

The key is a new random restriction lemma for linear threstfiohctions. Our main analytical tool
is the Littlewood-Offord Lemma from additive combinataic
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1 Introduction

A function f : {0,1}" — {0,1} is alinear threshold functior(LTF) if there areweights w,...,wy,t € R
such that for allay, . ..,an) € {0,1}", f(as,...,a,) =1 if and only if 3;wia > t. LTFs have been studied
since the 1940’s, as a model of the “all-or-none character of neacisty” [MP43. Understanding the
capabilities of collections of LTFs is closely related to understanding the rpofueeural networks; this
connection motivated extensive research on the subyaatq1]. In the 1960’s, Minsky and PapeP69
proved many limitations on the abilities of single LTFs.

In this paper, we focus on models that appear to be only mild extension$i-thepLTF circuits (a.k.a.
LTF o LTF circuits) and depth-three LTF circuits with all weightsZm [—poly(n), poly(n)] (a.k.a. MAJ o
MAJo MAJ, or Tcg). LTF o LTF circuits have a number of LTF gates connected directly to the input
variables, and a single output LTF gate which can take in input variableglaas outputs of previously
computed LTFs; depth-three LTF circuits are defined similarly. Theseitsn@mughly correspond to neural
nets with one or two hidden layers, respectively. Minsky and Pap#6f] proved thal TF o LTF of 2°("
gates can compute any Boolean function, but failed to prove a strong ifbjibssesult for these circuits.

Despite considerable study in the complexity of neural networks (see 8@dito more background),
the power of a single hidden layer is still poorly understood: prior to oukwnibwas open whether every
function innondeterministi@°™ time could be computed byTF o LTF circuit families (orTC§ families)
with O(n) gates, or byL. TF o LTF circuit families withn®? . poly(logn) wires. (Linear-gate lower bounds
were proved by several groups in the early 90’sn& wire lower bound was proved in 1993 by Impagli-
azzo, Paturi, and SakBJS93. See Sectior?.)

By results of Allender and KouckyAK10], in order to separatNC* from TC®, we only need to exhibit
a function inNC?! that does not havel! gates foreverydepthd > 2. That is, the problem of proving
super-linear gate lower bounds for &(1)-depth threshold circuits turns out to be as difficult as proving
super-polynomialower bounds forO(1)-depth threshold circuits. Before we can do that, we have to first
prove non-linear gate lower bounds for depth-three circuits.

1.1 Our Results

We prove the first non-trivial super-linear gate lower bounds ane@rsgpadratic wire lower bounds for
depth-two threshold circuitd TF o LTF), and depth-three majority circuit?(jg). Our hard functions have
much lower complexity thaN TIME[2°("]; they are in fact computable i (even in uniformT CY itself).

We start with lower bounds for a linear-time computable function knowAredreev’s functionwhich
also appears in the best known formula size lower bounds. Our lowadsaxktend to the average case,
showing that small depth-two threshold circuits cannot compute Andr&ewsion on more than é1/2+
o(1))-fraction of inputs. To define the function, let us set up some notationk Ed¥, thek-bit multiplexer
functionis defined ady (X1, ..., Xok, a1, ..., &) = Xpin(a,...a)» Where bin {0, 1} — {1,...,2¢} convertsk-bit
strings into positive integers. Lat= 2- 2%, TheAndreev function A[/And87] is defined as:

(2/K) (2/k)
An(X, 1,1+ 8q (2K ks e - - y - B (26 /k)) = Mok <x, < Z a1,j mod 2) beees ( z aj mod 2>> ,
=1 =1

wherex € {0, l}zk, anda; j € {0,1}. In words,A, computes the parity okdisjoint sets of 8/k inputs, then
feeds the resulting-bit string to the multiplexer function on the remainingi@putsx. (For simplicity we
may think ofk itself as a power of two, so we do not have to worry about divisibility issuits 2¥ /k.)

Since 1987, the functioA,, has been a primary target for formula size lower bourfgsdB7, IN8S,
PZ93 Has98 IMZ12]. The best known explicit size lower bounds for formulas over both tas&rgan



basis 6®°%) and the full binary basisn? 1)) are achieved by,. Our first result is a non-linear gate
lower bound for computingy, with depth-two threshold circuits:

Theorem 1.1. Any function f that agrees with,on at least a(1/2 + ¢)-fraction of inputs for some >
\/log(n)/n cannot be computed WTF o LTF circuits with fewer tharQ(£3n%2/log*(n)) gates or fewer

thanQ(£3n%2/1og’/?(n)) wires.

In contrast with these lower bounds, there are several nice (and s@heasy) circuit constructions for
computing Andreev’s function as well:

Theorem 1.2. The function A has (uniform) depth-81AJ o MAJ o MAJ (i.e. TCY) circuits of Q(n) gates,
(uniform) LTF o LTF circuits of Qn3/logn) gates, parity decision trees of depth at miogg(n), and (uni-
form) MOD3 o MOD2 circuits of Q(n?) gates.

Hence the lower bounds of Theorelrl establish several average-case complexity hierarchies in the
low-depth circuit regime: for exampldy, is computable by depth-three LTF circuits©fn) gates, but is
not computable on a/2 + ¢ fraction of inputs by depth-two LTF circuits af - n®2-°(%) gates.

As our lower bounds are average-case, we easily obtain some lowedbom computingd, with
distributionsof LTF o LTF circuits. Say that a Boolean functidris computed by aa-Approximate Majority
of LTF o LTF if there is a collectior#’ of LTF o LTF circuits such that, for every input at least a 12+ €
fraction of circuits in& output the valug (X).

Corollary 1.1. Everye-Approximate Majority of_L TF o LTF for A, needs at leasR (£3n%?/log®(n)) gates
andQ(£%n%2/log’/?n) wires.

This is a partial step towards lower bounds depth-threecircuits composed of MAJORITY gates with
negations, i.e. the claél'scg. It follows from our distribution results that (for example) Andreev’adtion
has noT C3 circuit of O(n*1) gates where the output gate has famin?/1°).

Onward to Depth Three. However, as stated in Theorehi2, Andreev’s function ha®(n)-gate TC3
circuits. To obtain super-linear gate and super-quadratic wire lowardsoin the depth-three setting, we
modify Andreev somewhat, defining a new explicit functin Informally, B, has the same inputx, a)
asA, with |x| = |a|, and as before the function divides its striagnto groups and takes parities of each
group, butB, also feeds into the generator matrix of aryfoly(n)-balanced error-correcting code (i.e. a
1/poly(n)-biased set) before calling the multiplexer. This is similar to a function constumte<omar-
godski and RazHR13], who also used error-correcting codes in a modification of Andrdewvistion to
prove average-case formula lower bounds. Wé/l&t) o LTF o LTF be the class of circuits which compute
a majority value of depth-two threshold circuits.

Theorem 1.3. There is naMIAJ o LTF o LTF circuit of o(n%2/log®n) gates or ¢n®2/log’/2n) wires that
computes R

Tight Results for PARITY in Depth-Two.  Finally, we illustrate the strength of our techniques by proving
asymptotically tight results on approximating the PARITY function vl o LTF circuits:

Theorem 1.4. The gate complexity ®flAJo MAJ circuits that agree with PARITY d@D%of all n-bit inputs
is ©(y/n). The wire complexity i®(n%?). The lower bounds hold even fof F o LTF circuits.

Theoreml.4shows that th€(n%?) wire lower bound an@(n'/?) gate lower bound for PARITY proved
by Impagliazzo, Paturi, and Sak®E93 are both tight in the average case.
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1.2 Intuition

The key to our lower bounds is a new random restriction lemma for LTFs. \&ftdam restrictions, one
generally studies the probability that a distribution of partial Boolean assigtisn®the inputs of a circuit
“forces” many gates of that circuit to output a fixed value on all remainipgts The idea of forcing is very
natural for circuits made of AND and OR gates: an AND is “forced to 0” whae of its inputs is assigned
0, and an OR is “forced to 1” when one of its inputs is 1. As a result, ran@stnictions have been rather
effective for analyzingA\C® circuits made out of unbounded fan-in AND and OR gates (for exarf{3884
Yao85 Has86 Ros0§), as well as formulas over the AND/OR/NOT basis (for exam@aj61 And87,
PZ93 Has99). Strong average-case lower bounds A@® and formula size are also known; some have
only been proved very recenthpfv85, KR13, IMZ12, KRT13, Has14 RST14.

For linear threshold functions, the notion of “forcing to a constant” is mobtieuThere are two ways
we could conclude that a partially restricted LTF is equivalent to a confdaction: either the partial
Boolean assignment makes part of the LTF so large that the thresholdisaakieved on all remaining
inputs, or the assignment makes the LTF so small that the threshold valueeisawhveved. Hence a
threshold function can be “forced to 0” in some cases, and 1 in othes.cAfso, note that if an LTF only
depends non-trivially on a single variable after a restriction (that is, ner etiriables can affect the output
value), then the LTF gate can be removed, and replaced with a single wiiagfrom that single variable.
We incorporate both kinds of reasoning in our arguments.

In order for our analysis to work, we need to consider random restigtiba structured yet “adversar-
ial” form. In particular, letZ be anarbitrary partition of {1,2,...,n} into equal parts, and le¥» be the
distribution of random restrictions anBoolean variables which randomly fixes all but one element of each
part of 2. For our applications, one should think 8 as partitioningn| into k blocks of sizen/k for some
k < n, so thatZ » roughly corresponds to fixing all blktrandomly chosen variables.

Lemma 1.1 (Random Restrictions on Linear Threshold Functionst f: {0,1}" — {0,1} be a linear
threshold function. Let” be a partition of[n] into parts of equal size, and Ie€ 5 be the distribution on
restrictionsp : [n] — {0,1,«} that randomly fixes all but one element of each par¢tfThen

Fg [f is not forced to a constant ky] = O(|.2|/+/n).
P~K

For example, given a partition of the inputs with at m@4t/1000 parts, it is very likely thaf is
equivalent to a constant function, when a random element of eachspaft unrestricted and all other
inputs are assigned to random bits.

The primary tool in our random restriction analysis is a well-known resultditeve combinatorics by
Littlewood and Offord [O43, Erd4g which (tightly) upper bounds the probability (on a random Boolean
assignment) that a linear function takes on a value in a given interval ahi@ngVe can use this lemma to
closely estimate the probability that an LTF is “forced to a constant” when séitgeinputs are randomly
set to 0 or 1. The central intuition is that a linear threshold function is natéi to a constant” by a
partial Boolean assignment precisely when the restricted part of the fungetion lies in a certain integer
interval, certifying that the restricted part is neither “too high” to alwayseexl the threshold, nor “too low”
to always fail to meet the threshold. Adapting Littlewood-Offord to this evequires some care, as we
need to compute probability upper bounds for (potentially) large intervéilsedeby the LTF.

Another key idea in our lower bound proofs is the fact that there exaively hard functions for low-
depth threshold circuits. This is obtained by a counting argument, showihgitica there are few distinct
functions computed by small threshold circuits, there must be hard funetioick cannot be computed by
any of them (or any small group of them).



Let us illustrate these two ideas, by sketching the proof of ThedrénBy plugging in the correct bits
of a hard function into a multiplexer, we can force our candidate ci€u@ compute the value of such a
hard function. (This step was already known to Andre&rnd87.) This would produce lower bounds of
orderﬁ(n). However, the circuiC must still be capable of computing the hard function, even after we have
restricted it toO(logn) inputs. Sincé& must still be large after a restriction has killed all but/a/h fraction
of its gates, it must have originally had siéeén3/2), by our Random Restriction Lemma.

Comparison with Impagliazzo, Paturi, and Saks. In the previous best known lower bounds bhF
circuits of depth at least two, Impagliazzo, Paturi, and SHkS9J also used a random restriction method
to prove their lower bounds. There are several critical differeneésd®en their approach and ours. Their
main lemmas state that for ahy F circuit with n variables andnwires, there is a variable restriction which
leavesQ(n/?) variables unset and makesgerybottom-layer gate dependent on at most one variable. First,
observe that their lemmas are nontrivial only when the number of wir€%ri&/'?). Second, the proofs
of their lemmas require that they pick a particulandompartition of variables in which the restriction is
performed; we will need to allow an adversary to control the partition inrof@ieour analysis to work.
Third, instead of insisting that every bottom-layer gate is reduced, weittklood-Offord to calculate the
probability that single gate is either forced to a constant (Lertirpor depends on at most one variable
(Lemmag.1). Fourth, we use our relaxed setting to incorporate stidrigo LTF lower bounds for random
functions in our arguments to gain an extra linear factor in the gate and wies lmounds (Theorerh.1),
and we add another layer of complexity to the function to insert correlatida-@guments to gain an extra
layer of circuit depth (Theorerh.3).

2 Preliminaries

We denote assignmentsndoolean variables by functions of the form [n] — {0,1}.

In our proofs, dinear threshold functioifLTF) is defined by a paifL,t) wheret € R andL : {0,1}" — 7Z
is a function of the fornL(xq,..., %)) = YL, aX where allg; € R. Theoutputof (L,t) on an assignment
T:[n] — {0,1} is [L(7(2),...,7(n)) > t], where[P] is notation for the function which outputs 1 when
propertyP is true and 0 wheR is false.

The Littlewood-Offord Lemma. We will apply a classical result of Littlewood and Offorid®43] which
upper bounds the number of inputs to a linear functigx) = z}zla;xi so that the output lies in a given
intervall of length 2. In particular, if at leastof thea; have|a| > 1, and ifx is a random point i{ —1,1}!,
then Pg[L(x) € 1] < O(log(n)/+/n). The bound was later improved ©(1/,/n) by Erdds [Erd45. By
scaling the length of the intervh] we obtain the following:

Lemma2.1. Let L(x) = 3. ; & be alinear function, and k N. Let | C R be a finite interval, and suppose
that|a| > |l for at least k of the @ Then
O(1)

Pro[Lixell< ==
ey L) €1l = =22,

wheree,, denotes a uniform random choice.
Proof. Start with the original lemma: assume at lelasf thea; have|a| > 1, letl be an arbitrary interval

of length 2, and obtain R¢;_; 1y [L(X) € 1] < 0O(1/v/k). What follows is some simple massaging of this
statement.



If we add S ; & to the functionL(x), then we can let eack be chosen fron{0,2}. Then, shifting
the intervall by 3, & (defining an interval’ of length 2), we still have Rg gy [L(X) € I'] < o(1/Vk).
Dividing everything by ¥2, the interval” becomes length 1, and we obtaigR§ 10[L(x) € 1] < 0O(1/VK).
Finally, if we multiply thea;’s andl’ by any desired interval lengthc R*, we can accommodate any finite
interval, as long as at leakbf thea;’s have absolute value at least the interval length. O]

Constant-Depth Threshold Lower Bounds for Random Functions Another ingredient in our main re-
sult is a threshold circuit lower bound for random functions. This follfnesn a counting argument via a
non-trivial upper bound on the number of distinct functions computable lathdepth LTF circuits. The
upper bound on the number of possible LTFs has been proved many tiraesartlest reference we have
found is Winder Win6Q] from the 1st Annual FOCS:

Theorem 2.1(JWin60Q]). The number of linear threshold functions on n variables is at A&t

The 2™ upper bound immediately follows from Chow’s theorem (from the 2nd AhRGECS), which
characterizes linear threshold functions by their low-degree Fourgdficents.

Theorem 2.2(Chow [Cho61). Every LTF f on n variables is uniquely determined by its b Fourier
coefficientsf (0), f(1),..., f(n).

To see why the Q) upper bound follows from Theore&2, observe that each Fourier coefficient of a
Boolean function can take on at m@3{2") values, because it is an expectation of a random variable taking
values in{—1,1}, over a 2 sample space. Combined with Chow's Theorem, the number of LTHs on
variables is at mogb(2")"! < 20(™) For a proof, see (for example) O’Donnell and Serve@&11, or
Knuth ([Knull], Theorem T) who states the theorem slightly differently (the languagénowCin fact).

A considerable generalization of Winder’s theorem was given by Rawydhury, Siu, and Orlitsky:

Theorem 2.3([ROS94B). Let.# = {f1,..., fs} be a fixed collection of functions of the form {0,1}" —
{0,1}. Then there are at mogp" + 1)S+1 distinct functions g {0,1}" — {0,1} of the form

o(X1,...,X) = ﬁ_iwi fi(X1,. .., %) zt]] ,

where w, ..., ws,t € R and[P] is notation for the function which outputswhen property P is true and
when P is false. That is, there arg(®55) threshold functions over s input functions. As a consequence,

the number of deptB-inear threshold circuits of & n gates and n inputs is at ma2R(s),

For completeness, we give a short self-contained proof. Our pulefsbon Knuth’s elegant proof of
Chow's theorem Knul1], Theorem T).

Proof. Let g be an LTF takings inputs, and letfs,..., fs be LTFs onn variables. LetS(g) be the set of
y € {0,1}° such thag(y) = 1 and(fi(x), ..., fs(x)) =y for somex € {0,1}". LetZ(g) € N° be the sum of all
yi € §(g) as vectors over the integers. As each entr (@) is an integer irf0, 2], note there ar¢2" + 1)°
possible values foE(g).

We claim that, if S(g)| = |S(h)| andZ(g) = Z(h) for two LTFsg andh over the same functionf, .. ., fs,
theng(fy,..., fs) =h(f1,..., fs) as Boolean functions.

It follows from the claim that:



(a) Every depth-two LTF circuit o§+ 1 gates is uniquely determined (§(g)| < 2", 2(g), and thesLTF
gates on the bottom layer. Hence there are at rf@9st 1)S* threshold functions oves given input
functions.

(b) There are at mos©™9 distinct depth-two LTF circuits, since there are at m@t+ 1) possible
choices for the output gate, an8®9 choices for thes LTFs on the bottom layer (by TheorePnl).

So let’s prove the claim. Suppogéfi,..., fs) # h(f1,..., fs) as Boolean functions, bi&(g)| = |S(h)|
andZ(g) = Z(h). Let{yi,...,¥} C {0,1}° be the set of all points in the image ©f;,...,fs) : {0,1}" —

{0,1}%, such thag(y;) =1 andh(y;) = 0. By definition,{y1,...,yx} = (S5(g) \ S(h)). BecauséS(g)| = |S(h)|,
there must also be exactkypointsz, ...,z in the image of(f1,..., fs) such thag(z) = 0 andH (z) = 1;

we therefore havéz, ...z} = (S(h)\ S(9)).
SinceZ(g) = 2(h), the total sum of all vectors i§(g) andS(h) are the same, so we must hgue , yi =
yK .z, where the sum is componentwise.

Suppose the linear function gfy) has the fornty; wiy;, and threshold value Letw = (w,...,ws). By
our definition ofy; andz, we have(w,y;) >t and(w,z) <t for all i. Therefore

k k
<V\4 (;yi)> =y wyi) > kt> % (wz) = <W, (_;z)>-

This is a contradiction, sincgk_; yi = T¥ ; z andk > 0. O

Combining Theoren2.3with a simple counting argument, we obtain:

Corollary 2.1. For all sufficiently large n, a randomly chosen Boolean function on n \dem requires
depth2 linear threshold circuits of size at lea§(2"/n?), with probability1 — o(1).

Proof. If we choose a functiorf : {0,1}" — {0,1} uniformly at random, the probability it has depth-2
threshold circuits of size is at most &™) /22" by Theorem2.3 Fors < 0(2"/n?), this probability is
2002 /20 = o(1). O

By standard arguments we also have an “inapproximability” refinement @flibee corollary:

Corollary 2.2. Forall € > /n/2", and all but ans-fraction of n-bit Boolean functions f, there is no depth-
2 linear threshold circuit of size s o(? - 2"/n?) that agrees with f on more than(@/2 + ¢)-fraction of
inputs.

Proof. By Theorem2.3, the total number of functions computed by such siziepth-2 circuits is at most
20(e%2")  For any such circuit, it agrees with a randomly choseon a(1/2+ ¢)-fraction of inputs with
probability 2-Qe%2") by standard Chernoff bounds. Taking a union bound over our etadicircuits, we
conclude thatf does not agree with any sizedepth-2 threshold circuit on @/2 + €)-fraction of inputs,
with probability at least +- €. O]



A Short History of Low-Depth Threshold Lower Bounds. Hajnalet al.[HMP*93] proved the first size
lower bounds fotTF o LTF circuits, showing that thianer product modulo 2a.k.a. IP2) requires2" size
when the weights of each LTF are small (polynomial in the input length). Esislris often cited as saying
that the inner product does not have subexponentialigixéo MAJ circuits, as MAJORITY functions can
simulate LTFs with polynomial weights. Note that IP2 h&&Jo MAJoMAJ circuits withO(n) gates, so we
cannot use IP2 in our depth-three lower bounds. Nisksd4 elegantly applied communication complexity
ideas to extend the exponential lower boundtdJ o LTF circuits; that is, the lower bound holds even if
the weights of the LTFs on the hidden layer are arbitrary. Later, Foestr[FKL"01] extended the lower
bound toLTF o MAJ circuits, where only the middle (hidden) layer is restricted to have small weights

In terms of lower bounds for generl'F o LTF circuits, only a few results are known. Goldmann,
Hastad, and Razboro\GHR9J showed that every TF o LTF circuit can be efficiently simulated by a
MAJ o MAJ o MAJ circuit, and computing IP2 withTF o LTF requiresQ(n/logn) gates. Groeger and G.
Turan [GT91, GT93 and Roychowdhury, Orlitsky, and SilRDS94& proved that IP2 has gate complexity
O(n) for LTF circuits; their result has no depth restriction. Paturi and SR&9() showed that PARITY
requiresQ(n/log?n) gates forMAJ o MAJ circuits. Impagliazzo, Paturi, SakiPB93 showed thal.TF o
LTF circuits computing PARITY cannot haw®n®?) wires, nor can they hava(n'/?) gates. (Their proof
in fact gives a lower bound for all constant depths, although the Imgeatismaller as the depth increases.)
In the uniform setting, Allender and KouckpK10] have shown that for eveny, there is are € (0,1) such
that the SAT problem cannot be solved by LOGTIME-uniform degtiFF circuits with O(n'*¢) wires.
Other more recent work odTF o LTF includes AMO5, HP1Q HP13 IPS13 Wil14, CS1].

In all the above cases, no super-linear gate lower bounds were krmm@nno quadratic wire lower
bounds were known, even f&TF o LTF. PARITY is well-known to haveMAJ o MAJ circuits of O(n)
gates, and we show in Theorelmt that thereare alwaysMAJ o MAJ circuits of O(n'/2) gates and(n®/?)
wires which agree with PARITY on 99% of the inputs, so it is impossible to exteedower bounds of
[PS9Q IPS93 for PARITY in the way we seek (for good reason).

3 Random Restrictions on Linear Threshold Functions

We are ready to give our main lemma on random restrictions to linear threshltidns. To properly state
it, we need to set up some notation. Defimestrictionto be a functiorp : [n] — {0,1,*}. (Such a function
is also called a partial assignment.)# is a set partition ofn], we say thap is arandom restriction across
Z if p is obtained by first uniformly randomly choosing a one eleneef each part of??, then setting
p(&) =« for eachi, and setting( j) randomly and independently to either 0 or 1 for all other[n|.

A completion ofp is simply a functiont : [n] — {0,1} such that for ali such thato(i) # » we have
1(i) = p(i). Thatis, T extends the partial assignmemto some full assignment on all variables. We say
that an LTFf : {0,1}" — {0, 1} is forced to a constant by restrictign if there is ac € {0, 1} such that for
all completionst of p, the output off on t always equals. That is, f is “forced to a constant” ip has set
enough variables of that the remaining function is constant. We record the following trivial (butiel)
observation that we cagimplify circuits when their gates are forced to constants:

Proposition 1. Let C be an n-input circuit over LTF gates, lebe an LTF in C, and lep : [n] — {0,1,}
be a restriction that forced to a constant c. Then the subfunction defined g (T),...,p(n)) has an
equivalent circuit with the gatéremoved, and the constant ¢ placed on the output wirés of

We recall the main lemma to prove:
Reminder of Lemmal.1 Let f: {0,1}" — {0,1} be a linear threshold function. Le¥ be a partition of

[n] into parts of equal size, and Ief4 be the distribution on restrictions : [n] — {0,1,*} that randomly
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fixes all but one element of each part@f. Then

F} [f is not forced to a constant kyj = O(| 22| /v/n).
P~Z

Observe that Lemma.1is essentially tight for the MAJORITY function (the LTF with(x) = 3., X
andt = [n/2]). In particular, if we set all but inputs of then-bit MAJORITY function to uniform random
values, the MAJORITY function is not forced to a constant only when tfierdnce between the number
of 1's and the number of O’s is withiir-k, k]. This occurs with probabilitye k/+/n for smallk. (This is just
another way of saying that the Littlewood-Offord Lemma is tight for the veater(1,...,1).)

Proof of Lemma 1.1 Let the linear threshold functiohbe defined by the linear functidr(x) = S ; aix;
with threshold valu¢ € R. For a seB C [n], letZg be the distribution of restrictions dfto all butB, where
we set elements iB to « and elements not iB to random 01 values. Assume € {0,1}"~IBl is chosen
uniformly at random, and ldt'(x) = ¥;.g&x. Observe thaf is forced to a constant if and only if

(L’(x)<t > |ay> or (L’(x)>t+ > |a;]>.
ieB:gj>0 ieB:gj<0

(In the first casef is forced to O; in the second caskjs forced to 1.) Therefore, the probability that a
random restrictiorp ~ % does not forcef to a constant is at most the probability tha¢x) lies in the

interval
| = [t— Bz &, t+ BZ all .
ieB:gi>0 ieB:gj<0

Note that|l| = Yicg|a|, and that we can write an a union of interval$ with |l;| = |a]|. Therefore, by a
union bound we have that

Pr [f is not forced to a constant kp] < EBF:(r[L’(x) eli]. 1)
i€

p~Ze
Foralli =1,...,n, definek to be the number of € [n] such thata;| > |a;|. Observe that
k > ki < l|a| <|ajl. (2)

We claim that o(1)
Prif is not forced to a constantky] <y ——=. 3)
sl ko] iZB N
Let us prove this claim. For ail=1,...,n, definek! to be the number of € [n] — B such thata| > |a;|. By
Lemma2.1, we have for ali = 1,...,|B| that

o(1)

VK

Obviously,ki < k; for all i € B. To prove 8), we need an inequality in the opposite direction. We consider
two cases. First, suppose there isian B with at leastk; /2 different j € B satisfyingk; < ki. Then
Yiesl/vk > (ki/2)/+/k > 1, and inequality ) trivially holds in this case. Otherwise, for alE B, there

are at mosk; /2 differentj € B with kj < ki. By (2), this means thgg;| < |a;| for at mostk; /2 differentj’s,
implying thatk; < ki +k; /2 for alli € B. So we havéx < 2k for all i € B, and

Pr [U(xel]<
XE{OJWB‘[ (x) € li] <

Pr [f is not forced to a constgnt EBar[L/(X) el < Zg?}%’) < EB (3/(%)7

p~Zg
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and the inequality3) holds in this case as well. Therefore

Pr [f not forced to constant by| = B[ r [f not forced to constant by]
p~Z» p~%s

< B (by (3))

; z) (by def. ofk)
=1

— 0|2/ Vi), (by kﬁlk—l/z < ont/?)

where the last inequality follows by upper bounding the sum with an integhad. completes the proof.
O

In order to prove our wire lower bounds, we require a version of Lerhirhthat yields better results for
thresholds that depend on relatively few inputs. Unfortunately, a thiégfate with a single input has only
one wire, and yet has|a@”|/n chance of not being forced to be a constant; this is too weak of a bound fo
us. On the other hand, we know that a gate with only one input alwaysisgust its input or its negation.

In particular, even if a gate is not set to a constant by a restriction, wetitlareplace it by a single wire if
its output depends on onlyneof the remaining inputs. In terms of this event, we can prove a much better
probability bound.

For a random restrictiop and LTF f, we say thatf (xs,...,X,) is forced to a function of a single input
by p if there is ani € [n] such that for all completions of p, the output off on 1t depends only on the
variablex; or is a fixed constant.

Lemma 3.1. Let f: {0,1}" — {0,1} be a linear threshold function that depends on only w of its inputs.
Let & be a partition of[n] into parts of equal size, and |e£ 4 be the distribution on restrictions : [n] —
{0,1,*} that randomly fixes all but one element of each part&fThen

Pr [f is not forced to a function of a single input py = o(w|2|%2/n%?).
pP~F

Proof. Let Sbe the set of inputs on which depends. Defing for i € Sas in the proof of Lemma.l
Suppose we have a random restrictthat fixes all input variables except thoseBrr [n).

We want to upper bound the probability thatloes not fixf to a function of a single input. In order for
this to happen it must be thl8N S| > 2, for otherwise the restriction df depends only on the coordinates
in SNB. Furthermore, this event happens with probability at nst~sO(1/vki), by Equation 8).



Therefore, the probability th&tis not fixed to a function of a single input is

0(1)
ieBNS \/E

B[[[IBQSIEZ]]-

<0 o
_I;\/E Pri € B,[BNS > 2]

<01 .| |Z -

- g;\/ﬁ'mm{n’#%espr[u € B}}
_ 5O a2 2
_gs\/ﬁ mm{ . ;W 2 }

< (Wl/Z. “@’3/2> %O(l) (min{a,b} < Vb, a,b> 0)

n3/2 NG
— O(w-|2|¥2/n?/?). (by 25} <2./w)

O]

4 Tight Upper and Lower Bounds for Approximately Computing PARITY

We begin with the upper and lower bounds for computing PARITY Wikl o LTF circuits, since the lower
bounds here are the easiest example of what our Random Restriction kezamdo.

Reminder of Theorem 1.4 The gate complexity dflAJ o MAJ circuits that agree with PARITY d#9%
of all n-bit inputs is®(y/n). The wire complexity i®©(n%?2). The lower bounds hold even fol F o LTF
circuits.

Proof. (Upper bound) We produce an explicit construction. Let= [Y_;x > k] be the output of a
“threshold-at-leask’ gate over itsn inputs. Observe thdty — Ly, is the 0/1 indicator function of the
exact threshold functio§ ! ; x = k.

Let c > 0O be sufficiently large in the following. We construct the top gate of our depthcircuit to
compute the threshold function defined by

n/24+cyn
Lk — Lk > 1.
k even k=n/2—c\/n

This function agrees with parity as longa& — c/n < {1 ;X < n/2+ cy/n, and for a sufficiently large
¢ > 0, this happens on 99% of all inputs. This circuit obviously Bégn) gates and(n*?) wires.

(Lower Bound) We begin with the observation (originally due to Minsky aagd?t MP69) that a
single LTF with two inputs cannot approximate PARITY on more than 75% of its inputs. €fbies, for
everyLTF o LTF circuit C that approximates PARITY on 99% of ailbit inputs, ifC is randomly restricted
on all but two unassigned inputs, then the restricted cit€litannot be equivalent to a sindldF with
more than 10% probability. On the other hand, the cir€uiwill be equivalent to a singleTF gate, unless
at least one of the bottom level gates®fis not forced to a function on one inpuhat is, at least one gate
on the bottom layer is neither a projection of one input, nor is it a constaantifum Call a gate “trivial” if
is forced to a function on one input. Observe that a trivial gate can allwayeplaced by a single wire, or a
constant.
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So letC be a depth-2.TF circuit with s gates andv wires that agrees with PARITY on at least 99%
of the n-bit inputs. LetZ” be a partition of[n] into two equally sized subsets. Suppose we choose a
random restrictiorp from %4 on the inputs ofC, resulting in a restricted circu®’ on two inputs. Our
Random Restriction Lemmads1 and3.1show that the number of non-trivial bottom level gate€as§, in

expectation,
. s w
o(mn(r )

If eithers < /N orw < n%2, then by Markov’s inequality, there are no non-trivial gates on the boltger
with probability at least 50%. That is, on at least half of the possible mandstrictions, the remaining
circuitC’ on two inputs is equivalent to a sindl@ F gate, and hend® does not compute PARITY correctly
on more than 75% of its inputs. By the previous paragraph, it followsGhddes not compute PARITY
correctly on 99% of the inputs. O

5 Depth-Two Lower Bounds for the Andreev Function

The strategy for our depth-two lower bounds fgyhas a similar structure to the known Boolean formula
lower bound proofs foA,: hit the functionA, (and a circuitC that supposedly computes it) with a random
restriction of an appropriately controlled form, so that théR inputx of A, is assigned a uniform random
value, and from each blodkthere is oneg; j that is left unset. The remainder implements a function on

k bits, whose truth table is given by Whenx is chosen uniformly at random, we are implementing a
randomk-bit function and can use our depth-two lower bounds for randomtitums (Corollarie2.1 and

2.2) to argue that the number of gates lefi@rmust be somewnhat large: at le&@t2¢/k?) = Q(n/log?n).
However, if the originaC began with a small enough number of gates, the Random Restriction Lemmas tell
us that we should expect the random restrictio@ to force many bottom-layer gates to constants (and Kill
many wires inC). Setting the parameters appropriately yields a contradiction.

Reminder of Theorem1.1 Any function f that agrees with,/on at least a1/2+ ¢)-fraction of inputs for
somes >> /log(n)/n cannot be computed WTF o LTF circuits with fewer tharQ(£3n%2/log®(n)) gates
or fewer thanQ(£3n®2/log’/?(n)) wires.

Proof. Recall thatA, has inputsx € {0,1}"/2, anda j € {0,1}, with i = 1,....k and j = 1,...,2¢/k,
wherek := [log,(n)|. LetC be aLTF o LTF circuit with s < ce3n%2/log®(n) gates or fewer thaw <
ce3n®2/1og’/?(n) wires for a sufficiently small constant> 0. By Corollary2.2there exists @ > 0 so that
with probability at least * £/3 a random functiorf on |log,(n/2) | bits does not agree on(&/2+ €/3)-
fraction of inputs with any. TF o LTF circuit with fewer thanc’e?n/log?(n) bottom level gates. We claim
that if a random choice of corresponds to the truth table of such a functiof@nd it will, with probability
at least - £/3), then the probability over the remaining bits tRaagrees withA, is at most Y2+ 2¢/3.

Consider fixing the bits of input to the coordinates correspondirgdauch arf. Let 2 be the partition
of the remainingn/2 bits of input into thek subsetga; 1,8 2, - .., & »/}. Letp be arandom restriction from
Z». By Lemmasl.1and3.1, every linear threshold functiagmonn/2 bits is forced to a constant ipywith
probability at least - O(|#?|/+/n) = 1—O(log(n)/+/n) and every gate with wires is forced to a function
of a single input with probability at least-10(u|2|%2/n%2) = 1— O(ulog®?(n)/n%?). Therefore, in
either case, the expected number of bottom level gat€sriot forced to constants by is at most most
ce3n/(3log?(n)) (assuming: was sufficiently small).

Therefore, by Markov’s inequality, with probability at least /3 we have that whe@ is restricted by
p, all butc'e?n/ Iogz(n) of the bottom level gates & are forced to functions of single inputs. In this case,
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C is equivalent to 4 TF o LTF circuit with at mostc’s?n/log?(n) gates. On the other hand, the restriction
of Ay to p is merely the functiorf (y1,y»,...,Yk), where eaclly; = ¥ ;& ; mod 2 equals either one of the
k unassigned variables, or its negation. (Note that negations of variadn@stcchange the circuit size:
negations can easily be accommodated in the threshold gates.) Since bytasstimfunctionf does not
agree with any TF o LTF of sizec’e?n/log?(n) on more than 41/2 + £/3)-fraction of inputs, we find for
those values of andp that

Br[An\p(Y) =Clp(y)] <1/2+¢/3.

However, it is easy to see that

P[00 =C0]= 1 [PriAp(y) =Clo(y)]| <2¢/3+(1/2+€/3) <1/2+¢.

This completes the proof. O

5.1 Approx-MAJ of MAJ of MAJ Lower Bounds for Andreev

From the above lower bounds, it is straightforward to conclude depéetlower bounds for Andreev’s
function with an Approximate Majority gate at the top.

Say that a Boolean functiof is computed by arg-Approximate Majority ofLTF o LTF if there is
a collection ofLTF o LTF circuits such that, for every input at least a 12+ ¢ fraction of circuits in the
collection output the valué(x). The following is an easy corollary of our depth-two threshold lower lisun
for Andreev’s function:

Reminder of Corollary 1.1 Everye-Approximate Majority oL TF o LTF for A, needs atlea®(£3n%?/log*(n))
gates and(£3n%/2/log”/?n) wires.

Proof. Let ¥ = {C4,...,C} be a collection ofLTF o LTF circuits such that on every inpx at least
(1/2+ )t of the circuits in¥” agree with Andreev’s function or. Assuming the entire collectio@
haso(£3n%2/log>(n)) total gates, it follows that ever@ haso(£3n%?2/log®(n)) gates (we cannot expect
to do much better here, since tGgs could share almost all of their gates and wires). Xsgt.., X, be a
list of all n-bit strings, and form & x 2" Boolean matrixVl whereM(i, j) = 1 if and only ifCi(x;) equals
Andreev’s function orx. By Theoreml.1, each row ofV contains less than @ /2 -+ ¢)-fraction of ones,
so the entire matrix has less thar{la2 + ¢)-fraction of ones. However, every column lf contains at
least a(1/2+ ¢)-fraction of ones, because for every inpyat least(1/2+ ¢) of the circuits iné correctly
compute Andreev’s function ox It follows that the entire matrix has at leastla/2 + ¢€)-fraction of ones;
this is a contradiction. An analogous argument works for wires, too. O]

It follows (for example) that Andreev’s function has i@ circuit of O(n''!) gates where the output
gate has fan-io(n?15).

5.2 Small Circuits for Andreev’s Function

We cannot expect to prove much stronger lower boundafpas there are nice circuit constructions for the
function. In particular, we cannot hope to achieve super-linear gater lbaunds forTC% usingAn:

Reminder of Theorem 1.2 The function A has (uniform) depth-3rC° circuits of Qn) gated, (uni-
form) LTF o LTF circuits of Q(n3/logn) gates, parity decision trees of depth at miogg(n), and (uniform)
MOD3 o MOD2 circuits of size @n?).

1Recall that arCO circuit is composed of MAJORITY gates with negations.
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Proof. (Sketch) In all below constructions, we use the fact that Andreewistion A, can be represented
straightforwardly as an OR af/2 ANDs of O(logn) parities overO(n/logn) variables, where over the
entire circuit there are onl@(logn) total parity gates.

1. First, since MAJORITY (a.k.a. MAJ) can simulate AND, we can replace(Reof AND part in
the above circuit foA, with an OR of MAJ; this part ha®(n) gates. Each of th®(logn) different parity
functions onO(n/logn) variables can be computed withL&F o MAJ circuit of O(n/logn) gates, where
the weights of the LTF gate are at most polynomiahjmnd the sum computed in the top LTF gate always
equals either 1 or-1 (indeed, this is true for any symmetric function; see Proposition 1HMHA"93)).
Given that these LTFs have this property, we can simply “merge” the tdgpamputing an OR-MAJ with
the O(logn) LTF o MAJ circuits computing the bottom part, resulting in an ORMAJ o MAJ circuit of
O(n) total gates.

2. Each of theD(logn)-fan-in ANDs in the above circuit foA, can be computed by a weighted sum
of n parities, using the Fourier representation of @{¢ogn)-bit AND function. The OR ofO(n) of these
weighted sums can be easily written as an LTBG@f/logn) parities onO(n) variables. From the previous
paragraph, each of these parities can replaced by &r LTF circuit of O(n) gates. The sums computed in
the top LTF gates are either 1 e1l, so these outputs can be composed with the top LTF gate (as in part 1),
resulting in anLTF o LTF circuit of O(n®/logn) gates.

3. Inlog,(n/2) depth (andh/2 leaves), we can compute each of the,(0g2) parities ofA, one by one,
then output the appropriate bit of the multiplexer function with one more layeepth.

4. Every MOD3-MOD?2 circuitC of sizes corresponds to som&; polynomial p(xg,...,X,) of s—1
monomials ovef —1,1}, whereC(x) = 1 if and only if p(x) = 0 mod 3. Note that, as a polynomial over
{0,1}, the multiplexer function has degree lognd sparsityn. Hence we can express Andreev’s function
(namely, a multiplexer ofi/ logn-length parities) as afiz-polynomial over{—1,1} which is a sum oh
products of log “terms”, where each term has the fofdn-[]x;) /2 and eaclf] x; is over one of th&/logn-
length parities in Andreev’s function. Expanding this polynomial results iama ef O(n?) monomials in
total, translating into a MOD3 dd(n?) MOD2s. O

6 Depth-Three Lower Bounds

We now turn to proving lower bounds agaimgfJ o LTF o LTF circuits computing an explicit function. We
begin with the observation that &m)-sizeMAJ o LTF o LTF circuit necessarily ha®(1/s(n)) correlation
with at least one of th&TF o LTF subcircuits. Therefore, it would suffice to find a function which is not
(1/2+1/poly(n))-approximable by. TF o LTF circuits of small size. Unfortunately, Andreev’s function is
not sufficient for these purposes; it has correlatinil//n) with the majority over the bits corresponding
to x; the problem is essentially thytpicallog, (n)-bit functions have correlations on the order gf/n with
each other. (This is of course to be expected, since Andreev is in H;im'rcg.)

To overcome this issue, we need to change our hard function. We hage then/2 bits x of A, to
encode a set of functions anore thanlog,(n) bits thatall have low correlation with each other. We will
make use of the following construction:

Proposition 2. Lete > 0and t m> 1. There is a polynomial-time computable matrixAc F3™' so that
for any x# y in[F%,, we have that Ax and Ay agree orixyi2 + O(¢)) bits, wheres =t/,/m.

Proof. Alon et al. [AGHP92, Section 4) show how to efficiently construct éf)-biased se§ C {0, 1}!
such thatS| = ct?/(&)? for some constart > 0. Settingm = ct?/(&’)2 means that’ = ,/ct/,/m; we will
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sete = ¢’/ /C. The(¢&')-biased property means that for every non-zero vectof0,1}!,
Pg[(r,v> #0mod 2 € ((1/2—+/c-&)m,(1/2+/c-€)m).
re

Letting the vectors of form the rows ofAy; IFZ’“X‘, every column ofA,: has Hamming weight in the
interval ((1/2—©(€))m,(1/2+4 ©(¢))m), the matrixA forms a code of distanaa(1/2 - ©(¢)), and the
conclusion holds. O

Corollary 6.1. Let m be a power of two, and let<d ,/m be a positive integer. There is a function F
{0,1}'°%(M 5 (0,1} — {0,1} computable in time polyn,n) so that for any strings ¥ € {0,1}" with
X #y we have Fz,x) = F(zy) for a (1/2+ O(¢))-fraction oflog,(m)-bit strings z, where =n//m.

Proof. SetF (z,x) := M(AmnX,Z), whereM is the log(m)-bit multiplexer, andAy, € F5™" is as in Propo-
sition 2. That is, we apply the linear transformatién,, to x € {0,1}" yielding anm-bit stringx’, then for
z€ {0,1}'°%(M we return the bit in theth position ofx’. O

Just to foreshadow a bit, note that in the construction of our final hactifin we will choosamto be
a power of two that is roughlg*®, so the value of will be about ¥n’.

Ranging over all possible inpuis the functionF above produces many strings of lengththat are
nearly uncorrelated with each other. We next prove the somewhat etidtogetic claim that no particular
string can be well-correlated with many of them. Let thkative Hamming distance (R, y) of x andy be
the fraction of bit positions in whick andy agree.

Lemma 6.1. Let.# be a collection of m-bit strings, any two of which have relative Hamming disthf2 +
Q(¢). Then for any other m-bit string T, there are at mogeC') elements & . such that/rh(T,S) —
1/2| > Q(e¥?).

Proof. Suppose for sake of contradiction that this is not the case. Then fdfieesnly large constant
C >0, there ares;, S, ..., S € . with t = Ce~1, and anmbit T satisfyingrh(S,T) < 1/2—C/« for all
i. For notational convenience, s&:= T, and constru&y,...,S vectors in{+1}" rather than{0,1}™.
Consider thet + 1) x (t + 1) Gram matrixG, defined for ali, j = 0,...,t asG[i, j] = (S, S;)/m. Note that

(a) Gis positive semi-definite,
(b) G[i,i] = 1 for alli,
(c) G[0,i] > Cy/¢e foralli, and
(d) G[i, j]| < O(¢) foralli # j,i,j > 0.
Now define the vector = (C?¢~1/2,—1,—1,...,—1). Observe that

VGV < Cle~t— 2t(C%eY/?)(CeY/?) +-t +t20(¢)
=Clel-2C*%t+Cet+O(CHe?
= (-C*+0(C’)+C)et <0,

which contradicts the fact th& is positive semi-definite. O

Lemma6.1implies that nan-bit string T can have large correlation with(—,x) for very many strings
X. Using the fact that there are relatively few distinct functions computapkniall depth-two threshold
circuits, we can prove that there must be a stritigat agrees with none of them.
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Corollary 6.2. For integers n and m with m a power @fand m< 22, define F as in Corollang.1
There is an x {0,1}" so that, forall log,(m)-bit functions implementable withT F o LTF circuits C having
o(n/log?n) gates, Gz) agrees with Fz x) on at most &a1/2 + ¢) fraction oflog,(m)-bit strings z, where
& = O(nY/2) /m/4,

Proof. By Lemma6.1and Corollary6.1, every such circui€ agrees wittF (z,x) on more than &1/2+ ¢)-
fraction ofZs, for at mostO(m) values ofx. By Theoren®.3, there are only 2" distinct functions computed
by circuits ofo(n/log?n) gates. Therefore there are at mo°(" stringsx so thatF (—,x) is (1/2+ €)-
approximated by some such circuit. Since this is less than the total numbdsito$trings, there must be
somex € {0,1}" so thatF (—,x) is not (1/2 + €)-approximated by anyTF o LTF circuit of o(n/log?n)
gates. O

We now introduce our hard function fd'rcg. It is essentially Andreev’s function, but with o&rin
place of the multiplexer. Earlier, we showed that plugging in a hard functitdreix-input of the multiplexer
yields a function that is hard to compute biF o LTF circuits (thus giving our lower bound of Theorelnt).
Now, we want to show that plugging in the “correct” inputig/ields a function that is hard to even weakly
approximate. Morally speaking, this should produce a function that haghas ¥ poly(n) correlation with
every smallLTF o LTF circuit. Unfortunately, although the intuition of this latter claim breaks downrwhe
trying to prove it, the intuition is true enough to yield&AJ o LTF o LTF lower bound.

Definition 6.1 (The Hard FunctiorB, ). For integers k| n, define th&n-bit function B k(x,a) := F(zXx),
where xa € {0,1}", and zc {0, 1} is defined by;z= zgi/(kg}k)(ifl)ﬂaj (mod 2.

That is, we compute PARITY okgroups ofn/k variables each from the strireg then feed the resulting
k-bit stringzinto F (z,x). (Recall thaF (z x) itself prints thezth bit of Am nx, whereAn, € F5™" is the matrix
of an small-biased set on vectors of lengthFinally, we defineBn(x, &) := Bnk(X,a), wherek = 16log, n.

Reminder of Theorem1.3 There is ndVIAJ o LTF o LTF circuit of o(n®2/log®n) gates or ¢n*?2/log’/?n)
wires that computesB

Proof. Let k = 16log,n in the following; for convenience we will state lower bounds By in terms of
bothn andk. We assume for sake of contradiction that there is sdtAd o LTF o LTF circuit C computing
Bnk, With eithers = o(n%2/ (klog?(n))) gates omw = o(n>?/(k¥?log?(n))) wires.

We set the inpuk in B k(x,a) to correspond to one of the “bad” strings guaranteed by Coroiaty
In particular, noLTF o LTF circuit with k inputs and fewer thann/logz(n) gates agrees with tHeinput
functionF (—,x) on more than 41/2+ O(n'/22-%/4))-fraction of inputs, for some sufficiently smait> 0.
Note thatn'/2/2/4 < n=2 by our choice ok.

Next, let be the partition of the remainingbits of input into sets of the forffg;n k)1, - - - &i+1)(n/k) }
for0<i <k-—1. By Lemmasl.1and3.1, a random restriction fron%?» has the effect that each bot-
tom level gate has probabilit9(k/,/n) of not being fixed by the restriction, and each bottom level gate
with u wires leading into it has probabilit(uk’2/n%?) of not being fixed to a function of a single in-
put. Therefore, there is some restrictiorin this family that leaves at mo€(sk//n) = o(n/log?(n)) or
O(wk%2/n%/2) = o(n/log?(n)) bottom level gates which depend non-trivially on more than one input. In
either case this is(n/log?(n)).

Upon making the restrictiop, the functionB,x on the remaining bits is equivalent to the function
z— F(zx), after possibly negating some of the inputs (note these negations caangedhe circuit size).
Our circuitC after the restrictiorp is equivalent to aMAJ o LTF o LTF circuit with o(n/log?(n)) bottom-
layer gates and(n®?) middle-layer gates. As the middle-layer gates correspohd o LTF circuits with
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o(n/log?(n)) gates, each of their outputs have correlation at rixgsi/22-%/4) < n—3 with the output of
Bnk. However, this means that all of the inputs to the top level majority gate hai/a) correlation with
Bnk, and thu<C andB,, x must disagree on some input. This is a contradiction. ]

Although the above proof suggests tBgj disagrees with every smalll'F o LTF circuit on more than
a(1/2+ ¢)-fraction of inputs fore = n~®(), the reader should note carefully that we do not do this, and we
are unable to prove this. (What we prove is tledter an appropriate restrictiontheremainingLTFo LTF
subcircuits have low correlation with thiemainingsubfunction ofB,.) This is because there is always a
probability of Q(1/,/n) that no bottom-level gates in our circuit are simplified after restriction, arntdtha
agrees withBy, on all inputs consistent with such restrictions. Therefore, our aphnedkcbe insufficient to
prove such a correlation bound, for any: 1/,/n.

7 Conclusion

We conclude with some open questions around linear threshold circuitgibedraractable.

1. Canone obtain asymptotically tight results for compufingr our functionB,, with low-depth thresh-
old circuits? Can average-case lower bounds be proveda/vt_ttli/n‘*’(l), e.g. if we look at functions
in TIME[20(W]?

2. Are there polynomial-sizeTF o LTF circuits for the function IP2? Many previous lower bounds on
threshold circuits show that IP2 is hard; it is known th&F o MAJ andMAJ o LTF circuits require
exponential size to compute IP2. Amano and Maruoki&l(5] point out that any answer to this
guestion, yes or no, would imply new separations of some threshold citas#es.

3. Is there a faster satisfiability algorithm f@(n)-gateLTF o LTF circuits? Several recent theoretical
SAT algorithms are built from lower bound techniqu&ap10 ST13 CKS14 AWY15, CKK"15].
Currently, non-trivial SAT algorithms are known only for slightly superéirig many wires [PS13.
Related to this, it would be interesting if one can prove a “concentratiorsia@rof our random
restriction lemma, where the number of gates remaining is tightly concentratettigte expectation.

4. The second authoWil14] has shown thaltTF o LTF circuits with 2°Y(" weights and 2" gates (for
some fixedd > 0) can be evaluated on alf Boolean assignments iff 2poly(n) time. Can this fast
evaluation algorithm be used to prove an exponential gate lower bound?
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