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Abstract

In recent years there has been a flurry of activity proving lower bounds for homogeneous
depth-4 arithmetic circuits [GKKS13, FLMS14, KLSS14, KS14c], which has brought us very
close to statements that are known to imply VP 6= VNP. It is a big question to go beyond
homogeneity, and in this paper we make progress towards this by considering depth-4 circuits
of low algebraic rank, which are a natural extension of homogeneous depth-4 arithmetic circuits.

A depth-4 circuit is a representation of an N -variate, degree n polynomial P as

P =

T∑
i=1

Qi1 ·Qi2 · · · ·Qit

where the Qij are given by their monomial expansion. Homogeneity adds the constraint
that for every i ∈ [T ],

∑
j degree(Qij) = n. We study an extension where, for every i ∈ [T ], the

algebraic rank of the set of polynomials {Qi1, Qi2, . . . , Qit} is at most some parameter k. We call
this the class of ΣΠ(k)ΣΠ circuits. Already for k = n, these circuits are a strong generalization
of the class of homogeneous depth-4 circuits, where in particular t ≤ n (and hence k ≤ n).

We study lower bounds and polynomial identity tests for such circuits and prove the following
results.

1. Lower bounds : We give an explicit family of polynomials {Pn} of degree n in N =
nO(1) variables in VNP, such that any ΣΠ(n)ΣΠ circuit computing Pn has size at least
exp (Ω(

√
n logN)). This strengthens and unifies two lines of work: it generalizes the recent

exponential lower bounds for homogeneous depth-4 circuits [KLSS14, KS14c] as well as the
Jacobian based lower bounds of Agrawal et al [ASSS12] which worked for ΣΠ(k)ΣΠ circuits
in the restricted setting where T · k ≤ n.

2. Hitting sets : Let ΣΠ(k)ΣΠ[d] be the class of ΣΠ(k)ΣΠ circuits with bottom fan-in at
most d. We show that if d and k are at most poly(logN), then there is an explicit hitting
set for ΣΠ(k)ΣΠ[d] circuits of size quasipolynomial in N and the size of the circuit. This
strengthens a result of Forbes [For15] which showed such quasipolynomial sized hitting
sets in the setting where d and t are at most poly(logN).

A key technical ingredient of the proofs is a result which states that over any field of char-
acteristic zero (or sufficiently large characteristic), upto a translation, every polynomial in a set
of algebraically dependent polynomials can be written as a function of the polynomials in the
transcendence basis. We believe this may be of independent interest. We combine this with
shifted partial derivative based methods to obtain our final results.
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1 Introduction

Arithmetic circuits are natural algebraic analogs of boolean circuits, with the logical opera-
tions being replaced by sum and product operations over the underlying field. Valiant [Val79]
developed the complexity theory for algebraic computation via arithmetic circuits and defined
the complexity classes VP and VNP as the algebraic analogs of complexity classes P and NP
respectively. We refer the interested reader to the survey by Shpilka and Yehudayoff [SY10] for
more on arithmetic circuits.

Two of the most fundamental questions in the study of algebraic computation are the ques-
tions of polynomial identity testing (PIT)1 and the question of proving lower bounds for explicit
polynomials. It was shown by structural results known as depth reductions [AV08, Koi12, Tav13]
that strong enough lower bounds or PIT results for just (homogeneous) depth-4 circuits, would
lead to superpolynomial lower bounds and derandomized PIT for general circuits too. Conse-
quently, depth-4 arithmetic circuits have been the focus of much investigation in the last few
years.

Just in the last few years we have seen rapid progress in proving lower bounds for homoge-
neous depth-4 arithmetic circuits, starting with the work of Gupta et al. [GKKS13] who proved
exponential lower bounds for homogeneous depth-4 circuits with bounded bottom fan-in and
terminating with the results in [KLSS14, KS14c] which showed exponential lower bounds for
general homogeneous depth-4 circuits. Any asymptotic improvement in the exponent of these
lower bounds would lead to superpolynomial lower bounds for general arithmetic circuits2. Most
of this progress was based on an understanding of the complexity measure of the family of shifted
partial derivatives of a polynomial (this measure was introduced in [Kay12]), and other closely
related measures.

Although we now know how to use these measure to prove such strong lower bounds for
homogeneous depth 4 circuits, the best known lower bounds for non-homogeneous depth three
circuits over fields of characteristic zero are just quadratic [SW01, Shp01], and those for non-
homogeneous depth-4 circuits over any field except F2 are just about superlinear [Raz10]. It
remains an extremely interesting question to get improved lower bounds for these circuit classes.

In sharp contrast to this state of knowledge on lower bounds, the problem of polynomial
identity testing is very poorly understood even for depth three circuits. Till a few years ago,
almost all the PIT algorithms known were for extremely restricted classes of circuits and were
based on diverse proof techniques (for instance, [DS06, KS07, KS08, KS09, KMSV10, SS10,
SS12, SV11, ASSS12, FS13a, FS13b, dOSV14] ). The work of [ASSS12] gave a unified proof of
several of them.

It is a big question to go beyond homogeneity (especially for proving lower bounds) and in this
paper we make progress towards this question by considering depth-4 circuits of low algebraic
rank, which are a natural extension of homogenous depth-4 arithmetic circuits.

A depth-4 circuit is a respresentation of an N -variate, degree n polynomial P as

P =

T∑
i=1

Qi1 ·Qi2 · · · ·Qit

where the Qij are given by their monomial expansion. Homogeneity adds the constraint
that for every i ∈ [T ],

∑
j degree(Qij) = n. We study an extension where, for every i ∈ [T ], the

algebraic rank of the set of polynomials {Qi1, Qi2, . . . , Qit} is at most some parameter k. We call

1Given an arithmetic circuit, the problem is to decide if it computes the identically zero polynomial. In the
whitebox set up, we are allowed to look inside the wirings of the circuit, while in the blackbox setting, we can only
query the circuit at some points.

2We refer the interested reader to the surveys of recent lower bounds results by Saptharishi [Sap14b, Sap14a]
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this the class of ΣΠ(k)ΣΠ circuits. Already for k = n, these circuits are a strong generalization
of the class of homogeneous depth-4 circuits, where in particular t ≤ n (and hence k ≤ n).

We prove exponential lower bounds for ΣΠ(k)ΣΠ circuits for k ≤ n and give quasipolynomial
time deterministic polynomial identity tests for ΣΠ(k)ΣΠ circuits when k and the bottom fan-in
are bounded by poly(logN). All our results actually hold for a more general class of circuits,
where the product gates at the second level can be replaced by an arbitrary circuits whose inputs
are polynomials of algebraic rank at most k. In particular, our results hold for representations
of a polyonomial P as

P =

T∑
i=1

Ci (Qi1, Qi2, . . . , Qit)

where, for every i ∈ [T ], Ci is an arbitrary polynomial function of t inputs, and the algebraic
rank of the set of polynomials {Qi1, Qi2, . . . , Qit} is at most some parameter k.

1.1 Some background and motivation

Before we more formally define the model and state our results, we give some background and
motivation for studying this class of circuits.

Strengthening of the model of homogenous depth-4 circuits : As already
mentioned, we know very strong exponential lower bounds for homogenous depth-4 arithmetic
circuits. In contrast, for general (non-homogenous) depth-4 circuits, we know only barely su-
perlinear lower bounds, and it is a challenge to obtain improved bounds. ΣΠ(k)ΣΠ circuits with
k as large as n (the degree of the polynomial being computed), which is the class we study in
this paper, is already a significant strengthening of the model of homogenous depth-4 circuits
(since the intermediate degrees could be exponentially large). We provide exponential lower
bounds for this model. Note that when k = N , ΣΠ(k)ΣΠ circuits would capture general depth-4
arithmetic circuits.

Low algebraic rank and lower bounds : In a recent work, Agrawal et al [ASSS12]
studied the notion of circuits of low algebraic rank and by using the Jacobian to capture the
notion of algebraic independence, they were able to show exponential lower bounds for a certain
class of arithmetic circuits3. They showed that over fields of characteristic zero, for any set of
polynomials {Q1, Q2, . . . , Qt} of sparsity at most s and algebraic rank k, any arithmetic circuit
of the form C(Q1, Q2, . . . , Qt) which computes the determinant polynomial for an n×n symbolic
matrix must s ≥ exp (n/k). In particular, if k = Ω(n), then the lower bound becomes trivial.
The lower bounds in this paper strengthen this work in two ways.

(1) Our lower bounds hold for a much richer class of circuits. In the model considered
by [ASSS12], one imposes a global upper bound k on the rank of all the Qis feeding into some
polynomial C. In our model, we can take exponentially many different sets of Qis each with
bounded rank, and apply some polynomial function to each of them and then take a sum. (2)
Our lower bounds are stronger - we obtain exponential lower bounds even when k is as large as
the degree of the polynomial being computed.

Algebraic rank and going beyond homogeneity : Even though we know ex-
ponential lower bounds for homogeneous4 depth-4 circuits, the best known lower bounds for
non-homogeneous depth-4 circuits are barely superlinear [Raz10].

3Even more significantly they also give efficient PIT algorithms for the same class of circuits
4These results, infact hold for depth-4 circuits with not-too-large formal degree.
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In [GK98, GR00, SW01], Grigoriev-Karpinski, Grigoriev-Razborov and Shpilka-Wigderson
outlined a program based on “rank” to prove lower bounds for arithmetic circuits. They used
the notion of “linear rank” and used it to prove lower bounds for depth-3 arithmetic circuits in
the following way: Let C =

∑T
i=1

∏t
j=1 Lij be a depth three (possibly nonhomogeneous) circuit

computing a polynomial P of degree n. Now, partition the inputs to the top sum gate to two
halves, C1 and C2 based on the rank of the inputs feeding into it in the following way. For
each i ∈ [T ], if the linear rank of the set of polynomials {Lij : j ∈ [t]} is at most k (for some
threshold k), then include the gate i into the sum C1, else include it into C2. Therefore,

C = C1 + C2.

Their program had two steps. (1) Show that the subcircuit C1 is weak with respect to some
complexity measure, and thus show a lower bound for C1 (and hence C) when C2 is trivial.
(2) Also since C2 is“high rank”, show that there are many inputs for which C2 is identically
zero. Then try to look at restrictions over which C2 is identically zero, and show that the lower
bounds for C1 continue to hold.

The following is the natural generalization of this approach to proving lower bounds for
depth-4 circuits. Let C =

∑T
i=1

∏t
j=1Qij be a depth-4 circuit computing a polynomial P of

degree n. Note that in general, the formal degree of C could be much larger than n. Now, we
partition the inputs to the top sum gate to two halves, C1 and C2 based on the algebraic rank
of the inputs feeding into it in the following way. For each i ∈ [T ], if the algebraic rank of the
set of polynomials {Qij : j ∈ [t]} is at most k (for some threshold k), then we include the gate
i into the sum C1 else we include it into C2. Therefore,

C = C1 + C2.

To implement the G-K, G-R and S-W program, as a first step one would show that the subcircuit
C1 is weak with respect to some complexity measure, and thus show a lower bound for C1 (and
hence C) when C2 is trivial. The second step would be to try to look at restrictions over which
C2 is identically zero, and show that the lower bounds for C1 continue to hold.

For the case of depth-4 circuits, even the first step of showing lower bounds when C2 is
trivial was not known prior to this work (even for k = 2). Our results in this paper are an
implementation of this first step, as we show exponential lower bounds when the algebraic
rank of inputs into each of the product gates is at most n (the degree of the polynomial being
computed).

Connections to divisibility testing : Recently, Forbes [For15] showed that given two
sparse multivariate polynomials P and Q, the question of deciding if P divides Q can be reduced
to the question of polynomial identity testing for ΣΠ(2)ΣΠ circuits. This question was one of the
original motivations for this paper. Although we are unable to answer this question in general,
we make some progress towards it by giving a quasipolynomial identity tests for ΣΠ(k)ΣΠ
circuits when the various Qij feeding into the circuit have degree bounded by poly(logN) (and
we are also able to handle k as large as poly(logN).)

Low algebraic rank and PIT : Two very interesting PIT results which are also very
relevant to the results in this paper are those of Beecken et al [BMS11] and those of Agrawal
et al [ASSS12]. The key idea explored in both these papers is that of algebraic independence.
Together, they imply efficient deterministic PIT for polynomials which can be expressed in the
form C(Q1, Q2, . . . , Qt), where C is a circuit of polynomial degree and Q′is are either sparse
polynomials or product of linear forms, such that the algebraic rank of {Q1, Q2, . . . , Qt}5 is

5See Section 2 for definitions.
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bounded. This approach was extremely powerful as Agrawal et al [ASSS12] show that they can
use this approach to recover many of the known PIT results, which otherwise had very different
proofs techniques. The PIT results of this paper hold for a variation of the model just described
and we describe it in more detail in Section 1.3.2

Polynomials with low algebraic rank : In addition to potential applications to
arithmetic circuit complexity, it seems an interesting mathematical question to understand the
structure of a set of algebraically dependent polynomials. In general, our understanding of
algebraic dependence is not as clear as our understanding of linear dependence. For instance,
we know that if a set of polynomials is linearly dependent, then every polynomial in the set can
be written as a linear combination of the polynomials in the basis. However, for higher degree
dependencies (linear dependence is dependency of degree 1), we do not know any such clean
statement. As a significant core of our proofs, we prove a statement of this flavor in Lemma 1.9.

We now formally define the model of computation studied in this paper, and then state and
discuss our results.

1.2 Model of computation

We start with the definition of algebraic dependence. See Section 2 for more details.

Definition 1.1 (Algebraic independence and algebraic rank). Let F be any field. A set of
polynomials Q = {Q1, Q2, . . . , Qt} ⊆ F[X1, X2, . . . , XN ] is said to be algebraically independent
over F if there is no nonzero polynomial R ∈ F[Y1, Y2, . . . , Yt] such that R(Q1, Q2, . . . , Qt) is
identically zero.

A maximal subset of Q which is algebraically independent is said to be a transcendence basis
of Q and the size of such a set is said to be the algebraic rank of Q.

We are now ready to define the model of computation.

Definition 1.2. Let F be any field. A ΣΠ(k)ΣΠ circuit C in N variables over F is a represen-
tation of an N variate polynomial as

C =

T∑
i=1

Qi1 ·Qi2 · · · · , Qit

such that for each i ∈ [T ], the algebraic rank of the set of polynomials {Qij : j ∈ [t]} is at most
k. Additionally, if for every i ∈ [T ] and j ∈ [t], the degree of Qij is at most d, we say that C is
a ΣΠ(k)ΣΠ[d] circuit.

We will state all our results for ΣΠ(k)ΣΠ and ΣΠ(k)ΣΠ[d] circuits. However, the results in
this paper hold for a more general class of circuits where the product gates at the second level
can be replaced by a arbitrary polynomials. This larger class of circuits will be crucially used
in our proofs and we define it below. Formally,

Definition 1.3. Let F be any field. A ΣΓ(k)ΣΠ circuit C in N variables over F is a represen-
tation of an N variate polynmial as

C =

T∑
i=1

Γi(Qi1, Qi2, . . . , Qit)

such that Γi is an arbitrary polynomial in t variables, and for each i ∈ [T ], the algebraic rank of
the set of polynomials {Qij : j ∈ [t]} is at most k. Additionally, if for every i ∈ [T ] and j ∈ [t],
the degree of Qij is at most d, we say that C is a ΣΓ(k)ΣΠ[d] circuit.

5



The size of a ΣΠ(k)ΣΠ or a ΣΓ(k)ΣΠ circuit C is defined as the minimum of T and the
number of monomials in the set of polynomials {Qij : i ∈ [T ], j ∈ [t]}.

A ΣΠ(k)ΣΠ circuit C for which the polynomials {Qij : i ∈ [T ], j ∈ [t]} are homogeneous
polynomials such that for every i ∈ [T ],∑

j∈[t]

Degree(Qij) = Degree(P )

(where P is the polynomial being computed) and k = Degree(P ) is precisely the class of homo-
geneous depth-4 circuits. If we drop the condition of homogeneity, then in general the value of t
could be much larger than Degree(P ) as well as the degrees of the Qij could also be arbitrarily
large. Thus the class of ΣΠ(k)ΣΠ circuits with k equalling the degree of the polynomial being
computed is potentially a much larger class than that of homogenous depth-4 circuits.

Also note that in the definition of ΣΠ(k)ΣΠ circuits, the bound on the algebraic rank is local
for each i ∈ [T ], and in general, the algebraic rank of the entire set {Qij : i ∈ [T ], j ∈ [t]} can
be as large as N .

1.3 Our results

We now state our results and disucss how they relate to other known results.

1.3.1 Lower bounds

As our first result, we show exponential lower bounds on the size of ΣΠ(k)ΣΠ circuits computing
an explicit polynomial when the algebraic rank (k) is at most the degree (n) of the polynomial
being computed.

Theorem 1.4. Let F be any field of characteristic zero6. There exists a family {Pn} of
polynomials in VNP, such that Pn is a polynomial of degree n in N = nO(1) variables with
0, 1 coefficients, and for any ΣΠ(k)ΣΠ circuit C, if k ≤ n and if C computes Pn over F, then

Size(C) ≥ NΩ(
√
n)

Remark 1.5. From our proofs it follows that our lower bounds hold for the more general class
of ΣΓ(k)ΣΠ circuits, but for the sake of simplicity, we state our results in terms of ΣΠ(k)ΣΠ
circuits. We believe it is likely that the lower bounds also hold for a polynomial in VP and it
would be interesting to know if this is indeed true.

Remark 1.6. Even though we state Theorem 1.4 for k ≤ n, the proof goes through as long as
k is any polynomial in n and N is chosen to be an appropriately large polynomial in n.

Comparison to known results : As we alluded to in the introduction, ΣΠ(k)ΣΠ circuits
for k ≥ n subsume the class of homogeneous depth-4 circuits. Therefore, Theorem 1.4 subsumes
the lower bounds of [KLSS14, KS14c] for homogeneous depth-4 circuits. Moreover, it also
subsumes and generalizes the lower bounds of Agrawal et al [ASSS12] since the [ASSS12] lower
bounds hold only if the algebraic rank of the entire set of polynomials {Qij : i ∈ [T ], j ∈ [t]} is
bounded, while for Theorem 1.4, we only need upper bounds on the algebraic rank separately
for every i ∈ [T ].

6Sufficiently large characteristic suffices.
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1.3.2 Polynomial identity tests

We show that there is a quasipolynomial size hitting set for all polynomials P ∈ ΣΠ(k)ΣΠ[d] for
bounded d and k. More formally, we prove the following theorem.

Theorem 1.7. Let F be any field of characteristic zero7. Then, for every N , there exists a set
H ⊆ FN such that

|H| ≤ exp(O(logO(1)N))

and for every nonzero N -variate polynomial P over F which is computable by a ΣΠ(k)ΣΠ[d]

circuit with d, k ≤ logN and size poly(N), there exists an h ∈ H such that P (h) 6= 0. Moreover,
the set H can be explicitly constructed in time

exp(O(logO(1)N)).

We now mention some remarks about Theorem 1.7.

Remark 1.8. It follows from our proof that the hitting set works for the more general class of
ΣΓ(k)ΣΠ[d] circuits with d, k ≤ logN , size poly(N) and formal degree at most poly(N).

Comparison to known results : The two known results closest to our PIT result are
the results of Forbes [For15] and the results of Agrawal et al [ASSS12]. Forbes [For15] studies
PIT for the case where the number of distinct inputs to the second level product gates in a
depth-4 circuit with bounded bottom fan-in is also bounded (which naturally also bounds the
algebraic rank of the inputs), and shows quasipolynomial sized hitting sets for this case. On the
other hand, we handle the case where there is no restriction on the number of distinct inputs
feeding into the second level product gates, but we need to bound the bottom fan-in as well as
the algebraic rank. In this sense, the results in this paper are a generalization of the results
in [For15].

Agrawal et al [ASSS12] give a construction of polynomial sized hitting sets in the case when
the total algebraic rank of the set {Qij : i ∈ [T ], j ∈ [t]} is bounded, but they can work
with unbounded d. On the other hand, the size of our hitting set depends exponentially on
d, but requires only local algebraic dependencies for every i ∈ [T ]. So, these two results are
not comparable, although there are similarities in the sense that both of them aim to use the
algebraic dependencies in the circuit. In general, summation is a tricky operation with respect to
designing PIT algorithms (as opposed to multiplication), so it is not clear if the ideas in [ASSS12]
can be somehow adapted to prove Theorem 1.7.

1.3.3 From algebraic dependence to functional dependence

Our lower bounds and PIT results crucially use the following lemma, which (informally) shows
that over fields of characteristic zero, upto a translation, every polynomial in a set of algebraically
dependent polynomials can be written as a function of the polynomials in transcendence basis8.
We now state the lemma precisely.

Lemma 1.9 (Algebraic dependence to functional dependence). Let F be any field of char-
acteristic zero or sufficiently large characteristic. Let Q = {Q1, Q2, . . . , Qk, Qk+1} be a set of
polynomials in N variables such that the for every i ∈ [t], the degree of Qi is equal to di and the
algebraic rank of Q equals k. Let B = {Q1, Q2, . . . , Qk} be a maximal algebraically independent

7Sufficiently large characteristic suffices.
8A transcendence basis of a set of polynomials is a maximal subset of the polynomials with the property that its

elements are algebraically independent. For more on this see Section 2.
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subset of Q. Then, there exists an a = (a1, a2, . . . , aN ) in FN and a polynomial Fk+1 in k
variables such that

Qk+1(X + a) = Hom≤dk+1
[
Fk+1(Q1(X + a), Q2(X + a), . . . , Qk(X + a))

]
Even though the lemma seems a very basic statement about the structure of algebraically

dependent polynomials, to the best of our knowledge this was not known before. The proof
builds upon a result on the structure of roots of multivariate polynomials by Dvir et al [DSY09].
Observe that for linear dependence, the statement analogous to that of Lemma 1.9 is trivially
true. We believe that this lemma might be of independent interest (in addition to its applications
in this paper).

1.4 Proof overview

Even though the results in this paper seem related to the results in [ASSS12] (both exploiting
some notion of low algebraic rank), the proof strategy and the way algebraic rank is used are
quite different. We now briefly outline our proof strategy.

We first discuss the overview of proof for our lower bound.
Let Pn be the degree n polynomial we want to compute, and let C be a ΣΠ(k)ΣΠ circuit

computing it, with k = n. Then C can be represented as

C =

T∑
i=1

t∏
j=1

Qij

From definitions, we know that for every i ∈ [T ], the algebraic rank of the set of polynomials
{Qi1, Qi2, . . . , Qit} is at most k(= n). We want to show a lower bound on the size of C.

Instead of proving our result directly for ΣΠ(k)ΣΠ circuits, it will be very useful for us to go
to the significantly strengthened class of ΣΓ(k)ΣΠ circuits and prove our result for that class.
Thus we think of our circuit C as being expressed as

C =

T∑
i=1

Ci(Qi1, Qi2, . . . , Qit)

where the Ci can be arbitrary polynomial functions of the inputs feeding into them. Note that
we define the size of a ΣΓ(k)ΣΠ circuit to be the maximum of the top fan-in T , and the maximum
of the number of monomials in any of the polynomials Qij feeding into the circuit. Thus we
completely disregard the complexities of the various polynomial function gates at the second
level. If we are able to prove a lower bound for this notion of size, then if the original circuit is
actually a ΣΠ(k)ΣΠ circuit then it will also be as good a lower bound for the usual notion of
size.

Our lower bound has two key steps. In the first step we prove the result in the special case
where t ≤ n2. In the second step we show how to “almost” reduce to the case of t ≤ n2.

Step (1) : t ≤ n2 : In the representation of C as a ΣΓ(k)ΣΠ circuit, the value of t is at
most n2. Lower bounds for this case turn out to be similar to lower bounds for homogeneous
depth-4 circuits. In this case we borrow ideas from prior works [GKKS13, KLSS14, KS14c]
and show that the dimension of projected shifted partial derivatives of C is not too large. Most
importantly, we can use the chain rule for partial derivatives to obtain good bounds for this
complexity measure, independent of the complexity of the various Ci.

Recall however that in our final result, t can be actually much larger than n2. Indeed the
circuit C can be very far from being homogeneous, and for general depth-4 circuits, we do not
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know good upper bounds on the complexity of shifted partial derivatives or projected shifted
partial derivatives. Also, in general, it is not clear if these measures are really small for general
depth-4 circuits9. It is here that the low algebraic rank of {Qi1, Qi2, . . . , Qit} proves to be useful,
and that brings us to the crux of our argument.

Step (2) : Reducing to the case where t ≤ n2 : A key component of our proof,
which is formalized in Lemma 3.5 shows that over any field of characteristic zero (or sufficiently
large characteristic), upto a translation, every polynomial in a set of algebraically dependent
polynomials can be written as a function of the homogeneous components of the polynomials in
the transcendence basis.

More formally, there exists an a ∈ FN such that C(X + a) can be expressed as

C(X + a) =

T∑
i=1

C ′i(Hom[Qi1(X + a)],Hom[Qi2(X + a)], . . . ,Hom[Qik(X + a)]) (1)

where for a degree d polynomial F , Hom[F ] denotes the d+ 1-tuple of homogeneous compo-
nents of F .

The crucial gain in the above transformation is that the arity of each of the polynomials
C ′i is (d + 1) × k and not t (where d is an upper bound on the degrees of the Qij). Now by
assumption k ≤ n, and moreover WLOG we can assume d ≤ n since homogeneous components
of Qij of degree larger than n can be dropped since they do not contribute to the computation
of a degree n polynomial. Thus we have essentially reduced to the case where t ≤ n2.

One loss by this transformation is that the polynomials {C ′i} might be much more complex
and with much higher degrees than the original polynomials {Ci}. However this will not affect
the computation of our complexity measure. Another loss is that we have to deal with the
translated polynomial C(X + a). This introduces some subtleties into our computation as it
could be that Qij(X) is a sparse polynomial but Qij(X+a) is far from being sparse. Neither of
these issues is very difficult to deal with, and we are able to get strong bounds for the projected
shifted partial derivative based measure for such circuits. The proof of Lemma 3.5 essentially
follows from Lemma 1.9, and seems critical for the proof.

The proof of Lemma 1.9 crucially uses a result of Dvir, Shpilka and Yehudayoff [DSY09]
which shows that upto some minor technical conditions (which are not very hard to satisfy),
factors of a polynomial f ∈ F[X1, X2, . . . , XN , Y ] of the form Y − p(X1, X2, . . . , XN ) where
p ∈ F[X1, X2, . . . , XN ] can be expressed as polynomials in the coefficients when viewing f as an
element of F[X1, X2, . . . , XN ][Y ]. This is relevant since a set t of polynomials are algebraically
dependent implies that there is a non-zero t-variate polynomial which vanishes when composed
with this tuple. We use this vanishing to prove the lemma.

The PIT results follows a similar initial setup and use of Lemma 1.9. We then use a result
of [For15] to show that the polynomial computed by C has a monomial of small support, which
is then detected using the standard idea of using Shpilka-Volkovich generators [SV09b].

1.5 Organization of the paper

The rest of the paper is organized as follows: In Section 2, we state some preliminary definitions
and results that are used elsewhere in the paper. In Section 3, we describe our use of low
algebraic rank and prove Lemma 3.5. We prove Theorem 1.4 in Section 4 and Theorem 1.7 in
Section 5.

9Indeed, as [KS14b] shows, even homogeneous depth-4 circuits can have very large shifted partial derivative
complexity.
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2 Preliminaries

In this section we set up some notations and definitions for the rest of the paper.

Notations:

1. For an integer i, we denote the set {1, 2, . . . , i} by [i].

2. By X, we mean the set of variables {X1, X2, . . . , XN}.
3. For a polynomial P and a positive integer i, we represent by Homi[P ], the homogeneous

component of P of degree equal to i. By Hom≤i[P ] and Hom≥i[P ], we represent the com-
ponent of P of degree at most i and at least i respectively. We define Hom[P ] as the ordered

tuple of homogeneous components of P , i.e Hom[P ] =
(
Homd[P ],Homd−1[P ], . . . ,Hom0[P ]

)
,

where d is the degree of P . If for some i, there are no non-zero monomials of degree equal
to i in P , then Homi[P ] = 0.

4. The support of a monomial α is the set of variables which appear with a non-zero exponent
in α. We denote the size of the support of α by Supp(α).

5. We say that a function f(N) is quasipolynomial in N if there exists a positive absolute
constant c, such that for all N sufficiently large, f(N) < exp(logcN).

6. In this paper, unless otherwise stated, F is a field of characteristic zero.

7. Given a polynomial P and a valid monomial ordering Π, the leading monomial of P is
the monomial with a nonzero coefficient in P which is maximal according to Π. Similarly,
the trailing monomial in P is the monomial which is minimal among all monomials in P
according to Π.

Algebraic independence : We now formally define the notions of algebraic independence,
algebraic rank and transcendence basis which would be widely used in this paper.

Definition 2.1 (Algebraic independence and algebraic rank). Let F be any field. A set of
polynomials Q = {Q1, Q2, . . . , Qt} ⊆ F[X1, X2, . . . , XN ] is said to be algebraically independent
over F if there is no nonzero polynomial R ∈ F[Y1, Y2, . . . , Yt] such that R(Q1, Q2, . . . , Qt) is
identically zero.

A maximal subset of Q which is algebraically independent is said to be a transcendence basis
of Q and the size of such a set is said to be the algebraic rank of Q.

Apriori, it is not even clear that algebraic rank of a set of polynomials is well defined. But
it is known that algebraic independence satisfies the matroid property [Oxl06], and therefore is
well defined.

For a tuple Q = (Q1, Q2, . . . , Qt) of algebraically dependent polynomials, we know that
there is a nonzero t variate polynomial R (called a Q-annihilating polynomial) such that
R(Q1, Q2, . . . , Qt) is identically zero. A natural question is to ask, what kind of bounds on the
degree of R can we show, in terms of the degrees of Qi. The following lemma of Kayal [Kay09]
shows an upper bound on the degree of annihilating polynomials of a set of degree d polynomials.
The bound is useful to us in our proof.

Lemma 2.2 (Kayal [Kay09]). Let F be a field and let Q = (Q1, Q2, . . . , Qt) be a set of poly-
nomials of degree d in N variables over the field F having algebraic rank k. Then there exists a
Q-annihilating polynomial of degree at most (k + 1) · dk.
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Complexity of homogeneous components : We will use the following simple lemma
(whose proof is fairly standard using interpolation), and can be found in [KS15b] for instance.
We sketch the proof here for completeness.

Lemma 2.3. Let F be a field of characteristic zero, and let P ∈ F[X1, X2, . . . , XN ] be a
polynomial of degree at most d, in N variables, such that P can be represented as

P = C(Q1, Q2, . . . , Qt)

where for every j ∈ [t], Qj is a polynomial in N variables, and C is an arbitrary polynomial in
t variables. Then, there exist polynomials {Q′ij : i ∈ [d + 1], j ∈ [t]}, and for every ` such that
0 ≤ ` ≤ d, there exist polynomials C ′`,1, C

′
`,2, . . . , C

′
`,d+1 satisfying

Hom`[P ] =

(d+1)∑
i=1

C ′`,i(Q
′
i1, Q

′
i2, . . . , Q

′
it)

Moreover,

• if each of the polynomials in the set {Qj : j ∈ [t]} is of degree at most ∆, then every
polynomial in the set {Q′ij : i ∈ [d+ 1], j ∈ [t]} is also of degree at most ∆.

• if the algebraic rank of the set of polynomials {Qj : j ∈ [t]} is at most k, then for every
i ∈ [d+ 1], the algebraic rank of polynomials in the set {Q′ij : j ∈ [t]} is also at most k.

Proof. The key idea is to start from P ∈ F[X] and obtain a new polynomial P ′ ∈ F[X][Z] such
that for every ` such that 0 ≤ ` ≤ d, the coefficient of Z` in P ′ equals Hom`[P ]. Here, Z is a
new variable. Such a P ′ is obtained by replacing every occurence of the variable Xj (for each
j ∈ [N ]) in P by Z ·Xj . It is not hard to verify that such a P ′ has the stated property. We now
view P ′ as a univariate polynomial in Z with the coefficients coming from F(X). Notice that
the degree of P ′ in Z is at most d. So, to recover the coefficients of a univariate polynomial of
degree at most d, we can evaluate P ′ at d+ 1 distinct values of Z over F(X) and take an F(X)
linear combination. In fact, if the field F is large enough, we can assume that all these distinct
values of Z lie in the base field F and we only take an F linear combination. The properties in
the ‘moreover’ part of the lemma immediately follow from this construction, and we skip the
details.

Roots of polynomials : We will crucially use the following result of Dvir, Shpilka, Yehu-
dayoff [DSY09].

Lemma 2.4 (Dvir, Shpilka, Yehudayoff [DSY09]). For a field F, let P ∈ F[X1, X2, . . . , XN , Y ]
be a non-zero polynomial of degree at most k in Y . Let f ∈ F[X1, X2, . . . , XN ] be a polynomial
such that P (X1, X2, . . . , XN , f) = 0 and ∂P

∂Y (0, 0, . . . , 0, f(0, 0, . . . , 0)) 6= 0. Let

P =

k∑
i=0

Ci(X1, X2, . . . , XN ) · Y i

Then, for every t ≥ 0, there exists a polynomial Rt ∈ F[Z1, Z2, . . . , Zk+1] of degree at most t
such that

Hom≤t[f(X1, X2, . . . , XN )] = Hom≤t[Rt(C0, C1, . . . , Ck)]

We also use the following standard result about zeroes of polynomials.
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Lemma 2.5 (Schwartz, Zippel, DeMillo, Lipton). Let P be a non-zero polynomial of degree d
in N variables over a field F. Let S be an arbitrary subset of F, and let x1, x2, . . . , xN be random
elements from S chosen independently and uniformly at random. Then

Pr[P (x1, x2, . . . , xN ) = 0] ≤ d

|S|
.

The following corollary easily follows from the lemma above.

Corollary 2.6. Let P1, P2, . . . , Pt be non-zero polynomials of degree d in N variables over a
field F. Let S be an arbitrary subset of F of size at least 2td, and let x1, x2, . . . , xN be random
elements from S chosen independently and uniformly at random. Then

Pr[∀i ∈ [t], Pi(x1, x2, . . . , xN ) 6= 0] ≥ 1

2
.

Approximations : We will use the following lemma of Saptharishi [Sap14b] for numerical
approximations in our calculations.

Lemma 2.7 (Saptharishi [Sap14b]). Let n and ` be parameters such that ` = n
2 (1−ε) for some

ε = o(1). For any a, b such that a, b = O(
√
n),(

n− a
`− b

)
=

(
n

`

)
· 2−a · (1 + ε)a−2b · exp(O(b · ε2))

3 Utilizing low algebraic rank

Let Q = {Q1, Q2, . . . , Qt} be a set of polynomials in N variables and degree at most d such
that the algebraic rank of Q equals k. Without loss of generality, let us assume that B =
{Q1, Q2, . . . , Qk} are an algebraically independent subset of C of maximal size. We now show
that, in some sense, this implies that all the polynomials in Q can be represented as functions
of polynomials in the set B. We make this notion formal in the following lemma.

Lemma 3.1 (Algebraic dependence to functional dependence). Let F be any field of character-
istic zero or sufficiently large. Let Q = {Q1, Q2, . . . , Qt} be a set of polynomials in N variables
such that the for every i ∈ [t], the degree of Qi is equal to di and the algebraic rank of Q equals
k. Let B = {Q1, Q2, . . . , Qk} be a maximal algebraically independent subset of Q. Then, there
exists an a = (a1, a2, . . . , aN ) in FN and polynomials Fk+1, Fk+2, . . . , Ft in k variables such that
∀i ∈ {k + 1, k + 2, . . . , t}

Qi(X + a) = Hom≤di
[
Fi(Q1(X + a), Q2(X + a), . . . , Qk(X + a))

]
Proof. Let d be defined as maxi{di}. Let us consider any i such that i ∈ {k + 1, k + 2, . . . , t}.
From the statement of the lemma, it follows that the set of polynomials in the set B ∪ {Qi} are
algebraically dependent. Therefore, there exists a nonzero polynomial Ai in k+1 variables such
that Ai(Q1, Q2, . . . , Qk, Qi) ≡ 0. Without loss of generality, we choose such a polynomial with
the smallest total degree. From the upper bound on the degree of the annihilating polynomial
from Lemma 2.2, we can assume that the degree of Ai is at most (k + 1)dk. Consider the
polynomial A′i(X,Y ) defined by

A′i(X,Y ) = Ai(Q1(X), Q2(X), . . . , Qk(X), Y )

We have the following observation about properties of A′i.

Observation 3.2. A′i satisfies the following properties:
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• A′i is not identically zero

• The Y degree of A′i is at least one.

• Qi(X) is a root of the polynomial A′i, when viewing it as a polynomial in the Y variable
with coefficients coming from F(X).

Proof. We prove the items in sequence:

• If A′i is identically zero, then it follows that Q1, Q2, . . . , Qk are algebraically dependent,
which is a contradiction.

• IfA′i(X,Y ) does not depend on the variable Y , then by definition, it follows thatAi(Q1, Q2, . . . , Qk, Y )
does not depend on Y . Hence, Ai(Q1, Q2, . . . , Qk, Qi) does not depend on Qi but is iden-
tically zero. This contradicts the algebraic independence of Q1, Q2, . . . , Qk.

• This item follows from the fact that the polynomial obtained by substituting Y by Qi in
A′i equals Ai(Q1, Q2, . . . , Qk, Qi), which is identically zero.

Our aim now is to invoke Lemma 2.4 for the polynomial A′i, but first, we need to verify that
the conditions in the hypothesis of Lemma 2.4 are satisfied. Let the polynomial A′′i be defined
as the first order derivative of A′i with respect to Y . Formally,

A′′i =
∂A′i
∂Y

We proceed with the following claim, the proof of which we defer to the end.

Claim 3.3. The polynomial A′′i is not an identically zero polynomial and A′′i |Y=Qi
is not

identically zero.

For the ease of notation, we define

Li(X) = A′′i |Y=Qi

Observe that Li is a polynomial in the variables X which is not identically zero and is of
degree at most (k+ 1)dk+1. Let H be a subset of F of size 2t(k+ 1)dk+1. Then, for a uniformly
random point ai picked from HN , the probability that Li vanishes at ai is at most 1/2t. We
call the set of all points ai ∈ HN where Li vanishes as bad. Then, with a probability at least
1 − 1/2t, a uniformly random element of HN is not bad. Let ai ∈ FN be a ‘not bad’ element
. We can replace Xj by Xj + aij and then for the resulting polynomial Li(X + ai), the point
(0, 0, . . . , 0) is not bad.

We are now ready to apply Lemma 2.4. Let

A′i(X,Y ) =

(k+1)dk∑
j=0

Cj(X) · Y j

Here, for every j, Cj(X) = C ′j
(
Q1(X), Q2(X), . . . , Qk(X)

)
is a polynomial in the X variables

and is the coefficient of Y j in A′i(X,Y ) when viewed as an element of F[X][Y ]. From the
discussion above, we know that the following are true.

1. The polynomial A′i(X + ai, Qi(X + ai)) is identically zero.

2. The first derivative ofA′i(X+ai, Y ) with respect to Y does not vanish at (0, 0, . . . , 0, Qi(0, 0, . . . , 0)).
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Therefore, by Lemma 2.4, it follows that there is a polynomial Gi such that

Qi(X + ai) = Hom≤di
[
Gi(C0(X + ai), C1(X + ai), . . . , C(k+1)dk(X + ai))

]
We also know that for every j ∈ {0, 1, . . . , (k + 1)dk}, Cj(X + ai) is a polynomial in the
polynomials Q1(X + ai), Q2(X + ai), . . . , Qk(X + ai). In other words,

Qi(X + ai) = Hom≤di
[
Fi(Q1(X + ai), Q2(X + ai), . . . , Qk(X + ai))

]
for a polynomial Fi.

In order to prove the lemma for all values of i ∈ {k+ 1, k+ 2, . . . , t}, we observe that we can
pick a single value of the translation a, which works for every i ∈ {k + 1, k + 2, . . . , t}. Such an
a exists because the probability that a uniformly random p ∈ HN is bad for some i is at most
t · 1/2t = 1/2 and the translation corresponding to any such element a in HN which is not bad
for every i will work. The statement of the lemma then immediately follows.

We now prove Claim 3.3.

Proof of Claim 3.3. We observed from the second item in Observation 3.2 that the degree of
Y in A′i is at least 1. Hence, A′′i is not identically zero. If A′′i |Y=Qi is identically zero, then
it follows that {Q1, Q2, . . . , Qk, Qi} have an annihilating polynomial of degree smaller than the
degree of Ai, which is a contradiction to the choice of Ai, as a minimum degree annihilating
polynomial.

Lemma 3.1 lets us express all polynomials in a set of polynomials as a function of the polyno-
mials in the transcendence basis. However, the functional form obtained is slightly cumbersome
for us to use in our applications. We now derive the following corollary, which is easier to use
in our applications.

Corollary 3.4. Let F be any field of characteristic zero or sufficiently large. Let Q =
{Q1, Q2, . . . , Qt} be a set of polynomials in N variables such that the for every i ∈ [t], the degree
of Qi is equal to di < d and the algebraic rank of Q equals k. Let B = {Q1, Q2, . . . , Qk} be a max-
imal algebraically independent subset of Q. Then, there exists an a = (a1, a2, . . . , aN ) in FN and
polynomials Fk+1, Fk+2, . . . , Ft in at most k(d+ 1) variables such that ∀i ∈ {k + 1, k+ 2, . . . , t}

Qi(X + a) =
[
Fi(Hom[Q1(X + a)],Hom[Q2(X + a)], . . . ,Hom[Qk(X + a)])

]
Proof. Let i be such that i ∈ {k + 1, k + 2, . . . , t}. From Lemma 3.1, we know that there exists
an a ∈ FN and a polynomial Wi such that

Qi(X + a) = Hom≤di
[
Wi(Qi1(X + a), Qi2(X + a), . . . , Qik(X + a))

]
We will now show that Hom≤di

[
Wi(Qi1(X + a), Qi2(X + a), . . . , Qik(X + a))

]
is actually a

polynomial in the homogeneous components of the various Qj(X+a) by the following procedure,
which is essentially univariate polynomial interpolation.

• Let R(X) = Wi(Qi1(X + a), Qi2(X + a), . . . , Qik(X + a)). We replace every variable Xj

in R by Z ·Xj for a new variable Z. We view the resulting polynomial R′ as an element of
F(X)[Z], i.e a univariate polynomial in Z with coefficients coming from the field of rational
functions in the X variables.

• Now, observe that for any `, the homogeneous component of degree ` of R is precisely the
coefficient of Z` in R′. Hence, we can evaluate R′ for sufficiently many distinct values of
Z in F(X), and then take an F(X) linear combination of these evaluations to express the
homogeneous components. Moreover, since F is an infinite field, without loss of generality,
we can pick the values of Z to be scalars in F, and in this case, we will just be taking an
F linear combination.
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The catch here is that after replacing Xj by Z ·Xj and substituting different values of Z ∈ F,
the polynomials Qi′(X + a) could possibly lead to distinct polynomials. In general, this is bad,
since our goal is to show that every polynomial in a set of algebraically dependent polynomials
in a function of few polynomials. However, the following observation comes to our rescue. Let
P be any polynomial in F[X] of degree ∆ and let P ′ be the polynomial obtained from P by
replacing Xj by Z ·Xj . Then,

P ′(X + a) =

∆∑
`=0

Z`.Hom`[P (X)]

In particular, the set of polynomials obtained from P ′ for different values of Z are all in the
linear span of homogeneous components of P .

Therefore, any homogeneous component of R can be expressed as a function of the set of
polynomials ∪ki=1Hom

[
Qi(X + a)

]
. This completes the proof of the corollary.

We now prove the following lemma, which will be directly useful in the our applications to
polynomial identity testing and lower bounds in the following sections.

Lemma 3.5. Let F be any field of characteristic zero or sufficiently large. Let P ∈ F[X] be a
polynomial in N variables, of degree equal to n, such that P can be represented as

P =

T∑
i=1

Fi(Qi1, Qi2, . . . , Qit)

and such that the following are true

• For each i ∈ [T ], Fi is a polynomial in t variables.

• For each i ∈ [T ] and j ∈ [t], Qij is a polynomial in N variables of degree at most d.

• For each i ∈ [T ], the algebraic rank of the set of polynomials {Qij : j ∈ [t]} is at most k and
Bi = {Qi1, Qi2, . . . , Qik} is a maximal algebraically independent subset of {Qij : j ∈ [t]}.

Then, there exists an a ∈ FN and polynomials F ′i in at most k(d+ 1) variables such that

P (X + a) =

T∑
i=1

F ′i (Hom[Qi1(X + a)],Hom[Qi2(X + a)], . . . ,Hom[Qik(X + a)]) (2)

Proof. The proof would essentially follow from the application of Corollary 3.4 to each of the
summands on the right hand side. The only catch is that the transalations a could be different
for each one of them. Since we are working over infinite fields, without loss of generality, we can
assume that there is a good translation a which works for all the summands.

4 Application to lower bounds

In this section , we prove Theorem 1.4. But, first we discuss the definitions of the complexity
measure used in the proof, the notion of random restrictions and the family of hard polynomials
that we work with.
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4.1 Projected shifted partial derivatives

The complexity measure that we use to prove the lower bounds in this paper is the notion of
projected shifted partial derivatives of a polynomial introduced in [KLSS14] and subsequently
used in a number of following papers [KS14c, KS14a, KS15b].

For a polynomial P and a monomial γ, ∂P
∂γ is the partial derivative of P with respect to

γ and for a set of monomials M, ∂M(P ) is the set of partial derivatives of P with respect to
monomials in M. The space of (M,m)-projected shifted partial derivatives of a polynomial P
is defined below.

Definition 4.1 ((M,m)-projected shifted partial derivatives). For an N variate polynomial
P ∈ F[X1, X2, . . . , XN ], set of monomialsM and a positive integer m ≥ 0, the space of (M,m)-
projected shifted partial derivatives of P is defined as

〈∂M(P )〉m
def
= F-span{Mult

[∏
i∈S

Xi · g

]
: g ∈ ∂M(P ), S ⊆ [N ], |S| = m} (3)

Here, Mult[P ] of a polynomial P is the projection of P on the multilinear monomials in its
support. We use the dimension of projected shifted partial derivative space of P with respect to
some set of monomials M and a parameter m as a measure of the complexity of a polynomial.
Formally,

ΦM,m(P ) = Dim(〈∂M(P )〉m)

From the definitions, it is straight forward to see that the measure is subadditive.

Lemma 4.2 (Sub-additivity). Let P and Q be any two multivariate polynomials in F[X1, X2, . . . , XN ].
Let M be any set of monomials and m be any positive integer. Then, for all scalars α and β

ΦM,m(α · P + β ·Q) ≤ ΦM,m(P ) + ΦM,m(Q)

In the proof of Theorem 1.4, we need to upper bound the dimension of the span of projected
shifted partial derivatives of the homogeneous component of a fixed degree of polynomials. The
following lemma comes to our rescue there.

Lemma 4.3. Let P be a polynomial of degree at most d. Then for every 0 ≤ i ≤ d, and for
every choice of parameters m, r and a set M of monomials of degree equal to r, the following
inequality is true

φM,m(P ) ≥ φM,m(Homi[P ])

Proof. Since M is a subset of monomials of degree equal to r, all the partials derivatives are
shifted by monomials of degree equal to m and the operation Mult[] either sets a monomial to
zero or leaves it unchanged, it follows that the span of projected shifted partial derivatives of
Homi[P ] coincides with the span of the homogeneous components of degree (i−r)m in the space
of span of projected shifted partial derivatives of P itself. The lemma then follows from the fact
that dimension of a linear space of polynomials is at least as large as the dimension of the space
obtained by restricting all polynomials to some fixed homogeneous component.

In the next lemma, we prove an upper bound on the polynomials which are obtained by a
composition of low arity polynomials with polynomials of small support.

Lemma 4.4. Let s be a parameter and Q1, Q2, . . . , Qt be polynomials in F[X] such that for
every i ∈ [t], the support of every monomial in Qi is of size at most s. Then, for every polynomial
F in t variables, every choice of parameters r,m such that m+ rs ≤ N/2, and every set M of
monomials of degree equal to r,

ΦM,m(F (Q1, Q2, . . . , Qt)) ≤
(
t+ r

r

)
·
(

N

m+ rs

)
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Proof. By the chain rule for partial derivatives, every derivative of order r of F (Q1, Q2, . . . , Qt)
can be written as a linear combination of products of the form(

∂F (Y1, Y2, . . . , Yt)

∂β0
|Yi=Qi

)
·
∏

1≤j≤r

∂Pj
∂βj

where

1. β0 is a monomial in variables Y1, Y2, . . . , Yt of degree at most r

2. for every 1 ≤ j ≤ r, the polynomial Pj is an element of {Q1, Q2, . . . , Qt}, and

3. for every 1 ≤ j ≤ r, βj is a monomial in variables X1, X2, . . . , XN

Since every monomial in each Qi is of support at most s, every monomial in each of the products∏
1≤j≤r

∂Pj
∂βj

is of support at most rs. Therefore, for shifts of degree m, the projected shifted

partial derivatives of F (Q1, Q2, . . . , Qt) (with respect to monomials in M which are of degree
r) are in the linear span of polynomials of the form

Mult

[(
∂F (Y1, Y2, . . . , Yt)

∂β0
|Yi=Qi

)
· α
]

where α is a multilinear monomial of degree at most m + rs. Therefore, the dimension of this
space is upper bounded by the number of possible choices of β0 and α. Hence

ΦM,m(F (Q1, Q2, . . . , Qt)) ≤
(
t+ r

r

)
·
(

N

m+ rs

)

4.2 Target polynomials for the lower bound

In this section, we define the family of polynomials for which we show our lower bounds. The
family is a variant of the Nisan-Wigderson polynomials which were introduced by Kayal et al
in [KSS14], and subsequently used in many other results [KS14c, KS14a, KS15b]. We start with
the following definition.

Definition 4.5 (Nisan-Wigderson polynomial families). Let n, q, e be arbitrary parameters
with q being a power of a prime, and n, e ≤ q. We identify the set [q] with the field Fq of q
elements. Observe that since n ≤ q, we have that [n] ⊆ Fq. The Nisan-Wigderson polynomial
with parameters n, q, e, denoted by NWn,q,e is defined as

NWn,q,e(X) =
∑

p(t)∈Fq [t]
Deg(p)<e

X1,p(1) . . . Xn,p(n)

The number of variables in NWn,q,e as defined above is N = q · n. The lower bounds in this
paper will be proved for the polynomial NW ◦ Lin which is a variant of the polynomial NWn,q,e

defined as follows.

Definition 4.6 (Hard polynomials for the lower bound). Let δ ∈ (0, 1) be an arbitrary constant,
and let p = N−δ. Let

γ =
N

p

The polynomial NW ◦ Linq,n,e,p is defined as

NW ◦ Linq,n,e,p = NWq,n,e

(
γ∑
i=1

X1,1,i,

γ∑
i=1

X1,2,i, . . . ,

γ∑
i=1

Xn,q,i

)
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For brevity, we will denote NW ◦ Linq,n,e,p by NW ◦ Lin for the rest of the discussion.
The advantage of using this trick10 of composing with linear forms is that it becomes cleaner

to show that the polynomial NW ◦ Lin is robust under random restrictions where every variable
is kept alive with a probability p. Since δ is an absolute constant, the number of variables in
NW ◦ Lin is at most NO(1). We now formally define our notion of random restrictions.

Let V be the set of variables in the polynomial NW ◦ Lin. We now define a distribution Dp
over the subsets of V.

The distribution Dp: Each variable in V is independently kept alive with a probability
p = N−δ.

The random restriction procedure samples a V ← D and then keeps only the variables in
V alive. The remaining variables are set to 0. We denote the restriction of the polynomial
obtained by such a restriction as NW ◦ Lin|V . Observe that a random restriction also results in
a distribution over the restrictions of a circuit computing the polynomial NW ◦ Lin. We denote
by C|V the restriction of a circuit C obtained by setting every input gate in C which is labeled
by a variable outside V to 0.

We now show that with a high probability over restrictions sampled according to Dp, the
projected shifted partial derivative complexity of NW ◦ Lin remains high. We need the following
lower bound on the dimension of projected shifted partial derivatives of NWn,q,e.

Lemma 4.7 ([KS14c, KS15a]). For every n and r = O(
√
n) there exists parameters q, e, ε such

that q = Ω(n2), N = qn and ε = Θ
(

logn√
n

)
with

qr ≥ (1 + ε)2(n−r)

qe−r =

(
2

1 + ε

)n−r
· poly(q).

For any {n, q, e, r, ε} satisfying the above constraints, for m = N
2 (1 − ε), over any field F, we

have

Φ(NWn,q,e) ≥
(

N

m+ n− r

)
· exp(−O(log2 n)).

We will instantiate the lemma above with the following choice of parameters:

• ε = 4 logn√
n

• r =
√
n

• q = n10

• Besides, we will set the parameter s =
√
n

100

It is straight forward to check that for the above choice of parameters, there is a choice of e
such that

qr ≥ (1 + ε)2(n−r)

qe−r =

(
2

1 + ε

)n−r
· poly(q).

Therefore, for m = N
2 (1− ε), over any field F, we have

Φ(NWn,q,e) ≥
(

N

m+ n− r

)
· exp(−O(log2 n)).

We are now ready to prove our main lemma for this section.

10This idea came up during discussions with Ramprasad Saptharishi.
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Lemma 4.8. With a probability at least 1−o(1) over V ← Dp, there exists a subset of variables
V ′ ⊆ V such that |V ′| = N and

Φ(NW ◦ Lin|V ′) ≥
(

N

m+ n− r

)
· exp(−O(log2 n)).

Proof. To prove the lemma, we first show that with a high probability over the random restric-
tions, the polynomial P |V has the polynomial NWn,q,e as a 0, 1 projection. Combining this with
Lemma 4.7 would complete the proof. We now fill in the details.

Let i ∈ [N ]. Then, the probability that all the variables in the set Ai,j = {Xi,j,` : ` ∈ [γ]}
are set to zero by the random restrictions is equal to (1 − p)γ ≤ exp(−Θ(N)). Therefore, the
probability that there exists an i ∈ [n], j ∈ [q] such that all the variables in the set Ai,j are set
to zero by the random restrictions, is at most N ·exp(−Θ(N)) = o(1). We now argue that if this
event does not happen (which is the case with probability at least 1− o(1)), then the dimension
of the projected shifted partial derivatives is large.

For every i, j, let A′i,j be the subset of Ai,j which has not been set to zero. We know that for
every i, j, A′i,j is non-empty. Now, for every i, j, we set all the elements of A′i,j to zero except
one. Observe that the polynomial obtained from NW ◦ Lin after this restriction is exactly the
polynomial NWn,q,e upto a relabeling of variables. Now, from Lemma 4.7, our claim follows.

4.3 Proof of Theorem 1.4

To show our lower bound, we show that under random restrictions from the distribution
Dp, the dimension of the linear span of projected shifted partial derivatives of any ΣΠ(n)ΣΠ
circuit C is small with a high probability if the size of the C is not too large. Comparing this
with the lower bound on the dimension of projected shifted partials of the polynomial NW ◦ Lin
under random restrictions from Lemma 4.8, the lower bound follows. We now proceed along
this outline and prove the following lemma.

Lemma 4.9 (Upper bound on complexity of circuits). Let m, r, s be parameters such that
m+ rs ≤ N/2. Let M be any set of multilinear monomials of degree r. Let C be an arithmetic
circuit computing a homogeneous polynomial of degree n such that

C =

T∑
i=1

Ci(Qi1, Qi2, . . . , Qit)

where

• For each i ∈ [T ], Ci is a polynomial in t variables.

• For each i ∈ [T ] and j ∈ [t], Qij is a homogeneous polynomial in N variables.

• For each i ∈ [T ], the algebraic rank of the set of polynomials {Qij : j ∈ [t]} is at most k.

For each i ∈ [T ] and j ∈ [t], let Sij be the set of monomials with nonzero coefficients in Qij. If∣∣∣∣∣∣
⋃

i∈[T ],j∈[t]

Sij

∣∣∣∣∣∣ ≤ N δs
2

then, with a probability at least 1− o(1) over V ← Dp11 for all subsets V ′ of V of size at most
N

Φ(C|V ′) ≤ T
(
k(n+ 1) + r

r

)(
N

m+ rs

)
11This is the distribution defined in Section 4.2, where every variable is kept alive with a probability N−δ for a

constant δ ∈ (0, 1).
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Proof. We prove the lemma by first using random restrictions to simplify the circuit into one
with bounded bottom support, and then utilizing the tools tools developed in Section 3 and
Section 4.1 to conclude that the dimension of the space of projected shifted partial derivatives
of the resulting circuit is small.

Step 1 - Random restrictions : From the definition of random restrictions, every variable
is kept alive independently with a probability p = N−δ. So, the probability that a monomial
of support at least s survives the restrictions is at most N−δs. Therefore, by linearity of
expectations, the expected number of monomials of support at least s in

⋃
i∈[T ],j∈[t] Sij which

survive the random restrictions is at most∣∣∣∣∣∣
⋃

i∈[T ],j∈[t]

Sij

∣∣∣∣∣∣ ·N−δs ≤ N− δs2
So, by Markov’s inequality, the probability that at least one monomial of support at least s in⋃
i∈[T ],j∈[t] Sij survives the random restrictions is o(1). Let V ′ be any subset of the surviving

set of variables of size N . For the rest of the proof, we assume that all the variables outside
the set V ′ are set to zero. Restrictions which kill all monomials in

⋃
i∈[T ],j∈[t] Sij are said to be

good.

Step 2 - Using low algebraic rank : In this step, we assume that we are given a good
restriction C ′ of the circuit C. Let

C ′ =

T∑
i=1

C ′i(Q
′
i1, Q

′
i2, . . . , Q

′
it)

where for every i ∈ [T ], j ∈ [t], all monomials of Q′ij have support at most s. Observe that
random restrictions cannot increase the algebraic rank of a set of polynomials. Therefore, for
every i ∈ [T ], the algebraic rank of the set of polynomials {Q′ij : j ∈ [t]} is at most k. For ease of
notation, let us assume that the algebraic rank is equal to k. Without loss of generality, let the
set Bi = {Q′i1, Q′i2, . . . , Q′ik} be the set guaranteed by Lemma 3.5. We know that there exists
an a ∈ FN and polynomials {Fi : i ∈ [T ]} such that

C ′(X + a) =

T∑
i=1

F ′i (Hom
[
Q′i1(X + a)

]
,Hom

[
Q′i2(X + a)

]
, . . . ,Hom

[
Q′ik(X + a)

]
)

Moreover, since C(X) (and hence C ′(X)) is a homogeneous polynomial of degree n, the
following is true:

C ′(X) = Homn

[
T∑
i=1

F ′i (Hom
[
Q′i1(X + a)

]
,Hom

[
Q′i2(X + a)

]
, . . . ,Hom

[
Q′ik(X + a)

]
)

]
(4)

An important observation here is that for the rest of the argument, we can assume that the
degree of every polynomial Q′ij(X + a) is at most n. If not, we can simply replace any such

high degree Q′ij(X + a) by Hom≤n
[
Q′ij(X + a)

]
. We claim that the equality 4 continues to

hold. This is because the higher degree monomials of Qij do not participate in the computation
of the lower degree monomials. The only monomials which could potentially change by this
substitution are the ones with degree strictly larger than n.
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Step 3 - Upper bound on ΦM,m(C ′(X)) : Let R be defined the polynomial

R =

[
T∑
i=1

F ′i (Hom
[
Q′i1(X + a)

]
,Hom

[
Q′i2(X + a)

]
, . . . ,Hom

[
Q′ik(X + a)

]
)

]
From Lemma 4.4 and from Lemma 4.2, it is easy to see that

ΦM,m(R) ≤ T
(
k(n+ 1) + r

r

)(
N

m+ rs

)
From Lemma 4.3, it follows that

ΦM,m(C ′(X)) ≤ ΦM,m(R) ≤ T
(
k(n+ 1) + r

r

)(
N

m+ rs

)
Observe that steps 2 and 3 of the proof are always successful if the restriction in step 1 is

good, which happens with a probability at least 1− o(1). So, the lemma follows.

We now complete the proof of Theorem 1.4.

Proof of Theorem 1.4. If the size of the circuit C is at least N
δ
2

√
n, then we are done. Else,

the size of C is at most N
δ
2

√
n. This implies that the total number of monomials in all the

polynomials Qij together is at most N
δ
2

√
n. From Lemma 4.9 and Lemma 4.8, it follows that

with a nonzero probability, there exists a subset V ′ of variables of size N such that both the
following inequalities are true:

ΦM,m(C|V ′) ≤ T
(
k(n+ 1) + r

r

)(
N

m+ rs

)
(5)

and

ΦM,m(NW ◦ Lin|V ′) ≥
(

N

m+ n− r

)
· exp(− log2 n)

Since C computes NW ◦ Lin, it must be the case that

T ≥
(

N
m+n−r

)
· exp(− log2 n)(

k(n+1)+r
r

)(
N

m+rs

)
Plugging in the value of the parameters, and approximating using Lemma 2.7, we immedi-

ately get (
N

m+ n− r

)
=

(
N

m

)
· (1 + ε)2(n−r) · exp(O((n− r) · ε2))

and (
N

m+ rs

)
=

(
N

m

)
· (1 + ε)2rs · exp(O(rs · ε2))

Moreover,
(
k(n+1)+r

r

)
≤ nkr ≤ exp(2

√
n · log n). Taking the ratio and substituting the values

of the parameters, we get

T ≥ exp (Ω(
√
n logN))
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5 Application to polynomial identity testing

In this section we give an application of the ideas developed in Section 3 to the question of
polynomial identity testing and prove Theorem 1.7. We start by formally defining the notion of
a hitting set.

Hitting set : Let S be a set of polynomials in N variables over a field F. Then, a set
H ⊆ FN is said to be a hitting set for the class S, if for every polynomial P ∈ S such that P is
not identically zero, there exists a p ∈ H such that P (p) 6= 0.

For our PIT result, we show that any nonzero polynomial P in the circuit class we consider,
has a monomial of low support. A hitting set can then be constructed by the standard techniques
using the Shpilka-Volkovich generator [SV09a].

Lemma 5.1 (Shpilka-Volkovich generator [SV09b]). Let F be a field of characteristic zero. For
every `, d,N , there exists a set H ⊆ FN of size at most (O(Nd))` such that for every nonzero
polynomial P of degree at most d in N variables which contains a monomial of support at most
`, there exists an h ∈ H such that P (h) 6= 0. Moreover, the set H can be constructed in time
poly(N, d, `) · (O(Nd))`.

The following lemma is our main technical claim.

Lemma 5.2. Let F be a field of characteristic zero. Let P be a homogeneous polynomial of
degree ∆ in N variables such that P can be represented as

P =

T∑
i=1

Ci(Qi1, Qi2, . . . , Qit)

such that the following are true

• For each i ∈ [T ], Ci is a polynomial in t variables.

• For each i ∈ [T ] and j ∈ [t], Qij is a polynomial of degree at most d in N variables.

• For each i ∈ [T ], the algebraic rank of the set of polynomials {Qij : j ∈ [t]} is at most k.

Then, the trailing monomial of P has support at most

2e3d · (ln (T (∆ + 1)) + (d+ 1)k ln (2(d+ 1)k) + 1).

Here, e is the Euler’s constant.

In order to prove Lemma 5.2, we follow the outline of proving robust lower bounds for
arithmetic circuits, described and used by Forbes [For15]. This essentially amounts to showing
that the trailing monomial of P has small support. We use the following result of Forbes [For15]
in a blackbox manner which greatly simplifies our proof.

Lemma 5.3 (Forbes [For15]). Let R(X) be a polynomial in F[X] such that

R(X) =

T∑
i=1

Fi(Qi1, Qi2, . . . , Qit)

and for each i ∈ [T ] and j ∈ [j], the degree of Qij is at most d. Let α be the trailing monomial
of R. Then, the support of α is at most 2e3d(lnT + t ln 2t+ 1), where e is the Euler’s constant.

We now proceed to prove Lemma 5.2.
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Proof of Lemma 5.2. Recall that our goal is to show that the polynomial P , which can be
represented as

P =

T∑
i=1

Ci(Qi1, Qi2, . . . , Qit)

has a trailing monomial of small support.
For every i ∈ [T ], let Qi = {Qi1, Qi2, . . . , Qit} and let Qi be of algebraic rank ki. Without

loss of generality, let us assume the sets Bi = {Qi1, Qi2, . . . , Qiki} are the sets guaranteed by
Lemma 3.5. This implies that there exist polynomials F1, F2, . . . , FT and a ∈ FN such that

P (X + a) =

[
T∑
i=1

Fi(Hom[Qi1(X + a)],Hom[Qi2(X + a)], . . . ,Hom[Qiki(X + a)])

]

Since each ki ≤ k, for the ease of notation, we assume that each ki = k. Observe that if P is a
homogeneous polynomial of degree Deg(P ) ≤ ∆, then,

HomDeg(P )[P (X + a)] ≡ P (X)

So, from Lemma 2.3, it follows that there exist k(d+ 1) variate polynomials F ′1, F
′
2, . . . , F

′
T (∆+1)

and a set of polynomials {Q′ij : i ∈ [T (∆ + 1)], j ∈ [k]} such that

P (X) = HomDeg(P )

T (∆+1)∑
i=1

F ′i (Hom[Q′i1(X + a)],Hom[Q′i2(X + a)], . . . ,Hom[Q′ik(X + a)])


Moreover, every polynomial in the set {Q′ij : i ∈ [T (∆ + 1)], j ∈ [k]} has degree at most d.

Now, Lemma 5.3 implies that the trailing monomial α of P (X) has support at most

2e3d · (ln (T (∆ + 1)) + (d+ 1)k ln (2(d+ 1)k) + 1)

We are now ready to complete the proof of Theorem 1.7.

Proof of Theorem 1.7. From Definition 1.2, it follows there could be non-homogeneous poly-
nomials P ∈ C. So, we cannot directly use Lemma 5.2 to say something about them, since
the proof relies on homogeneity. But, this is not a problem, since a polynomial is identically
zero if and only if all its homogeneous components are identically zero. Moreover, by applying
Lemma 2.3 to every summand feeding into the top sum gate of the circuit, we get that every
homogeneous component of P 12 can also be computed by a circuit similar in structure to that
of P at the cost of a blow up by a factor ∆ + 1 in the top fan-in. We can then apply Lemma 5.2
to each of these homogeneous components to conclude that if P is not identically zero, then it
contains a monomial of support at most

2e3d · (ln
(
T (∆ + 1)2

)
+ (d+ 1)k ln (2(d+ 1)k) + 1)

Theorem 1.7 immediately follows by detecting the low support monomial using Lemma 5.2 and
Lemma 5.1.

12Only the top fan-in increases by a factor of ∆ + 1, all other parameters in Definition 1.2 remain the same.
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6 Open questions

We end with some open questions:

• One question is to prove the lower bounds in the paper for a polynomial in VP. We
believe this is true, but it seems that we need a strengthening of the bounds in [KS14c].
In particular, it needs to be shown that the lower bound for IMM (Iterated matrix
multiplication) continues to hold when a depth-4 circuit is not homogeneous but the formal
degree is at most the square of the degree of the polynomial itself.

• An intriguing consequence of the proofs in the paper is that the characteristic of the
underlying field needs to be high or zero. In particular, we do not know if Lemma 3.1
is true over fields of low characteristic. In general, we seem to have a slightly better
understanding of algebraic dependence over fields of large characteristic or characteristic
zero. For instance, as far as we know the results of Agrawal et al [ASSS12] are not
known to extend to fields of low characteristic since the Jacobian condition for algebraic
independence fails there. We wonder if our proof techniques also suffer from a similar
technical obstacle.

• It would be interesting to see if there are other applications of Lemma 1.9 to questions in
complexity theory. The Jacobian characterization of algebraic independence has several
very interesting applications [ASSS12, DGW09].
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