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Abstract

In order to formally understand the power of neural computing, we first need to crack the frontier of
threshold circuits with two and three layers, a regime that has been surprisingly intractable to analyze.

We prove the first super-linear gate lower bounds and the firstsuper-quadratic wire lower bounds for
depth-two linear threshold circuits with arbitrary weights, and depth-three majority circuits computing
an explicit function.

• We prove that for allε ≫
√

log(n)/n, the linear-time computable Andreev’s function cannot
be computed on a(1/2+ ε)-fraction of n-bit inputs by depth-two linear threshold circuits of
o(ε3n3/2/ log3n) gates, nor can it be computed witho(ε3n5/2/ log7/2n) wires.

This establishes an average-case “size hierarchy” for threshold circuits, as Andreev’s function is
computable by uniform depth-two circuits ofo(n3) linear threshold gates, and by uniform depth-
three circuits ofO(n) majority gates.

• We present a new function inP based on small-biased sets, which we prove cannot be com-
puted by a majority vote of depth-two linear threshold circuits with o(n3/2/ log3n) gates, nor with
o(n5/2/ log7/2n) wires.

• We give tight average-case (gate and wire) complexity results for computing PARITY with depth-
two threshold circuits; the answer turns out to be the same asfor depth-two majority circuits.

The key is a new random restriction lemma for linear threshold functions. Our main analytical tool
is the Littlewood-Offord Lemma from additive combinatorics.
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1 Introduction

A function f : {0,1}n → {0,1} is a linear threshold function(LTF) if there areweights w1, . . . ,wn, t ∈ R

such that for all(a1, . . . ,an) ∈ {0,1}n, f (a1, . . . ,an) = 1 if and only if ∑i wiai ≥ t. LTFs have been studied
since the 1940’s, as a model of the “all-or-none character of nervousactivity” [MP43]. Understanding the
capabilities of collections of LTFs is closely related to understanding the power of neural networks; this
connection motivated extensive research on the subject [Mur71]. In the 1960’s, Minsky and Papert [MP69]
proved many limitations on the abilities of single LTFs.

In this paper, we focus on models that appear to be only mild extensions: depth-two LTF circuits (a.k.a.
LTF ◦LTF circuits) and depth-three LTF circuits with all weights inZ∩ [−poly(n),poly(n)] (a.k.a.MAJ ◦
MAJ ◦MAJ, or TC0

3). LTF ◦ LTF circuits have a number of LTF gates connected directly to the input
variables, and a single output LTF gate which can take in input variables aswell as outputs of previously
computed LTFs; depth-three LTF circuits are defined similarly. These circuits roughly correspond to neural
nets with one or two hidden layers, respectively. Minsky and Papert [MP69] proved thatLTF◦LTF of 2O(n)

gates can compute any Boolean function, but failed to prove a strong impossibility result for these circuits.

Despite considerable study in the complexity of neural networks (see Section 2 for more background),
the power of a single hidden layer is still poorly understood: prior to our work, it was open whether every
function innondeterministic2O(n) timecould be computed byLTF◦LTF circuit families (orTC0

3 families)
with O(n) gates, or byLTF ◦LTF circuit families withn3/2 ·poly(logn) wires. (Linear-gate lower bounds
were proved by several groups in the early 90’s; ann3/2 wire lower bound was proved in 1993 by Impagli-
azzo, Paturi, and Saks [IPS93]. See Section2.)

By results of Allender and Koucky [AK10], in order to separateNC1 fromTC
0, we only need to exhibit

a function inNC1 that does not haven1.1 gates foreverydepthd ≥ 2. That is, the problem of proving
super-linear gate lower bounds for allO(1)-depth threshold circuits turns out to be as difficult as proving
super-polynomiallower bounds forO(1)-depth threshold circuits. Before we can do that, we have to first
prove non-linear gate lower bounds for depth-three circuits.

1.1 Our Results

We prove the first non-trivial super-linear gate lower bounds and super-quadratic wire lower bounds for
depth-two threshold circuits (LTF◦LTF), and depth-three majority circuits (TC

0
3). Our hard functions have

much lower complexity thanNTIME[2O(n)]; they are in fact computable inP (even in uniformTC0 itself).

We start with lower bounds for a linear-time computable function known asAndreev’s function, which
also appears in the best known formula size lower bounds. Our lower bounds extend to the average case,
showing that small depth-two threshold circuits cannot compute Andreev’sfunction on more than a(1/2+
o(1))-fraction of inputs. To define the function, let us set up some notation. Fork∈ N, thek-bit multiplexer
functionis defined asM2k(x1, ...,x2k,a1, ...,ak) := xbin(a1...ak), where bin :{0,1}k →{1, . . . ,2k} convertsk-bit
strings into positive integers. Letn= 2·2k. TheAndreev function An [And87] is defined as:

An(x,a1,1 . . .a1,(2k/k), . . . . . . ,ak,1 . . .ak,(2k/k)) = M2k

(

x,

(

(2k/k)

∑
j=1

a1, j mod 2

)

, . . . ,

(

(2k/k)

∑
j=1

ak, j mod 2

))

,

wherex∈ {0,1}2k
, andai, j ∈ {0,1}. In words,An computes the parity onk disjoint sets of 2k/k inputs, then

feeds the resultingk-bit string to the multiplexer function on the remaining 2k inputsx. (For simplicity we
may think ofk itself as a power of two, so we do not have to worry about divisibility issueswith 2k/k.)

Since 1987, the functionAn has been a primary target for formula size lower bounds [And87, IN88,
PZ93, Hås98, IMZ12]. The best known explicit size lower bounds for formulas over both the DeMorgan
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basis (n3−o(1)) and the full binary basis (n2−o(1)) are achieved byAn. Our first result is a non-linear gate
lower bound for computingAn with depth-two threshold circuits:

Theorem 1.1. Any function f that agrees with An on at least a(1/2+ ε)-fraction of inputs for someε ≫
√

log(n)/n cannot be computed byLTF ◦LTF circuits with fewer thanΩ(ε3n3/2/ log3(n)) gates or fewer
thanΩ(ε3n5/2/ log7/2(n)) wires.

In contrast with these lower bounds, there are several nice (and somewhat easy) circuit constructions for
computing Andreev’s function as well:

Theorem 1.2. The function An has (uniform) depth-3MAJ◦MAJ◦MAJ (i.e. TC0
3) circuits of O(n) gates,

(uniform)LTF◦LTF circuits of O(n3/ logn) gates, parity decision trees of depth at mostlog2(n), and (uni-
form)MOD3◦MOD2 circuits of O(n2) gates.

Hence the lower bounds of Theorem1.1 establish several average-case complexity hierarchies in the
low-depth circuit regime: for example,An is computable by depth-three LTF circuits ofO(n) gates, but is
not computable on a 1/2+ ε fraction of inputs by depth-two LTF circuits ofε3 ·n3/2−o(1) gates.

As our lower bounds are average-case, we easily obtain some lower bounds on computingAn with
distributionsof LTF◦LTF circuits. Say that a Boolean functionf is computed by anε-Approximate Majority
of LTF ◦LTF if there is a collectionC of LTF ◦LTF circuits such that, for every inputx, at least a 1/2+ ε
fraction of circuits inC output the valuef (x).

Corollary 1.1. Everyε-Approximate Majority ofLTF◦LTF for An needs at leastΩ(ε3n3/2/ log3(n)) gates
andΩ(ε3n5/2/ log7/2n) wires.

This is a partial step towards lower bounds fordepth-threecircuits composed of MAJORITY gates with
negations, i.e. the classTC0

3. It follows from our distribution results that (for example) Andreev’s function
has noTC0

3 circuit of O(n1.1) gates where the output gate has fan-ino(n2/15).

Onward to Depth Three. However, as stated in Theorem1.2, Andreev’s function hasO(n)-gateTC0
3

circuits. To obtain super-linear gate and super-quadratic wire lower bounds in the depth-three setting, we
modify Andreev somewhat, defining a new explicit functionBn. Informally, Bn has the same inputs(x,a)
asAn with |x| = |a|, and as before the function divides its stringa into groups and takes parities of each
group, butBn also feedsx into the generator matrix of an 1/poly(n)-balanced error-correcting code (i.e. a
1/poly(n)-biased set) before calling the multiplexer. This is similar to a function constructed by Komar-
godski and Raz [KR13], who also used error-correcting codes in a modification of Andreev’sfunction to
prove average-case formula lower bounds. We letMAJ◦LTF◦LTF be the class of circuits which compute
a majority value of depth-two threshold circuits.

Theorem 1.3. There is noMAJ ◦LTF ◦LTF circuit of o(n3/2/ log3n) gates or o(n5/2/ log7/2n) wires that
computes Bn.

Tight Results for PARITY in Depth-Two. Finally, we illustrate the strength of our techniques by proving
asymptotically tight results on approximating the PARITY function withLTF◦LTF circuits:

Theorem 1.4.The gate complexity ofMAJ◦MAJ circuits that agree with PARITY on99%of all n-bit inputs
is Θ(

√
n). The wire complexity isΘ(n3/2). The lower bounds hold even forLTF◦LTF circuits.

Theorem1.4shows that theΩ(n3/2)wire lower bound andΩ(n1/2) gate lower bound for PARITY proved
by Impagliazzo, Paturi, and Saks [IPS93] are both tight in the average case.
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1.2 Intuition

The key to our lower bounds is a new random restriction lemma for LTFs. With random restrictions, one
generally studies the probability that a distribution of partial Boolean assignments to the inputs of a circuit
“forces” many gates of that circuit to output a fixed value on all remaining inputs. The idea of forcing is very
natural for circuits made of AND and OR gates: an AND is “forced to 0” when one of its inputs is assigned
0, and an OR is “forced to 1” when one of its inputs is 1. As a result, randomrestrictions have been rather
effective for analyzingAC0 circuits made out of unbounded fan-in AND and OR gates (for example [FSS84,
Yao85, Hås86, Ros08]), as well as formulas over the AND/OR/NOT basis (for example [Sub61, And87,
PZ93, Hås98]). Strong average-case lower bounds forAC

0 and formula size are also known; some have
only been proved very recently [AW85, KR13, IMZ12, KRT13, Hås14, RST15].

For linear threshold functions, the notion of “forcing to a constant” is more subtle. There are two ways
we could conclude that a partially restricted LTF is equivalent to a constantfunction: either the partial
Boolean assignment makes part of the LTF so large that the threshold valueis achieved on all remaining
inputs, or the assignment makes the LTF so small that the threshold value is never achieved. Hence a
threshold function can be “forced to 0” in some cases, and 1 in other cases. Also, note that if an LTF only
depends non-trivially on a single variable after a restriction (that is, no other variables can affect the output
value), then the LTF gate can be removed, and replaced with a single wire coming from that single variable.
We incorporate both kinds of reasoning in our arguments.

In order for our analysis to work, we need to consider random restrictions of a structured yet “adversar-
ial” form. In particular, letP be anarbitrary partition of{1,2, . . . ,n} into equal parts, and letRP be the
distribution of random restrictions onn Boolean variables which randomly fixes all but one element of each
part ofP. For our applications, one should think ofP as partitioning[n] into k blocks of sizen/k for some
k≪ n, so thatRP roughly corresponds to fixing all butk randomly chosen variables.

Lemma 1.1 (Random Restrictions on Linear Threshold Functions). Let f : {0,1}n → {0,1} be a linear
threshold function. LetP be a partition of[n] into parts of equal size, and letRP be the distribution on
restrictionsρ : [n]→{0,1,⋆} that randomly fixes all but one element of each part ofP. Then

Pr
ρ∼RP

[ f is not forced to a constant byρ] = O(|P|/
√

n).

For example, given a partition of the inputs with at most
√

n/1000 parts, it is very likely thatf is
equivalent to a constant function, when a random element of each partis left unrestricted and all other
inputs are assigned to random bits.

The primary tool in our random restriction analysis is a well-known result in additive combinatorics by
Littlewood and Offord [LO43, Erd45] which (tightly) upper bounds the probability (on a random Boolean
assignment) that a linear function takes on a value in a given interval of length 2. We can use this lemma to
closely estimate the probability that an LTF is “forced to a constant” when some of its inputs are randomly
set to 0 or 1. The central intuition is that a linear threshold function is not “forced to a constant” by a
partial Boolean assignment precisely when the restricted part of the linearfunction lies in a certain integer
interval, certifying that the restricted part is neither “too high” to always exceed the threshold, nor “too low”
to always fail to meet the threshold. Adapting Littlewood-Offord to this eventrequires some care, as we
need to compute probability upper bounds for (potentially) large intervals defined by the LTF.

Another key idea in our lower bound proofs is the fact that there exist relatively hard functions for low-
depth threshold circuits. This is obtained by a counting argument, showing that since there are few distinct
functions computed by small threshold circuits, there must be hard functionswhich cannot be computed by
any of them (or any small group of them).
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Let us illustrate these two ideas, by sketching the proof of Theorem1.1. By plugging in the correct bits
of a hard function into a multiplexer, we can force our candidate circuitC to compute the value of such a
hard function. (This step was already known to Andreev [And87].) This would produce lower bounds of
orderΩ̃(n). However, the circuitC must still be capable of computing the hard function, even after we have
restricted it toO(logn) inputs. SinceC must still be large after a restriction has killed all but a 1/

√
n fraction

of its gates, it must have originally had sizeΩ̃(n3/2), by our Random Restriction Lemma.

Comparison with Impagliazzo, Paturi, and Saks. In the previous best known lower bounds onLTF
circuits of depth at least two, Impagliazzo, Paturi, and Saks [IPS93] also used a random restriction method
to prove their lower bounds. There are several critical differences between their approach and ours. Their
main lemmas state that for anyLTF circuit with n variables andδn wires, there is a variable restriction which
leavesΩ(n/δ 2) variables unset and makeseverybottom-layer gate dependent on at most one variable. First,
observe that their lemmas are nontrivial only when the number of wires isO(n3/2). Second, the proofs
of their lemmas require that they pick a particularrandompartition of variables in which the restriction is
performed; we will need to allow an adversary to control the partition in order for our analysis to work.
Third, instead of insisting that every bottom-layer gate is reduced, we use Littlewood-Offord to calculate the
probability that single gate is either forced to a constant (Lemma1.1) or depends on at most one variable
(Lemma3.1). Fourth, we use our relaxed setting to incorporate strongLTF◦LTF lower bounds for random
functions in our arguments to gain an extra linear factor in the gate and wire lower bounds (Theorem1.1),
and we add another layer of complexity to the function to insert correlation-style arguments to gain an extra
layer of circuit depth (Theorem1.3).

2 Preliminaries

We denote assignments ton Boolean variables by functions of the formτ : [n]→{0,1}.

In our proofs, alinear threshold function(LTF) is defined by a pair(L, t) wheret ∈R andL : {0,1}n →Z

is a function of the formL(x1, . . . ,xn) = ∑n
i=1aixi where allai ∈ R. Theoutputof (L, t) on an assignment

τ : [n] → {0,1} is JL(τ(1), . . . ,τ(n)) ≥ tK, whereJPK is notation for the function which outputs 1 when
propertyP is true and 0 whenP is false.

The Littlewood-Offord Lemma. We will apply a classical result of Littlewood and Offord [LO43] which
upper bounds the number of inputs to a linear functionL(x) = ∑t

i=1aixi so that the output lies in a given
intervalI of length 2. In particular, if at leastn of theai have|ai | ≥ 1, and ifx is a random point in{−1,1}t ,
then Prx[L(x) ∈ I ] ≤ O(log(n)/

√
n). The bound was later improved toO(1/

√
n) by Erd̋os [Erd45]. By

scaling the length of the intervalI , we obtain the following:

Lemma 2.1. Let L(x) = ∑n
i=1aixi be a linear function, and k∈N. Let I⊂R be a finite interval, and suppose

that |ai | ≥ |I | for at least k of the ai . Then

Pr
x∈u{0,1}n

[L(x) ∈ I ]≤ O(1)√
k
,

where∈u denotes a uniform random choice.

Proof. Start with the original lemma: assume at leastk of theai have|ai | ≥ 1, let I be an arbitrary interval
of length 2, and obtain Prx∈{−1,1}t [L(x) ∈ I ] ≤ O(1/

√
k). What follows is some simple massaging of this

statement.
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If we add∑n
i=1ai to the functionL(x), then we can let eachxi be chosen from{0,2}. Then, shifting

the intervalI by ∑n
i=1ai (defining an intervalI ′ of length 2), we still have Prx∈{0,2}n[L(x) ∈ I ′] ≤ O(1/

√
k).

Dividing everything by 1/2, the intervalI ′ becomes length 1, and we obtain Prx∈{0,1}n[L(x)∈ I ′]≤O(1/
√

k).
Finally, if we multiply theai ’s andI ′ by any desired interval lengthℓ ∈ R

+, we can accommodate any finite
interval, as long as at leastk of theai ’s have absolute value at least the interval length.

Constant-Depth Threshold Lower Bounds for Random Functions Another ingredient in our main re-
sult is a threshold circuit lower bound for random functions. This followsfrom a counting argument via a
non-trivial upper bound on the number of distinct functions computable withlow-depth LTF circuits. The
upper bound on the number of possible LTFs has been proved many times; the earliest reference we have
found is Winder [Win60] from the 1st Annual FOCS:

Theorem 2.1([Win60]). The number of linear threshold functions on n variables is at most2O(n2).

The 2O(n2) upper bound immediately follows from Chow’s theorem (from the 2nd Annual FOCS), which
characterizes linear threshold functions by their low-degree Fourier coefficients.

Theorem 2.2(Chow [Cho61]). Every LTF f on n variables is uniquely determined by its n+ 1 Fourier
coefficientsf̂ ( /0), f̂ (1), . . . , f̂ (n).

To see why the 2O(n2) upper bound follows from Theorem2.2, observe that each Fourier coefficient of a
Boolean function can take on at mostO(2n) values, because it is an expectation of a random variable taking
values in{−1,1}, over a 2n sample space. Combined with Chow’s Theorem, the number of LTFs onn
variables is at mostO(2n)n+1 ≤ 2O(n2). For a proof, see (for example) O’Donnell and Servedio [OS11], or
Knuth ([Knu11], Theorem T) who states the theorem slightly differently (the language of Chow, in fact).

A considerable generalization of Winder’s theorem was given by Roychowdhury, Siu, and Orlitsky:

Theorem 2.3([ROS94b]). LetF = { f1, . . . , fs} be a fixed collection of functions of the form fi : {0,1}n →
{0,1}. Then there are at most(2n+1)s+1 distinct functions g: {0,1}n →{0,1} of the form

g(x1, . . . ,xn) =

t
s

∑
i=1

wi · fi(x1, . . . ,xn)≥ t

|
,

where w1, . . . ,ws, t ∈ R andJPK is notation for the function which outputs1 when property P is true and0
when P is false. That is, there are O(2ns+s) threshold functions over s input functions. As a consequence,
the number of depth-2 linear threshold circuits of s≥ n gates and n inputs is at most2O(n2s).

For completeness, we give a short self-contained proof. Our proof builds on Knuth’s elegant proof of
Chow’s theorem ([Knu11], Theorem T).

Proof. Let g be an LTF takings inputs, and letf1, . . . , fs be LTFs onn variables. LetS(g) be the set of
y∈ {0,1}s such thatg(y) = 1 and( f1(x), ..., fs(x)) = y for somex∈ {0,1}n. Let Σ(g) ∈N

s be the sum of all
yi ∈ S(g) as vectors over the integers. As each entry ofΣ(g) is an integer in[0,2n], note there are(2n+1)s

possible values forΣ(g).
We claim that, if|S(g)|= |S(h)| andΣ(g) = Σ(h) for two LTFsg andh over the same functionsf1, . . . , fs,

theng( f1, . . . , fs) = h( f1, . . . , fs) as Boolean functions.

It follows from the claim that:
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(a) Every depth-two LTF circuit ofs+1 gates is uniquely determined by|S(g)| ≤ 2n, Σ(g), and thesLTF
gates on the bottom layer. Hence there are at most(2n+1)s+1 threshold functions overs given input
functions.

(b) There are at most 2O(n2·s) distinct depth-two LTF circuits, since there are at most(2n+1)s+1 possible
choices for the output gate, and 2O(n2s) choices for thes LTFs on the bottom layer (by Theorem2.1).

So let’s prove the claim. Supposeg( f1, . . . , fs) 6= h( f1, . . . , fs) as Boolean functions, but|S(g)|= |S(h)|
andΣ(g) = Σ(h). Let {y1, . . . ,yk} ⊆ {0,1}s be the set of all points in the image of( f1, . . . , fs) : {0,1}n →
{0,1}s, such thatg(yi)= 1 andh(yi)= 0. By definition,{y1, . . . ,yk}=(S(g)\S(h)). Because|S(g)|= |S(h)|,
there must also be exactlyk pointsz1, . . . ,zk in the image of( f1, . . . , fs) such thatg(zi) = 0 andH(zi) = 1;
we therefore have{z1, . . . ,zk}= (S(h)\S(g)).

SinceΣ(g) = Σ(h), the total sum of all vectors inS(g) andS(h) are the same, so we must have∑k
i=1yi =

∑k
i=1zi , where the sum is componentwise.

Suppose the linear function ofg(y) has the form∑i wiyi , and threshold valuet. Let w= (w1, . . . ,ws). By
our definition ofyi andzi , we have〈w,yi〉 ≥ t and〈w,zi〉< t for all i. Therefore

〈

w,(
k

∑
i=1

yi)

〉

= ∑
i

〈w,yi〉 ≥ kt > ∑
i

〈w,zi〉=
〈

w,(
k

∑
i=1

zi)

〉

.

This is a contradiction, since∑k
i=1yi = ∑k

i=1zi andk> 0.

Combining Theorem2.3with a simple counting argument, we obtain:

Corollary 2.1. For all sufficiently large n, a randomly chosen Boolean function on n variables requires
depth-2 linear threshold circuits of size at leastΩ(2n/n2), with probability1−o(1).

Proof. If we choose a functionf : {0,1}n → {0,1} uniformly at random, the probability it has depth-2
threshold circuits of sizes is at most 2O(n2s)/22n

, by Theorem2.3. For s≤ o(2n/n2), this probability is
2o(2n)/2n = o(1).

By standard arguments we also have an “inapproximability” refinement of theabove corollary:

Corollary 2.2. For all ε ≫
√

n/2n, and all but anε-fraction of n-bit Boolean functions f , there is no depth-
2 linear threshold circuit of size s≤ o(ε2 ·2n/n2) that agrees with f on more than a(1/2+ ε)-fraction of
inputs.

Proof. By Theorem2.3, the total number of functions computed by such size-s depth-2 circuits is at most
2o(ε22n). For any such circuit, it agrees with a randomly chosenf on a (1/2+ ε)-fraction of inputs with
probability 2−Ω(ε22n), by standard Chernoff bounds. Taking a union bound over our choice of circuits, we
conclude thatf does not agree with any size-s depth-2 threshold circuit on a(1/2+ ε)-fraction of inputs,
with probability at least 1− ε.
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A Short History of Low-Depth Threshold Lower Bounds. Hajnalet al. [HMP+93] proved the first size
lower bounds forLTF◦LTF circuits, showing that theinner product modulo 2(a.k.a. IP2) requires 2Ω(n) size
when the weights of each LTF are small (polynomial in the input length). This result is often cited as saying
that the inner product does not have subexponential-sizeMAJ◦MAJ circuits, as MAJORITY functions can
simulate LTFs with polynomial weights. Note that IP2 hasMAJ◦MAJ◦MAJ circuits withO(n) gates, so we
cannot use IP2 in our depth-three lower bounds. Nisan [Nis94] elegantly applied communication complexity
ideas to extend the exponential lower bound toMAJ ◦LTF circuits; that is, the lower bound holds even if
the weights of the LTFs on the hidden layer are arbitrary. Later, Forsteret al. [FKL+01] extended the lower
bound toLTF◦MAJ circuits, where only the middle (hidden) layer is restricted to have small weights.

In terms of lower bounds for generalLTF ◦ LTF circuits, only a few results are known. Goldmann,
Håstad, and Razborov [GHR92] showed that everyLTF ◦ LTF circuit can be efficiently simulated by a
MAJ ◦MAJ ◦MAJ circuit, and computing IP2 withLTF ◦LTF requiresΩ(n/ logn) gates. Groeger and G.
Turán [GT91, GT93] and Roychowdhury, Orlitsky, and Siu [ROS94a] proved that IP2 has gate complexity
Θ(n) for LTF circuits; their result has no depth restriction. Paturi and Saks [PS90] showed that PARITY
requiresΩ(n/ log2n) gates forMAJ ◦MAJ circuits. Impagliazzo, Paturi, Saks [IPS93] showed thatLTF ◦
LTF circuits computing PARITY cannot haveo(n3/2) wires, nor can they haveo(n1/2) gates. (Their proof
in fact gives a lower bound for all constant depths, although the bounds get smaller as the depth increases.)
In the uniform setting, Allender and Koucky [AK10] have shown that for everyd, there is anε ∈ (0,1) such
that the SAT problem cannot be solved by LOGTIME-uniform depth-d LTF circuits with O(n1+ε) wires.
Other more recent work onLTF◦LTF includes [AM05, HP10, HP13, IPS13, Wil14, CS15].

In all the above cases, no super-linear gate lower bounds were known, and no quadratic wire lower
bounds were known, even forLTF ◦ LTF. PARITY is well-known to haveMAJ ◦MAJ circuits of O(n)
gates, and we show in Theorem1.4that thereare alwaysMAJ◦MAJ circuits ofO(n1/2) gates andO(n3/2)
wires which agree with PARITY on 99% of the inputs, so it is impossible to extendthe lower bounds of
[PS90, IPS93] for PARITY in the way we seek (for good reason).

3 Random Restrictions on Linear Threshold Functions

We are ready to give our main lemma on random restrictions to linear threshold functions. To properly state
it, we need to set up some notation. Define arestrictionto be a functionρ : [n]→{0,1,⋆}. (Such a function
is also called a partial assignment.) IfP is a set partition of[n], we say thatρ is arandom restriction across
P if ρ is obtained by first uniformly randomly choosing a one elementei of each part ofP, then setting
ρ(ei) = ⋆ for eachi, and settingρ( j) randomly and independently to either 0 or 1 for all otherj ∈ [n].

A completion ofρ is simply a functionτ : [n] → {0,1} such that for alli such thatρ(i) 6= ⋆ we have
τ(i) = ρ(i). That is,τ extends the partial assignmentρ to some full assignment on all variables. We say
that an LTFf : {0,1}n → {0,1} is forced to a constant by restrictionρ if there is ac∈ {0,1} such that for
all completionsτ of ρ, the output off on τ always equalsc. That is, f is “forced to a constant” ifρ has set
enough variables off that the remaining function is constant. We record the following trivial (but crucial)
observation that we cansimplifycircuits when their gates are forced to constants:

Proposition 1. Let C be an n-input circuit over LTF gates, letℓ be an LTF in C, and letρ : [n]→ {0,1,⋆}
be a restriction that forcedℓ to a constant c. Then the subfunction defined by C(ρ(1), . . . ,ρ(n)) has an
equivalent circuit with the gateℓ removed, and the constant c placed on the output wires ofℓ.

We recall the main lemma to prove:

Reminder of Lemma 1.1 Let f : {0,1}n → {0,1} be a linear threshold function. LetP be a partition of
[n] into parts of equal size, and letRP be the distribution on restrictionsρ : [n]→ {0,1,⋆} that randomly
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fixes all but one element of each part ofP. Then

Pr
ρ∼RP

[ f is not forced to a constant byρ] = O(|P|/
√

n).

Observe that Lemma1.1 is essentially tight for the MAJORITY function (the LTF withL(x) = ∑n
i=1xi

andt = ⌈n/2⌉). In particular, if we set all butk inputs of then-bit MAJORITY function to uniform random
values, the MAJORITY function is not forced to a constant only when the difference between the number
of 1’s and the number of 0’s is within[−k,k]. This occurs with probability∼ k/

√
n for smallk. (This is just

another way of saying that the Littlewood-Offord Lemma is tight for the vectora= (1, . . . ,1).)

Proof of Lemma 1.1. Let the linear threshold functionf be defined by the linear functionL(x) = ∑n
i=1aixi

with threshold valuet ∈R. For a setB⊆ [n], letRB be the distribution of restrictions off to all butB, where
we set elements inB to ⋆ and elements not inB to random 0,1 values. Assumex ∈ {0,1}n−|B| is chosen
uniformly at random, and letL′(x) = ∑i 6∈Baixi . Observe thatf is forced to a constant if and only if

(

L′(x)< t − ∑
i∈B:ai>0

|ai |
)

or

(

L′(x)> t + ∑
i∈B:ai<0

|ai |
)

.

(In the first case,f is forced to 0; in the second case,f is forced to 1.) Therefore, the probability that a
random restrictionρ ∼ RB does not forcef to a constant is at most the probability thatL′(x) lies in the
interval

I =

[

t − ∑
i∈B:ai>0

|ai |, t + ∑
i∈B:ai<0

|ai |
]

.

Note that|I | = ∑i∈B |ai |, and that we can writeI an a union of intervalsIi with |Ii | = |ai |. Therefore, by a
union bound we have that

Pr
ρ∼RB

[ f is not forced to a constant byρ]≤ ∑
i∈B

Pr
x

[

L′(x) ∈ Ii
]

. (1)

For all i = 1, . . . ,n, defineki to be the number ofj ∈ [n] such that|ai | ≥ |a j |. Observe that

ki ≥ k j ⇐⇒ |ai | ≤ |a j |. (2)

We claim that

Pr
ρ
[ f is not forced to a constant byρ]≤ ∑

i∈B

O(1)√
ki

. (3)

Let us prove this claim. For alli = 1, . . . ,n, definek′i to be the number ofj ∈ [n]−B such that|ai | ≥ |a j |. By
Lemma2.1, we have for alli = 1, . . . , |B| that

Pr
x∈{0,1}n−|B|

[

L′(x) ∈ Ii
]

≤ O(1)
√

k′i
.

Obviously,k′i ≤ ki for all i ∈ B. To prove (3), we need an inequality in the opposite direction. We consider
two cases. First, suppose there is ani ∈ B with at leastki/2 different j ∈ B satisfyingk j ≤ ki . Then
∑i∈B1/

√
ki ≥ (ki/2)/

√
ki ≫ 1, and inequality (3) trivially holds in this case. Otherwise, for alli ∈ B, there

are at mostki/2 different j ∈ B with k j ≤ ki . By (2), this means that|ai | ≤ |a j | for at mostki/2 different j ’s,
implying thatki ≤ k′i +ki/2 for all i ∈ B. So we haveki ≤ 2k′i for all i ∈ B, and

Pr
ρ∼RB

[ f is not forced to a constant]≤ ∑
i∈B

Pr
x

[

L′(x) ∈ Ii
]

≤ ∑
i∈B

O(1)
√

k′i
≤ ∑

i∈B

O(1)√
ki

,
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and the inequality (3) holds in this case as well. Therefore

Pr
ρ∼RP

[ f not forced to constant byρ] = B

[

Pr
ρ∼RB

[ f not forced to constant byρ]
]

≤ B

[

∑
i∈B

O(1)√
ki

]

(by (3))

=
n

∑
i=1

O(1)√
ki

·Pr[i ∈ B]

=
|P|

n
·
(

n

∑
i=1

O(1)√
ki

)

≤ |P|
n

·
(

n

∑
ℓ=1

O(1)√
ℓ

)

(by def. ofki)

= O(|P|/
√

n), (by
n

∑
k=1

k−1/2 ≤ 2n1/2)

where the last inequality follows by upper bounding the sum with an integral. This completes the proof.

�

In order to prove our wire lower bounds, we require a version of Lemma1.1that yields better results for
thresholds that depend on relatively few inputs. Unfortunately, a threshold gate with a single input has only
one wire, and yet has a|P|/n chance of not being forced to be a constant; this is too weak of a bound for
us. On the other hand, we know that a gate with only one input always returns just its input or its negation.
In particular, even if a gate is not set to a constant by a restriction, we canstill replace it by a single wire if
its output depends on onlyoneof the remaining inputs. In terms of this event, we can prove a much better
probability bound.

For a random restrictionρ and LTF f , we say thatf (x1, . . . ,xn) is forced to a function of a single input
by ρ if there is ani ∈ [n] such that for all completionsτ of ρ, the output off on τ depends only on the
variablexi or is a fixed constant.

Lemma 3.1. Let f : {0,1}n → {0,1} be a linear threshold function that depends on only w of its inputs.
LetP be a partition of[n] into parts of equal size, and letRP be the distribution on restrictionsρ : [n]→
{0,1,⋆} that randomly fixes all but one element of each part ofP. Then

Pr
ρ∼RP

[ f is not forced to a function of a single input byρ] = O(w|P|3/2/n3/2).

Proof. Let S be the set of inputs on whichf depends. Defineki for i ∈ S as in the proof of Lemma1.1.
Suppose we have a random restrictionρ that fixes all input variables except those inB⊂ [n].

We want to upper bound the probability thatρ does not fixf to a function of a single input. In order for
this to happen it must be that|B∩S| ≥ 2, for otherwise the restriction off depends only on the coordinates
in S∩B. Furthermore, this event happens with probability at most∑i∈B∩SO(1/

√
ki), by Equation (3).
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Therefore, the probability thatf is not fixed to a function of a single input is

B

[

J|B∩S| ≥ 2K · ∑
i∈B∩S

O(1)√
ki

]

= ∑
i∈S

O(1)√
ki

·Pr[i ∈ B, |B∩S| ≥ 2]

= ∑
i∈S

O(1)√
ki

·min

{

|P|
n

, ∑
j 6=i, j∈S

Pr[i, j ∈ B]

}

= ∑
i∈S

O(1)√
ki

·min

{ |P|
n

,w· |P|2
n2

}

≤
(

w1/2 · |P|3/2

n3/2

)

∑
i∈S

O(1)√
ki

(min{a,b} ≤
√

ab, a,b> 0)

= O(w· |P|3/2/n3/2). (by ∑
i∈S

1√
ki

≤ 2
√

w)

4 Tight Upper and Lower Bounds for Approximately Computing PARITY

We begin with the upper and lower bounds for computing PARITY withLTF◦LTF circuits, since the lower
bounds here are the easiest example of what our Random Restriction Lemmas can do.

Reminder of Theorem 1.4 The gate complexity ofMAJ ◦MAJ circuits that agree with PARITY on99%
of all n-bit inputs isΘ(

√
n). The wire complexity isΘ(n3/2). The lower bounds hold even forLTF ◦LTF

circuits.

Proof. (Upper bound) We produce an explicit construction. LetLk = J∑n
i=1xi ≥ kK be the output of a

“threshold-at-least-k” gate over itsn inputs. Observe thatLk − Lk+1 is the 0/1 indicator function of the
exact threshold function∑n

i=1xi = k.

Let c > 0 be sufficiently large in the following. We construct the top gate of our depth-two circuit to
compute the threshold function defined by

n/2+c
√

n

∑
k even, k=n/2−c

√
n

Lk−Lk+1 ≥ 1.

This function agrees with parity as long asn/2− c
√

n ≤ ∑n
i=1xi ≤ n/2+ c

√
n, and for a sufficiently large

c> 0, this happens on 99% of all inputs. This circuit obviously usesO(
√

n) gates andO(n3/2) wires.

(Lower Bound) We begin with the observation (originally due to Minsky and Papert [MP69]) that a
singleLTF with two inputs cannot approximate PARITY on more than 75% of its inputs. Therefore, for
everyLTF◦LTF circuit C that approximates PARITY on 99% of alln-bit inputs, ifC is randomly restricted
on all but two unassigned inputs, then the restricted circuitC′ cannot be equivalent to a singleLTF with
more than 10% probability. On the other hand, the circuitC′ will be equivalent to a singleLTF gate, unless
at least one of the bottom level gates ofC′ is not forced to a function on one input: that is, at least one gate
on the bottom layer is neither a projection of one input, nor is it a constant function. Call a gate “trivial” if
is forced to a function on one input. Observe that a trivial gate can always be replaced by a single wire, or a
constant.
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So letC be a depth-2LTF circuit with s gates andw wires that agrees with PARITY on at least 99%
of the n-bit inputs. LetP be a partition of[n] into two equally sized subsets. Suppose we choose a
random restrictionρ from RP on the inputs ofC, resulting in a restricted circuitC′ on two inputs. Our
Random Restriction Lemmas1.1and3.1show that the number of non-trivial bottom level gates ofC is, in
expectation,

O

(

min

(

s√
n
,

w

n3/2

))

.

If eithers≪√
n or w≪ n3/2, then by Markov’s inequality, there are no non-trivial gates on the bottomlayer

with probability at least 50%. That is, on at least half of the possible random restrictions, the remaining
circuitC′ on two inputs is equivalent to a singleLTF gate, and henceC′ does not compute PARITY correctly
on more than 75% of its inputs. By the previous paragraph, it follows thatC does not compute PARITY
correctly on 99% of the inputs.

5 Depth-Two Lower Bounds for the Andreev Function

The strategy for our depth-two lower bounds forAn has a similar structure to the known Boolean formula
lower bound proofs forAn: hit the functionAn (and a circuitC that supposedly computes it) with a random
restriction of an appropriately controlled form, so that the 2k-bit inputx of An is assigned a uniform random
value, and from each blocki there is oneai, j that is left unset. The remainder implements a function on
k bits, whose truth table is given byx. Whenx is chosen uniformly at random, we are implementing a
randomk-bit function and can use our depth-two lower bounds for random functions (Corollaries2.1 and
2.2) to argue that the number of gates left inC must be somewhat large: at leastΩ(2k/k2) = Ω(n/ log2n).
However, if the originalC began with a small enough number of gates, the Random Restriction Lemmas tell
us that we should expect the random restriction toC to force many bottom-layer gates to constants (and kill
many wires inC). Setting the parameters appropriately yields a contradiction.

Reminder of Theorem1.1 Any function f that agrees with An on at least a(1/2+ε)-fraction of inputs for
someε ≫

√

log(n)/n cannot be computed byLTF◦LTF circuits with fewer thanΩ(ε3n3/2/ log3(n)) gates
or fewer thanΩ(ε3n5/2/ log7/2(n)) wires.

Proof. Recall thatAn has inputsx ∈ {0,1}n/2, and ai, j ∈ {0,1}, with i = 1, . . . ,k and j = 1, . . . ,2k/k,
wherek := ⌊log2(n)⌋. Let C be aLTF ◦ LTF circuit with s≤ cε3n3/2/ log3(n) gates or fewer thanw ≤
cε3n5/2/ log7/2(n) wires for a sufficiently small constantc> 0. By Corollary2.2there exists ac′ > 0 so that
with probability at least 1− ε/3 a random functionf on ⌊log2(n/2)⌋ bits does not agree on a(1/2+ ε/3)-
fraction of inputs with anyLTF ◦LTF circuit with fewer thanc′ε2n/ log2(n) bottom level gates. We claim
that if a random choice ofx corresponds to the truth table of such a functionf (and it will, with probability
at least 1− ε/3), then the probability over the remaining bits thatC agrees withAn is at most 1/2+2ε/3.

Consider fixing the bits of input to the coordinates corresponding tox to such anf . LetP be the partition
of the remainingn/2 bits of input into thek subsets{ai,1,ai,2, . . . ,ai,2k/k}. Letρ be a random restriction from
RP . By Lemmas1.1and3.1, every linear threshold functiong onn/2 bits is forced to a constant byρ with
probability at least 1−O(|P|/√n) = 1−O(log(n)/

√
n) and every gate withu wires is forced to a function

of a single input with probability at least 1−O(u|P|3/2/n3/2) = 1−O(ulog3/2(n)/n3/2). Therefore, in
either case, the expected number of bottom level gates inC not forced to constants byρ is at most most
c′ε3n/(3log2(n)) (assumingc was sufficiently small).

Therefore, by Markov’s inequality, with probability at least 1−ε/3 we have that whenC is restricted by
ρ, all butc′ε2n/ log2(n) of the bottom level gates ofC are forced to functions of single inputs. In this case,
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C is equivalent to aLTF ◦LTF circuit with at mostc′ε2n/ log2(n) gates. On the other hand, the restriction
of An to ρ is merely the functionf (y1,y2, . . . ,yk), where each(yi = ∑ j ai, j mod 2) equals either one of the
k unassigned variables, or its negation. (Note that negations of variables cannot change the circuit size:
negations can easily be accommodated in the threshold gates.) Since by assumption the functionf does not
agree with anyLTF◦LTF of sizec′ε2n/ log2(n) on more than a(1/2+ ε/3)-fraction of inputs, we find for
those values off andρ that

Pr
y

[

An|ρ(y) =C|ρ(y)
]

≤ 1/2+ ε/3.

However, it is easy to see that

Pr
x∈{0,1}n

[An(x) =C(x)] = f ,ρ

[

Pr
y
[An|ρ(y) =C|ρ(y)]

]

≤ 2ε/3+(1/2+ ε/3)≤ 1/2+ ε .

This completes the proof.

5.1 Approx-MAJ of MAJ of MAJ Lower Bounds for Andreev

From the above lower bounds, it is straightforward to conclude depth-three lower bounds for Andreev’s
function with an Approximate Majority gate at the top.

Say that a Boolean functionf is computed by anε-Approximate Majority ofLTF ◦ LTF if there is
a collection ofLTF ◦LTF circuits such that, for every inputx, at least a 1/2+ ε fraction of circuits in the
collection output the valuef (x). The following is an easy corollary of our depth-two threshold lower bounds
for Andreev’s function:

Reminder of Corollary 1.1 Everyε-Approximate Majority ofLTF◦LTF for An needs at leastΩ(ε3n3/2/ log3(n))
gates andΩ(ε3n5/2/ log7/2n) wires.

Proof. Let C = {C1, . . . ,Ct} be a collection ofLTF ◦ LTF circuits such that on every inputx, at least
(1/2+ ε)t of the circuits inC agree with Andreev’s function onx. Assuming the entire collectionC
haso(ε3n3/2/ log3(n)) total gates, it follows that everyCi haso(ε3n3/2/ log3(n)) gates (we cannot expect
to do much better here, since theCi ’s could share almost all of their gates and wires). Letx1, . . . ,x2n be a
list of all n-bit strings, and form at ×2n Boolean matrixM whereM(i, j) = 1 if and only ifCi(x j) equals
Andreev’s function onx. By Theorem1.1, each row ofM contains less than a(1/2+ ε)-fraction of ones,
so the entire matrix has less than a(1/2+ ε)-fraction of ones. However, every column ofM contains at
least a(1/2+ ε)-fraction of ones, because for every inputx, at least(1/2+ ε) of the circuits inC correctly
compute Andreev’s function onx. It follows that the entire matrix has at least a(1/2+ ε)-fraction of ones;
this is a contradiction. An analogous argument works for wires, too.

It follows (for example) that Andreev’s function has noTC0
3 circuit of O(n1.1) gates where the output

gate has fan-ino(n2/15).

5.2 Small Circuits for Andreev’s Function

We cannot expect to prove much stronger lower bounds forAn, as there are nice circuit constructions for the
function. In particular, we cannot hope to achieve super-linear gate lower bounds forTC0

3 usingAn:

Reminder of Theorem 1.2 The function An has (uniform) depth-3TC0 circuits of O(n) gates1, (uni-
form)LTF◦LTF circuits of O(n3/ logn) gates, parity decision trees of depth at mostlog2(n), and (uniform)
MOD3◦MOD2 circuits of size O(n2).

1Recall that aTC0 circuit is composed of MAJORITY gates with negations.
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Proof. (Sketch) In all below constructions, we use the fact that Andreev’s functionAn can be represented
straightforwardly as an OR ofn/2 ANDs of O(logn) parities overO(n/ logn) variables, where over the
entire circuit there are onlyO(logn) total parity gates.

1. First, since MAJORITY (a.k.a. MAJ) can simulate AND, we can replace theOR of AND part in
the above circuit forAn with an OR of MAJ; this part hasO(n) gates. Each of theO(logn) different parity
functions onO(n/ logn) variables can be computed with aLTF ◦MAJ circuit of O(n/ logn) gates, where
the weights of the LTF gate are at most polynomial inn, and the sum computed in the top LTF gate always
equals either 1 or−1 (indeed, this is true for any symmetric function; see Proposition 1 in [HMP+93]).
Given that these LTFs have this property, we can simply “merge” the top part computing an OR-MAJ with
the O(logn) LTF ◦MAJ circuits computing the bottom part, resulting in an OR ofMAJ ◦MAJ circuit of
O(n) total gates.

2. Each of theO(logn)-fan-in ANDs in the above circuit forAn can be computed by a weighted sum
of n parities, using the Fourier representation of theO(logn)-bit AND function. The OR ofO(n) of these
weighted sums can be easily written as an LTF ofO(n2/ logn) parities onO(n) variables. From the previous
paragraph, each of these parities can replaced by anLTF◦LTF circuit of O(n) gates. The sums computed in
the top LTF gates are either 1 or−1, so these outputs can be composed with the top LTF gate (as in part 1),
resulting in anLTF◦LTF circuit of O(n3/ logn) gates.

3. In log2(n/2) depth (andn/2 leaves), we can compute each of the log2(n/2) parities ofAn one by one,
then output the appropriate bit of the multiplexer function with one more layer ofdepth.

4. Every MOD3-MOD2 circuitC of sizes corresponds to someF3 polynomial p(x1, . . . ,xn) of s− 1
monomials over{−1,1}, whereC(x) = 1 if and only if p(x) = 0 mod 3. Note that, as a polynomial over
{0,1}, the multiplexer function has degree logn and sparsityn. Hence we can express Andreev’s function
(namely, a multiplexer ofn/ logn-length parities) as anF3-polynomial over{−1,1} which is a sum ofn
products of logn “terms”, where each term has the form(1+∏xi)/2 and each∏xi is over one of then/ logn-
length parities in Andreev’s function. Expanding this polynomial results in a sum of O(n2) monomials in
total, translating into a MOD3 ofO(n2) MOD2s.

6 Depth-Three Lower Bounds

We now turn to proving lower bounds againstMAJ◦LTF◦LTF circuits computing an explicit function. We
begin with the observation that ans(n)-sizeMAJ◦LTF◦LTF circuit necessarily hasΩ(1/s(n)) correlation
with at least one of theLTF ◦ LTF subcircuits. Therefore, it would suffice to find a function which is not
(1/2+1/poly(n))-approximable byLTF◦LTF circuits of small size. Unfortunately, Andreev’s function is
not sufficient for these purposes; it has correlationΩ(1/

√
n) with the majority over the bits corresponding

to x; the problem is essentially thattypical log2(n)-bit functions have correlations on the order of 1/
√

n with
each other. (This is of course to be expected, since Andreev is in linear-sizeTC0

3.)

To overcome this issue, we need to change our hard function. We have to use then/2 bits x of An to
encode a set of functions onmore thanlog2(n) bits thatall have low correlation with each other. We will
make use of the following construction:

Proposition 2. Let ε > 0 and t,m> 1. There is a polynomial-time computable matrix Am,t ∈ F
m×t
2 so that

for any x 6= y in F
t
2, we have that Ax and Ay agree on m(1/2+O(ε)) bits, whereε = t/

√
m.

Proof. Alon et al. ([AGHP92], Section 4) show how to efficiently construct an(ε ′)-biased setS⊆ {0,1}t

such that|S|= ct2/(ε ′)2 for some constantc> 0. Settingm= ct2/(ε ′)2 means thatε ′ =
√

ct/
√

m; we will
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setε = ε ′/
√

c. The(ε ′)-biased property means that for every non-zero vectorv∈ {0,1}t ,

Pr
r∈S

[〈r,v〉 6= 0 mod 2] ∈ ((1/2−
√

c · ε)m,(1/2+
√

c· ε)m).

Letting the vectors ofS form the rows ofAm,t ∈ F
m×t
2 , every column ofAm,t has Hamming weight in the

interval ((1/2−Θ(ε))m,(1/2+Θ(ε))m), the matrixA forms a code of distancem(1/2−Θ(ε)), and the
conclusion holds.

Corollary 6.1. Let m be a power of two, and let n≤ √
m be a positive integer. There is a function F:

{0,1}log2(m) ×{0,1}n → {0,1} computable in time poly(m,n) so that for any strings x,y ∈ {0,1}n with
x 6= y we have F(z,x) = F(z,y) for a (1/2+O(ε))-fraction of log2(m)-bit strings z, whereε = n/

√
m.

Proof. SetF(z,x) := M(Am,nx,z), whereM is the log2(m)-bit multiplexer, andAm,n ∈ F
m×n
2 is as in Propo-

sition 2. That is, we apply the linear transformationAm,n to x∈ {0,1}n yielding anm-bit stringx′, then for
z∈ {0,1}log2(m) we return the bit in thezth position ofx′.

Just to foreshadow a bit, note that in the construction of our final hard function we will choosem to be
a power of two that is roughlyn16, so the value ofε will be about 1/n7.

Ranging over all possible inputsx, the functionF above produces many strings of lengthm that are
nearly uncorrelated with each other. We next prove the somewhat coding-theoretic claim that no particular
string can be well-correlated with many of them. Let therelative Hamming distance rh(x,y) of x andy be
the fraction of bit positions in whichx andy agree.

Lemma 6.1. LetS be a collection of m-bit strings, any two of which have relative Hamming distance1/2+
Ω(ε). Then for any other m-bit string T , there are at most O(ε−1) elements S∈ S such that|rh(T,S)−
1/2|> Ω(ε1/2).

Proof. Suppose for sake of contradiction that this is not the case. Then for a sufficiently large constant
C > 0, there areS1,S2, . . . ,St ∈ S with t =Cε−1, and anm-bit T satisfyingrh(Si ,T) ≤ 1/2−C

√
ε for all

i. For notational convenience, setS0 := T, and construeS0, . . . ,St vectors in{±1}m rather than{0,1}m.
Consider the(t +1)× (t +1) Gram matrixG, defined for alli, j = 0, . . . , t asG[i, j] = 〈Si ,Sj〉/m. Note that

(a) G is positive semi-definite,
(b) G[i, i] = 1 for all i,
(c) G[0, i]≥C

√
ε for all i, and

(d) |G[i, j]| ≤ O(ε) for all i 6= j, i, j > 0.

Now define the vectorv= (C2ε−1/2,−1,−1, . . . ,−1). Observe that

vGvT ≤C4ε−1−2t(C2ε−1/2)(Cε1/2)+ t + t2O(ε)
=C4ε−1−2C4ε−1+Cε−1+O(C2)ε−1

= (−C4+O(C2)+C)ε−1 < 0,

which contradicts the fact thatG is positive semi-definite.

Lemma6.1 implies that nom-bit stringT can have large correlation withF(−,x) for very many strings
x. Using the fact that there are relatively few distinct functions computable by small depth-two threshold
circuits, we can prove that there must be a stringx that agrees with none of them.
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Corollary 6.2. For integers n and m with m a power of2 and m< 2n/2, define F as in Corollary6.1.
There is an x∈ {0,1}n so that, forall log2(m)-bit functions implementable withLTF◦LTF circuits C having
o(n/ log2n) gates, C(z) agrees with F(z,x) on at most a(1/2+ ε) fraction of log2(m)-bit strings z, where
ε = O(n1/2)/m1/4.

Proof. By Lemma6.1and Corollary6.1, every such circuitC agrees withF(z,x) on more than a(1/2+ε)-
fraction ofz’s, for at mostO(m) values ofx. By Theorem2.3, there are only 2o(n) distinct functions computed
by circuits ofo(n/ log2n) gates. Therefore there are at mostm2o(n) stringsx so thatF(−,x) is (1/2+ ε)-
approximated by some such circuit. Since this is less than the total number ofn-bit strings, there must be
somex ∈ {0,1}n so thatF(−,x) is not (1/2+ ε)-approximated by anyLTF ◦ LTF circuit of o(n/ log2n)
gates.

We now introduce our hard function forTC0
3. It is essentially Andreev’s function, but with ourF in

place of the multiplexer. Earlier, we showed that plugging in a hard function inthex-input of the multiplexer
yields a function that is hard to compute byLTF◦LTF circuits (thus giving our lower bound of Theorem1.1).
Now, we want to show that plugging in the “correct” input toF yields a function that is hard to even weakly
approximate. Morally speaking, this should produce a function that has less than 1/poly(n) correlation with
every smallLTF ◦LTF circuit. Unfortunately, although the intuition of this latter claim breaks down when
trying to prove it, the intuition is true enough to yield aMAJ◦LTF◦LTF lower bound.

Definition 6.1 (The Hard FunctionBn,k). For integers k| n, define the2n-bit function Bn,k(x,a) := F(z,x),

where x,a∈ {0,1}n, and z∈ {0,1}k is defined by zi = ∑(n/k)i
j=(n/k)(i−1)+1a j (mod 2).

That is, we compute PARITY onk groups ofn/k variables each from the stringa, then feed the resulting
k-bit stringz into F(z,x). (Recall thatF(z,x) itself prints thezth bit of Am,nx, whereAm,n ∈F

m×n
2 is the matrix

of an small-biased set on vectors of lengthn.) Finally, we defineBn(x,a) := Bn,k(x,a), wherek= 16log2n.

Reminder of Theorem1.3 There is noMAJ◦LTF◦LTF circuit of o(n3/2/ log3n) gates or o(n5/2/ log7/2n)
wires that computes Bn.

Proof. Let k = 16log2n in the following; for convenience we will state lower bounds forBn,k in terms of
bothn andk. We assume for sake of contradiction that there is someMAJ◦LTF◦LTF circuit C computing
Bn,k, with eithers= o(n3/2/(k log2(n))) gates orw= o(n5/2/(k3/2 log2(n))) wires.

We set the inputx in Bn,k(x,a) to correspond to one of the “bad” strings guaranteed by Corollary6.2.
In particular, noLTF ◦ LTF circuit with k inputs and fewer thancn/ log2(n) gates agrees with thek-input
functionF(−,x) on more than a(1/2+O(n1/22−k/4))-fraction of inputs, for some sufficiently smallc> 0.
Note thatn1/2/2k/4 ≪ n−3 by our choice ofk.

Next, letP be the partition of the remainingnbits of input into sets of the form{ai(n/k)+1, . . . ,a(i+1)(n/k)}
for 0 ≤ i ≤ k− 1. By Lemmas1.1 and3.1, a random restriction fromRP has the effect that each bot-
tom level gate has probabilityO(k/

√
n) of not being fixed by the restriction, and each bottom level gate

with u wires leading into it has probabilityO(uk3/2/n3/2) of not being fixed to a function of a single in-
put. Therefore, there is some restrictionρ in this family that leaves at mostO(sk/

√
n) = o(n/ log2(n)) or

O(wk3/2/n3/2) = o(n/ log2(n)) bottom level gates which depend non-trivially on more than one input. In
either case this iso(n/ log2(n)).

Upon making the restrictionρ, the functionBn,k on the remainingk bits is equivalent to the function
z 7→ F(z,x), after possibly negating some of the inputs (note these negations cannot change the circuit size).
Our circuitC after the restrictionρ is equivalent to aMAJ ◦LTF ◦LTF circuit with o(n/ log2(n)) bottom-
layer gates ando(n5/2) middle-layer gates. As the middle-layer gates correspond toLTF◦LTF circuits with
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o(n/ log2(n)) gates, each of their outputs have correlation at mostO(n1/22−k/4) ≪ n−3 with the output of
Bn,k. However, this means that all of the inputs to the top level majority gate have ao(1/s) correlation with
Bn,k, and thusC andBn,k must disagree on some input. This is a contradiction.

Although the above proof suggests thatBn,k disagrees with every smallLTF◦LTF circuit on more than
a (1/2+ε)-fraction of inputs forε = n−ω(1), the reader should note carefully that we do not do this, and we
are unable to prove this. (What we prove is that,after an appropriate restriction, theremainingLTF◦LTF
subcircuits have low correlation with theremainingsubfunction ofBn.) This is because there is always a
probability ofΩ(1/

√
n) that no bottom-level gates in our circuit are simplified after restriction, and that C

agrees withBn on all inputs consistent with such restrictions. Therefore, our approach will be insufficient to
prove such a correlation bound, for anyε < 1/

√
n.

7 Conclusion

We conclude with some open questions around linear threshold circuits that appear tractable.

1. Can one obtain asymptotically tight results for computingAn or our functionBn with low-depth thresh-
old circuits? Can average-case lower bounds be proved withε ≤ 1/nω(1), e.g. if we look at functions
in TIME[2O(n)]?

2. Are there polynomial-sizeLTF ◦LTF circuits for the function IP2? Many previous lower bounds on
threshold circuits show that IP2 is hard; it is known thatLTF ◦MAJ andMAJ ◦LTF circuits require
exponential size to compute IP2. Amano and Maruoka [AM05] point out that any answer to this
question, yes or no, would imply new separations of some threshold circuit classes.

3. Is there a faster satisfiability algorithm forO(n)-gateLTF ◦LTF circuits? Several recent theoretical
SAT algorithms are built from lower bound techniques [San10, ST13, CKS14, AWY15, CKK+15].
Currently, non-trivial SAT algorithms are known only for slightly superlinearly many wires [IPS13].
Related to this, it would be interesting if one can prove a “concentration” version of our random
restriction lemma, where the number of gates remaining is tightly concentrated around the expectation.

4. The second author [Wil14] has shown thatLTF◦LTF circuits with 2poly(n) weights and 2δn gates (for
some fixedδ > 0) can be evaluated on all 2n Boolean assignments in 2n ·poly(n) time. Can this fast
evaluation algorithm be used to prove an exponential gate lower bound?
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