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Abstract

We show average-case lower bounds for explicit Boolean functions against bounded-depth thresh-
old circuits with a superlinear number of wires. We show that for each integer d > 1, there is "

d

> 0
such that Parity has correlation at most 1/n⌦(1) with depth-d threshold circuits which have at most

n1+"

d wires, and the Generalized Andreev Function has correlation at most 1/2n
⌦(1)

with depth-d
threshold circuits which have at most n1+"

d wires. Previously, only worst-case lower bounds in this
setting were known [22].

We use our ideas to make progress on several related questions. We give satisfiability algorithms
beating brute force search for depth-d threshold circuits with a superlinear number of wires. These
are the first such algorithms for depth greater than 2. We also show that Parity cannot be computed
by polynomial-size AC0 circuits with no(1) general threshold gates. Previously no lower bound for
Parity in this setting could handle more than log(n) gates. This result also implies subexponential-
time learning algorithms for AC0 with no(1) threshold gates under the uniform distribution. In
addition, we give almost optimal bounds for the number of gates in a depth-d threshold circuit
computing Parity on average, and show average-case lower bounds for threshold formulas of any
depth.

Our techniques include adaptive random restrictions, anti-concentration and the structural theory
of linear threshold functions, and bounded-read Cherno↵ bounds.

1 Introduction

One of the main goals in complexity theory is to prove circuit lower bounds for explicit functions in P or
NP. We seem quite far from being able to prove that there is a problem in NP that requires superlinear
Boolean circuits. We have some understanding, via formulations such as the relativization barrier [5], the
”natural proofs” barrier [39] and the algebrization barrier [1], of why current techniques are inadequate
for this purpose.

However, the community has had more success proving explicit lower bounds against bounded-depth
circuits of various kinds. Thanks to pioneering work of Ajtai [2], Furst-Saxe-Sipser [13], Yao [49] and
Hastad [19], we know that the Parity and Majority functions require bounded-depth unbounded fan-in
circuits of exponential size if only AND and OR gates are allowed. Later Razborov [38] and Smolensky [46]
showed that Majority requires exponential size even when MODp gates are allowed in addition to AND
and OR gates, for any prime p. The case of bounded-depth circuits with AND, OR and MODm gates,
where m is a composite, has been open for nearly thirty years now, even though Majority is conjectured
to be hard for such circuits. Williams [47] recently made significant progress by showing that non-
deterministic exponential time does not have super-polynomial size circuits with AND, OR and MODm
gates, for any m.

For all the bounded-depth circuit classes above, Majority is either known or conjectured to be hard.
How about circuit classes which incorporate majority gates, or more generally, gates that are arbitrary
linear threshold functions? Note that such gates generalize AND and OR, though not MODp. In the 90s,
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there was some work on studying the power of bounded-depth threshold circuits. Paturi and Saks [34]
showed that depth-2 circuits with majority gates computing Parity require ⌦̃(n2) wires; there is also a
nearly matching upper bound for Parity. Impagliazzo, Paturi and Saks [22] considered bounded-depth
threshold circuits with arbitrary linear threshold gates, and showed that for each depth d, there is a
constant ✏d > 0 such that Parity requires n1+✏

d wires to compute with depth d threshold circuits.
These lower bounds are worst case lower bounds - they show that for any sequence of small circuits,

there exist inputs of every length on which the circuits fail to compute Parity. There are several reasons to
be interested in average case lower bounds under the uniform distribution, or equivalently, in correlation
upper bounds. For one, average-case lower bounds show that a randomly chosen input is likely to be hard,
and thus give a way to generate hard instances e�ciently. Second, average-case lower bounds are closely
tied to pseudo-random generators via the work of Nisan-Wigderson [30], and are indeed a pre-requisite for
obtaining pseudo-random generators with non-trivial seed length for a circuit class. Third, recent work
on satisfiability algorithms [42, 20, 7] indicates that the design and analysis of non-trivial satisfiability
algorithms is closely tied to proving average-case lower bounds, though there is no formal connection.
Fourth, the seminal work of Linial-Mansour-Nisan [26] shows that average-case lower bounds for Parity
against a circuit class are tied to non-trivially learning the circuit class under the uniform distribution.

With these di↵erent motivations in mind, we systematically study average-case lower bounds for
bounded-depth threshold circuits. Our first main result shows correlation upper bounds for Parity and
another explicit function known as the Generalized Andreev function with respect to threshold circuits
with few wires. No correlation upper bounds for explicit functions against bounded-depth threshold
circuits with superlinear wires was known before our work.

Theorem 1. For each depth d � 1, there is a constant ✏d > 0 such that for all large enough n, no
threshold circuit of depth d with n1+✏

d wires agrees with Parity on more than 1/2 + 1/n✏
d fraction of

inputs of length n, and with the Generalized Andreev function on more than 1/2 + 1/2n
✏

d fraction of
inputs of length n.

Theorem 1 captures the content of Theorem 37 and Theorem 40 in Section 4.
We constructivize the ideas of the proof of the strong correlation upper bounds for the Generalized

Andreev function to get non-trivial satisfiability algorithms for bounded-depth threshold circuits with
few wires. Previously, such algorithms were only known for depth 2 circuits, due to Impagliazzo-Paturi-
Schneider [21] and Tamaki (unpublished).

Theorem 2. For each depth d � 1, there is a constant ✏d > 0 such that the satisfiability of depth-d
threshold circuits with n1+✏

d wires can be solved in randomized time 2n�n✏

dpoly(n).

Theorem 2 is re-stated and proved as Theorem 49 in Section 5.
Using our ideas, we also show correlation bounds against AC0 circuits with a few threshold gates, as

well as learning algorithms under the uniform distribution for such circuits.

Theorem 3. For each constant d, there is a constant � > 0 such that Parity has correlation at most
1/n⌦(1) with AC0 circuits of depth d and size at most nlog(n)0.4 augmented with at most n� threshold

gates. Moreover, the class of AC0 circuits of size at most nlog(n)0.4 augmented with at most n� threshold

gates can be learned to constant error under the uniform distribution in time 2n
1/4+o(1)

.

Theorem 3 captures the content of Corollary 54 and Theorem 57 in Section 7.
Having summarized our main results, we now describe related work and our proof techiques in more

detail.

1.1 Related Work

There has been a large body of work proving upper and lower bounds for constant-depth threshold
circuits. Much of this work has focused on the setting of small gate complexity, which seems to be
the somewhat easier case to handle. A distinction must also be drawn between work that has focused
on the setting where the threshold gates are assumed to be majority gates (i.e. the linear function sign
representing the gate has integer coe�cients that are bounded by a polynomial in the number of variables)
and work that focuses on general threshold gates, since analytic tools such as rational approximation
that are available for majority gates do not work in the setting of general threshold gates.

We discuss the work on wire complexity first, followed by the results on gate complexity.
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Wire complexity. Paturi and Saks [34] considered depth-2 Majority circuits and showed an ⌦̃(n2)
lower bound on the wire complexity required to compute Parity; this nearly matches the upper bound
of O(n2). They also showed that there exist majority circuits of size n1+⇥("d1) and depth d computing
Parity; here "

1

= 2/(1 +
p
5). Impagliazzo, Paturi, and Saks [22] showed a depth-d lower bound for

general threshold circuits computing Parity: namely, that any such circuit must have wire complexity
at least n1+"d2 where "

2

< "
1

.
The proof of [22] proceeds by induction on the depth d. The main technical lemma shows that a

circuit of depth d can be converted to a depth d � 1 circuit of the same size by setting some of the
input variables. The variables that are set are set in a random fashion, but not according to the uniform
distribution. In fact, this distribution has statistical distance close to 1 from the uniform distribution
and furthermore, depends on the circuit whose depth is being reduced. Therefore, it is unclear how to
use this technique to prove a correlation bound with respect to the uniform distribution. In contrast, we
are able to reduce the depth of the circuit by setting variables uniformly at random (though the variables
that we restrict are sometimes chosen in a way that depends on the circuit), which yields the correlation
bounds we want.

Gate complexity. The aforementioned work of Paturi and Saks [34] also proved a near optimal ⌦̃(n)
lower bound on the number of gates in any depth-2 majority circuits computing Parity.

Siu, Roychowdhury, and Kailath [45] considered majority circuits of bounded depth and small gate
complexity. They showed that Parity can be computed by depth-d circuits with O(dn1/(d�1)) gates.
Building on the ideas of [34], they also proved a near matching lower bound of ⌦̃(dn1/(d�1)). Further,
they also considered the problem of correlation bounds and showed that there exist depth-d majority
circuits with O(dn1/2(d�1)) gates that compute Parity almost everywhere and that majority circuits of
significantly smaller size have o(1) correlation with Parity (i.e. these circuits cannot compute Parity on
more than a 1/2 + o(1) fraction of inputs; recall that 1/2 is trivial since a constant function computes
Parity correctly on 1/2 of its inputs). Impagliazzo, Paturi, and Saks [22] extended the worst case lower
bound to general threshold gates, where they proved a slightly weaker lower bound of ⌦(n1/2(d�1)). As
discussed above, though, it is unclear how to use their technique to prove a correlation bound.

Beigel [6] extended the result of Siu et al. to the setting of AC0 augmented with a few majority
gates. He showed that any subexponential-sized depth-d AC0 circuit with significantly less than some
k = n⇥(1/d) majority gates has correlation o(1) with Parity. The techniques of all the above works
with the exception of [22] were based on the fact majority gates can be well-approximated by low-
degree rational functions. However, this is not true for general threshold functions [44] and hence, these
techniques do not carry over the case of general threshold gates.

A lower bound technique that does carry over to the setting of general threshold gates is that of
showing that the circuit class has low-degree polynomial sign-representations. Aspnes, Beigel, Furst and
Rudich [3] used this idea to prove that AC0 circuits augmented with a single general threshold output
gate — we refer to these circuits as TAC0 circuits as in [15] — of subexponential-size and constant-depth
have correlation o(1) with Parity. More recently, Podolskii [36] used this technique along with a trick
due to Beigel [6] to prove similar bounds for subexponential-sized AC0 circuits augmented with general
threshold gates. However, this trick incurs an exponential blow-up with the number of threshold gates
and hence, in the setting of the Parity function, we cannot handle k > log n threshold gates.

Another technique that has proved useful in handling general threshold gates is Communication
Complexity, where the basic idea is to show that the circuit — perhaps after restricting some variables
— has low communication complexity in some suitably defined communication model. We can then use
results from communication complexity to infer lower bounds or correlation bounds. Nisan [29] used
this technique to prove exponential correlation bounds for general threshold circuits (not necessarily
even constant-depth) with n1�⌦(1) threshold gates. Using Beigel’s trick and multiparty communication
complexity bounds of Babai, Nisan and Szegedy [4], Lovett and Srinivasan [27] (see also [40, 17]) proved
exponential correlation bounds for any polynomial-sized AC0 circuits augmented with up to n

1
2�⌦(1)

threshold gates.
We do not use this technique in our setting for many reasons. Firstly, it cannot be used to prove

lower bounds or correlation bounds against functions such as Parity (which has small communication
complexity in most models). In particular, these ideas do not yield the noise sensitivity bounds we get
here. Even more importantly, it is unclear how to use these techniques to prove any sort of superlinear
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lower bound on wire complexity, since there are functions that have threshold circuits with linearly
many wires, but large communication complexity even after applying restrictions (take a generic read-
once depth-2 Majority formula for example).

Perhaps most closely related to our work is that of Gopalan and Servedio [15] who use analytic
techniques to prove correlation bounds for AC0 circuits augmented with a few threshold gates. Their
idea is to use Noise sensitivity bounds (as we do as well) to obtain correlation bounds for Parity with
TAC0 circuits and then extend these results in the same way as in the work of Podolskii [36] mentioned
above. As a result, though, the result only yields non-trivial bounds when the number of threshold gates
is bounded by log n, whereas our result yields correlation bounds for up to n1/2(d�1) threshold gates.

1.2 Proof Techniques

In recent years, there has been an explosion of work on the analytic properties (such as Noise Sensitivity)
of linear threshold functions (LTFs) and their generalizations polynomial threshold functions (PTFs)
(e.g., [43, 33, 9, 18, 10, 28, 23]). We show here that these techniques can be used in the context of
constant-depth threshold circuits as well.

Our first result (Theorem 29 in Section 3) is a tight correlation bound for Parity with threshold
circuits of depth d and gate complexity much smaller than n1/2(d�1). This generalizes both the results
of Siu et al. [45], who proved such a result for majority circuits, and Impagaliazzo, Paturi, and Saks [22],
who proved a worst case lower bound of the same order. The proof uses a fundamental theorem of
Peres [35] on the noise sensitivity of LTFs; Peres’ theorem has also been used by Klivans, O’Donnell,
and Servedio [24] to obtain learning algorithms for functions of a few threshold gates. We use Peres’
theorem to prove a noise sensitivity upper bound on small threshold circuits of constant depth.

The observation underlying the proof is that the noise sensitivity of a function is exactly the expected
variance of the function after applying a suitable random restriction (see also [31]). Seen in this light,
Peres’ theorem says that, on application of a random restriction, any threshold function becomes quite
biased in expectation and hence is well approximated by a constant function. Our analysis of the
threshold circuit therefore proceeds by applying a random restriction to the circuit and replacing all the
threshold gates at height 1 by the constants that they are well approximated by to obtain a circuit of
depth d � 1. A straightforward union bound tells us that the new circuit is a good approximation of
the original circuit after the restriction. We continue this way with the depth-d � 1 circuit until the
entire circuit becomes a constant, at which point we can say that after a suitable random restriction, the
original circuit is well approximated by a constant, which means its variance is small. Hence, the Noise
Sensitivity of the original circuit must be small as well and we are done.

This technique is expanded upon in Section 7, where we use a powerful Noise Sensitivity upper bound
for low degree PTFs due to Kane [23] along with standard switching arguments [19] to prove similar
results for AC0 circuits augmented with almost n1/2(d�1) threshold gates. This yields Theorem 3.

In Section 4, we consider the problem of extending the above correlation bounds to threshold circuits
with small (slightly superlinear) wire complexity. The above proof breaks down even for depth-2 threshold
circuits with a superlinear number of wires, since such circuits could have a superlinear number of gates
and hence the union bound referred to above is no longer feasible.

In the case of depth-2 threshold circuits, we are nevertheless able to use Peres’ theorem, along with
ideas of [3] to prove correlation bounds for Parity with circuits with nearly n1.5 wires. This result is
tight, since by the work of Siu et al. [45], Parity can be well approximated by depth-2 circuits with
O(

p
n) gates and hence O(n1.5) wires. This argument is in Section B.

Unfortunately, however, this technique needs us to set a large number of variables, which renders it
unsuitable for larger depths. The reason for this is that, if we set a large number of variables to reduce
the depth from some large constant d to d� 1, then we may be in a setting where the number of wires
is much larger than the number of surviving variables and hence correlation bounds with Parity may no
longer be possible at all.

We therefore use a di↵erent strategy to prove correlation bounds for larger constant depths. The
lynchpin in the argument is a qualitative refinement of Peres’ theorem (Lemma 34) that says that on
application of a random restriction to an LTF, with good probability, the variance of the LTF becomes
negligible (even exponentially small for suitable parameters). The proof of this argument is via anticon-
centration results based on the Berry-Esseen theorem and the analysis of general threshold functions via
a critical index argument as in many recent works [43, 33, 9, 28].
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The above refinement of Peres’ theorem allows us to proceed with our argument as in the gates
case. We apply a random restriction to the circuit and by the refinement, with good probability (say
1 � n�⌦(1)) most gates end up exponentially close to constants. We can then set these “imbalanced”
gates to constants and still apply a union bound to ensure that the new circuit is a good approximation
to the old one. For the small number of gates that do not become imbalanced in this way, we set all
variables feeding into them. Since the number of such gates is small, we do not set too many variables.
We now have a depth d � 1 circuit. Continuing in this way, we get a correlation bound of n�⌦(1) with
Parity. This gives part of Theorem 1.

We then strengthen this correlation bound to exp(�n⌦(1)) for the Generalized Andreev function,
which, intuitively speaking, has the following property: even after applying any restriction that leaves a
certain number of variables unfixed, the function has exponentially small correlation with any LTF on
the surviving variables. To prove lower bounds for larger depth threshold circuits, we follow more or less
the same strategy, except that in the above argument, we need most gates to become imbalanced with
very high probability (1 � exp(�n⌦(1))). To ensure this, we use a bounded read Cherno↵ bound due to
Gavinsky, Lovett, Saks, and Srinivasan [14]. We can use this technique to reduce depth as above as long
as the number of threshold gates at height 1 is “reasonably large”. If the number of gates at height 1 is
very small, then we simply guess the values of these few threshold gates and move them to the top of
the circuit and proceed. This gives the other part of Theorem 1.

This latter depth-reduction lemma can be completely constructivized to design a satisfiability al-

gorithm that runs in time 2n�n⌦(1)
. The algorithm proceeds in the same way as the above argument,

iteratively reducing the depth of the circuit. A subtlety arises when we replace imbalanced gates by
constants, since we are changing the behaviour of the circuit on some (though very few) inputs. Thus, a
circuit which was satisfiable only at one among these inputs might now end up unsatisfiable. However,
we show that there is an e�cient algorithm that enumerates these inputs and can hence check if there
are satisfiable assignments to the circuits from among these inputs. This gives Theorem 2.

In Section 6, we prove correlation bounds for the Generalized Andreev function with threshold for-
mulas of any arity and any depth. The proof is based on a retooling of the argument of Nečiporuk for
formulas of constant arity over any basis and yields a correlation bound as long as the wire complexity
is at most n1.5�⌦(1).

2 Preliminaries

2.1 Basic Boolean function definitions

A Boolean function on n variables will be a function f : {�1, 1}n ! {�1, 1}. We use the standard inner
product on functions f, g : {�1, 1}n ! R defined by hf, gi =

Ex⇠{�1,1}n [f(x)g(x)].
Given Boolean functions f, g on n variables, the Correlation between f and g — denoted Corr(f, g)

— is defined as

Corr(f, g) := |hf, gi| =
���� E

x⇠{�1,1}n

[f(x)g(x)]

���� = |2Pr
x
[f(x) = g(x)]� 1|

Also, we use �(f, g) to denote the fractional distance between f and g: i.e., �(f, g) = Prx[f(x) 6= g(x)].
Note that for Boolean f, g, we have Corr(f, g) = |1� 2�(f, g)|. We say that f is �-approximated by g if
�(f, g)  �.

We use Parn to denote the parity function on n variables. I.e. Parn(x1

, . . . , xn) =
Qn

i=1

xi.

Definition 4 (Restrictions). A restriction on n variables is a function ⇢ : [n] ! {�1, 1, ⇤}. A random
restriction is a distribution over restrictions. We use Rn

p to denote the distribution over restrictions on

n variables obtained by setting each ⇢(x) = ⇤ with probability p and to 1 and �1 with probability 1�p
2

each. We will often view the process of sampling a restriction as picking a pair (I, y) where I ✓ [n] is
obtained by picking each element of [n] to be in I with probability p and y 2 {�1, 1}n�|I| uniformly at
random.

Definition 5 (Restriction trees and Decision trees). A restriction tree T on {�1, 1}n of depth h is a
binary tree of depth h all of whose internal nodes are labelled by one of n variables, and the outgoing
edges from an internal node are labelled +1 and -1; we assume that a node and its ancestor never query
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the same variable. Each leaf ` of T defines a restriction ⇢` that sets all the variables on the path from
the root of the decision tree to ` and leaves the remaining variables unset. A random restriction tree T
of depth h is a distribution over restriction trees of depth h.

Given a restriction tree T , the process of choosing a random edge out of each internal node generates
a distribution over the leaves of the tree (note that this distribution is not uniform: the weight it puts
on leaf ` at depth d is 2�d). We use the notation ` ⇠ T to denote a leaf ` of T picked according this
distribution.

A decision tree is a restriction tree all of whose leaves are labelled either by +1 or -1. We say a decision
tree has size s if the tree has s leaves. We say a decision tree computes a function f : {�1, 1}n ! {�1, 1}
if for each leaf ` of the tree, f |⇢

`

is equal to the label of `.

Fact 6 (Facts about correlation). Let f, g, h : {�1, 1}n ! {�1, 1} be arbitrary.

1. Corr(f, g) 2 [0, 1].

2. If Corr(f, g)  " and �(g, h)  �, then Corr(f, h)  "+ 2�.

3. Let g
1

, . . . , gN be Boolean functions such that no two of them are simultaneously true and let h
denote their (disjoint) OR. Then, Corr(f, h) 

P
i max{Corr(f, 1),Corr(f, gi)}, where 1 denotes

the constant 1 function.

4. Let T be any random restriction tree. Then Corr(f, g) 
ET⇠T ,`⇠T [Corr(f |⇢

`

, g|⇢
`

)].

Definition 7 (Noise sensitivity and Variance [32]). Given a Boolean function f : {�1, 1}n ! {�1, 1}
and a parameter p 2 [0, 1], we define the Noise senstivity of f with noise parameter p — denoted NSp(f)
— as follows. Pick x 2 {�1, 1}n uniformly at random and y 2 {�1, 1}n by negating (i.e. flipping) each
bit of x independently with probability p; we define NSp(f) = Pr

(x,y)[f(x) 6= f(y)]. The variance of f —
denoted Var(f) — is defined to be 2NS

1/2(f).

Proposition 8. Let f : {�1, 1}n ! {�1, 1} be any Boolean function. Then,

1. For p  1/2, NSp(f) =
1

2

E⇢⇠Rn

2p
[Var(f |⇢)].

2. If p � 1

n , then Corr(f,Parn)  O(NSp(f)).

The above fact is folklore, but we couldn’t find explicit proofs in the literature. Therefore we present
them in the appendix (see Appendix A).

Fact 9. Let f : {�1, 1}n ! {�1, 1} be any Boolean function. Let p = min{Prx[f(x) = 1],Prx[f(x) =
�1]} where x is chosen uniformly from {�1, 1}n. Then, Var(f) = ⇥(p).

2.2 Threshold functions and circuits

Definition 10 (Threshold functions and gates). A Threshold gate is a gate � labelled with a pair (w, ✓)
where w 2 Rm for some m 2 N and ✓ 2 R. The gate computes the Boolean function f� : {�1, 1}m !
{�1, 1} defined by f�(x) = sgn(hw, xi � ✓) (we define sgn(0) = �1 for the sake of this definition). The
fan-in of the gate � — denoted fan-in(�) — is m. A Linear Threshold function (LTF) is a Boolean
function that can be represented by a Threshold gate.

Definition 11 (Threshold circuits). A Threshold circuit C is a Boolean circuit whose gates are all
threshold gates. There are designated output gates, which compute the functions computed by the circuit.
Unless explicitly mentioned, however, we assume that our threshold circuits have a unique output gate.
The gate complexity of C is the number of (non-input) gates in the circuit, while the wire complexity is
the sum of all the fan-ins of the various gates.

A Threshold map from n to m variables is a depth-1 threshold circuit C with n inputs and m outputs.
We say that such a map is read-k if each input variable is an input to at most k of the threshold gates
in C.

The proof of the following can be found for example in [41].

Lemma 12 ([41]). The number of distinct linear threshold functions on n bits is at most 2O(n2
).
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Definition 13 (Restrictions of threshold gates and circuits). Given a threshold gate � of fan-in m
labelled by the pair (w, ✓) and a restriction ⇢ on m variables, we use �⇢ to denote the threshold gate over
the variables indexed by ⇢�1(⇤) obtained in the natural way by setting variables according to ⇢.

We will also need Peres’ theorem, which bounds the Noise Sensitivity of threshold functions.

Theorem 14 (Peres’ theorem[35, 32]). Let f : {�1, 1}n ! {�1, 1} be any LTF. Then,

E

⇢⇠Rn

p

[Var(f |⇢)] = NS p

2
(f) = O(

p
p).

Using the above for p = 1/n and Proposition 8, we obtain

Corollary 15. Let f : {�1, 1}n ! {�1, 1} be any threshold function. Then Corr(f,Parn)  O(n�1/2).

2.3 Description lengths and Kolmogorov Complexity

Definition 16 (Kolmogorov Complexity). The Kolmogorov complexity of an n-bit Boolean string x is
the length of the shortest bit string of the form (M,w) where M is the description of a Turing Machine
and w an input to M such that M(w) = x. We use K(x) to denote the Kolmogorov complexity of x.

Fact 17. For any ↵ 2 (0, 1), the fraction of n-bit strings x satisfying K(x)  (1�↵)n is at most 2�↵n+1.

Definition 18 (Descriptions of circuits). We can also talk about the description lengths of threshold
circuits, which we define as follows. By Lemma 12, we know that the number of LTFs on n bits is
2O(n2

), and hence we can fix some O(n2)-bit description for each such function. The description of
a threshold circuit C is a description of the underlying graph theoretic structure of C followed by the
descriptions of the threshold functions computed by each of its gates and the input variables labelling its
input gates. We use �(C) to denote the length of this description of C.

Proposition 19. For any threshold circuit C with wire complexity at most s on at most n variables,
�(C) = O(s2 + s log n). If s � n, then the description length is at most O(s2).

Proof. Since the wire complexity is at most s, the graph underlying the circuit can be described using
O(s log s) bits (for example, for each wire, we can describe the gates that it connects). Let �

1

, . . . ,�m
be the threshold gates in the circuit. We can write down a description of the LTFs f

1

, . . . , fm usingP
i O(k2i ) bits where ki is the fan-in of �i; this is at most O(

P
i ki)

2 = O(s2). Finally, to describe the
input variable assignments to the input gates, we need O(s log n) bits.

2.4 The Generalized Andreev function

We state here the definition of a generalization of Andreev’s function, due to Komargodski and Raz, and
Chen, Kabanets, Kolokolova, Shaltiel, and Zuckerman [25, 7]. This function will be used to give strong
correlation bounds for constant-depth threshold circuits with slightly superlinear wire complexity.

We first need some definitions.

Definition 20 (Bit-fixing extractor). A function E : {�1, 1}n ! {�1, 1}m is a (n, k,m, ⇣) bit-fixing
extractor if for every random variable X that is uniform on a subcube of {�1, 1}n of dimension at least
k, the function E(X) is ⇣-close to uniform on {�1, 1}m.

We have the following explicit construction of a bit-fixing extractor.

Theorem 21 ([37]). There is an absolute constant c � 1 so that the following holds. There is a
polynomial-time computable function E : {�1, 1}n ! {�1, 1}m that is an (n, k,m, ⇣)-bit fixing extractor

for any k � (log n)c, m = 0.9k, and ⇣  2�k⌦(1)
.

Also recall that a function Enc : {�1, 1}a ! {�1, 1}b defines (↵, L)-error-correcting code for param-
eters ↵ 2 [0, 1] and L 2 N if for any z 2 {�1, 1}b, the number of elements in the image of Enc that are
at relative Hamming distance at most ↵ from z is bounded by L.

The following theorem is a folklore result, and stated explicitly in the work of Chen et al. [7].
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Theorem 22 ([7], Theorem 6.4). Let r = n� for any fixed 0 < � < 1. There exists an (↵, L)-error
correcting code with Enc : {�1, 1}4n ! {�1, 1}2r where ↵ = 1

2

� O(2�r/4) and L = O(2r/2). Further,
there is a poly(n) time algorithm, which when given as input x 2 {�1, 1}n and i 2 [2r] in binary, outputs
Enc(x)i, the ith bit of Enc(x).

Now we can define the generalized Andreev function as in [7]. The function is F : {�1, 1}4n ⇥
{�1, 1}n ! {�1, 1} and is defined as follows. Let � > 0 be a constant parameter. The parameter will
be fixed later according to the application at hand.

Let E be any (n, n� ,m = 0.9n� , 2�n⌦(�)
) extractor (we can obtain an explicit one using Theorem 21).

We interpret the output of E as an integer from [2m] in the natural way. Let Enc : {�1, 1}4n ! {�1, 1}2m

define a ( 1
2

�O(2�m/4), 2m/2)-list decodable code as in Theorem 22. Then, we define F (x
1

, x
2

) by

F (x
1

, x
2

) = Enc(x
1

)E(x2)
. (1)

Given a 2 {�1, 1}4n, we use Fa(·) to denote the resulting sub-function on n bits obtained by fixing
x
1

= a.
The following lemma was proved as part of Theorem 6.5 in [7].

Lemma 23 ([7], Theorem 6.5). Let C be any circuit on n� variables with binary description length
�(C)  n according to some fixed encoding scheme. Let ⇢ be any restriction of n variables leaving n�

variables unfixed. Let f(y) := Fa|⇢(y) for a 2 {�1, 1, }4n satisfying K(a) � 3n. Then

Corr(f, C)  exp(�n⌦(�))

2.5 Concentration bounds

We state a collection of concentration bounds that we will need in our proofs. The proofs of Theorems 24
and 26 may be found in the excellent book by Dubhashi and Panconesi [11].

Theorem 24 (Cherno↵ bound). Let w 2 Rn be arbitrary and x is chosen uniformly from {�1, 1}n.
Then

Pr
x
[|hw, xi| � t · kwk

2

]  exp(�⌦(t2)).

Definition 25 (Imbalance). We say that a threshold gate � labelled by (w, ✓) is t-imbalanced if |✓| �
t · kwk

2

and t-balanced otherwise.

We also need a multiplicative form of the Cherno↵ bound for sums of Boolean random variables.

Theorem 26 (Multiplicative Cherno↵ bound). Let Y
1

, . . . , Ym be independent Boolean random variables
such that

E

[Yi] = pi for each i 2 [m]. Let p denote the average of the pi. Then, for any " > 0

Pr[|
X

i

Yi � pm| � "pm]  exp(�⌦("2pm)).

Let Y
1

, . . . , Ym be random variables defined as functions of independent random variables X
1

, . . . , Xn.
For i 2 [m], let Si ✓ [n] index those random variables among X

1

, . . . , Xn that influence Yi. We say that
Y
1

, . . . , Ym are read-k random variables if any j 2 [n] belongs to Si for at most k di↵erent i 2 [m].
The notation D(p||q) represents the KL-divergence (see, e.g., [8]) between the two probability distri-

butions on {0, 1} where the probabilities assigned to 1 are p and q respectively.

Theorem 27 (A read-k Cherno↵ bound [14]). Let Y
1

, . . . , Ym be {0, 1}-valued read-k random variables
such that

E

[Yi] = pi. Let p denote the average of p
1

, . . . , pm. Then, for any " > 0,

Pr[
X

i

Yi � pm(1 + ")]  exp(�D(p(1 + ")||p)m/k).

Using standard estimates on the KL-divergence, we get

Corollary 28. Let Y
1

, . . . , Ym be as in the statement of Theorem 27 and assume
E

[
P

i Yi]  µ. Then,

Pr[
X

i

Yi � 2µ]  exp(�⌦(µ/k)).
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3 Correlation bounds for threshold circuits with small gate

complexity

In this section, we show that constant-depth threshold circuits with a small number of gates cannot
correlate well with the Parity function.

It should be noted that Nisan [29] already proved strong correlation bounds for the Inner Product
function against any threshold circuit (not necessarily constant-depth) with a sub-linear (much smaller
than n/ log n) number of threshold gates. The idea of the proof is to first show that each threshold gate
on n variables has a �-error randomized protocol with complexity O(log(n/�)) [29, Theorem 1]. One can
use this to show that any threshold circuit as in the theorem can be written as a decision tree of depth
n/k querying threshold functions and hence has a exp(�⌦(k))-error protocol of complexity at most n/10.
Standard results in communication complexity imply that any such function can have correlation at most
exp(�⌦(k)) with inner product.

However, such techniques cannot be used to obtain lower bounds or correlation bounds for the parity
function, since the parity function has low communication complexity (even in the deterministic setting).
An even bigger disadvantage to this technique is that it cannot be used to obtain any superlinear lower
bound on the wire complexity, since threshold circuits with a linear number of wires can easily compute
functions with high communication complexity (such as the Disjointness function).

The techniques we use here can be used to give correlation bounds for the parity function; further,
these correlation bounds are nearly tight (Theorem 33). In fact, we prove something stronger: we upper
bound the noise sensitivity of small constant-depth threshold circuits, which additionally implies the
existence of non-trivial learning algorithms [24, 15]. Further, our techniques also imply noise sensitivity
bounds for AC0 circuits augmented with a small number of threshold gates.

In this section, we illustrate our technique with the case of threshold circuits with a small number
of gates. The generalizations to AC0 circuits augmented with a small number of threshold gates are
obtained in Section 7.

3.1 Correlation bounds via noise sensitivity

Theorem 29. Let C be a depth d threshold circuit with at most k threshold gates. Then, for any
parameters p, q 2 [0, 1], we have

NSpd�1q(C)  O(k
p
p+

p
q)

Proof. We assume that q  1

2

, since otherwise the statement of the theorem is trivial. We will instead
prove that for pd := 2pd�1q 2 [0, 1] and ⇢d ⇠ Rn

p
d

(n is the number of input variables to C), we have

E

⇢
d

[Var(C|⇢
d

)]  O(k
p
p+

p
q). (2)

This will imply the theorem, since by Proposition 8, we have NSpd�1q(C) = 1

2

E⇢
d

[Var(C|⇢
d

)].
The proof of (2) is by induction on the depth d of the circuit. The base case d = 1 is just Peres’

theorem (Theorem 14).
Now assume that C has depth d > 1. Let k

1

be the number of threshold circuits at height 1 in the
circuit. We choose a random restriction ⇢ ⇠ Rn

p and consider the circuit C|⇢. It is easy to check that

E

⇢
d

[Var(C|⇢
d

)] =
E

⇢
[
E

⇢
d�1

[Var((C|⇢)|⇢
d�1)]] (3)

and hence to prove (2), it su�ces to bound the expectation of Var((C|⇢)|⇢
d�1).

Let us first consider the circuit C|⇢. Peres’ theorem tells us that on application of the restriction ⇢,
each threshold gate at height 1 becomes quite biased on average. Formally, by Theorem 14 and Fact 9,
for each threshold gate � at height 1, there is a bit b�,⇢ 2 {�1, 1} such that

E

⇢
[ Pr
x2{�1,1}|⇢�1(⇤)|

[�⇢(x) 6= b�,⇢]]  O(
p
p)

In particular, replacing �⇢ by b�,⇢ in the circuit C|⇢ yields a circuit that di↵ers from C|⇢ on only an
O(

p
p) fraction of inputs (in expectation). Applying this replacement to each of the k

1

threshold gates

9



at height 1 yields a circuit C 0
⇢ with k � k

1

threshold gates and depth d� 1 such that

E

⇢
[�(C|⇢, C 0

⇢)]  O(k
1

p
p). (4)

where �(C|⇢, C 0
⇢) denotes the fraction of inputs on which the two circuits di↵er. On the other hand, we

can apply the inductive hypothesis to C 0
⇢ to obtain

E

⇢
d�1

[Var((C 0
⇢)|⇢d�1)]  O((k � k

1

)
p
p+

p
q). (5)

Therefore, to infer (2), we put the above together with (4) and the following elementary fact.

Proposition 30. Say f, g : {�1, 1}m ! {�1, 1} and � = �(f, g). Then, for any r 2 [0, 1], we have
E⇢⇠Rn

r

[Var(f |⇢)]  E⇢⇠Rn

r

[Var(g|⇢)] + 4�.

Proof of Proposition 30. By Proposition 8, we know that
E⇢⇠Rn

r

[Var(f |⇢)] = 2NSr/2(f), and similarly
for g. By definition of noise sensitivity, we have NSr/2(f) = Pr

(x,y)[f(x) 6= f(y)] where x 2 {�1, 1}m is
chosen uniformly at random and y is chosen by flipping each bit of x with probability r/2. Note that
each of x and y is individually uniformly distributed over {�1, 1}m and hence, both f(x) = g(x) and
f(y) = g(y) hold with probability at least 1� 2�. This yields

NSr/2(f) = Pr
(x,y)

[f(x) 6= f(y)]  Pr
(x,y)

[g(x) 6= g(y)] + 2� = NSr/2(g) + 2�,

which implies the claimed bound.

Corollary 31. Let d � 2 and � 2 [0, 1] be arbitrary parameters. Assume that C is a depth d threshold

circuit over n variables with at most �n
1

2(d�1) threshold gates. Then, Corr(C,Parn)  O(�(1�
1
d

)).

Proof. Let k  �n1/2(d�1) be the number of gates in the threshold circuit C. We apply Theorem 29 with
the following optimized parameters: p = 1

n1/d · 1

k2/d and q 2 [0, 1] such that pd�1q = 1

n . It may be verified
that for this setting of parameters, Theorem 29 gives us

NS
1/n(C)  O

✓
k1�1/d

n1/(2d)

◆
 O(�1�

1
d ).

As noted in Proposition 8, we have Corr(C,Parn)  O(NS
1/n(C)). This completes the proof.

Remark 32. It is instructive to compare the above technique with the closely related work of Gopalan and
Servedio [15]. The techniques of [15] applied to the setting of Theorem 29 show that NSp(C)  O(k2k

p
p),

which gives a better dependence on the noise parameter p, but a much worse dependence on k. Indeed,
this is not surprising since in this setting, the technique of Gopalan and Servedio does not use the fact
that the circuit is of depth d. The threshold circuit is converted to a decision tree of depth k querying
threshold functions and it is this tree that is analyzed.

We believe that the right answer should incorporate the best of both bounds: NSp(f)  Od(kd�1 ·pp).
As in Corollary 31, this would show that Corr(C,Parn) = o(1) if k = o(n1/2(d�1)), but additionally, we
would also get Corr(C,Parn)  n� 1

2+o(1) as long as k = no(1), which we are not able to prove currently.

It is known from the work of Siu, Roychowdhury and Kailath [45, Theorem 7] that Corollary 31 is
tight in the sense that there do exist circuits of gate complexity roughly n1/2(d�1) that have significant
correlation with Parn. More formally,

Theorem 33 (Theorem 7 in [45]). Let " > 0 be an arbitrary constant. Then, there is a threshold circuit
of depth d with O(d) ·(n log(1/"))1/2(d�1) gates that computes Parn correctly on a 1�" fraction of inputs.
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4 Correlation bounds for threshold circuits with small wire

complexity

The following is a key lemma that will be used in the proofs of our correlation bounds. We state the
lemma here and prove our correlation bounds. The lemma will be proved in Section 4.2.

Lemma 34 (Main Structural lemma for threshold gates). For any threshold gate � over n variables with
label (w, ✓) and any p 2 [0, 1], we have

Pr
⇢⇠Rn

p

[�⇢ is
1

p⌦(1)

-balanced]  p⌦(1).

The proof of the correlation bounds proceed by iteratively reducing the depth of the circuit. In order
to perform this depth-reduction for a depth d circuit, we need to analyze the threshold map defined by
the threshold gates at depth d� 1. The first observation, which follows from Markov’s inequality, shows
that we may assume (after setting a few variables) that the map reads each variable only a few times.

Fact 35 (Small wire-complexity to small number of reads). Let C be any threshold circuit on n variables
with wire complexity at most cn. Then, there is a set S of at most n/2 variables such that each variable
outside S is an input variable to at most 2c many gates in C.

The second observation is that if the fan-ins of all the threshold gates are small, then depth-reduction
is easy (after setting some more variables).

Proposition 36 (Handling small fan-in gates). Let C = (�
1

, . . . ,�m) be any read-k threshold map on
n variables such that maxi fan-in(�i)  t. Then, there is a set S of n/kt variables such that each �i
depends on at most one variable in S.

Proof. This may be done via a simple graph theoretic argument. Define an undirected graph whose
vertex set is the set of n variables and two variables are adjacent i↵ they feed into the same threshold
gate. We need to pick an S that is an independent set in this graph. Since the graph has degree at most
kt, we can greedily find an independent set of size at least n/kt. Let S be such an independent set.

4.1 Proofs of Correlation bounds

Let B > 2 be a constant real parameter that we will choose to satisfy various constraints in the proofs
below. For d � 1, define "d = B�(2d�1) and �d = B"d.

Theorem 37 (Correlation bounds for parity). For any d � 1 and c  n"
d , any depth-d threshold circuit

C with at most cn wires satisfies Corr(C,Parn)  O(n�"
d) where the O(·) hides absolute constants

(independent of d and n).

Proof. The proof is by induction on the depth d of C. The base case is d = 1, which is the case when C
is only a single threshold gate. In this case, Corollary 15 tells us that Corr(C,Parn)  O(n�1/2)  n�"1 ,
since B > 2.

Now, we handle the inductive case when the depth d > 1. Our analysis proceeds in phases.

Phase 1 : We first transform the circuit into a read-2c circuit by setting n/2 variables. This may be
done by Fact 35. This defines a restriction tree of depth n/2. By Fact 6, it su�ces to show that each leaf
of this restriction tree, the correlation of the restricted circuit and Parn/2 remains bounded by O(n�"

d).
Let n

1

now denote the new number of variables and let C
1

now be the restricted circuit at some
arbitrary leaf of the restriction tree. By renaming the variables, we assume that they are indexed by the
set [n

1

].

Phase 2 : Let �
1

, . . . ,�m be the threshold gates at depth d � 1 in the circuit C
1

. We call �i large if
fan-in(�i) > n�

d and small otherwise. Let L ✓ [m] be defined by L = {i 2 [m] | �i large}. Assume that
|L| = `. Note that ` · n�

d  n1+"
d and hence `  n1+"

d

��
d  n.
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We restrict the circuit with a random restriction ⇢ = (I, y) ⇠ Rn1
p , where p = n��

d

/2. By Lemma 34,

we know that for each i 2 [m] and some t = 1

p⌦(1) and q = p⌦(1),

Pr
⇢
[�i|⇢ t-balanced]  q. (6)

Further, we also know that for each i 2 L, the expected value of fan-in(�i|⇢) = p · fan-in(�i), since
each variable is set to a constant with probability 1 � p. Since i 2 L, the expected fan-in of each �i
(i 2 L) is at least n�

d

/2. Hence, by a Cherno↵ bound (Theorem 26), we see that for any i 2 L,

Pr
⇢
[fan-in(�i|⇢) > 2p · fan-in(�i)]  exp(�⌦(n�

d

/2)). (7)

Finally another Cherno↵ bound (Theorem 26) tells us that

Pr
⇢=(I,y)

[|I| < n
1

p

2
]  exp(�⌦(n

1

p)) = exp(�⌦(np)). (8)

We call a set I generic if |I| � n1p
2

and fan-in(�i|⇢)  2p · fan-in(�i) for each i 2 L. Let G denote

the event that I is generic. By (7) and (8), we know that PrI [¬G]  ` exp(�⌦(n�
d

/2)) + exp(�⌦(np)) 
exp(�n�

d

/4). In particular, conditioning on G doesn’t change (6) by much.

Pr
⇢=(I,y)

[�i|⇢ t-balanced | G]  q + exp(�n�
d

/4)  2q. (9)

Our aim is to further restrict the circuit by setting all the input variables to the gates �i that are
t-balanced. In order to analyze this procedure, we define random variables Yi (i 2 L) so that Yi = 0 if
�i|⇢ is t-imbalanced and fan-in(�i|⇢) otherwise. Let Y =

P
i2L Yi. Note that

E

⇢
[Yi | G]  (2p · fan-in(�i)) · Pr

⇢
[�i|⇢ t-balanced | G]  4pq · fan-in(�i)

where the first inequality follows from the fact that since we have conditioned on I being generic, we
have fan-in(�i|⇢)  2p · fan-in(�i) with probability 1. Hence, we have

E

⇢
[Y | G]  4pq ·

X

i

fan-in(�i)  4pq · n1+"
d . (10)

We let µ := 4pq · n1+"
d . By Markov’s inequality,

Pr
⇢
[Y � µ

p
q
| G]  p

q. (11)

In particular, we can condition on a fixed generic I ✓ [n] such that for random y ⇠ {�1, 1}n1�|I|, we
have

Pr
y
[Y � µ

p
q
]  p

q.

The above gives us a restriction tree T (that simply sets all the variables in [n
1

] \ I) such that at
all but 1 � 2

p
q fraction of leaves � of T , the total fan-in of the large gates at depth 1 in C

1

that are
t-balanced is at most µp

q ; call such � good leaves. Let n
2

denote |I|, which is the number of surviving

variables.

Phase 3 : We will show that for any good leaf �, we have

Corr(C�,Parn2)  n�"
d (12)

where C� denotes C
1

|⇢
�

. This will prove the theorem, since we have by Fact 6,

Corr(C
1

,Parn1)  E

�⇠T
[Corr(C�,Parn2)]

 Pr
�
[� not good] + max

� good

Corr(C�,Parn2)

 2
p
q + n�"

d  2n�"
d
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where we have used the fact that Parn1 |⇢�

= ±Parn2 for each leaf �, and also that 2
p
q  n�"

d for a
large enough choice of the constant B.

It remains to prove (12). We do this in two steps.
In the first step, we set all large t-imbalanced gates to their most probable constant values. Formally,

for a t-imbalanced threshold gate � labelled by (w, ✓), we have |✓| � t ·kwk
2

. We replace � by a constant
b� which is 1 if ✓ � t·kwk

2

and by �1 if �✓ � t·kwk
2

. This turns the circuit C� into a circuit C 0
� of at most

the wire complexity of C�. Further, note that for any x 2 {�1, 1}n1 , C�(x) = C 0
�(x) unless there is a t-

imbalanced threshold gate � such that �(x) 6= b�(x). By the Cherno↵ bound (Theorem 24) the probability
that this happens for any fixed imbalanced threshold gate is at most exp(�⌦(t2))  exp(�n⌦(�

d

)). By a
union bound over the `  n large threshold gates, we see that Prx[C�(x) 6= C 0

�(x)]  n exp(�n⌦(�
d

)). In
particular, we get by Fact 6

Corr(C�,Parn2)  Corr(C 0
�,Parn2) + n exp(�⌦(n�

d))  Corr(C 0
�,Parn2) + exp(�n"

d). (13)

In the second step, we further define a restriction tree T� such that C 0
� becomes a depth-(d�1) circuit

with at most cn wires at all the leaves of T�. We first restrict by setting all variables that feed into any
of the t-balanced gates. The number of variables set in this way is at most

µ
p
q
 4p

p
q · n1+"

d  (pn) · (4pqn"
d)  pn

8
 n

2

2

for a large enough choice of the constant B. This leaves n
3

� n2
2

variables still alive. Further, all the
large t-balanced gates are set to constants with probability 1. Finally, by Proposition 36, we may set all
but a set S of n

4

= n
3

/2cn�
d variables to ensure that with probability 1, all the small gates depend on

at most one input variable each. At this point, the circuit C 0
� may be transformed to a depth-(d � 1)

circuit C 00
� with at most as many wires as C 0

�, which is at most cn.
Note that the number of unset variables is n

4

� pn/8cn�
d � n1�2�

d , for large enough B. Hence, the

number of wires is at most cn  n
1+"

d

1�2�
d

4

 n
(1+"

d

)(1+3�
d

)

4

 n
1+"

d�1

4

for suitably large B. Thus, by the
inductive hypothesis, we have

Corr(C 00
� ,Parn4)  O(n

�"
d�1

4

)  n�"
d/2.

with probability 1 over the choice of the variables restricted in the second step. Along with (13) and
Fact 6, this implies (12) and hence the theorem.

4.1.1 Strong correlation bounds for the generalized Andreev function

We now prove an exponentially strong correlation bound for the generalized Andreev function defined
in Section 2.4 with any � < 1/6. As in the case of Theorem 37, the proof proceeds by an iterative depth
reduction. We prove the depth-reduction in a separate lemma.

Definition 38 (Simplicity). We call a threshold circuit C (t, d, w)-simple if there is a set R of r  t
threshold functions g

1

, . . . , gr such that for every setting of these threshold functions to bits b
1

, . . . , br,
the circuit C can be represented on the corresponding inputs (i.e., inputs x satisfying gi(x) = bi for each
i 2 [r]) by a depth-d threshold gate of wire complexity at most w.

In particular, note that a (t, d, w)-simple circuit C may be expressed as

C(x) =
_

b1,...,br2{�1,1}

 
Cb1,...,br ^

^

i:b
i

=�1

gi ^
^

i:b
i

=1

(¬gi)
!
. (14)

where each Cb1,...,br is a depth d circuit of wire complexity at most w. Further, note that the OR
appearing in the above expression is disjoint (i.e. no two terms in the OR can be simultaneously true).

Lemma 39. Let d � 1 be any constant and assume that "d, �d are defined as above. Say we are given
any depth d threshold circuit C on n variables with at most n1+"

d wires.
There is a restriction tree T of depth n�n1�2�

d with the following property: for a random leaf � ⇠ T ,
let E(�) denote the event that the circuit C|⇢

�

is exp(�n"
d)-approximated by an (n�

d , d�1, n1+"
d)-simple

circuit. Then, Pr�[¬E(�)]  exp(�n"
d).
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Proof. Let �
1

, . . . ,�m be the threshold gates appearing at height 1 in the circuit C. We say that �i is
large if fan-in(�i) � n�

d and small otherwise. Let L = {i | �i large} and S = [m] \ L. Let ` = |L|. Note
that `  n1+"

d

��
d  n. Let c = n"

d .
As in the inductive case of Theorem 37, our construction proceeds in phases.

Phase 1 : This is identical to Phase 1 in Theorem 37. We thus get a restriction tree of depth n/2
such that at all leaves of this tree, the resulting circuit is a read-2c circuit with at most cn wires. Let C

1

denote the circuit obtained at some arbitrary leaf of the restriction tree and let n
1

denote the number
of variables.

Phase 2 : This basic idea here is similar to Phase 2 from Theorem 37. However, there are technical
di↵erences from Theorem 37 since we apply a concentration bound to ensure that the circuit simplifies
with high probability.

We restrict the circuit with a random restriction ⇢ = (I, y) ⇠ Rn1
p , where p = n��

d

/2. As in

Theorem 37, we have for some t = 1

p⌦(1) , q = p⌦(1), and for each i 2 [m],

Pr
⇢
[�i|⇢ t-balanced]  q (15)

Pr
⇢
[fan-in(�i|⇢) > 2p · fan-in(�i)]  exp(�⌦(n�

d

/2)) (16)

Pr
⇢=(I,y)

[|I| < n
1

p

2
]  exp(�⌦(np)) (17)

Now, we partition L as L = L
1

[ · · ·[La, where a  1

"
d

, as follows. The set Lj indexes all threshold

gates of fan-in at least n�
d

+(j�1)"
d and less than n�

d

+j"
d . We let `j denote |Lj |. For each i 2 L, let Yi

be a random variable that is 1 if �i|⇢ is t-balanced and 0 otherwise. Note that this defines a collection
of read-2c Boolean random variables (the underlying independent random variables are ⇢(k) for each
k 2 [n

1

]).
Let Zj =

P
i2L

j

Yi, the number of t-balanced gates in Lj . We have
E

[Zj ] =
P

i2L
j

E

[Yi]  q`j by

(15). Thus, by an application of the read-2c Cherno↵ bound in Theorem 27, we have

Pr[Zj � 2q`j ]  exp{�⌦(q`j/c)}.

Assuming that `j � n3�
d

/4 and B = �d/"d is a large enough constant, the right hand side of the above
inequality is upper bounded bounded by exp{�2n"

d}. On the other hand if `j < n3�
d

/4, then Zj < n3�
d

/4

with probability 1. Hence, we have Pr⇢=(I,y)[Zj � max{2q`j , n3�
d

/4}]  exp{�2n"
d} and by a union

bound
Pr

⇢=(I,y)
[9j 2 [a], Zj � max{2q`j , n3�

d

/4}]  a exp{�2n"
d}. (18)

We call a set I generic if |I| � n1p
2

and fan-in(�i|⇢)  2p · fan-in(�i) for each i 2 L. Let G denote the

event that I is generic. By (16) and (17), we know that PrI [¬G]  ` exp(�⌦(n�
d

/2)) + exp(�⌦(np)) 
exp(�n�

d

/4). In particular, similar to Theorem 37, we get,

Pr
⇢=(I,y)

[9j 2 [a], Zj � max{2q`j , n3�
d

/4} | G]  a exp{�2n"
d}+ exp(�n�

d

/4)  2a exp{�2n"
d}. (19)

We fix any generic I such that

Pr
y
[9j 2 [a], Zj � max{2q`j , n3�

d

/4}]  2a exp{�2n"
d}. (20)

Consider the restriction tree T that sets all the variables not in I. The tree leaves n
2

� pn
1

/2 = pn/4
variables unfixed. We call a leaf � of the tree good if for each j 2 [a] we have Zj < max{2q`j , n3�

d

/4}
and bad otherwise. We have

Pr
�⇠T

[� a bad leaf]  2a exp(�2n"
d) (21)

For good leaves �, we show how to approximate C� := C
1

|⇢
�

as claimed in the lemma statement.
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For the remainder of the argument, fix any good leaf �. We partition [a] = J
1

[ J
2

where J
1

= {j 2
[a] | Zj < 2q`j}. Note that for any j 2 J

1

, we have
X

i2L
j

Yi · fan-in(�i|⇢
�

) 
X

i2L
j

Yi · 2p · fan-in(�i)

 2p · n�
d

+j·"
d · Zj  n�

d

+j·"
d · 4pq`j

= 4pqn"
d · `j · n�

d

+(j�1)·"
d  4pqn"

dn1+"
d

= 4pqn1+2"
d

where for the last inequality, we have used the fact that since we have `j gates of fan-in at least n�
d

+(j�1)"
d

each, we must have `j · n�
d

+(j�1)"
d  n1+"

d , the total wire complexity of the circuit.
In particular, we can bound the total fan-in of all the t-balanced gates indexed by

S
j2J1

Lj by

X

j2J1

X

i2L
j

Yi · fan-in(�i|⇢
�

)  4pqn1+2"
d

"d
(22)

Phase 3 : We proceed in two steps as in Theorem 37. Since the steps are very similar, we just sketch
the arguments. In the first step, we replace all large t-imbalanced gates by their most probable values.
This yields a circuit C 0

� of at most the wire complexity of C� and such that

Pr
x
[C�(x) 6= C 0

�(x)]  ` exp(�n⌦(�
d

))  n exp(�n⌦(�
d

))  exp(�n"
d). (23)

In the second step, we construct another restriction tree rooted at � that simplifies the circuit to
the required form. We first restrict by setting all variables that feed into the t-balanced gates that are
indexed by

S
j2J1

Lj . By (22), the number of variables set is bounded by

4pqn1+2"
d

"d
 4pn · n"

d

�⌦(�
d

)

"d
 pn

8
 n

2

2

for a large enough choice of the constant B. This sets all the t-balanced gates indexed by
S

j2J1
Lj to

constants while leaving n
3

� n2
2

variables still alive. Finally, by Proposition 36, we may set all but a
set of n

4

= n
3

/2cn�
d variables to ensure that with probability 1, all the small gates depend on at most

one input variable each. We may replace the small gates by the unique variable they depend on or a
constant (if they do not depend on any variable) without increasing the wire complexity of the circuit.
Call the circuit thus obtained C 00

� .
At this point, the only threshold gates at height 1 in the circuit C 00

� are the gates indexed by the
t-balanced gates in

S
j2J2

Lj . But by the definition of J
2

, there can be at most 1

"
d

·n3�
d

/4  n�
d of them.

For every setting of these threshold gates to constants, the circuit becomes a depth-(d� 1) circuit of size
at most n1+"

d . Hence, we have a (n�
d , d� 1, n1+"

d)-simple circuit, as claimed.
Note that the number of variables still surviving is given by n

4

� pn/8cn�
d � n1�2�

d , for a large
enough choice of the parameter B. Hence, the restriction tree constructed satisfies the required depth
constraints.

For a random leaf ⌫ ⇠ T , the probability E(⌫) does not occur is at most the probability that in Phase
2, the leaf sampled is bad. By (21), this is bounded by 2a exp(�2n"

d)  exp(�n"
d) as claimed.

We now prove the correlation bound for threshold circuits with the generalized Andreev function.
For the sake of induction, it helps to prove a statement that is stronger in two ways: firstly, we consider
any function Fa = F (a, ·) where a 2 {�1, 1}4n has high Kolmogorov complexity and the input to Fa is
further restricted by an arbitrary restriction ⇢ that leaves a certain number of variables alive; secondly,
we prove a correlation bound against circuits which are the AND of a small threshold circuit with a
small number of threshold gates.

Formally, say that f : {�1, 1}n ! {�1, 1} is (N, d, t,↵)-intractable if for any restriction ⇢ on n
variables that leaves m � N variables unset, any depth-d threshold circuit C on m variables of wire
complexity at most m1+"

d , and any set S of at most t threshold functions, we have

Corr(f, C ^
^

g2S

g)  ↵.
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The stronger correlation bound is the following.

Theorem 40 (Generalized version of strong correlation). Fix any constant d � 1. Let a 2 {�1, 1}4n be
any string with K(a) � 3n. Then, the function Fa is (n1�"

d , d, n"
d , exp(�n"

d/2))-intractable.

The proof is by induction on d. The properties of Fa are only used to prove the base case of the
theorem, which can then be used to prove the induction case using Lemma 39. We prove the base case
separately below (we assume that the constant B > 0 is large enough so that this implies the base case
of the theorem stated above).

Lemma 41 (Base case of induction). Let a 2 {�1, 1}4n be any string with K(a) � 3n. Then, the
function Fa is (

p
n, 1,

p
n, exp(�n⌦(1)))-intractable.

Proof. Let � < 1/6 in the definition of the Generalized Andreev function in Section 2.4. Let ⌧ be any
restriction of n variables leaving m �

p
n variables unfixed. Define f := Fa|⌧ . Let C be a conjunction

of
p
n+ 1 threshold gates each on m variables. We wish to prove that

Corr(f, C)  exp(�n⌦(�)).

We build a restriction tree T for C of depth m � n� , by restricting all but n� arbitrarily chosen
variables. For any leaf ` of T , the restricted circuit C` := C|⇢

`

is a conjunction of
p
n+1 threshold gates

each on n� variables. By Lemma 12, each threshold function can be described using n2� bits. Hence, the
entire circuit can be described in a standard way using (

p
n+1) ·O(n2�) < n bits. Then, by Lemma 23,

we have Corr(f |⇢
`

, C`)  exp(�n⌦(�)). By Fact 6, we then obtain Corr(f, C)  exp(n�⌦(�)).

Proof of Theorem 40. We only need to prove the inductive case. Assume that d � 2 is given. Fix any
restriction ⇢ that sets all but m � n1�"

d variables and let f = Fa|⇢. Let C be a depth-d threshold circuit
on the surviving variables of wire complexity at most m1+"

d . Let S be any set of at most n"
d threshold

functions on the m variables. We need to show that Corr(f, C ^
V

g2S g)  exp(�n"
d

/2).
Apply Lemma 39 to circuit C to find a restriction tree T as guaranteed by the statement of the

lemma. By Fact 6, we have

Corr(f, C ^
^

g2S

g) 
E

`⇠T
[Corr(f`, C` ^

^

g2S

g`)]

 Pr
`
[¬E(`)] + max

`:E(`) holds

Corr(f`, C` ^
^

g2S

g`) (24)

where f` denotes f |⇢
`

and similarly for C` and g`, and E(`) is the event defined in the statement of
Lemma 39.

Fix any leaf ` so that E(`) holds. We want to bound Corr(f`, C` ^
V

g2S g`). By definition of E(`), we
know that C` is exp(�m"

d)-approximated by a (m�
d , d� 1,m1+"

d)-simple circuit C 0
`. This implies that

C` ^
V

g2S g` is exp(�m"
d)-approximated by C 0

` ^
V

g2S g`. Hence, we have

Corr(f`, C` ^
^

g2S

g`)  Corr(f`, C
0
` ^

^

g2S

g`) + exp(�m"
d). (25)

Further, by the definition of simplicity and its consequence (14), we know that there exist r  m�
d

threshold functions h`
1

, . . . , h`
r such that

C 0
` =

_

b1,...,br2{�1,1}

Cb1,...,br ^
^

i:b
i

=�1

h`
i ^

^

i:b
i

=1

¬h`
i

where each Cb1,...,br is a depth d�1-threshold circuit of size at most m1+"
d and the OR above is disjoint.

This further implies that

C 0
` ^

^

g2S

g` =
_

b1,...,br2{�1,1}

0

@Cb1,...,br ^
^

i:b
i

=�1

h`
i ^

^

i:b
i

=1

¬h`
i ^

^

g2S

g`

1

A (26)

and the OR remains disjoint.
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Note that we may apply the induction hypothesis to obtain a bound on the correlation with each term
in the OR at this point, since the number of surviving variables is at least m

1

= m1�2�
d � n1�"

d

�2�
d �

n1�"
d�1 (throughout, we assume that B is a large enough constant for many of the inequalities to hold);

and the wire complexity of each depth-(d � 1) circuit Cb1,...,br is at most m1+"
d  m

(1+"
d

)/(1�2�
d

)

1


m1+"

d

+3�
d

1

 m
1+"

d�1

1

; further, the number of threshold functions in each term is at most n"
d + n�

d <
m"

d�1 . Thus, by the inductive hypothesis, we obtain for any b
1

, . . . , br,

Corr(f, Cb1,...,br ^
^

i:b
i

=�1

h`
i ^

^

i:b
i

=1

¬h`
i ^

^

g2S

g`)  exp(�n"
d�1/2).

Using the fact that the OR in (26) is disjoint, from Fact 6, we obtain

Corr(f, C 0
` ^

^

g2S

g`)  2r · exp(�n"
d�1/2)  2n

�

d · exp(�n"
d�1/2)  exp(�n"

d).

Putting the above together with (24) and (25), we obtain

Corr(f, C ^
^

g2S

g)  exp(�m"
d) + exp(�n"

d)  exp(�n"
d

/2).

which proves the induction case and hence the theorem.

Corollary 42 (Correlation bounds for Andreev’s function). For any d � 1, any depth-d threshold circuit
C of wire complexity at most n1+"

d satisfies Corr(C,F )  2 exp(�n"
d

/2).

Proof. For a random a 2 {�1, 1}4n, we know by Fact 17 thatK(a) � 3n with probability 1�exp(�⌦(n)).
For each such a, by Theorem 40, we have Corr(Ca, Fa)  exp(�n"

d

/2), where Ca is the circuit obtained
by substituting x

1

= a in C. Hence, we have

Corr(C,F ) 
E

a
[Corr(Ca, Fa)]  exp(�⌦(n)) + exp(�n"

d

/2)  2 exp(�n"
d

/2)

as claimed.

4.2 Proof of Main Structural Lemma

We need the following definitions and facts that have appeared many times before in the literature on
threshold functions (see, e.g., [9]).

Let " 2 [0, 1] be a real parameter. We say that w 2 Rn is "-regular if for each i 2 [n], |wi|  " · kwk
2

.
Assume for simplicity that the co-ordinates of the vector w are sorted so that |w

1

| � |w
2

| � · · · � |wn|.
Let w>i 2 Rn�i denote the vector obtained by removing the first i co-ordinates of w. We define the
"-critical index of w be the least K = K(") so that the vector w>K is "-regular. Note that K = 0 if w
is already "-regular and we define K = n if the "-critical index is not defined.

We say that an n-variable threshold gate � labelled by (w, ✓) is "-regular if w is. Similarly, the
"-critical index of � is defined to be the "-critical index of w.

Also, we define L = L(") = 100 log

2
(1/")

"3 for a large constant A that will be made precise later.
The Berry Esseen theorem (see, e.g., [12]) yields the following standard anticoncentration lemma for

linear functions. (See [9, Corollary 2.2] for this particular statement.)

Lemma 43 (Anticoncentration for regular linear functions). Let w 2 Rn be "-regular and let J ✓ R be
any interval. Then, ���� Pr

x2{�1,1}n

[hw, xi 2 J ]� �(J)

����  O(")

where �(·) denotes the cdf of the standard Gaussian with mean 0 and variance kwk2
2

. In particular, if
|J | denotes the length of J , then

Pr
x
[hw, xi 2 J ]  |J |

kwk
2

+O(").
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We now proceed with the proof of Lemma 34. We start with an easier case of the lemma for regular
threshold gates. Throughout, we work with random restrictions sampled from Rn

p where p 2 [0, 1] is
the probability from the statement of Lemma 34: equivalently, we pick a pair (I, y) where I ✓ [n] and
y 2 {�1, 1}n�|I|. Let " = p

1
8 . Let t = p�

1
16 .

Let the threshold gate � be labelled by pair (w, ✓), where w 2 Rn. We may assume that the variables
of the threshold gate have been sorted so that |w

1

| � |w
2

| � · · · |wn|. Note that after applying a
restriction ⇢, the threshold gate �⇢ is labelled by pair (w0, ✓0), where w0 is the restriction of w to the
coordinates in I and

✓0 = ✓0(⇢) = ✓ � hw00, yi. (27)

Above, we use w00 to denote the vector w restricted to the indices in [n] \ I.
For a random restriction ⇢ ⇠ Rn

p , define the following “bad” events:

1. B(⇢): �⇢ is t-balanced: i.e., ✓0  t · kw0k
2

. This is the event whose probability we want to upper
bound.

2. B
1

(⇢):
P

i2I w
2

i � p
p · kwk2

2

.

3. Bk
2

(⇢) (k a parameter): One of the first k variables x
1

, . . . , xk is set to ⇤ by ⇢.

We have the following simple upper bounds on the probabilities of some of the above bad events:

• Since each variable is set to ⇤ with probability p, we have
E⇢[
P

i2I w
2

i ] = p · kwk2
2

. By Markov’s
inequality, we have Pr⇢[B1

(⇢)]  p
p.

• By a union bound, for any k, we have Pr⇢[Bk
2

(⇢)]  pk.

We start with a simpler subcase of the lemma that follows almost directly from Lemma 43. We
assume throughout that p is a small enough constant, since otherwise the statement of Lemma 34 is
trivial.

Lemma 44 (The regular case). Say that w is "-regular. Then Pr⇢[B(⇢)]  p⌦(1).

Proof. We bound Pr⇢[B(⇢)] as follows.

Pr
⇢
[B(⇢)]  Pr

⇢
[B

1

(⇢)] + Pr
⇢
[B(⇢) | ¬(B

1

(⇢))]

 p
p+ Pr

⇢
[B(⇢) | ¬(B

1

(⇢))]. (28)

Now, note that the event ¬B
1

(⇢) only depends on the choice of ⇢�1(⇤) = I. Hence we can condition
on an I so that this event occurs; choosing ⇢ is now equivalent to choosing a random assignment y to
the variables in [n] \ I.

We have ✓0 = ✓ � hw00, yi. Using the fact that B
1

(⇢) doesn’t occur, we have

• kw00k
2

� kwk
2

p
1�p

p � kwk
2

/2. Using the "-regularity of w, for each i 62 I, we have |wi| 
(")kwk

2

 2"kw00k
2

. Thus, w00 is 2"-regular.

• kw0k
2

 p1/4kwk
2

 2p1/4kw00k
2

,

Using the above, we can see that the probability that

Pr
⇢
[B(⇢) | ¬B

1

(⇢)]  Pr
y
[|✓0|  t · kw0k

2

]  Pr
y
[|✓0|  2tp1/4 · kw00k

2

]

 Pr
y
[hw00, yi 2 [✓ � 2tp1/4 · kw00k

2

, ✓ + 2tp1/4 · kw00k
2

]]

 4tp1/4 +O(") = O(") = p⌦(1)

where the final inequality uses the anti-concentration bound in Lemma 43. Putting the above together
with (28), we are done.
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Proof of Lemma 34. The proof of the lemma is a standard case analysis based on the "-critical index of
the threshold gate � (see [43, 33, 9, 28]).

The first case is when the critical index K  L. In this case, we bound the probability of B(⇢) by

Pr
⇢
[B(⇢)]  Pr

⇢
[BK

2

(⇢)] + Pr
⇢
[B(⇢) | ¬BK

2

(⇢)]

 pK + Pr
⇢
[B(⇢) | ¬BK

2

(⇢)]  p
p+ Pr

⇢
[B(⇢) | ¬BK

2

(⇢)] (29)

where the final inequality follows from the fact that pK  pL  p
p by our choice of parameters. The

event ¬B
2

(⇢) only depends on the choice of the sub-restriction ⇢|
[K]

and we can condition on ⇢|
[K]

so that
this event occurs. From now on, the random choice will be a restriction ⇢0 ⇠ Rn�K

p on the remaining
variables.

Since the restricted linear function is now "-regular by the definition of the "-critical index, we can
apply Lemma 44 to conclude that Pr⇢0 [B(⇢) | ¬BK

2

(⇢)]  p⌦(1). Along with (27), this implies the lemma
in the case that K  L.

The second case is when K > L. As in previous cases, we first condition on some bad event not
occurring. We have

Pr
⇢
[B(⇢)]  Pr

⇢
[BL

2

(⇢)] + Pr
⇢
[B(⇢) | ¬BL

2

(⇢)]

 pL+ Pr
⇢
[B(⇢) | ¬BL

2

(⇢)]  p
p+ Pr

⇢
[B(⇢) | ¬BL

2

(⇢)] (30)

As in Lemma 44, we can condition on a fixed I so that ¬BL
2

(⇢) occurs (i.e. none of the first L variables
belong to I). We then use the following claim that is implicit in [9].

Proposition 45. Let L0 = 10r log(1/")
"2 and assume that K > L0. Let y be a random assignment to any set

of variables including the first L0 = 10r log(1/")
" variables. Then, the probability over y that the restricted

threshold gate is not ( 1" )-imbalanced is at most 2�r.

Applying the above proposition with L0 = L and r = 10 log(1/"), we have Pr⇢[B(⇢) | ¬BL
2

(⇢)]  "10.
Putting this together with (30), we have the claimed upper bound on Pr⇢[B(⇢)] in the case that K >
L.

We give a proof sketch of Proposition 45 in Section C.

5 Satisfiability Algorithms Beating Brute-Force Search

In this section, we give satisfiability algorithms beating brute force search for bounded-depth threshold
circuits with few wires. Until now, such algorithms were only known for threshold circuits of depth 2.
We will assume that each threshold gate on m input bits is given as a pair (w, ✓), where w 2 Zm and
✓ 2 Z, and ✓ as well as each component of w has bit complexity poly(n). Note that this assumption
is without loss of generality for a threshold function, and that some assumption on representability of
threshold functions is necessary in an algorithmic context.

The satisfiability algorithm relies on an algorithmic version of Lemma 39, along with a couple of
additional ideas. Essentially, we use the algorithmized version of the lemma to reduce the satisfiability
of bounded-depth circuits to satisfiability of ANDs of threshold functions, which we can then solve using
a recent result of Williams, stated below.

Theorem 46. [48] There is a deterministic algorithm, which given a bounded-depth circuit C on n

variables of size 2n
o(1)

with ANDs, ORs and threshold gates, and with the threshold gates appearing only

at the bottom layer, decides if C is satisfiable in time 2n�n"

0
poly(n), where "0 > 0 is a constant that

depends only on the depth of the circuit.

We also need the following fact about threshold gates on n input bits: the set of inputs evaluating
to 1 (and dually, the set of inputs evaluating to -1) of a linear threshold gate can be enumerated in time
proportional to the number of such inputs, modulo a poly(n) factor.

19



Proposition 47. Let (w, ✓) represent a threshold function � on m input bits, where w 2 Zm and ✓ 2 Z
are integers of bit complexity poly(m). Let S be the set of inputs on which � evaluates to 1. Then S can
be enumerated in time |S|poly(n).

Proof. We will show how to construct a decision tree for � in time |S|poly(n), where S is the set of
inputs on which � takes value 1. Given a decision tree of size at most |S|poly(n), it is easy to enumerate
the set of inputs on which � takes value 1 in time |S|poly(n) by scanning through leaves labelled 1 and
outputting all assignments corresponding to any such leaf.

The decision tree is constructed recursively as follows. Check if � restricted according to the current
partial assignment is satisfiable (in the sense that there is a total assignment consistent with the partial
assignment for which � evaluates to 1). Note that satisfiability of a linear threshold gate with polynomial
bit complexity of the weights can be done trivially in polynomial time. If the satisfiability check fails,
make the current node a leaf and label it with -1. If it succeeds, check if the current partial assignment
is falsifiable. If this check fails, make the current node a leaf and label it with 1. Otherwise, branch on
an arbitrary unassigned variable and recurse.

Clearly, this decision tree can be constructed with polynomial work at each node, and hence in time
Npoly(n), where N is the number of leaves of the tree. We show that N  |S|n. Indeed, we prove
inductively that for any internal node v of the tree of height h � 1, the number of -1 leaves of the tree
rooted at v is at most h times the number of 1 leaves, from which the claim follows as the height of the
tree  n.

For the inductive claim, the base case h = 1 is clear as any node at height 1 must have one leaf
labelled 1 and the other labelled -1. Assume the claim for height h. Consider a node v at height h+ 1.
Either one of its children is a leaf, or not. If one of the children is a leaf, then the other one v0 is not and
by the induction hypothesis, since it is of height h, has at most h times as many -1 leaves as 1 leaves.
The number of -1 leaves of v is at most one plus the number of -1 leaves of v0, and hence at most h+ 1
times the number of 1 leaves. In case both children of v are internal nodes, then they are both of height
at most h, and by the induction hypothesis, both have at most h times as many -1 leaves as 1 leaves,
which implies that the same holds for v.

Definition 48. We use THR to refer to the class of linear threshold functions. We use AND � THR
to refer to the class of polynomial-size circuits with an AND gate at the top and threshold gates at the
bottom layer.

Theorem 49. For each integer d > 0, there is a constant ✏d > 0 such that satisfiability of a depth d
threshold circuit with at most n1+✏

d wires on n variables can be solved by a randomized algorithm in time
2n�⌦(n✏

d

)poly(n).

Proof. As the proof follows the proof of Lemma 39 closely, we just give a sketch. Call a circuit depth-d
AND � THR-skew if the top gate is an AND and all but one child of the top gate is a bottom-level
threshold gate, with the possibly exceptional child being a depth-d� 1 threshold circuit with few wires.
We follow the depth reduction argument in the lemma to give a recursive algorithm which reduces
satisfiability of polynomial-size depth-d AND �THR-skew circuits to the satisfiability of polynomial-size
depth-d� 1 AND � THR-skew circuits by appropriately restricting variables.

For the base case d = 1, we simply appeal to the algorithm given by Theorem 46, which solves

satisfiability of AND � THR circuits of polynomial size in time 2n�n"

0
poly(n) for some constant "0 > 0.

For the inductive case, we simulate the proof of Lemma 39, which performs and analyzes a certain
kind of adaptive random restriction. Various bad events might happen at Phases 2 and 3 of this random
restriction process, however each step of the restriction process as well as the check that a bad event
happens can be implemented in polynomial time. Moreover, the probability that a bad event happens
is at most 2�n✏

d . Whenever a bad event happens, we simply do brute force search on the remaining
variables of the circuit, but thanks to the exponentially small probability that a bad event happens, with
high probability, we only spend time 2n�n✏

d on such brute force searches.
In Phase 3 of the restriction process, we replace imbalanced gates by their most probable values.

This changes the functionality of the circuit and might lose us satisfying assignments or give us new
invalid satisfying assignments. To get around this, for each such imbalanced gate, we use Proposition 47
to e�ciently enumerate the inputs evaluating to the minority value for each imbalanced gate, and for
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each such input check whether it satisfies the original circuit. If it does, we just output ’yes’. We also
append to the top gate of the skew circuit a child representing the assignment of the imbalanced gate to
its majority value - this needs to be done so that we don’t end up with ’false positives” in the base case
of the recursive algorithm. Although each such false positive can be tested, there might be too many of
them, and this could destroy all the savings we accrue through the course of the algorithm. The total
time spent in enumerating minority values of imbalanced gates is again at most 2n�n✏

dpoly(n), with high
probability, using the e�cient enumeration and the imbalance property.

Finally, there are a few balanced gates — with high probability at most O(n�
d) of them — for which

we need to try all possible values. This could be expensive, but is compensated for by an increased
savings for depth d� 1, just by setting the constant B large enough in the proof of Lemma 39. We also
need to set B large enough so that the savings given by the application of Williams’ algorithm in the
base case overwhelms the loss due to branching on balanced threshold gates at depth d = 2.

Thus the total running time, once B is chosen appropriately, is 2n�⌦(n✏

d

)poly(n), using the fact that
✏d < ✏d�1

< . . . < ✏
2

.

6 Threshold formulas

A threshold formula is a threshold circuit such that the fan-out of each gate is at most 1. A formula can
be viewed as a tree. Note that a depth-2 threshold circuit can always be converted to a threshold formula
without increasing either the wire complexity or the gate complexity (recall that the gate complexity
only measures the number of non-input gates).

Let F : {�1, 1}4n⇥{�1, 1}n ! {�1, 1} be the generalized Andreev function defined in Section 2.4. Re-

call that F is constructed with (n, n� ,m = 0.9n� , 2�n⌦(�)
) bit fixing extractor E : {�1, 1}n ! {�1, 1}m,

and (1/2�O(2�m/4), 2m/2) list decodable code Enc: {�1, 1}4n ! {�1, 1}2m .

Theorem 50. Any threshold formula on n variables with at most n1.5�� wires for has correlation at
most exp(�n⌦(�)) with the generalized Andreev function.

Proof. Let C be a threshold formula with n inputs and s = n1.5�� wires. Let L be the number of leaves
in the formula tree; then L  s  2L. We build a restriction tree T for C up to depth n � pn for
p = n�/2/n, by greedily restricting the most frequent variables appearing in the formula. Since the most
frequent variable appears at least L/n times in C, after restricting one variable, the formula tree has at
most L(1� 1/n) leaves left. Continue until pn variables left unrestricted; then the number of remaining
leaves is at most L · n�1

n · n�2

n�1

· · · · · pn
pn+1

= pL. Thus, for any leaf l of T , the restricted formula C|⇢
l

(on

pn = n�/2 variables) has s(C|⇢
l

)  2pL  2ps wires, and by Proposition 19, the description length is at
most O(p2s2)  O(n1��) < n. Let a 2 {�1, 1}4n be a string with Kolmogorov complexity K(a) � 3n,
and let Fa(x) := F (a, x). Then, by Lemma 23, Corr(Fa, C)  exp(�n⌦(�)).

Therefore, for any formula D with 5n inputs and n1.5�� wires, Prx[F (a, x) = D(a, x)]  1/2 +
exp(�n⌦(�)). Since a random a 2 {�1, 1}4n has K(a) � 3n with probability 1� 2�⌦(n), the correlation
of D and F is at most 2�⌦(n) + exp(�n⌦(�)) = exp(�n⌦(�)).

7 Correlation bounds for AC

0
with a few threshold gates

Following Gopalan and Servedio [15], we define TAC0[k] to be the class of constant-depth circuits made
up of AND and OR gates and at most k arbitrary threshold gates.

We prove upper bounds on the noise sensitivity of small depth-d TAC0[k] circuits for k much smaller
than n1/2(d�1). The basic idea is the same as in Theorem 29, but we also need to use the following
powerful result of Kane [23, Corollary 3].

Definition 51 (Polynomial Threshold functions). A Boolean function f : {�1, 1}n ! {�1, 1} is a
degree-D Polynomial Threshold function if there is a degree-D polynomial p(x) such that f(x) = sgn(p(x))
for all x 2 {�1, 1}n.
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Lemma 52 (Kane [23]). Let f be a degree-D PTF. Then, for any p > 0,

NSp(f) 
p
p(log(1/p))O(D logD)2O(D2

logD).

The main theorem of the section is the following.

Theorem 53. Fix any constant d � 1. Let C be a depth-d TAC0[k] circuit with at most M gates overall.
Then, for any p, q 2 [0, 1] and any D � 1, we have

NSpd�1q(C)  O(k↵(p,D) + ↵(q,D) +M(10pD)D)

where ↵(p,D) :=
p
p(log(1/p))O(D logD)2O(D2

logD) and O(·) hides an absolute constant (independent of
d).

Proof. This is a standard switching argument (see, e.g., [19]) augmented with the ideas of Theorem 29.
We assume throughout that q  1

2

w.l.o.g. since otherwise ↵(q,D) � q � 1

2

and the claim is trivial.
We say that a threshold gate is a true threshold gate if it is not an AND or OR gate.
For any parameters k

1

, d
1

, t
1

, s
1

2 N with d
1

� 2, we define TAC0[k
1

, d
1

, t
1

, s
1

] to be the class of
constant-depth circuits made up of AND,OR and threshold gates such that:

• The overall depth is at most d
1

,

• The total number of gates at depth at most d
1

� 2 in the circuit is at most s
1

,

• All the true threshold gates are at depth at most d
1

� 2 and there are at most k
1

of them, and

• The bottom fan-in of the circuit (i.e. the maximum fan-in of a gate at depth d
1

� 1) is at most t
1

.

Note that the circuit C in the statement of the theorem is in the class TAC0[k, d+ 1, 1,M ], since we
may replace the input literals with (say) AND gates of fan-in 1 at the expense of increasing the depth
by 1 but in the process satisfying all the criteria of the above definition. We prove the following stronger
statement: for any p, q,D as in the statement of the theorem, and any C from the class TAC0[k, d,D,M ]
with d � 2, we have

NSpd�2q(C) =
E

⇢
d

[Var(C|⇢
d

)]  O(k↵(p,D) + ↵(q,D) +M(10pD)D) (31)

where ⇢d ⇠ Rn
p
d

and pd := 2pd�2q 2 [0, 1]. Proving (31) will clearly prove the theorem.
The proof is by induction on d. The base case is d = 2. In this case, since there are no true threshold

gates at depth d�1 by assumption, a true threshold gate can only occur as the output gate of the circuit
C. Since AND and OR gates are also threshold gates, we can assume that the output gate is a threshold
gate. The bottom fan-in being at most D implies that each gate at depth 1 can be represented exactly
as a polynomial of degree at most D and therefore that the function computed by C is a degree-D PTF.
Hence, Lemma 52 trivially implies the result.

Now assume d > 2. Let  
1

, . . . , s denote the AND and OR gates at depth exactly d�2 in the circuit
and let �

1

, . . . ,�m denote the true threshold gates. By assumption m  k and s  M . We sample a
random restriction ⇢ ⇠ Rn

p and consider the restricted circuit C|⇢.
H̊astad’s switching lemma [19] tells us that for each i 2 [s], we have

Pr
⇢
[DT-depth( i|⇢) � D]  (10pD)D, (32)

and hence by a union bound,

Pr
⇢
[9i 2 [s] : DT-depth( i|⇢) � D]  s(10pD)D, (33)

Also, as in the base case, we see that each �j computes a degree-D PTF. Hence, Lemma 52 gives us

E

⇢
[
X

j2[m]

Var(�j |⇢)]  m↵(p,D). (34)

Consider the circuit C 0
⇢ obtained from C|⇢ as follows: if there is an i 2 [s] such that DT-depth( i|⇢) �

D, then C 0
⇢ is defined to be a trivial circuit that always outputs 1; otherwise, C 0

⇢ is the depth-d�1 circuit
obtained from C|⇢ as follows:

22



• We replace each �j |⇢ by a bit bj,⇢ 2 {�1, 1} so that by Fact 9, we have

Pr
x2{�1,1}|⇢�1(⇤)|

[�j(x) 6= bj,⇢]  O(Var(�j)),

• Since each  i|⇢ is a depth-D decision tree, we can write it as a D-DNF or D-CNF or as a disjoint
sum of terms of size at most D each. For each gate � at depth at most d� 3 that takes  i as an
input, we do the following:

– If � is an OR gate, then we take the D-DNF representing  i|⇢ and feed the terms of the DNF
directly into �, eliminating the output OR gate of the D-DNF.

– If � is an AND gate, we do the same as above, except that we use the D-CNF representation
of  i|⇢ and eliminate the output AND gate.

– If � is a threshold gate, then we write  i|⇢ as a disjoint sum of terms of size at most D each
and feed each of the terms directly to �. The gate � now has many inputs in the place of
 i|⇢, and the weight given to each of these inputs is the same as the weight given to  i|⇢.

Note that the above operations do not increase the number of gates at depth at most d� 3 in the
circuit.

Note that C 0
⇢ has depth d� 1 and bottom fan-in at most D. Further, the number of gates at depth

at most d � 3 in C 0
⇢ is at most M � s. Hence, C 0

⇢ is a circuit from the class TAC0[k �m, d � 1, D,M ].
We can thus apply the induction hypothesis and obtain

E

⇢
d�1

[Var(C 0
⇢|⇢d�1)]  O((k �m)↵(p,D) + ↵(q,D) + (M � s)(10pD)D) (35)

To obtain (31), we use

E

⇢
d

[Var(C)] =
E

⇢
d�1

[
E

⇢
[Var(C|⇢)|⇢

d�1 ]]  E

⇢
d�1

[
E

⇢
[Var(C 0

⇢)|⇢d�1 ]] +O

✓
E

⇢
[�(C|⇢, C 0

⇢)]

◆

=
E

⇢
[
E

⇢
d�1

[Var(C 0
⇢)|⇢d�1 ]] +O

✓
E

⇢
[�(C|⇢, C 0

⇢)]

◆
(36)

where the inequality follows from Proposition 30. Inequality (35) allows us to bound the first term on
the right hand size.

It remains to analyze the last term on the right hand side of (36). Define a Boolean random variable
Z = Z(⇢) which is 1 i↵ there is an i 2 [s] such that �i is not a depth-D decision tree. Let � = �(⇢) be
the random variable defined by � := Z +

P
j2[m]

Var(�j |⇢).
It easily follows from the definition of C 0

⇢ that for any choice of ⇢, either Z = 1 — in which case we
can trivially bound �(C 0

⇢, C|⇢) by 1 — or �(C 0
⇢, C|⇢) 

P
j �(�j |⇢, bj,⇢) =

P
j Prx[�j |⇢(x) 6= bj,⇢]. Hence,

for any choice of ⇢, we get

�(C 0
⇢, C|⇢)  Z +

X

j2[m]

Pr
x2{�1,1}|⇢�1(⇤)|

[�j |⇢(x) 6= bj,⇢]  O(�).

Further, by (33) and (34), we have
E⇢[�]  O(m↵(p,D) + s(10pD)D). Putting this together with

(35) and (36)1 gives the claimed bound. This completes the induction.

This yields the following correlation bound as in Corollary 31.

Corollary 54. The following is true for any constant d � 2. Say C is a depth-d TAC0[k] circuit with

at most M gates where k  � ·n1/2(d�1) and M = no(
p

logn/ log logn). Then Corr(C,Parn)  no(1) · �1� 1
d .

In particular, if � = n�⌦(1), then Corr(C,Parn) = n�⌦(1).

1Of course, we need to be judicious in our choice of constants in the O(·). We leave this matter to the interested reader.
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Proof. We choose a D = o(
p
log n/ log log n) so that M  no(D) and p, q as in Corollary 31. We can

then use Theorem 53 to obtain NS
1/n(C)  no(1) · �1� 1

d +M · (10pD)D. Since the latter term is 1

n!(1) ,

we get NS
1/n(C)  no(1)�1�

1
d . By Proposition 8, we have Corr(C,Parn)  O(NS

1/n(C)), which proves
the claim.

Remark 55. The above corollary can be strengthened considerably if a widely believed strengthening
of Lemma 52 — named the Gotsman-Linial conjecture [16] — is known to hold. The Gotsman-Linial
conjecture is a conjecture about the average sensitivity of low-degree PTFs. We do not recall the exact
statement of the conjecture here, and refer the reader to the work of Gopalan and Servedio [15] instead.
As noted by [15, Corollary1 13], the Gotsman-Linial conjecture implies that for any p and any degree D
PTF, we have NSp(f)  O(D

p
p). Plugging in this bound in place of Lemma 45, it is not hard to see

that we can obtain Corr(C,Parn) = o(1) for any circuit C of size 2n
o(1)

from the class TAC0[k] where
k = n1/2(d�1)�⌦(1). This is almost a complete generalization of the result of Beigel [6] who proved such
a result in the setting where all the threshold gates are of polynomial weight. In contrast, the results of
Podolskii [36] and Gopalan and Servedio [15] can prove such correlation bounds only if k < log n.

7.1 Learning algorithms for TAC

0
[k] circuits

Theorem 53 also allows us to obtain an algorithm to learn small TAC0[k] circuits under the uniform
distribution via an observation of Klivans, O’Donnell, and Servedio [24]. We have the following lemma
that can be obtained by putting together Fact 9 and Corollary 15 in [24].

Lemma 56. Let F be a class of Boolean functions defined on {�1, 1}n. Assume that we know that for
some " > 0 and f 2 F , there is a � > 0 such that NS�(f)  "/3. Then, there is an algorithm that learns
F with error " in time nO(1/�).

Using the above lemma and Theorem 53, we get subexponential-time (i.e. 2o(n)-time) learning algo-
rithms for TAC0[k] circuits of small size.

Theorem 57. Let d be any fixed constant. The class of TAC0[k] circuits of depth d and size M where

M = no(
p

logn/ log logn) and k = �n1/2(d�1) for some � > 0 can be learned to within error " > 0 in time
nO(m) where m = max{n1+o(1)�2(d�1)/"2d, n1/4+o(1)/"2}. In particular, if � = n�⌦(1) and " = ⌦(1),
then the running time of the algorithm is 2o(n).

Proof. We can assume that " � 1/n1/2d since otherwise, we can just run a brute force algorithm that
takes time 2O(n). We choose a D = o(

p
log n/ log log n) so that M = no(D). Theorem 53 tells us that

for any p, q � 1

n any C from the class of circuits described in the theorem statement, we have

NSpd�1q(C)  Ak
p
p+B

p
q +O(M(10pD)D)

where A and B are no(1).
We choose p, q so that the first two terms above are each bounded by "/10. This requires p 

"2/O(k2A) and q  "2/O(B). Further, to ensure that the last term is at most "/10, it su�ces to choose
p  n�⌦(1) (in fact, this ensures that the third term is n�!(1) whereas " � n�1/2d by assumption). Thus,
we fix p = min{"2/O(k2A), n�1/4d} and q = "2/O(B) so that all the above conditions are satisfied. This
gives

NS�(C)  "/3

where � = pd�1q. Hence, by Lemma 56, we obtain the statement of the theorem.

Remark 58. Assuming the Gotsman Linial conjecture, the above technique yields subexponential time

constant-error learning algorithms as long as M  2n
o(1)

and � = n�⌦(1). To contrast again with the
work of Gopalan and Servedio [15], the results of [15] — even assuming the Gotsman Linial conjecture —
only yield subexponential time learning algorithms in setting when k < log n. However, the dependence
on the error parameter in [15] is better than the dependence we obtain here (the running time there has
a "3 in place of the "2d that we obtain here).
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A Proof of Proposition 8

Proof. For point 1., we know that NSp(f) = Pr
(x,y)[f(x) 6= f(y)] where x and y are sampled as in

Definition 7. Alternately, we may also think of sampling (x, y) in the following way: choose ⇢ = (I, z) ⇠
Rn

2p and for the locations indexed by I we choose x0, y0 2 {�1, 1}|I| independently and uniformly at
random to define strings x and y respectively. Hence, we have

NSp(f) = Pr
x,y

[f(x) 6= f(y)] =
E

⇢
[ Pr
x0,y0

[f |⇢(x0) 6= f |⇢(y0)]] = E

⇢
[
1

2
Var(f |⇢)].

We now proceed with point 2.. As NSp(f) is a decreasing function of p [32], we may assume that
p = 1

n  1

2

and hence we have NS
1/n(f) = 1

2

E⇢⇠Rn

2/n
[Var(f |⇢)]. Note that for ⇢ = (I, y) chosen as

above, the probability that I 6= ; is ⌦(1). Hence we have

NS0
1/n(f) :=

1

2
E

⇢⇠Rn

2/n

[Var(f |⇢) | I 6= ;] 
NS

1/n(f)

PrI [I 6= ;] = O(NS
1/n(f)).

Further, note that for any m � 1 and any Boolean function g : {�1, 1}m ! {�1, 1}, its distance
from either the constant function 1 or the constant function �1 is at most Var(g)/2. Since Parm has
correlation 0 with any constant function, using Fact 6, we have Corr(Parm, g)  Var(g)/2.

Using Fact 6 again, we get

Corr(Parn, f)  E

⇢⇠Rn

2/n

[Corr(Parn|⇢, f |⇢) | I 6= ;] =
E

⇢⇠Rn

2/n

[Corr(Par|I|, f |⇢) | I 6= ;]


E

⇢⇠Rn

2/n

[
1

2
Var(g) | I 6= ;] = NS0

1/n(f) = O(NS
1/n(f)).
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B Correlation bounds for depth-2 threshold circuits

In this section, we prove near optimal correlation bounds for depth-2 threshold circuits computing Parity.

Theorem 59 (Main). Fix any constant " < 1

2

. Let � = 1

2

� ". Any depth-2 threshold circuit on n

variables with at most n1+" wires has correlation at most n�⌦(�) with the parity function on n variables.

Note that the above theorem is tight, since by Theorem 33, there is a depth-2 circuit with O(
p
n)

gates (and hence O(n3/2) wires) that computes Parity correctly with high probability.
The proof is based on the following two subclaims:

Theorem 60 (Aspnes, Beigel, Furst, and Rudich [3]). Any degree-t polynomial threshold function (PTF)
has correlation at most O(t/

p
m) with the parity function on m variables.

We say that a circuit C is �-approximated by a circuit C 0 if Prx[C(x) 6= C 0(x)]  �.

Claim 61. Let ", � be as in the statement of Theorem 59 and let ↵ denote �/3. Say C denotes a depth-2
threshold circuit of wire complexity n1+" and let f

1

, . . . , ft be the LTFs computed by C at depth-1. Under
a random restriction ⇢ with ⇤-probability p = 1

n1�↵

, with probability at least 1 � n�⌦(�), the circuit C|⇢
is n�⌦(�)-approximated by a circuit C̃⇢ which is obtained from C by replacing each of the fi|⇢s by an
O(n↵/2�⌦(�))-junta gi.

Assuming the above two claims, we can finish the proof of Theorem 59 easily as follows.
Let C be a circuit of wire complexity n1+". We apply a random restriction ⇢ with ⇤-probability

p = 1

n1�↵

as in Claim 61. Call the restriction good if there is a circuit C̃⇢ as in the Claim that n�⌦(�)-

approximates C|⇢ and bad otherwise. The probability that we have a bad restriction is at most n�⌦(�).
Say ⇢ is a good restriction. The circuit C̃⇢ can be represented by an O(n↵/2�⌦(�))-degree PTF

and hence by Theorem 60 has correlation at most n�⌦(�) with parity (on the remaining n↵ variables).
Moreover, then C|⇢ is well-approximated by C̃⇢ and hence has correlation at most n�⌦(�) + n�⌦(�) with
parity.

Upper bounding the correlation by 1 for bad restrictions, we see that the overall correlation is at
most n�⌦(�).

We now prove Claim 61.

Proof of Claim 61. Let f
1

, . . . , ft be the LTFs appearing at depth 1 in the circuit. We will divide the
analysis based on the fan-ins of the fis (i.e. the number of variables they depend on).

We denote by � the quantity 3

4

+ "
2

. It can be checked that we have both

� =
1

2
+ "+

↵

2
+ ⌦(�) and 1� � =

↵

2
+ ⌦(�). (37)

Consider any fi of fan-in at most n� . When hit with a random restriction with ⇤-probability n�(1�↵),
we see that the expected number of variables of fi that survive is at most n��(1�↵) = n↵�(1��) =
n↵/2�⌦(�) by (37) above. By a Cherno↵ bound, the probability that this number exceeds twice its
expectation is exponentially small. Union bounding over all the gates of small fan-in, we see that with
probability 1� exp(�n⌦(1)), all the low fan-in gates depend on at most 2n↵/2�⌦(�) many variables after
the restriction. We call this high probability event E

1

.
Now, we consider the gates of fan-in at least n� . W.l.o.g., let f

1

, . . . , fr be these LTFs. Since the
total number of wires is at most n1+", we have r  n1+"�� = n

1
2�

↵

2 �⌦(�) by (37).
By Theorem 14, we know that for any fi,

E

⇢
[Var(fi|⇢)]  O(

p
p) = O(

1

n(1�↵)/2
)

By linearity of expectation, we have

E :=
E

⇢
[

rX

i=1

Var(fi|⇢)]  O(r · 1

n(1�↵)/2
) = O(n(1�↵)/2�⌦(�) · 1

n(1�↵)/2
) = O(n�⌦(�))
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By Markov’s inequality, we see that the probability that
Pr

i=1

Var(fi|⇢) >
p
E is at most

p
E =

n�⌦(�). We let E
2

denote the event that
Pr

i=1

Var(fi|⇢) 
p
E.

Consider the event E = E
1

^E
2

. A union bound tells us that the probability of E is at least 1�n�⌦(�).
When this event occurs, we construct the circuit C̃⇢ from the statement of the claim as follows.

When the event E occurs, the LTFs of low arity are already n↵/2�⌦(�)-juntas, so there is nothing to
be done for them.

Now, consider the LTFs of high fan-in, which are f
1

, . . . , fr. For each fi|⇢ (i 2 [r]), replace fi by a
bit bi 2 {�1, 1} such that Prx[fi|⇢(x) = bi] � 1

2

. In the circuit C̃⇢, these gates thus become constants,

which are 0-juntas. The circuit C̃⇢ now has the required form. We now analyze the error introduced by
this operation.

We know that Prx[fi|⇢(x) 6= bi]  2Var(fi|⇢) and thus the overall error introduced is at most
2
P

i2[r] Var(fi|⇢)  O(
p
E) = n�⌦(�) (since E

2

is assumed to occur). Thus, the circuit C̃⇢ is an n�⌦(�)-
approximation to C.

C Proof of Proposition 45

Proof of Proposition 45. Let J be the set of variables being set and let y 2 {�1, 1}|J| denote the random
assignment chosen. Let L

0

= 1

"2 · 3 log(1/"). It can be checked that for any i < L0 � L
0

, we have

kw>(i+L0)
k2
2

 "2

9
· kw>ik2  w2

i

9
.

Hence, we can choose indices i
1

= 1, i
2

= 1+L
0

, · · · , ir+2

= 1+(r+1)L
0

 L0 such that |wi
j+1 | 

|w
i

j

|
3

and kwi
j+1k22  "2

9

· kwi
j

k2
2

. Further, we have

X

i 62J

w2

i  kw>L0k2  kw>i
r+2k2  "2

9
· kw>i

r+1k22  "2

81
· w2

i
r

.

We condition on any setting of variables other than yi1 , . . . , yir . This means that the constant term
of the restricted threshold gate ✓0 is given by

✓0 = ✓00 �
X

j2[r]

wi
j

yi
j

for some ✓00 2 R. The probability that the threshold gate is not 1

" -imbalanced is at most

Pr
y
i1 ,...,yi

r

[|✓0|  1

"2
·
sX

i 62J

w2

i ]  Pr
y
i1 ,...,yi

r

[|✓0|  1

9
· |wi

r

|]

= Pr
y
i1 ,...,yi

r

[
X

j

wi
j

yi
j

2 [✓00 � 1

9
· |wi

r

|, ✓00 + 1

9
· |wi

r

|]]

Now, as a result of the exponentially decreasing nature of the |wi
j

|, it follows that for any interval
of length at most |wi

r

|/2, there can be at most one choice of yi1 , . . . , yir such that the
P

j wi
j

yi
j

lies in
that interval. Thus, we have the given bound.
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