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Abstract

We study complexity measures on subsets of the boolean hypercube and exhibit connections
between algebra (the Hilbert function) and combinatorics (VC theory). These connections
yield results in both directions. Our main complexity-theoretic result demonstrates that
a large and natural family of linear program feasibility problems cannot be computed by
polynomial-sized constant-depth circuits. Moreover, our result applies to a stronger regime
in which the hyperplanes are fixed and only the directions of the inequalities are given as input
to the circuit. We derive this result by proving that a rich class of extremal functions in VC
theory cannot be approximated by low-degree polynomials. We also present applications of
algebra to combinatorics. We provide a new algebraic proof of the Sandwich Theorem, which is
a generalization of the well-known Sauer-Perles-Shelah Lemma. Finally, we prove a structural
result about downward-closed sets, related to the Chvátal conjecture in extremal combinatorics.

1 Introduction

Understanding the properties and structure of subsets of the boolean hypercube is a central theme in
theoretical computer science and combinatorics. When studying a family of mathematical objects,
endowing the objects with algebraic structure often sheds new light on interesting properties. This
phenomena appears classically in areas such as algebraic topology and algebraic geometry. It
also provides much utility when studying the boolean hypercube. Let C ⊆ {0, 1}n be a subset
of the boolean hypercube, and let F be a field. Consider the linear space of functions from
C to F, that is, FC . This is clearly a |C|-dimensional vector space over F. Every function in
this space can be represented as a multilinear polynomial with degree at most n. Interestingly,
for certain sets C, smaller degree actually suffices. For example, when C is the standard basis,
denoted C = {~e1, . . . , ~em}, then any function f : C → F can be expressed as the linear function
f(~e1)x1 + . . . + f(~em)xm.

The Hilbert function, denoted hd(C,F), is the dimension of the space of functions {f : C → F}
that have representations as polynomials with degree at most d. This classical algebraic object will
be useful in our study of how the structure of C affects the function space. In complexity theory,
Smolensky [Smo93] has used the Hilbert function to unify polynomial approximation lower bounds
relating to bounded-depth circuits.

We establish new connections between the Hilbert function and VC theory. Our main technical
contributions are bounds hd(C,F) in terms of basic concepts in VC theory, such as shattering,
strong shattering, and down-shifts. Previous results on bounding the Hilbert function utilize a more
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intricate analysis and focus on symmetric sets, that is, unions of slices of the hypercube [Smo93,
BE99]. In addition to giving new bounds on the Hilbert function, our connection between Algebra
and Combinatorics allows us to derive results in both directions.

Our main complexity theoretical application is that determining feasibility of a large family of
linear programs is hard for the class of bounded-depth circuits. More specifically, let h1, . . . , hm be
affine functions. Each sign vector s in {±}m defines the following feasibility problem: does there
exist x ∈ Rd such that hi(x) > 0 when si = +, and hi(x) < 0 when si = −, for all i ∈ [m]? This
defines a boolean function that takes an input s and outputs one if and only if the problem is feasible.
We prove that if m = 2d+ 1, and the affine functions hi are in general position, then this function
cannot be approximated by low-degree polynomials, over any field. This implies a lower bound on
the computability of this function by constant-depth circuits, due to the polynomial approximation
technique introduced by Razborov [Raz87] and Smolensky [Smo87]. The above linear programming
problem relates to the study of hyperplane arrangements (see the books of Matoušek [Mat02] and
Stanley [Sta04] for more details and applications). Our results implicitly provide algebraic proofs
of some known facts regarding the combinatorics of hyperplane arrangements.

As a combinatorial application of our bounds on the Hilbert function, we provide a short
algebraic proof of the Sandwich Theorem. This theorem comes from VC theory and is a well-studied
generalization of the Sauer-Shelah-Perles Lemma [Law83, Paj85, BRI89, BR95, Dre97, ARS02,
BCDK06, Mor12, KM13, MR14, MW15]. Similar proofs of related upper bounds have appeared
previously, due to Frankl and Pach [BF92], Gurvits [Gur97], and Smolensky [Smo97]. We contribute
new lower bounds and applications.

Facts we prove about the function space FC also lead to a new result about downward-closed
sets. A family D of subsets is downward-closed if b ⊆ a and a ∈ D implies b ∈ D. A theorem of
Berge [Ber76] implies that for any downward-closed set D there exists a bijection π : D → D such
that a ∩ π(a) = ∅ for all a ∈ D. We generalize his result to arbitrary, prescribed intersections. Let
φ : D → D have the property φ(a) ⊆ a for all a ∈ D. We show that there always exists a bijection
π : D → D such that a∩ π(a) = φ(a). Note that choosing φ(a) = ∅ for all a implies Berge’s result.

Our algebra-combinatorics connection fits within the framework of the polynomial method. This
method has been successful in providing elegant proofs of fundamental results in many areas, such
as circuit complexity [Smo87, ABFR94, Raz87, Bei93], discrete geometry [GK15, Dvi09, SSZ15,
Tao14], extremal combinatorics [Alo99, Juk11, BF92], and more.

The paper is organized as follows. We state our main theorems in Section 2. In Section 3, we
prove our bounds on the Hilbert function. In Section 4, we use our Hilbert function bounds to
prove that linear program feasibility is hard for bounded-depth circuits. Finally, in Section 5, we
prove results about downward-closed sets. We now review preliminaries.

1.1 Preliminaries

We begin with algebraic preliminaries. Let C ⊆ {0, 1}n and F be a field. Every f : C → F can be
expressed as a multilinear polynomial over variables x1, . . . , xn with coefficients in F.

Definition 1.1. For d ∈ [n] the Hilbert function hd(C,F) is the dimension of the space of functions
f : C → F that can be represented as polynomials with degree at most d.

Notice that hd(C,F) 6 min{
∑d

j=0

(
n
j

)
, |C|}. A basic fact about the Hilbert function is that

1 = h0(C,F) 6 h1(C,F) 6 . . . 6 hn(C,F) = |C|.

The final equality holds because all f : C → F have representations with degree at most n.
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It is natural to wonder when the Hilbert function attains its maximum and how the structure
of C influences the Hilbert function. We introduce the following measure.

Definition 1.2. The interpolation degree of C denoted intdeg(C,F) is the minimum d such
that any f : C → F can be expressed as a multilinear polynomial with degree at most d. In other
words,

intdeg(C,F) = min{d ∈ [n] : hd(C,F) = |C|}.

Intuitively, a smaller interpolation degree implies a less complex set.
We move on to combinatorial preliminaries. Our bounds on the Hilbert function use basic

concepts in VC theory. We define these concepts now.

Definition 1.3. A subset I ⊆ [n] is shattered by C ⊆ {0, 1}n if for every pattern s : I → {0, 1}
there is c ∈ C that realizes s. In other words, the restriction of c to I equals s. A subset I ⊆ [n] is
strongly shattered by C if C contains all elements of some subcube on I. In other words, there
exists a pattern s̄ : ([n] \ I)→ {0, 1} such that all extensions of s̄ to a vector in {0, 1}n are in C.

These definitions lead to natural families of sets, which will be important to our work.

Definition 1.4. The shattered sets with respect to C are

str(C) = {I ⊆ [n] : I is shattered by C}.

The strongly shattered sets with respect to C are

sstr(C) = {I ⊆ [n] : I is strongly shattered by C}.

Definition 1.5. The VC dimension of C is defined as VC(C) = max{|I| : I ∈ str(C)}.

Note that sstr(C) ⊆ str(C) and that both of these families are downward-closed.
We also lower bound the Hilbert function using down-shifts, a standard tool in extremal

combinatorics. Let C ⊆ {0, 1}n and let i ∈ [n]. We denote as Si the down-shift operator on
the ith coordinate. Obtain the set Si(C) ⊆ {0, 1}n from C as follows. Replace every c ∈ C such
that both (i) ci = 1, and (ii) the ith neighbor1 of c is not in C with the ith neighbor of c. Authors
have referred to this operation as “compression”, “switching”, and “polarization”. Previous works
that use down-shifts include [Kle66, Enf70, BL96, GGL+00, GT09, Mor12].

An important property of down-shifts is that they transform an arbitrary subset of {0, 1}n into
a downward-closed set, without changing cardinality. Specifically, if

D = Sn(Sn−1(· · ·S1(C)))

is the result of sequentially applying Si on C for each i, then D is downward-closed. It is also
convenient in this context to think of D as a family of subsets of [n] rather than a set of boolean
vectors via the natural correspondence between boolean vectors and sets.

2 Our Results

We start with the result about linear program feasibility. We then state the bounds on the Hilbert
function in terms of shattered sets and down-shifts. We show this leads to bounded-depth circuit
lower bounds. Finally, we state two combinatorial applications.

1Vectors u, v ∈ {0, 1}n are ith-neighbors if they differ in coordinate i and are the same elsewhere.
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2.1 Linear Program Feasibility

We formalize and prove a strong version of the statement “linear programming feasibility can
not be decided by polynomial-sized, constant-depth circuits.” Clearly, linear programming being
P-complete [DR80] implies a version of this statement for specific linear programs representing
functions previously known not to have efficient bounded-depth circuits. We prove a stronger
version stating that any linear feasibility problem, in which the number of constraints is roughly
twice the number of variables and the constraints are non-degenerate, cannot be decided by an
efficient bounded-depth circuit. For a set of hyperplanes H in Rk we will define a boolean function
fH. It takes orientations as inputs and outputs one if and only if a certain polytope is nonempty.
In particular, we establish hardness of this problem even when the hyperplanes are fixed in advance
and only the orientations are given as input.

We express linear program feasibility as a boolean function as follows. Specify an arrangement
of m hyperplanes H = {h1, . . . , hm} with normal vectors ~ni and translation scalars bi as

hi = {~x : 〈~ni, ~x〉 = bi}.

A sign pattern s ∈ {−1, 1}m encodes the following linear programming feasibility problem:

Does there exist ~x ∈ Rk satisfying sign(〈x, ~ni〉 − bi) = si for all i ∈ [m]?

This corresponds to checking the feasibility of a linear program with m constraints and k
variables. Define fH : {−1, 1}m → {0, 1} as the boolean function such that fH(s) = 1 if and only
if the linear program encoded by s is feasible.

As an example, consider the following arrangement in R2. The three hyperplanes

h1 = {(x1, x2) : 5x1 + 3x2 = 3}, h2 = {(x1, x2) : 8x1 − x2 = 8}, h3 = {(x1, x2) : 4x1 − 5x2 = 0}

form an arrangement of three lines in the plane. The vector s = (+1,−1,+1) encodes the system

5x1 + 3x2 > 3 (s(1) = +1)

8x1 − x2 < 8 (s(2) = −1)

4x1 + 5x2 > 0 (s(3) = +1)

In the example, the system encoded by (+1,−1,+1) is not satisfiable (see Figure 1). For more
background material on hyperplane arrangements and related results, see the books by Stanley [Sta04]
and Matoušek [Mat02].

We prove the following theorem.

Theorem 2.1. Let H be an arrangement of 2k+ 1 hyperplanes in Rk that are in general position.
Any AC0[p] circuit, for a prime p, with depth d computing fH requires exp(Ω(k1/2d)) gates.

We prove Theorem 2.1 in Section 4, using the framework of Razborov [Raz87], Smolensky [Smo87].

Explicit Arrangements. The space of oriented hyperplanes is a rich and well-studied object.
The books [Mat02, Sta04] provide many facts and examples. The paper [AFR85] and references
therein give bounds on how many different boolean functions can be represented as fH for some
hyperplane arrangement H.

General position hyperplane arrangements come from any 2k + 1 vectors in Rk+1 such that
every k + 1 of them are linearly independent. For a vector v ∈ Rk+1 the hyperplane has normal
(v1, . . . , vk) and translation vk+1. Explicit families of m vectors in Rd such that every d of them
are independent are known for any m, d. For example, take the rows of an m × d Cauchy or
Vandermonde matrix.
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h1 : 3x1 + 5x2 = 3

h2 : 8x1 − x2 = 8

h3 : 4x1 − 5x2 = 0

+ + +

+ +−

−+−

−+ +

−−+

−−−

+−−

Figure 1: Three lines divide R2 into seven regions, each labeled by a feasible sign pattern.

2.2 Hilbert Function Bounds

Our results are based on the following theorem.

Theorem 2.2. Any C ⊆ {0, 1}n and any d ∈ [n] satisfy the relationships

|{I ∈ sstr(C) : |I| 6 d}| 6 hd(C,F) 6 |{I ∈ str(C) : |I| 6 d}|

and
max{|I| : I ∈ sstr(C)} 6 intdeg(C,F) 6 max{|I| : I ∈ str(C)}.

The upper bounds on interpolation degree are not new. Smolensky [Smo97] derives the Sauer-Perles-Shelah
Lemma using very similar polynomial-based arguments. The upper bounds on interpolation degree
in terms of VC dimension also appear implicitly in the work of Frankl and Pach [BF92] and
explicitly in Gurvits [Gur97]. Our technical contributions center around the lower bounds and the
applications. We prove Theorem 2.2 in Section 3.1.

We strengthen the lower bound on the Hilbert function in Theorem 2.2 using down-shifts.

Theorem 2.3. Let C ⊆ {0, 1}n and let D = Sn(Sn−1(. . . S1(C))). Then

|{I ∈ D : |I| 6 d}| 6 hd(C,F) and max{|I| : I ∈ D} 6 intdeg(C,F).

In Section 3.2 we prove this theorem and show that the parity function provides a tight example
over GF (2). We also discuss how Theorem 2.3 implies the lower bound in Theorem 2.2.

2.3 Low-Degree Polynomial Approximations

Classic results in bounded-depth circuit complexity reduce the task of proving circuit lower bounds
to showing that a boolean function has no low-degree approximation [Raz87, Smo87, ABFR94].
Smolensky shows in [Smo93] how to express all known degree lower bounds in terms of the Hilbert
function. For a boolean function f consider the set S = f−1(1) as a subset of the boolean cube.
Smolensky shows that if hd(S,F) is large, then f is hard to approximate.
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Theorem 2.4 ([Smo93]). Consider f : {0, 1}n → {0, 1} and p : {0, 1}n → F. Define S = f−1(1)
and fix d = b(n− degF(p)− 1)/2c. Then,

Pr
x

[p(x) 6= f(x)] >
2 · hd(S,F)− |S|

2n
,

where x is uniform over {0, 1}n.

We provide a proof of Smolensky’s result in Appendix A for completeness. Theorem 2.2 implies
the following corollary in terms of strongly shattered sets.

Corollary 2.5. Assume n is odd. Consider f : {0, 1}n → {0, 1}. If |f−1(1)| = 2n−1 and
sstr(f−1(1)) = {I ⊆ [n] : |I| 6 n−1

2 }, then for any polynomial p ∈ F[x1, . . . , xn] we have

Pr
x

[p(x) 6= f(x)] >
1

2
− 10 degF(p)√

n
,

where x is uniform over {0, 1}n.

Proof. Since sstr(f−1(1)) = {I ⊆ [n] : |I| 6 n−1
2 }, we have that

|{I ∈ sstr(C) : |I| 6 d}| =
d∑
j=0

(
n

j

)
for all d = 0, 1, . . . , (n−1)/2. Theorem 2.2 implies that hd(f

−1(1),F) =
∑d

j=0

(
n
j

)
as well. Plugging

these into Theorem 2.4, along with |f−1(1)| = 2n−1, gives the corollary.

Bernasconi and Egidi [BE99] thoroughly characterize the Hilbert function for symmetric sets and
prove that any nearly-balanced, symmetric boolean function is hard to approximate. They leave as
an open question deriving bounds for non-symmetric sets. Our connection to VC theory leads to new
families of functions satisfying the conditions of Corollary 2.5. Many of these functions, such as the
linear programming feasibility functions from Section 2.1, are non-monotone and non-symmetric.
As a final remark, recent work shows that Smolensky’s lower bound (and thus our result) extends
to nonclassical polynomials [BL15].

2.4 The Sandwich Theorem

The following relationship which is a generalization of the Sauer-Perles-Shelah Lemma was discovered
several times and independently [BR95, Paj85, Dre97, ARS02].

Theorem 2.6 (Sandwich Theorem). For any C ⊆ {0, 1}n we have |sstr(C)| 6 |C| 6 |str(C)|.

Since |str(C)| 6
∑VC(C)

i=0

(
n
i

)
, this implies the Sauer-Perles-Shelah Lemma.

Theorem 2.2 yields a new algebraic proof of the Sandwich Theorem. Indeed, this follows from
examining the case of d = n and observing that hn(C,F) = |C|.

The Sandwich Theorem is tight in the sense that there are sets that achieve equality in both of
its inequalities2. These sets are calles shattering extremal sets. For example, downward-closed sets
are shattering extremal. Shattering extremal sets have been rediscovered and studied in different
contexts [Law83, BRI89, BR95, Dre97, BCDK06, Mor12, KM13, MR14, MW15]. In our context,
Corollary 2.5 says that shattering extremal sets S of size |S| = 2n−1 and VC dimension n−1

2
correspond to boolean functions that cannot be approximated by low-degree polynomials.

2In fact, it is well known (see for example [Mor12]) that any set achieving equality in one of the inequalities, also
achieves equality in the other.
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2.5 Downward-closed Sets and Chvátal’s Conjecture

Downward-closed sets have a well-studied, rich combinatorial structure. A theorem of Berge [Ber76]
implies the following fact. For any downward-closed set D, there is a bijection π : D → D such
that a ∩ π(a) = ∅, for all a ∈ D. We refer to such a bijection as a pseudo-complement. We prove
the following generalization of the existence of a pseudo-complement.

Theorem 2.7. Let D be any downward-closed set. Fix any mapping φ : D → D with the property
that φ(a) ⊆ a for all a ∈ D. Then there exists a bijection π : D → D satisfying the condition that
a ∩ π(a) = φ(a) for all a ∈ D.

Note that choosing φ(a) = ∅ for all a implies the existence of a pseudo-complement.
In topology, downward-closed sets correspond to simplicial complexes. We think of the φ as

prescribing intersections. For simplicial complexes, this corresponds to prescribing that complexes
intersect in certain faces. We prove Theorem 2.7 in Section 5. Our proof proceeds by proving
that a certain matrix is invertible. A non-zero determinant implies that the matrix contains a
permutation matrix that yields the desired bijection.

We next discuss the result by Berge for the existence of pseudo-complements and its connections
with Chvátal’s conjecture in extremal combinatorics [CK72]. Berge’s result about pseudo-complements
follows from the following stronger theorem that he proved.

Theorem 2.8 ([Ber76]). If D is a downward-closed set, then either D or D \ ∅ can be partitioned
into pairs of disjoint sets.

We need two definitions to explain Berge’s motivation. A family B of subsets of [n] is called a star
if there is an element x ∈ [n] such that x ∈ b for all b ∈ B. It is called an intersecting family if
every pair of sets in B intersects. Chvátal’s conjecture is the following.

Conjecture 2.9 (Chvátal’s conjecture). If D is a downward closed set, then the cardinality of the
largest star in D is equal to the cardinality of the largest intersecting family in D.

This conjecture remains open, aside from partial results, such as the following corollary of Berge’s
theorem.

Corollary 2.10. In a downward-closed set D, any intersecting family has cardinality at most |D|/2.

We contrast Berge’s theorem and our Theorem 2.7. Berge’s pair decomposition induces a
permutation π such that π(π(a)) = a, whereas a permutation decomposes D into disjoint cycles
with unspecified lengths. Many people have observed that the above corollary only needs the
pseudo-complement result, instead of the stronger statement in Berge’s theorem [And88]. Indeed,
consider each disjoint cycle in the guaranteed permutation, and note that at most half of the sets
in the cycle may mutually intersect. Therefore, our Theorem 2.7 implies the above corollary.

3 The Hilbert Function for Subsets of the Boolean Cube

We prove upper and lower bounds on the Hilbert function. First, we prove the bounds in Theorem 2.2
involving the shattered and the strongly shattered sets. Then, we prove the bounds in Theorem 2.3
using shifting. Finally we consider an example of applying these bounds to analyze the Hilbert
function of the parity function.
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3.1 Bounding the Hilbert Function Using Shattered Sets

The high-level idea of the proof of Theorem 2.2 is to define a vector space V with dim(V ) = |C|
and prove that |sstr(C)| 6 dim(V ) 6 |str(C)|. We sandwich the dimension dim(V ) by finding a
linearly independent set of size |sstr(C)| and a spanning set of size |str(C)|.

We analyze the |C|-dimensional vector space {f : C → F}. Evaluation on C induces a natural
mapping from P ∈ F[x1, . . . , xn] to the restriction P |C ∈ {f : C → F}. The following lemma
provides the desired sets of spanning monomials and linearly independent monomials.

Lemma 3.1. For all fields F and sets C ⊆ {0, 1}n the following two facts hold.

1. The monomials
∏
i∈I xi for I ∈ str(C) span {f : C → F}.

2. The monomials
∏
i∈I xi for I ∈ sstr(C) are linearly independent in {f : C → F}.

Proof. For I ⊆ [n], let xY denote the monomial xI =
∏
i∈I xi. For the first item, we express every

f : C → F as a linear combination of monomials (xI)|C where I ∈ str(C). It suffices to express the
monomials (xI)|C for all I ⊆ [n]. We prove this by induction. For the base case, if I ∈ str(C), we
are done. Otherwise, I is not shattered by C and there exists s ∈ {0, 1}I such that for all c ∈ C,
we have c|I 6= s. Consider

P =
∏
i∈I

(xi − (1− si)) .

Note that P (c) = 0 for all c ∈ C and hence P |C = 0|C . Specifically, by expanding the product∏
i∈I (xi − (1− si)) we see

0|C = P = (xI)|C + (Q)|C ,
where the degree of Q is smaller than |I|. By induction, we can write Q as a combination of xI′

for I ′ ∈ str(C). Since (xI)|C = (−Q)|C we get that xI is in this span as well.
We now prove the second item. Consider a linear combination

P =
∑

I∈sstr(C)

αIxI

such that not all αI are zero. We want to show that there is c ∈ C such that P (c) 6= 0. Let
Z ∈ sstr(C) be a maximal set such that αZ 6= 0. Since Z is strongly shattered by C, there is
some s̄ : ([n] \ Z) → {0, 1} such that all extensions of it in {0, 1}n are in C. Let Q(xi)i∈Z be the
polynomial obtained by plugging in the values of s̄ in the variables of ([n] \ Z). By maximality of
Z it follows that the coefficient of xZ in Q is αZ 6= 0, and so Q is not the 0 polynomial. Therefore
there is s ∈ {0, 1}Z such such that Q(s) 6= 0. Pick c ∈ C such that

ci =

{
si i ∈ Z,
s̄i i ∈ ([n] \ Z).

It follows that P (c) = Q(s) 6= 0, which finishes the proof.

We use this lemma to prove bounds on the Hilbert function and interpolation degree.

Proof of Theorem 2.2. For the upper bound on hd(C,F), the above proof shows how to express
all monomials of degree d using monomials of equal or smaller degree. For the lower bound on
hd(C,F), linear independence still holds after restricting set size.

The upper bound on intdeg(C,F) is immediate. For the lower bound on intdeg(C,F), since
sstr(C) is downward-closed, the linear independence of the monomials in sstr(C) implies any
maximal degree monomial in {(xI)|C : I ∈ sstr(C)} cannot be expressed solely by lower degree
monomials.
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3.2 Down-shifts, Downward-closed Bases, and the Hilbert Function

We prove Theorem 2.3. We also use the theorem to analyze the Hilbert function for the parity
function. Theorem 2.3 is a direct corollary of the following theorem.

Theorem 3.2. Let C ⊆ {0, 1}n and let D = Sn(Sn−1(. . . S1(C))). Then the set of monomials
{
∏
i∈I xi : I ∈ D} is a basis for the vector space of functions {f : C → F}.

A theorem, equivalent in content, but expressed with respect to Gröbner bases, is proved in [Més09].
For completeness we include an elementary proof in Appendix B.

The lower bound given in Theorem 2.3 subsumes the lower bound in Theorem 2.2. This is a
direct corollary of the following simple lemma.

Lemma 3.3. Let C ⊆ {0, 1}n and let D = Sn(Sn−1(. . . S1(C))). We have that sstr(C) ⊆ D, where
we associate {0, 1}n with subsets of [n] in the natural way.

Proof. Since D is downward-closed, it follows that it is shattering extremal and therefore sstr(D) =
D. So, it is enough to show that sstr(C) ⊆ sstr(D). To this end, it suffices to show that for every
class C ′, sstr(C ′) ⊆ sstr(Si(C

′)). Let I ∈ sstr(C ′). Therefore C ′ contains a subcube B in coordinates
I. During the down-shift, B is either shifted or stays in place, but in any case also Si(C

′) contains
a subcube in coordinates I and therefore I ∈ sstr(Si(C

′)).

The Hilbert Function of Parity. A simple example which demonstrates an application of
Theorem 2.3 is the parity function. Let P denote the set of all vectors of even hamming weight.
Notice that P does not contain subcubes other than ∅. Therefore, sstr(P ) = {∅}. As a consequence,
the lower bound on the Hilbert function in Theorem 2.2 reveals no information in this case. In
contrast, shifting gives a better bound. If we down-shift P , say on the first coordinate, we get
the set S1(P ) = D = {v : v1 = 0}. Therefore, as D is downward closed, shifting it on other
coordinates does not change it. Thus, Sn(Sn−1(. . . S1(P ))) = D. By Theorem 2.3 we have that
hd(P,F) >

(
n−1
6d

)
=
(
n−1
d

)
+
(
n−1
d−1
)

+ . . .+
(
n−1
0

)
.

This lower bound is tight when the field has characteristic two and d 6 n/2. It suffices to show
every polynomial q of degree at most d can be expressed by a polynomial of degree at most d that
does not depend on x1. Therefore the

(
n−1
6d

)
multilinear monomials that do not depend on x1 span

the space of degree at most d polynomials with domain P . Note that (x1 + . . . + xn)|P = 0, and
therefore every appearance of x1 can be replaced by x2+. . .+xn. This transforms q to a polynomial
that does not depend on x1 without changing the represented function.

4 Linear Programming and Low-degree Polynomial Approximations

We now prove Theorem 2.1. By the Razborov-Smolensky framework, it suffices to prove that fH
cannot be approximated by a low-degree polynomial over any field.3

Theorem 4.1. Let H be an arrangement of 2k+ 1 hyperplanes in Rk that are in general position.
For any any polynomial p ∈ F[x1, . . . , x2k+1] we have

Pr
s

[p(s) 6= fH(s)] >
1

2
− 10 degF(p)√

2k + 1
,

where s is uniform over {−1, 1}2k+1.

3We state the following theorem for {−1, 1} inputs to fH. This only makes sense for fields containing these
elements. When F = F2 simply replace {−1, 1} with {0, 1} in the definition of fH.
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Figure 2: Five hyperplanes divide R2 into 16 cells. Cell labels in {−,+}5 correspond to oriented
hyperplane feasibility. Notice that every two coordinates are strongly shattered, but no three
coordinates are shattered. This provides a proof-by-picture of Proposition 4.2 for m = 5 and d = 2.

The proof of Theorem 4.1 proceeds via a reduction to Corollary 2.5. Let

SH = {s ∈ {−1, 1}n : fH(s) = 1}.

To apply Corollary 2.5 on fH we will show |SH| = 22k and sstr(SH) = {I ⊆ [2k + 1] : |I| 6 k}.
We establish this by the following proposition. The facts we need about hyperplane arrangements
follow from standard arguments [GW94, Sta04]. For intuition about the following proposition, see
Figure 2 for a pictorial proof in R2.

Proposition 4.2. For any m hyperplanes H in Rd in general position

sstr(SH) = str(SH) = {I ⊆ [m] : |I| 6 d}.

Proof. The two lemmas in Appendix C characterize the shattered and strongly shattered sets of
SH when H is in general position. The first lemma shows str(SH) ⊆ {I ⊆ [m] : |I| 6 d}. The
second lemma shows {I ⊆ [m] : |I| 6 d} ⊆ sstr(SH). Since sstr(SH) ⊆ str(SH) these two lemmas
combine to finish the proof.

Proposition 4.2 implies Theorem 2.1. The equality sstr(SH) = str(SH) along with the Sandwich
Theorem implies that |SH| = |sstr(SH)|. Let k be the ambient dimension in Theorem 2.1. The above
proposition for m = 2k+ 1 and d = k gives |SH| = 22k and also sstr(SH) = {I ⊆ [2k+ 1] : |Y | 6 k}.
Thus fH satisfies the premises of Corollary 2.5, and Theorem 2.1 follows.

10



5 Downward-closed Sets and Prescribed Intersections

We prove Theorem 2.7. Let D ⊆ {0, 1}n be a downward-closed set. Fix φ : D → D with the
property that φ(a) ⊆ a for all a ∈ D. We will show that there exists a bijection π : D → D
satisfying the condition that a ∩ π(a) = φ(a) for all a ∈ D. We first prove two lemmas about the
function space {f : D → GF (2)} and then use these to prove the existence of π. The first lemma
holds for all subsets of the boolean cube.

Lemma 5.1. Let C ⊆ {0, 1}n be a subset of the boolean hypercube. The monomials∏
i∈a

xi for a ∈ C

form a basis for {f : C → GF (2)}.

Proof. We proceed using induction on |C|. When C = {a} for a ∈ {0, 1}n the function space
has dimension one and the monomial

∏
i∈a xi represent the constant “1” function in this space,

which spans it. Let z ∈ C denote a maximal Hamming weight element in C. Notice
∏
i∈z xi is an

indicator function in {f : C → GF (2)} for the input z. By the inductive hypothesis on (C \ {z}),
we know the set of monomials

∏
i∈a xi for a ∈ (C \ {z}) form a basis for {f : (C \ {z})→ GF (2)}.

Since
∏
i∈z xi is an indicator function, we may add it to the basis for {f : (C \ {z})→ GF (2)} and

achieve a basis for {f : C → GF (2)}.

We remark that if C is downward-closed, then it is shattering extremal, and the above lemma
is a corollary of the Sandwich theorem. We prove the following stronger claim as well.

Lemma 5.2. Let D ⊆ {0, 1}n be a downward-closed set. Fix any mapping φ : D → D with the
property that φ(a) ⊆ a for all a ∈ D. The functions∏

i∈φ(a)

xi
∏

i∈a\φ(a)

(1 + xi)

for a ∈ D form a basis for {f : D → GF (2)}.

Proof. Let B denote the set of polynomials that we wish to show is a basis. Since the cardinality
of B is |D| it is enough to show that it is a spanning set. By Lemma 5.1, it is enough to show
that every monomial of the form

∏
i∈a xi for a ∈ D can be expressed as a linear combination of

polynomials in B. We proceed by induction on the size of a. The case of a = ∅ is trivial. For the
induction step, let a ∈ D be non-empty. Expand the polynomial

∏
i∈φ(a)

xi
∏

i∈a\φ(a)

(1 + xi) =

(∏
i∈a

xi

)
+ r,

where r is a linear combination of monomials
∏
i∈b xi for b ⊆ a and b 6= a. SinceD is downward-closed,

by induction hypothesis r is in the span of B. Thus,

∏
i∈a

xi =

 ∏
i∈φ(z)

xi
∏

i∈a\φ(a)

(1 + xi)

+ r

is also in the span of B, and we are done.
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Proof of Theorem 2.7. We show there exists a bijection π : D → D such that a ∩ π(a) = φ(a) for
all a ∈ D, for the given map φ. Consider the |D| × |D| boolean matrix M defined as follows. Index
the rows and columns both by D, and define the element in location (a, b) ∈ D × D to be one if
and only if a ∩ b = φ(a). We claim that M is nonsingular. Indeed, the rows of M correspond to
the functions in Lemma 5.2. Since they form a basis, the row space of M is |D|-dimensional. This
implies the determinant of M is nonzero. There must exist a permutation π : [n] → [n] such that∏|D|
i=1Mi,π(i) = 1. By the definition of M , we found the bijection π we were looking for.

6 Conclusion

We exhibited a connection between algebra and combinatorics. We provided a general way to lower
bound the Hilbert function. We showed a new family of functions cannot be approximated by
low-degree polynomials. We provided a polynomial method proof of the Sandwich theorem and for
a new theorem about prescribed intersections.

6.1 Open Directions

Our work suggests that the interpolation degree is a useful complexity measure on subsets of the
boolean hypercube. Therefore, an open direction is to better understand the structure of sets with
low interpolation degree. As noted by Remscrim [Rem16], one can equivalently define interpolation
degree in terms of the rank of a certain incidence matrix. The matrix corresponds to the monomials
in our Lemma 5.1 with a cut-off on the degree. For the case of interpolation degree one, this
characterization is particularly simple.

Proposition 6.1. A set C ⊆ {0, 1}n has intdeg(C,F) = 1 if and only if the boolean vectors
corresponding to C are affinely independent in Fn.

We are curious if other properties of the vectors in C correspond to implications for the
interpolation degree. Even for interpolation degree two, the algebraic/matrix description becomes
more opaque and less intuitive than the characterization in the above proposition. Since

intdeg(C,F) 6 VC(C),

any combinatorial characterization may also shed new light on the structure of sets with VC
dimension two, for which our understanding is lacking [AMY14, MSWY15].
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A Proof of Smolensky’s Lower bound

For completeness, we provide a proof of Smolensky’s Theorem 2.4. We introduce the following
notation that will be convenient. For any set C ⊆ {0, 1}n and degree d ∈ [n] let Ed,C denote the
evaluation (or restriction) mapping

Ed,C : F[x1, . . . , xn]6d → {f : C → F},

where F[x1, . . . , xn]6d denotes polynomials with degree at most d over F. Note that Ed,C is a linear
map and hd(C,F) = rkF(Ed,C). Associate the map Ed,C with a matrix such that the rows correspond
to elements of C, the columns correspond to degree d monomials, and entries are evaluations.

A.1 Proof of Theorem 2.4

Smolensky’s Theorem follows from two lemmas. We assume all ranks are over F.

Lemma A.1. For any S, T ⊆ {0, 1}n and any d ∈ [n] we have |S \ T | > hd(S,F)− hd(T,F).

Proof. Notice that Ed,S and Ed,T have identical submatrices induced by the S ∩ T rows. Denote
the submatrices as A = Ed,S∩T and B = Ed,S\T and C = Ed,T\S . We want to prove

rk(B) > rk

(
A
B

)
− rk

(
A
C

)
. (1)

Equation 1 actually holds for any three matrices, following from the bounds

rk

(
A
B

)
6 rk(A) + rk(B) and rk

(
A
C

)
> rk(A).

The fact that rk(B) = rk(Ed,S\T ) 6 |S \ T | concludes the proof.

Lemma A.2 ([Smo93]). Let p : {0, 1}n → F and define P = {x : p(x) 6= 0}. If d < (n− deg(p))/2
then

rk(Ed,P ) 6 |P |/2.

Proof. Assume for contradiction that rk(Ed,P ) = r > |P |/2. Let M1 be an r×r full-rank sub-matrix.
Our goal is to find two degree d polynomials q1 and q2 such that the product q1q2 is the indicator
function for some row in M1. Assume without loss of generality the matrix Ed,P looks like(

M1 · · ·
M2 · · ·

)
.

Let Q1 and Q2 denote the rows corresponding to M1 and M2, respectively. We start by constructing
q2 to be zero on Q2. Since the rank satisfies r > |P |/2, we know M2 has more columns than rows,
and thus we can find a vector v2 such that Ed,P v2 is zero on Q2. Since M1 has full-rank, we know
that Ed,P v2 is nonzero on some point x∗ corresponding to a row in Q1. Notice that for any v ∈ F|P |
the vector Ed,P v corresponds to a degree d polynomial. Let q2 be the polynomial for v2.

Since M1 has full rank, we can find a vector v1 and corresponding polynomial q1 such that
q1q2 is the indicator function for x∗. To conclude, notice that pq1q2 interpreted as a function on
{0, 1}n is nonzero on only a single point. By inspection this means deg(pq1q2) > n, contradicting
the assumption that its degree is at most 2d+ deg(p) < n.
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With the above lemmas in hand, we can prove Smolensky’s theorem.

Proof of Theorem 2.4. Let F = f−1(0) and P = {x : p(x) 6= 0} and d = (n− deg(p)− 1)/2. Notice

Pr
x

[p(x) 6= f(x)] > |F4P |/2n.

We show |F4P | > 2hd(F,F)− |F |. Indeed, this follows from the above two lemmas:

|F \ P | > hd(F,F)− hd(P,F) (By Lemma A.1)

> hd(F,F)− |P |
2

(Lemma A.2 implies hd(P,F) 6 |P |
2 )

= hd(F,F)− |F |+ |P \ F | − |F \ P |
2

. (|P | = |F |+ |P \ F | − |F \ P |.)

Therefore, by rearranging the above expressions, we see that

1

2
|F4P | > hd(F,F)− |F |

2
.

B Downward-closed Bases from Shifting

In this section, we prove Theorem 3.2, which says that {xI : I ∈ D} is a basis for the vector space of
functions {f : C → F}, where D = Sn(Sn−1(. . . S1(C))). The proof of Theorem 3.2 is by induction
on n. For the induction to work we prove a stronger statement. Consider the lexicographical order
on the set of all multilinear monomials. That is, m1 < m2 if the smallest i such that xi appears in
exactly one of m1,m2 appears in m2. For example, x1 > x2x3x4 . . . xn.

We are now ready to state the stronger statement we will prove.

Lemma B.1. Let p be a polynomial where xI is the leading monomial of p. Then

p|C = 0 =⇒ I /∈ D.

The above lemma implies that there is no linear combination of monomials in {xI : I ∈ D} which
represents the zero function on C (because the leading monomial in such a combination will be in
D which contradicts the lemma). Since down-shifting C does not change its cardinality, it follows
that |C| = |{xI : I ∈ D}| and therefore {xI : I ∈ D} is indeed a basis.

In the proof we will use the following “locality” of down-shifts. For i ∈ [n] define the two sets

Ci=0 = {c ∈ C : ci = 0}, and Ci=1 = {c ∈ C : ci = 1}.

For all i, j ∈ [n] with i 6= j, the shifting operator Sj satisfies

Sj(C) = Sj(Ci=0) ∪ Sj(Ci=1). (2)

Putting it differently: Ci=0, Ci=1 are invariant under Sj when i 6= j.

Proof of Lemma B.1. Let C0 = {c ∈ C : cn = 0}, and C1 = {c ∈ C : cn = 1}. By the locality of
down-shifts (Equation 2):

Sn−1(Sn−2(. . . S1(C))) = Sn−1(Sn−2(. . . S1(C0))) ∪ Sn−1(Sn−2(. . . S1(C1))).
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For b ∈ {0, 1}, let
Db = {w|{1,2,...,n−1} : w ∈ Sn−1(Sn−2(. . . S1(Cb)))}.

By the induction hypothesis applied on Cb, there are no polynomials that represent the zero function
on Cb whose leading monomial is xI where I ∈ Db.

Assume towards contradiction some multilinear polynomial p represents the zero function on
C and has leading monomial of xI with I ∈ D. A crucial observation which follows directly from
the definition of the down-shift Sn is that if n ∈ I then (I \ {n}) belongs to D0 and to D1, and if
n /∈ I then I belongs to D0 or to D1. Consider the expansion

p = αIxI +
∑
J<I

αJxJ ,

where J < I in the lexicographical monomial ordering. We distinguish between two cases.
(i) n /∈ I. Assume that I ∈ D1 (the proof for I ∈ D0 is symmetric). Notice that since xI is the

leading monomial, the monomial xI∪{n} does not appear in p. Therefore, the polynomial that is
obtained by setting xn = 1 in p has leading monomial xI and represents the zero function on C1,
contradicting the induction hypothesis.

(ii) n ∈ I. Here we distinguish between two subcases. If αI\{n} + αI 6= 0 then the polynomial
that is obtained by setting xn = 1 in p has leading monomial xI\{n} and represents the zero
function on C1, contradicting the induction hypothesis. If αI\{n}+αI = 0 then αI\{n} 6= 0 and the
polynomial that is obtained by setting xn = 0 in p has leading monomial xI\{n} and represents the
zero function on C0, contradicting the induction hypothesis.

C Hyperplane Arrangement Lemmas

We now prove the two lemmas that we assumed in the proof of Proposition 4.2. Recall H is in
general position if any k 6 d hyperplanes intersect in a (d − k)-dimensional affine subspace. This
means (i) every d + 1 hyperplanes have an empty intersection, and (ii) every subset of d normal
vectors are linearly independent. (if some d normal vectors are linearly dependent then their
intersection is either empty or infinite but not 0 dimensional).

Lemma C.1. Let H be an arrangement in Rd. If Y ⊆ [m] is shattered by SH then the hyperplanes
hi for i ∈ Y have a non-empty intersection. In particular, if H is in general position then |Y | 6 d.

Proof. Let MY be the matrix whose rows are the normals ~ni, i ∈ Y , and let~bY be the vector (bi)i∈Y .
Consider the affine transformation TY : Rd → RY defined by

TY (~x) = MY · ~x−~bY .

We need to show that there is some ~x ∈ ∩i∈Y hi. Note that ~x ∈ ∩i∈Y if and only if TY (~x) = ~0.
Thus, it is enough to show that ~0 is in the image of TY . Now, the fact that SH shatters Y amounts
to that for every sign vector ~s ∈ {−1, 1}Y there exists ~x ∈ Rm such that sign(TY (~x)) = ~s. In other
words, every orthant contains a vector u in the image of TY . Now, the convex hull, C, of these
vectors is also contained in the image of TY (since the image of an affine transformation is convex).
Also, since these vectors contain a vector in every orthant, it follows that ~0 ∈ C, and therefore ~0 is
in the image of TY . Indeed, an exercise shows that any set of vectors containing a vector in each
orthant also contains the origin in its convex hull.
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Lemma C.2. Let H be an arrangement in Rd that is in general position. If the normals ~ni, i ∈ Y
are linearly independent then Y is strongly shattered by SH. In particular, any subset of size at
most d is strongly shattered by SH.

Proof. It is enough to prove only for sets Y such that the normals ~ni, i ∈ Y form a basis to Rd
(because every independent set can be extended to a basis and every subset of a strongly shattered
set is strongly shattered). Let M = M[m] be the matrix whose rows are the normals ~ni, i ∈ [m],

and let ~b = ~b[m] be the vector (bi)i∈[m]. Consider the affine transformation T : Rd → Rm defined by

T (~x) = M · ~x−~b.

Since H is in general position, there is a unique ~x∗ that lies in the intersection ∩i∈Y hi. In other
words, T (~x∗)i = 0 for every i ∈ Y . Moreover, since every d + 1 hyperplanes have an empty
intersection, it follows that for all j /∈ Y : T (~x∗)j 6= 0. We show that Y is strongly shattered by
showing that for every sign pattern s ∈ {−1, 1}Y there exists ~u ∈ Rd such that for all i ∈ Y

sign(T (~x∗ + ~u))i = ~si,

and for all j /∈ Y
sign(T (~x∗ + ~u))j = sign(~x∗)j .

Indeed, since the normals ~ni, i ∈ Y are linearly independent, there is some ~w ∈ Rd such that
(M · ~w)i = si. Therefore, for every ε > 0 and i ∈ Y

sign(T (~x∗ + ε~w))i = si.

Moreover, since for all j /∈ Y T (~x∗)j 6= 0 then the exists some ε′ > 0 such that for al j /∈ Y

sign(T (~x∗ + ε′ ~w))j = sign(~x∗)j .

Thus, picking ~u = ε′ ~w finishes the proof.
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