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Abstract

We show an equivalence between 1-query quantum algorithms and representations by degree-
2 polynomials. Namely, a partial Boolean function f is computable by a 1-query quantum
algorithm with error bounded by ε < 1/2 iff f can be approximated by a degree-2 polynomial
with error bounded by ε′ < 1/2. This result holds for two different notions of approximation
by a polynomial: the standard definition of Nisan and Szegedy [20] and the approximation by
block-multilinear polynomials recently introduced by Aaronson and Ambainis [1].

We also show two results for polynomials of higher degree. First, there is a total Boolean
function which requires Ω̃(n) quantum queries but can be represented by a block-multilinear
polynomial of degree Õ(

√
n). Thus, in the general case (for an arbitrary number of queries),

block-multilinear polynomials are not equivalent to quantum algorithms.
Second, for any constant degree k, the two notions of approximation by a polynomial (the

standard and the block-multilinear) are equivalent. As a consequence, we solve an open problem
from [1], showing that one can estimate the value of any bounded degree-k polynomial p :

{0, 1}n → [−1, 1] with O(n1−
1
2k ) queries.
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1 Introduction

Many of the known quantum algorithms can be studied in the query model where one measures the
complexity of an algorithm by the number of queries to the input that it makes. In particular, this
model encompasses Grover’s search [16], the quantum part of Shor’s factoring algorithm (period-
finding) [23], their generalizations and many of the more recent quantum algorithms such as element
distinctness [6] and NAND tree evaluation [14, 7, 22].

For proving lower bounds on quantum query algorithms, one often uses a connection to poly-
nomials [8]. After k queries to an input x1, . . . , xN , the amplitudes of the algorithm’s quantum
state are polynomials of degree at most k in x1, . . . , xN . Therefore, one can prove that there is no
quantum algorithm using fewer than k queries by showing the non-existence of a polynomial with
certain properties.

For example, one can use this approach to show that any quantum algorithm for Grover’s
search algorithm requires Ω(

√
N) queries [8] or to show an optimal quantum lower bound for

finding collisions [3]. In some cases, the lower bounds obtained by polynomials method are tight,
either exactly (for example, for computing the parity of N input bits x1, . . . , xN [8]) or up to a
constant factor (Grover’s search and many other examples). In other cases, the number of queries
to compute a function f(x1, . . . , xN ) is asymptotically larger than the lower bound which follows
from polynomials [5, 2].

In this paper, we discover the first case where we can go in the opposite direction: from a
polynomial to a bounded-error quantum algorithm1. That is, polynomials with certain properties
and quantum algorithms are equivalent!

In more detail, we consider computing partial Boolean functions f(x1, . . . , xn) and show that
the existence of a quantum algorithm that computes f with 1 query is equivalent to the existence
of a degree 2 polynomial that approximates f . This result holds for two different notions of ap-
proximation by a polynomial: the standard one in [20] and the approximation by block-multilinear
polynomials introduced in [1].

The methods that we use are quite interesting. To transform a polynomial into a quantum
algorithm, we first transform it into the block-multilinear form of [1] and then use a variant of
Grothendieck’s inequality for relating two matrix norms [21]. One of the two norms corresponds
to the constraints on the block-multilinear polynomials while the other norm corresponds to al-
gorithm’s transformations being unitary. While Grothendieck’s inequality has been used in the
context of quantum non-locality (e.g. in [4]), this appears to be its first use in the context of
quantum algorithms.

We then show two results for polynomials of larger degree:

• similarly to general polynomials, block-multilinear polynomials are not equivalent to quantum
algorithms in the general case: one of cheat-sheet functions of [2] requires Ω̃(n) quantum
queries but can be described by a block-multilinear polynomial of degree Õ(

√
n);

• for representations by polynomials of degree d = O(1), a partial function f can be represented
by a general polynomial of degree d if and only if it can be represented by a block-multilinear
polynomial of degree d.

1In unbounded-error settings, equivalences between quantum algorithms and polynomials were previously shown
by de Wolf [25] and by Montanaro et al. [19].
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We note that the first result does not exclude an equivalence between quantum algorithms and
polynomials for a small number of queries that is larger than 1. For example, 2-query quantum
algorithms could be equivalent to polynomials of degree 4. The second result shows that, to prove
such an equivalence, it suffices to give a transformation from block-multilinear polynomials to
quantum algorithms.

Another consequence of the second result is that, if we have a general polynomial f(x1, . . . , xn)
which is bounded (i.e., |f | ≤ 1 for all x1, . . . , xn ∈ {0, 1}), the value of this polynomial can be
estimated with O(n1−1/2d) queries about values of x1, . . . , xn. This resolves an open problem from
[1] and is shown by transforming f into a block-multilinear form and then using the sampling
algorithm of [1] for block-multilinear polynomials.

2 Preliminaries

2.1 Notation

By [a .. b], with a, b being integers, a ≤ b, we denote the set {a, a+ 1, a+ 2, . . . , b}. When a = 1,
notation [a .. b] is simplified to [b].

For a vector x, let ‖x‖p stand for the p-norm; when p = 2, this is the Euclidean norm and the
notation is simplified to ‖x‖. For a matrix A, by ‖A‖p→q we denote

‖A‖p→q = sup
x:‖x‖p 6=0

‖Ax‖q
‖x‖p

= max
x:‖x‖p=1

‖Ax‖q = max
x:‖x‖p≤1

‖Ax‖q .

By ‖A‖ we understand the usual operator norm ‖A‖2→2.
Dx stands for the diagonal matrix with components of x on its diagonal.
By K we denote the (real) Grothendieck’s constant which is defined as the smallest number with

the following property: if A = (aij) is such that
∑

i,j aijxiyj ≤ 1 for any choice of xi, yj ∈ {−1, 1},
then

∑
i,j aij(ui, vj) ≤ K for any choice of vectors (with real components) ui, vj with ‖ui‖ = 1 and

‖vj‖ = 1 for all i, j. It is known [21, 10] that

π

2
≤ K <

π

2 ln(1 +
√

2)
.

2.2 Quantum query complexity and polynomial degree

We consider computing partial Boolean functions f(x1, . . . , xn) : X → {0, 1} (for some X ⊆ {0, 1}n)
in the standard quantum query model. For technical convenience, we relabel the values of input
variables xi from {0, 1} to {−1, 1}. Then, a partial Boolean function f maps a set X ⊆ {−1, 1}n
to {0, 1}.

Let Qε(f) be the minimum number of queries in a quantum algorithm computing f correctly
with probability at least 1− ε, for every x = (x1, . . . , xn) for which f(x) is defined.

Definition 1. d̃egε(f) is the minimum degree of a polynomial p (in variables x1, . . . , xn) such that

1. |p(x)− f(x)| ≤ ε for all x ∈ {−1, 1}n for which f(x) is defined;

2. p(x) ∈ [0, 1] for all x ∈ {−1, 1}n.
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deg(f) denotes d̃eg0(f).

It is well known that Qε(f) ≥ 1
2 d̃egε(f) [8]. We now consider a refinement of this result due

to [1]. We say that a polynomial p of degree k is block-multilinear if its variables x1, . . . , xN can
be partitioned into k blocks, R1, . . . , Rk, so that every monomial of p contains exactly one variable
from each block.

Lemma 2 ([1, Lemma 20]). Let A be a quantum algorithm that makes t queries to a Boolean input
x ∈ {−1, 1}n. Then there exists a degree-2t block-multilinear polynomial p : R2t(n+1) → R, with 2t
blocks of n+ 1 variables each, such that

(i) the probability that A outputs 1 for an input x = (x1, . . . , xn) ∈ {−1, 1}n equals p(x̃, . . . , x̃),
where x̃ := (1, x1, . . . , xn) (with x̃ repeated 2t times), and

(ii) p(z) ∈ [−1, 1] for all z ∈ {−1, 1}2t(n+1).

The first variable in each block (which is set to 1 in the requirement (i)) corresponds to the
possibility that the algorithm is not asking any of the actual variables x1, . . . , xn in a given query.
(Although the statement of Lemma 20 in [1] does not mention such variables explicitly, they are
used in the proof of the Lemma.)

Definition 3. Let the block-multilinear approximate degree of f , or b̃mdegε(f), be the minimum
degree of any block-multilinear polynomial p : Rk(n+1) → R, with k blocks of n+ 1 variables each,
such that

(i) |p (x̃, . . . , x̃)− f(x)| ≤ ε for all x ∈ {−1, 1}n for which f(x) is defined, and

(ii) p (x1,0, x1,1, . . . , x1,n, x2,0, . . . , xk,n) ∈ [−1, 1] for all x1,0, . . . , xk,n ∈ {−1, 1}k(n+1).

bmdeg(f) denotes b̃mdeg0(f).

As a particular case, this definition includes block-multilinear polynomials p : Rkn → R which
satisfy

∀x ∈ {−1, 1}n |p(x, . . . , x)− f(x)| ≤ ε and ∀z ∈ {−1, 1}kn p(z) ∈ [−1, 1],

because we can view them as polynomials p : Rk(n+1) → R in which each monomial containing a
variable x1,0, x2,0, . . . , or xk,0 has a coefficient zero.

We have d̃egε(f) ≤ b̃mdegε(f) ≤ 2 Qε(f). The first of the two inequalities follows by taking
q(x) = p(x̃, . . . , x̃). If p satisfies the requirements of Definition 3, then q satisfies the requirements
of Definition 1. The second inequality follows from Lemma 2.

2.3 Block-multilinear polynomials of degree 2

Let
p(x1, . . . , xn, y1, . . . , ym) =

∑
i∈[n]
j∈[m]

aijxiyj , (1)
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be a block-multilinear polynomial of degree 2, with the variables in the first block labeled as
x1, . . . , xn and the variables in the second block labeled as y1, . . . , ym. We say that p is bounded if
|p(x1, . . . , xn, y1, . . . , ym)| ≤ 1 for all x1, . . . , ym ∈ {−1, 1}. Then, we have

max
x∈{−1,1}n
y∈{−1,1}m

∣∣∣∣∣∣∣∣
∑
i∈[n]
j∈[m]

aijxiyj

∣∣∣∣∣∣∣∣ ≤ 1.

Let A be the n×m matrix with entries aij , then

p(x, y) = xTAy for all x ∈ Rn, y ∈ Rm

and p being bounded translates to the infinity-to-1 norm of A being at most 1, i.e., ‖A‖∞→1 ≤ 1.

3 Equivalence between polynomials of degree 2 and 1-query quan-
tum algorithms

Let f be a partial Boolean function. In this section, we show that the following three statements
are essentially equivalent2:

(a) Qε(f) ≤ 1 for some ε with 0 ≤ ε < 1
2 ;

(b) b̃mdegε′(f) ≤ 2 for some ε′ with 0 ≤ ε′ < 1
2 ;

(c) d̃egε′′(f) ≤ 2 for some ε′′ with 0 ≤ ε′′ < 1
2 .

Given (a), Lemma 2 implies that (b) and (c) hold with ε′′ = ε′ = ε. We now show that (b)
implies (a) with ε = K+ε′

2(K+1) where K is Grothendieck’s constant. After that, we show that (c)

implies (b) with ε′ = 1+ε′′

3 .

Theorem 4. Let f be a partial Boolean function. If b̃mdegε′(f) ≤ 2, then Qε(f) ≤ 1 for ε = K+ε′

2(K+1) .

Proof. We start with two technical lemmas.

Lemma 5. If a n ×m complex matrix B satisfies ‖B‖ ≤ C, then there exists a unitary U (on a
possibly larger space with basis states |1〉 , . . . , |k〉 for some k ≥ max(n,m)) such that, for any unit

vector |y〉 =
∑m

i=1 αi |i〉, U |y〉 = B|y〉
C + |φ〉, with |φ〉 consisting of basis states |i〉, i > n only.

Proof. Without the loss of generality, we can assume that C = 1 (otherwise, we just replace the
matrix B by B

C ).
Let A = I−B†B. Since ‖B‖ ≤ 1, the eigenvalues of B†B are at most 1 and, hence, A is positive

semidefinite. Let A = V †ΛV be the eigendecomposition of A, with V being a unitary matrix and
Λ a diagonal matrix. We take W =

√
ΛV . Then, A = W †W and, if we take the block matrix

U =

(
B
W

)
, we get U †U = B†B +W †W = I.

2The equivalence here involves some loss in the error ε. probability of A. However, the bound ε on the error
probability of the resulting quantum algorithm only depends on the error of the polynomial approximation from
which we started and does not increase with the number of variables n.
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Let k×m be the size of the matrix U . For any i ∈ {1, . . . ,m}, we have 〈i|U †U |i〉 = 〈i|I |i〉 = 1
and for any i, j ∈ {1, . . . ,m} : i 6= j, we have 〈i|U †U |j〉 = 〈i|I |j〉 = 0. Therefore, U |1〉 , . . . , U |m〉
are orthogonal vectors of length 1 and we can complete U to a k × k unitary matrix by choosing
U |m+ 1〉 , . . . , U |k〉 so that they are orthogonal (both one to another and to U |1〉 , . . . , U |m〉) and
of length 1.

Lemma 6. Let A = (aij)i∈[n],j∈[m] with
√
nm‖A‖ ≤ C and let

p(x1, . . . , xn, y1, . . . , ym) =

n∑
i=1

m∑
j=1

aijxiyj .

Then, there is a quantum algorithm that makes 1 query to x1, . . . , xn, y1, . . . , ym and outputs 1 with
probability

r =
1

2

(
1 +

p(x1, . . . , xn, y1, . . . , ym)

C

)
.

Proof. Let B =
√
nmA, A = (aij). Then,

‖B‖ = ‖A‖
√
nm ≤ C.

The 1-query quantum algorithm uses a version of the well-known SWAP test [11] for estimating
the inner product |〈ψ |ψ′〉 | of two quantum states |ψ〉 and |ψ′〉. Our test works by preparing the
state

1√
2
|0〉 |ψ〉+

1√
2
|1〉
∣∣ψ′〉 (2)

and then performing the Hadamard transformation on the first qubit and measuring the first qubit3.
The probability that the result of the measurement is 0 is equal to

r0 =
1

2
(1 + <〈ψ

∣∣ψ′〉)
where <x denotes the real part of a complex number x.

By Lemma 5, there is a unitary U s.t. for any unit vector |y〉 =
∑m

i=1 αi |i〉 we have U |y〉 =
B|y〉
C + |φ〉, with 〈i |φ〉 = 0 for all i ∈ [n].

The algorithm applies SWAP test to |x〉 = 1√
n

∑n
i=1 xi |i〉 and U |y〉, |y〉 = 1√

m

∑m
i=1 yi |i〉. Each

of those states can be prepared with one query (to xi’s or yi’s). Hence, we can also prepare the
state (2) with one query. The inner product 〈ψ |ψ′〉 that is being estimated is equal to

〈x|U |y〉 =
1

C
〈x|B |y〉 =

1

C
p(x1, . . . , xn, y1, . . . , ym).

3This test is slightly different from the standard SWAP test in which one prepares both |ψ〉 and |ψ′〉 and then
performs a SWAP gate conditioned by a qubit that is initially in the 1√

2
|0〉+ 1√

2
|1〉 state. Because of this difference,

we can perform the SWAP test with just 1 query instead of 2 (one for |ψ〉 and one for |ψ′〉). Another result of
this difference is that the probability of measuring 0 changes from 1

2
(1 + |〈ψ |ψ′〉|2) for the standard SWAP test to

1
2
(1 + <〈ψ |ψ′〉) for our test.
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Let p(x1, . . . , xn, y1, . . . , ym) =
∑n

i=1

∑m
j=1 aijxiyj be the polynomial from Definition 3 which

shows that b̃mdegε′(f) = 2. Then, as we argued in subsection 2.3, the matrix A = (aij) satisfies
‖A‖∞→1 ≤ 1. Although this does not imply that ‖A‖ is sufficiently small, we can preprocess the
polynomial p so that we achieve

√
n′m′‖A′‖ ≤ K for the n′-by-m′ matrix A′ of coefficients of the

polynomial after the preprocessing.
To preprocess the polynomial, we perform an operation called variable-splitting [1]. The opera-

tion consists of taking a variable xj (or yj) and replacing it by m variables, in the following way. We
introduce m new variables xl1 , . . . , xlm , and define p′ as the polynomial obtained by substituting
xl1+···+xlm

m in the polynomial p instead of xj . If we substitute xl1 = . . . = xlm = xj , p
′ is equal to

p(x1, . . . , xn, y1, . . . , ym). Thus, being able to evaluate p′ implies being able to evaluate p (in the
same sense of the word “evaluate”).

In appendix A, we show

Lemma 7. If a polynomial

p(x1, . . . , xn, y1, . . . , ym) =
n∑
i=1

m∑
j=1

aijxiyj .

satisfies p(x, y) ∈ [−1, 1] for all x ∈ {−1, 1}n, y ∈ {−1, 1}m, then for every δ > 0 there exists a
sequence of row and column splittings that transforms A = (aij) to an n′ ×m′ matrix A′ = (a′ij)
that satisfies

‖A′‖
√
n′m′

‖A′‖∞→1

≤ K + δ.

Then, we can apply Lemma 6 with C = K + δ to evaluate the polynomial

p′(x′1, . . . , x
′
n′ , y

′
1, . . . , y

′
m′) =

n′∑
i=1

m′∑
j=1

aijx
′
iy
′
j .

for (x′1, . . . , x
′
n′ , y

′
1, . . . , y

′
m′) which corresponds to the point (x1, . . . , xn, y1, . . . , ym) at which we

want to evaluate the original polynomial p(x1, . . . , ym).
If p(x, y) ∈ [0, ε′], then Lemma 6 gives r ≤ (1+ ε′

K )/2. If p(x, y) ∈ [1−ε′, 1], then r ≥ (1+ 1−ε′
K )/2.

We now consider an algorithm which outputs 0 with probability 1
2K+1 and runs the algorithm of

Lemma 6 otherwise (with probability 2K
2K+1). Let q be the probability of this algorithm outputting

1. If p(x, y) ∈ [0, ε′], then q = 2K
2K+1r ≤

K+ε′

2K+1 . If p(x, y) ∈ [1 − ε′, 1], then q = 2K
2K+1r ≥

K+1−ε′
2K+1 .

Thus, we have a quantum algorithm with a probability of error which is at most ε = K+ε′

2K+1 .

Theorem 8. Let f be a partial Boolean function. If d̃egε′′(f) ≤ 2, then b̃mdegε′(f) ≤ 1 for
ε′ = 1+ε′′

3 .

Proof. We first show a corresponding result for polynomials p with values in [−1, 1] (instead of
polynomials p with values in [0, 1] as in Definition 1).

Lemma 9. Suppose that f : {−1, 1}n → R is a multilinear polynomial of degree 2, satisfying
maxx∈{−1,1}n |f(x)| ≤ 1. Then there exists a block-multilinear polynomial g : {−1, 1}2n+2 → R of
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degree 2 with maxx∈{−1,1}2n+2 |g(x)| ≤ 1 such that for every x ∈ {−1, 1}n the following equality
holds:

g(1, x1, . . . , xn, . . . 1, x1, . . . , xn) =
1

3
f(x1, . . . , xn).

Proof. Suppose that f : {−1, 1}n → {−1, 1} is a multilinear polynomial of degree 2. Then it can
be represented as

f(x) = f∅ +
n∑
i=1

f{i}xi +
∑
i<j

f{i,j}xixj , x ∈ Rn.

Moreover, the constraint maxx∈{−1,1} |f(x)| ≤ 1 implies that |f(x)| ≤ 1 for all x ∈ [−1, 1]n.
Define a block-multilinear polynomial

g(z, t) =
n∑
i=0

n∑
j=0

gijzitj , z, t ∈ [−1, 1]n+1,

where

g00 =
1

3
f∅,

gi0 = g0i =
1

6
f{i}, i ∈ [n]

gij = gji =
1

6
f{i,j}, i < j.

Then

g(z, t) =
1

3

f∅z0t0 +

n∑
i=1

f{i}
zit0 + z0ti

2
+
∑
i<j

f{i,j}
zitj + zjti

2

 , z, t ∈ {−1, 1}n+1 .

Clearly,

g ((1, x), (1, x)) =
1

3

f∅ +
n∑
i=1

f{i}xi +
∑
i<j

f{i,j}xixj

 =
1

3
f(x), x ∈ {−1, 1}n .

Let xi = z0zi, yi = t0ti. Then (by multiplying g(z, t) with z0t0) we see that

|g(z, t)| = |F (x, y)| ,

where

F (x, y) =
1

3

f∅ +
n∑
i=1

f{i}
xi + yi

2
+
∑
i<j

f{i,j}
xiyj + xjyi

2

 , x, y ∈ {−1, 1}n .

Moreover, F (x, x) = 1
3f(x) for all x ∈ {−1, 1}n.

Notice that the following identity holds:

F (x, y) =
4F
(x+y

2 , x+y2
)
− F (x, x)− F (y, y)

2
, x, y ∈ {−1, 1}n .

7



It follows that

|F (x, y)| = 1

6

∣∣∣∣4f (x+ y

2

)
− f(x)− f(y)

∣∣∣∣ ,
for all x, y ∈ {−1, 1}n. Since x+y

2 ∈ [−1, 1]n, then∣∣∣∣4f (x+ y

2

)
− f(x)− f(y)

∣∣∣∣ ≤ 4

∣∣∣∣f (x+ y

2

)∣∣∣∣+ |f(x)|+ |f(y)| ≤ 6,

thus |F (x, y)| ≤ 1. It follows that g is bounded.

By rescaling both the initial and the final polynomial to take the values in [0, 1], we obtain

Corollary 10. Suppose that f : {−1, 1}n → R is a multilinear polynomial of degree 2 satis-
fying f(x) ∈ [0, 1] for all x ∈ {−1, 1}n. Then there exists a block-multilinear polynomial g :
{−1, 1}2n+2 → R of degree 2 such that for every x ∈ {−1, 1}n the following equality holds:

g(1, x1, . . . , xn, 1, x1, . . . , xn) =
1

3
+

1

3
f(x1, . . . , xn).

If f(x1, . . . , xn) ∈ [0, ε′′], then g(1, x1, . . . , xn, 1, x1, . . . , xn) ∈ [13 ,
1+ε′′

3 ]. If f(x1, . . . , xn) ∈ [1 −
ε′′, 1], then g(1, x1, . . . , xn, 1, x1, . . . , xn) ∈ [2−ε

′′

3 , 23 ]. Thus, we have b̃mdegε′(f) = 1 with ε′ =
1+ε′′

3 .

4 Results on polynomials of higher degrees

4.1 Equivalence between general and block-multilinear polynomials

We can extend our result on transforming a bounded polynomial f(x1, . . . , xn) to a bounded block-
multilinear polynomial to polynomials of higher degree.

Lemma 11. Suppose that g : Rn → R is a multilinear polynomial of degree d s.t. |g(x)| ≤ 1 for all
x ∈ {−1, 1}n.

Then there exists a bounded block-multilinear polynomial h : Rd(n+1) → R and a number B(d)
s.t. for all x1, . . ., xn ∈ R the following equality holds:

h (1, x1, . . . , xn, 1, x1, . . . , xn, . . . , 1, x1, . . . , xn) =
1

B(d)
g(x1, . . . , xn).

Moreover, B(d) satisfies

B(d) = Θ

(
αd√
d

)
,

where α = 1
W (exp(−1)) ≈ 3.5911 and W stands for the Lambert W function.

Proof. In appendix B.

Thus, approximations by general polynomials and approximations by block-multilinear polyno-
mials are equivalent for degree d = O(1), up to some loss in the approximation error:
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Corollary 12. Let f be a partial Boolean function with d̃egε(f) ≤ d for some ε with 0 ≤ ε < 1
2 .

Then, b̃mdegε′(f) ≤ d for ε′ = 1
2 −

1
4B(d) + ε

2B(d) .

Proof. Let p(x) be the polynomial that represents f(x), in the sense of Definition 1. We take

g(x) = p(x) − 1
2 , apply Lemma 11 and then take h′(x) = 1

2 + h(x)
2 where h is the polynomial

produced by Lemma 11.
If p(x) ∈ [0, ε], then g(x) ∈ [−1

2 ,−
1
2+ε] and h(1, x, . . . , 1, x) ∈ [− 1

2B(d) ,−
1

2B(d)+
ε

B(d) ]. Therefore,

h′(1, x, . . . , 1, x) ∈
[

1

2
− 1

4B(d)
,
1

2
− 1

4B(d)
+

ε

2B(d)

]
.

Similarly, if p(x) ∈ [1− ε, 1], then

h′(1, x, . . . , 1, x) ∈
[

1

2
+

1

4B(d)
− ε

2B(d)
,
1

2
+

1

4B(d)

]
.

Also, if |h(y)| ≤ 1 for any y ∈ {−1, 1}d(n+1), then |h′(y)| ≤ 1, as well. Therefore, h′ represents f in
the sense of Definition 3 with ε′ = 1

2 −
1

4B(d) + ε
2B(d) .

Lemma 11 and Corollary 12 have two consequences. First, to extend the equivalence between
quantum algorithms and polynomials to larger d = O(1), it suffices to show how to transform
block-multilinear polynomials into quantum algorithms.

Second, Aaronson and Ambainis [1] showed that a quantum algorithm which makes d queries
can be simulated by a classical algorithm making O(n1−1/2d) queries, based on the following result

Theorem 13. [1] Let h : Rd(n+1) → R be a block-multilinear polynomial of degree d with |h(y)| ≤ 1

for any y ∈ {−1, 1}d(n+1). Then, h(y) can be approximated within precision ±ε with high probability,
by querying O(( n

ε2
)1−1/d)) variables (with a big-O constant that is allowed to depend on d).

It has been open whether a similar theorem holds for general (not block-multilinear) polyno-
mials h(x1, . . . , xn). Aaronson and Ambainis [1] showed that this is true for degree 2 (using quite
sophisticated tools from Fourier analysis) but left it as an open problem for higher degrees. With
Lemma 11, we can immediately resolve this problem.

Corollary 14. Let g : Rn → R be a polynomial of degree d with |g(y)| ≤ 1 for any y ∈ {−1, 1}d(n+1).
Then, g(y) can be approximated within precision ±ε with high probability, by querying O(( n

ε2
)1−1/d))

variables (with a big-O constant that is allowed to depend on d).

Proof. We apply Lemma 11 to construct a corresponding block-multilinear polynomial h and then
use Theorem 13 to estimate h with precision ε

B(d) . Since B(d) is a constant for any fixed d, we can
absorb it into the big-O constant.

4.2 bmdeg and deg vs. Q

The biggest known separation between deg and Q is Q(f) = Ω̃(deg2(f)), recently shown by Aaron-
son et al. [2] using a novel cheat-sheet technique. We extend this result to

Theorem 15. There exists f with Q(f) = Ω̃(bmdeg2(f)).

9



Proof. In appendix C.
Aaronson et al. [2] also show a separation Q(f) = Ω̃(d̃eg(f))4) which does not seem to give

Q(f) = Ω̃(b̃mdeg(f))4). (For the natural way of transforming the approximating polynomial of [2]
into a block-multilinear form, the resulting block-multilinear polynomial p(z(1), z(2), . . .) can take
values that are exponentially large (in its degree) if the blocks z(1), z(2), . . . are not all equal.)

Because of Theorem 15, there is no transformation from a polynomial of degree 2k that approx-
imates f(x1, . . . , xn) with error ε < 1/2 to a quantum algorithm with k queries and error ε′ < 1/2,
with ε and ε′ independent of k.

However, there may be a transformation from polynomials of degree 2k to quantum algorithms
with k queries, with the error ε′ = g(ε, k) of the resulting quantum algorithm depending on k but
not on function f(x1, . . . , xn) or the number of variables n.

Theorem 15 implies the following limit on such transformations:

Theorem 16. There is a sequence of Boolean functions f (1), f (2), . . . such that, for any sequence
of quantum algorithms A1,A2, . . . computing them with O(bmdeg(fi)) queries, the probability of
correct answer is at most

1

2
+O

(
1

bmdeg(f (i))

)
.

Proof. Let f be the function from Theorem 15. Then, we have bmdeg(f) = Õ(
√
n).

If we have a quantum algorithm A that computes a function f with a probability of correct
answer at least 1

2 + δ, we can use amplitude estimation [9] to estimate whether A produces answer
f = 1 with probability at least 1

2 + δ or with probability at most 1
2 − δ. The standard analysis of

amplitude estimation [9] shows that we can obtain an estimate that is correct with probability at
least 2/3, with O(1/δ) repetitions of A. To avoid a contradiction with Qε(f) = Ω(n), we must have

√
n

δ
= Ω(n)

which implies δ = O( 1√
n

).

A result with a weaker bound on the error is, however, possible. For example, it is possible that

d̃eg1/2−δ(f) = 2k or b̃mdeg1/2−δ(f) = 2k implies a quantum algorithm which makes k queries and

has the error probability at most 1
2 − Ω( δ

2k
) or at most 1

2 − Ω( δ
k2

).

5 Conclusions

We have shown a new equivalence between quantum algorithms and polynomials: the existence of a
1-query quantum algorithm computing a partial Boolean function f is equivalent to the existence of
a degree-2 polynomial p that approximates f . Our equivalence theorem can be seen as a counterpart
of the equivalence between unbounded-error quantum algorithms and threshold polynomials, proved
by Montanaro et al. [19], and the equivalence between nondeterministic quantum algorithms and
nondeterministic polynomials, proved by de Wolf [25].

Our equivalence is, however, much more challenging to prove. A transformation from polynomi-
als to unbounded-error or nondeterministic quantum algorithms can incur a very large loss in error
probability (for example, it can transform a polynomial p with error 1/3 to a quantum algorithm A
with the probability of correct answer 1

2 + 1
2n ). In contrast, our transformation produces a quantum
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algorithm whose error probability only depends on the approximation error of the polynomial p
and not on the number of variables n. To achieve this, we use a relation between two matrix norms
related to Groethendieck’s inequality.

Our equivalence holds for two notions of approximability by a polynomial: the standard one
[20] which allows arbitrary polynomials of degree 2 and the approximation by block-multilinear
polynomials recently introduced by [1]. The first notion of approximability is known not to be
equivalent to the existence of a quantum algorithm: there are several constructions of f for which
Qε(f) is asymptotically larger than deg(f) [5, 2], with Qε(f) = Ω̃(deg2(f)) as the biggest currently
known gap [2]. We have shown that a similar gap holds for the second notion of approximability.
Thus, neither of the two notions is equivalent to the existence of a quantum algorithm in the general
case.

Three open problems are:

1. Equivalence between quantum algorithms and polynomials for more than 1 query?

Is it true that quantum algorithms with 2 queries are equivalent to polynomials of degree 4?
It is even possible that quantum algorithms with k queries are equivalent to polynomials of
degree 2k for any constant k - as long as the relation between the error of quantum algorithm
and the error of the polynomial approximation depends on k, as discussed in section 4.2.

2. From polynomials to quantum algorithms.

It would also be interesting to have more results about transforming polynomials into quan-
tum algorithms, even if such results fell short of a full equivalence between the two notions.
For example, if it was possible to transform polynomials of degree 3 into 2 query quantum
algorithms this would be an interesting result, even though it would be short of being an
equivalence (since 2 query quantum algorithms are transformable into polynomials of degree
4 and not 3).

3. Other notions of approximability by polynomials?

Until this work, there was a hope that the block-multilinear polynomial degree b̃mdeg(f) may
provide a quite tight characterization of the quantum query complexity Q(f). Now, we know
that the gap between bmdeg(f) and Q(f) can be as large as the best known gap between
deg(f) and Q(f). Can one come up with a different notion of polynomial degree that would
be closer to Q(f) than deg(f) or bmdeg(f)?
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Appendix

A Proof of Lemma 7

A.1 Additional Notation

The variables of the polynomial (1) correspond to rows and columns of the coefficient matrix
A = (aij). Hence, we can reword variable-splitting in terms of rows and columns of A, introducing
the operations of row-splitting and column-splitting.

Let ai· stand for the ith row (ai1, . . . , aim) of A and similarly a·j stand for the jth column
of A. Row-splitting (into k rows) takes a row ai· and replaces it with k equal rows ai·/k =
(ai1/k, . . . , aim/k). Similarly, column-splitting takes a column a·j and replaces it with k equal
columns a·j/k.

We also denote
‖A‖G = sup

k∈N
sup

pi,qj∈Rk

∀i:‖pi‖=1
∀j:‖qj‖=1

∑
i,j

aij 〈pi, qj〉.

Notice that ‖·‖G is a norm (and, in fact, it is the dual norm of the factorization norm γ2, see, e.g.,
[18]).

Let λmax(B) denote the maximal eigenvalue of a square matrix B; then

‖A‖2 = λmax

(
ATA

)
= λmax

(
AAT

)
. (3)

Suppose that A = (aij), i ∈ [n], j ∈ [m]. Denote

g(A) =
‖A‖

√
nm

‖A‖∞→1

.

By Γ(A) we denote the numerator ‖A‖
√
nm.

We say that a matrix A′ of size n′×m′ can be obtained from A if there exists a sequence of row
and column splittings that transforms A to the matrix A′; if A′ can be obtained from A, we denote
it by A −→ A′. Moreover, for simplicity we assume that no row or column is split repeatedly, i.e.,
if a row ai· is split into k rows ai·/k, then none of these obtained rows is split again.

By G(A) we denote the infimum of g(A′) over all matrices A′ which can be obtained from A:

G(A) := inf
A′:A−→A′

g(A′).

We have g(A) ≥ 1 for all matrices A. (To see this, we observe that ‖Ax‖1‖x‖∞ ≤
√
n‖Ax‖2
‖x‖2/

√
m

=
√
nm‖Ax‖2‖x‖2 .

Taking maximums over all x on both sides gives ‖A‖∞→1 ≤
√
nm‖A‖ which is equivalent to

g(A) ≥ 1.) Therefore, we also have G(A) ≥ 1.
It is possible to show that the assumption that no row or column is split repeatedly does not

alter the value of this infimum; more generally, one could consider weighted splitting of rows (or
columns), e.g., allowing to replace a row ai· with k rows wjai·, j ∈ [k], where wj are non-negative
weights satisfying w1 + . . . + wk = 1. Also in this case it is possible to show that the infimum of
g(A′) over all matrices A′, yielded by permitted splittings, has the same value as G(A).
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Let A denote the class of all matrices (with real entries) which do not contain zero rows or
columns. Notice that if A ∈ A and A −→ A′, then also A′ ∈ A. The class An,m contains all
matrices in A of size n×m.

By Rn+ we denote the set of all vectors w ∈ Rn such that wi > 0 for all i ∈ [n].
Using the introduced notation, we can restate Lemma 7:

Lemma 7’. For every matrix A we have

G(A) =
‖A‖G
‖A‖∞→1

≤ K. (4)

The inequality here is due to Grothendieck’s inequality, see, e.g., Theorem 4 of [18]. The
remaining part of this section is devoted to proving the equality in (4).

A.2 Splitting preserves the infinity-to-one norm

Here we show that splitting rows or columns does not change the norms ‖·‖∞→1 and ‖·‖G.

Lemma 17. For every matrix A ∈ A and every A′ s.t. A −→ A′ we have

‖A‖∞→1 =
∥∥A′∥∥∞→1

and ‖A‖G =
∥∥A′∥∥

G
.

Proof. Let a matrix A ∈ An,m be fixed. It is sufficient to show the statement for matrices A′ that
can be obtained by splitting a row ai· of A into l+ 1 rows ai·/(l+ 1) (these rows are indexed by i,
. . . , i+ l in A′).

Then
‖A‖∞→1 = max

x:‖x‖∞≤1
‖Ax‖1 = max

x∈{−1,1}n
‖Ax‖1 = max

x∈{−1,1}n
y∈{−1,1}m

xTAy.

Suppose that x ∈ {−1, 1}n , y ∈ {−1, 1}m are such that xTAy = ‖A‖∞→1. Notice that

xTAy =

n∑
k=1

xkak·y.

Let x′ ∈ {−1, 1}n+l be obtained from x by replacing xi with (xi, xi, . . . , xi) (i.e., the component
xi, corresponding to the split row ai·, is replicated l + 1 times) and these components are indexed
with i, . . . , i+ l in x′. Then

(x′)TA′y =
n+l∑
k=1

x′ka
′
k·y = (l + 1) · xi

ai·
l + 1

y +
∑
k 6=i

xkak·y =
n∑
k=1

xkak·y = ‖A‖∞→1 .

This shows that ∥∥A′∥∥∞→1
≥ ‖A‖∞→1 .

Suppose that x ∈ {−1, 1}n+l , y ∈ {−1, 1}m are such that

xTA′y =
∥∥A′∥∥∞→1

and the rows a′i′·, i
′ ∈ [i .. i+ l], are the rows ai·/(l + 1), obtained from ai·.
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Let x̃ ∈ Rn be such that

x̃k =


xk k = 1, 2, . . . , i− 1,

xk+l k = i+ 1, i+ 2, . . . , n,
xi+...+xi+l

l+1 , k = i.

Notice that

|x̃i| ≤
1

l + 1

i+l∑
k=i

|xk| = 1.

Thus ‖x̃‖∞ ≤ 1. On the other hand,

x̃TAy =
n∑
k=1

x̃kak·y =

∑
k∈[i .. i+l]

xk

l + 1
ai·y +

i−1∑
k=1

xkak·y +
n∑

k=i+1

xk+lak·y =
n+l∑
k=1

xka
′
k·y =

∥∥A′∥∥∞→1
.

Since
‖A‖∞→1 = sup

x∈Rn,y∈x∈Rm,
‖x‖∞≤1,
‖y‖∞≤1

xTAy,

this implies that
‖A‖∞→1 ≥

∥∥A′∥∥∞→1
.

Hence the two norms are equal.
Consider the norm

‖A‖G = sup
r∈N

sup
pk,qj∈Rr

∀k:‖pk‖=1
∀j:‖qj‖=1

∑
k,j

akj 〈pk, qj〉.

Let unit vectors pk, qj (in Rr for some r ∈ N) be fixed, k ∈ [n], j ∈ [m]. Choose n+ l unit vectors
as follows:

p′k =


pk, k < i,

pk−l, k = i+ l + 1, . . . , n+ l,

pi, k ∈ [i .. i+ l].

Then ∥∥A′∥∥
G
≥
∑
k,j

a′kj
〈
p′k, qj

〉
=
∑
k,j

akj 〈pk, qj〉.

Taking the supremum over all r and unit vectors pk, qj , we obtain∥∥A′∥∥
G
≥ ‖A‖G .

Let unit vectors pk, qj (in Rr for some r ∈ N) be fixed, k ∈ [n+ l], j ∈ [m].
Choose n unit vectors as follows:

p̃k =


pk, k < i,

pk+l, k = i+ 1, . . . , n,
pi+...+pi+l

l+1 , k = i.
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By the triangle inequality

‖p̃i‖ ≤
‖pi‖+ . . .+ ‖pi+l‖

l + 1
= 1.

Since
‖A‖G = sup

r∈N
sup

pk,qj∈Rr

∀k:‖pk‖=1
∀j:‖qj‖=1

∑
k,j

akj 〈pk, qj〉 = sup
r∈N

sup
pk,qj∈Rr

∀k:‖pk‖≤1
∀j:‖qj‖≤1

∑
k,j

akj 〈pk, qj〉,

we have ∑
k

∑
j

akj 〈p̃k, qj〉 ≤ ‖A‖G .

It follows that

∑
k,j

a′kj 〈pk, qj〉 =
∑

k/∈[i .. i+l]

∑
j

a′kj 〈pk, qj〉+
1

l + 1

i+l∑
k=i

∑
j

aij 〈pk, qj〉 =
∑
k

∑
j

akj 〈p̃k, qj〉 ≤ ‖A‖G .

Taking the supremum over all r and pk, qj , we obtain

‖A‖G ≥
∥∥A′∥∥

G
.

Hence the two norms are equal.

A.3 Characterization of row(column)-splitting

Lemma 18. Suppose that A ∈ An,m; for each i ∈ [n] the row ai· is split into ki rows and for each
j ∈ [m] the column a·j is split into lj rows; the resulting matrix is denoted by A′.

Then Γ(A′) =
∥∥∥Ã∥∥∥ ‖w‖ ‖v‖, where Ã = (ãij),

ãij =
aij
wivj

, i ∈ [n], j ∈ [m],

wi =
√
ki, vj =

√
lj .

Proof. The matrix A′ is of size (k1 + . . .+ kn)× (l1 + . . .+ lm) = ‖w‖2 ‖v‖2. Hence it is sufficient

to show that ‖A′‖ =
∥∥∥Ã∥∥∥.

We begin by showing this statement in case when l1 = l2 = . . . = lm = 1, i.e., only row-splitting
takes place.

Denote Mi = aTi·ai·. By (3),∥∥∥Ã∥∥∥2 = λmax(ÃT Ã),
∥∥A′∥∥2 = λmax(A′

T
A′),

Notice that

ÃT Ã =
(
w−11 aT1· w−12 aT2· . . . w−1n aTn·

)
w−11 a1·
w−12 a2·
. . .

w−1n an·

 =
n∑
i=1

w−2i Mi.
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Similarly it can be obtained that

A′
T
A′ =

n∑
i=1

ki∑
j=1

1

k2i
Mi.

Since
n∑
i=1

ki∑
j=1

1

k2i
Mi =

n∑
i=1

1

ki
Mi =

n∑
i=1

w−2i Mi,

we conclude that
A′
T
A′ = ÃT Ã,

which implies
∥∥∥Ã∥∥∥ = ‖A′‖.

Now consider the case of arbitrary lj ∈ N. Denote by B the n× (l1 + . . .+ lm) matrix, obtained
from A by splitting each of its columns a·j into lj columns. Then A −→ B −→ A′. By the previous
arguments, ∥∥A′∥∥ =

∥∥∥B̃∥∥∥ ,
where B̃ is B̃ is n× (l1 + . . .+ lm) matrix with ith row equal to ai1

l1
√
ki︸ ︷︷ ︸

repeated l1 times

ai2

l2
√
ki︸ ︷︷ ︸

repeated l2 times

. . .
aim

lm
√
ki︸ ︷︷ ︸

repeated lm times

 .

Then the transpose of B̃ can be obtained from the m× n matrix C = (Cji),

Cji =
aji√
ki
, i ∈ [n], j ∈ [m],

by splitting the jth row of C into lj rows.
By previous argument, ∥∥∥B̃T

∥∥∥ =
∥∥∥C̃∥∥∥ ,

where C̃ = ÃT . Thus we conclude∥∥A′∥∥ =
∥∥∥B̃∥∥∥ =

∥∥∥B̃T
∥∥∥ =

∥∥∥ÃT∥∥∥ =
∥∥∥Ã∥∥∥ .

This shows that Γ(A′), for every matrixA′ which can be obtained fromA by splitting rows/columns,
can be characterized by vectors w, v (s.t. the squares of components of w, v are rational numbers).
The converse is also true:

Lemma 19. Suppose that A ∈ An,m but vectors w ∈ Rn+, v ∈ Rm+ are such that w2
i ∈ Q, v2j ∈ Q

for all i, j. Then there exist numbers ki ∈ N and lj ∈ N such that splitting A’s ith row ai· into ki

rows and the jth column a·j into lj rows yields a matrix A′ such that Γ(A′) =
∥∥∥Ã∥∥∥ ‖w‖ ‖v‖ where∥∥∥Ã∥∥∥ = (ãij), ãij :=

aij
wivj

.
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Proof. First note that the statement is true if w2
i ∈ N and v2j ∈ N for all i, j, since then one takes

ki = w2
i and lj = v2j .

Since w2
i ∈ Q, v2j ∈ Q, we have w2

i = pi
p′i

and v2j =
qj
q′j

for some natural numbers pi, p
′
i, qj and q′j .

Denote P =
∏
i p
′
i and Q =

∏
j q
′
j . Let ŵi = wi

√
P , v̂j = vj

√
Q and Â = (âij), where

âij =
aij
ŵiv̂j

=
ãij√
PQ

.

Then ∥∥∥Â∥∥∥ =
1√
PQ

∥∥∥Ã∥∥∥ , ‖ŵ‖ =
√
P ‖w‖ , ‖v̂‖ =

√
Q ‖v‖ .

Thus ∥∥∥Ã∥∥∥ ‖w‖ ‖v‖ =
∥∥∥Â∥∥∥ ‖ŵ‖ ‖v̂‖ .

Moreover, ŵ2
i ∈ N, v̂2j ∈ N, thus one can take ki = ŵ2

i and lj = v̂2j . Now, by performing the
corresponding row/column splitting, one obtains a matrix A′ satisfying

Γ(A′) =
∥∥∥Â∥∥∥ ‖ŵ‖ ‖v̂‖ =

∥∥∥Ã∥∥∥ ‖w‖ ‖v‖ .
We can consider an even more general situation:

Lemma 20. Suppose that A ∈ An,m and w ∈ Rn+, v ∈ Rm+ .
Then there exist sequences (ki,N )N ⊂ N and (lj,N )N ⊂ N such that

lim
N→∞

Γ(A′N ) =
∥∥∥Ã∥∥∥ ‖w‖ ‖v‖ .

Here by Ã we denote the matrix with components ãij =
aij
wivj

, but A′N stands for the matrix

which is obtained from A by splitting its ith row ai· into ki,N rows and the jth column a·j into lj,N
rows.

Proof. We choose two sequences of vectors w(1), w(2), . . . and v(1), v(2), . . . so that w(N) ∈ Qn+ and

w = limN→∞w
(N) and similarly for v(N) and v. Let Ã(N) be a matrix with entries ã

(N)
ij =

aij
wivj

.

Then, by Lemma 19, there are matrices A′N such that Γ(A′N ) = ‖Ã(N)‖‖w(N)‖‖v(N)‖. Let ki,N
and li,N be the values of ki and li in the application of Lemma 19. By continuity, if N → ∞, we
have ‖w(N)‖ → ‖w‖, ‖v(N)‖ → ‖v‖, ‖Ã(N)‖ → ‖Ã‖.

Hence, limN→∞ Γ(A′N ) =
∥∥∥Ã∥∥∥ ‖w‖ ‖v‖.

Suppose that A ∈ An,m and w ∈ Rn+, v ∈ Rm+ are fixed. Let Ã be the matrix with components

ãij =
aij
wivj

.

Notice that Ã = D−1w AD−1v . Denote

FA(w, v) =
∥∥D−1w AD−1v

∥∥ ‖w‖ ‖v‖ .
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Then Claims 18 and 20 together imply that

inf
A′:A−→A′

Γ(A′) = inf
w∈Rn

+
v∈Rm

+

FA(w, v).

Denote the latter infimum with F TA . In view of Lemma 17 this means that

G(A) =
infA′:A−→A′ Γ(A′)

‖A‖∞→1

=
F TA

‖A‖∞→1

. (5)

A.4 Proof of Lemma 7’

We recall the following characterization of matrices with ‖A‖G ≤ 1; for a proof, see [21, p. 239].

Lemma 21. For every matrix A (of size n×n), the inequality ‖A‖G ≤ 1 holds iff there is a matrix

Ã (of size n×n) and vectors w, v ∈ Rn with non-negative components s.t. ‖w‖ = ‖v‖ = 1,
∥∥∥Ã∥∥∥ ≤ 1

and for all i, j ∈ [n]
aij = ãijwivj .

From this it is easy to obtain the following:

Lemma 22. For every matrix A ∈ An,n there exists a matrix Ã ∈ An,n and vectors w, v ∈ Rn+
s.t. ‖w‖ = ‖v‖ = 1,

∥∥∥Ã∥∥∥ = ‖A‖G and Ã = D−1w ADv. Moreover, w and v minimize the function

FA(·, ·), i.e.,

F TA =
∥∥∥Ã∥∥∥ ‖w‖ ‖v‖ = ‖A‖G .

Proof. Suppose that a matrix A ∈ An,n is scaled so that ‖A‖G = 1.

From Lemma 21 the existence of Ã with
∥∥∥Ã∥∥∥ ≤ 1 and w, v ∈ Rn+ with ‖w‖ = ‖v‖ = 1 follows.

Notice that wi 6= 0 and w′j 6= 0 for all i, j, since otherwise A /∈ A. Similarly, also Ã ∈ An,n must
hold.

We claim that
∥∥∥Ã∥∥∥ = 1. Assume the contrary,

∥∥∥Ã∥∥∥ = c ∈ (0, 1).

Let B̃ be a n× n matrix with
b̃ij = ãij/c,

then
∥∥∥B̃∥∥∥ = 1 and by Lemma 21 we have ‖B‖G ≤ 1, where B = A/c. But then

‖A‖G ≤ c < 1,

a contradiction. Thus
∥∥∥Ã∥∥∥

G
= 1.

To prove the second part of the statement, suppose that there are unit vectors ŵ, v̂ ∈ Rn+ such

that FA(ŵ, v̂) = s < 1. Let X̃ = D−1ŵ AD−1v̂ /s, then
∥∥∥X̃∥∥∥ = 1. By Lemma 21 we have ‖X‖G ≤ 1,

where X = A/s. But then ‖A‖G ≤ s < 1, a contradiction.
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Proof of Lemma 7’. The case of A ∈ A.
Notice that

inf
A′:A−→A′

Γ(A′) = inf
A′:A′′−→A′

Γ(A′),

where A′′ is any matrix s.t. A −→ A′′. This means that

F TA = F TA′ , if A −→ A′.

To apply Lemma 22, transform A into a square matrix A′ by splitting a row or a column. Then

F TA = F TA′
Lemma 22

=
∥∥A′∥∥

G

Lemma 17
= ‖A‖G

and, by (5),

G(A) =
‖A‖G
‖A‖∞→1

,

proving (4) for all A ∈ A.
It remains to show that (4) holds for all matrices A.
The case of A /∈ A. Suppose that A is a n ×m matrix and there are k zero rows and l zero

columns. W.l.o.g. assume the non-zero rows/columns are the first, then

A =

(
Â 0n−k,l

0k,m−l 0k,l

)
,

where Â ∈ An−k,m−l (and 0a,b stands for the zero matrix of size a× b). Notice that

g(Â) =

∥∥∥Â∥∥∥√(n− k)(m− l)∥∥∥Â∥∥∥
∞→1

=
‖A‖

√
(n− k)(m− l)
‖A‖∞→1

<
‖A‖
√
nm

‖A‖∞→1

= g(A).

By the previous case, we have

G(Â) =

∥∥∥Â∥∥∥
G∥∥∥Â∥∥∥
∞→1

=
‖A‖G
‖A‖∞→1

.

Clearly, for every A′ with A −→ A′ we have Â′ s.t. Â −→ Â′ and g(Â′) ≤ g(A′) (take Â′ to be
the minor of A′, obtained by skipping all zero rows or columns). Then

G(Â) ≤ g(Â′) < g(A′).

Taking infimum over all A′ s.t. A −→ A′, inequality G(Â) ≤ G(A) follows.
On the other hand, for every Â′ s.t. Â −→ Â′ we have a sequence (AN )N∈N with A −→ AN for

all N and limN→∞ g(AN ) = g(Â′): take the matrix

B =

(
Â′ 0p,l
0k,q 0k,l

)
,

where Â′ is of size p × q (i.e., B is the matrix obtained by splitting the non-zero part of A in the
same way how we split Â to obtain Â′). Then the matrix AN is obtained by splitting each row bi·,
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i ∈ [p] of B, and each column b·j , j ∈ [q] of B into N rows/columns. We have A −→ B −→ AN and
the resulting matrix AN is of size (Np+ k)× (Nq + l). We denote the upper Np×Nq submatrix
of AN by BN . Then BN = 1

N2 Â
′ ⊗ JN,N , where JN,N is the N ×N all-1 matrix.

We have

‖AN‖ = ‖BN‖ =

∥∥∥Â′∥∥∥
N

;

‖AN‖∞→1 = ‖BN‖∞→1 =
∥∥∥Â′∥∥∥

∞→1
;

g(AN ) =
‖AN‖

√
(Np+ k) · (Nq + l)

‖AN‖∞→1

=
‖BN‖

√
(Np+ k) · (Nq + l)

‖BN‖∞→1

=

∥∥∥Â′∥∥∥√pq∥∥∥Â′∥∥∥
∞→1

·

√
Np+ k

Np
· Nq + l

Nq
= g(Â′)

√(
1 +

c1
N

)(
1 +

c2
N

)
,

where c1 = k/p, c2 = l/q.
We see that

G(A) ≤ lim
N→∞

g(AN ) = g(Â′).

Taking infimum over all Â′ s.t. Â −→ Â′, inequality G(Â) ≥ G(A) follows. Hence the two quantities
must be equal.

B Proof of Lemma 11

B.1 Proof overview

Equivalently, we can construct a block-multilinear polynomial h : Rd(n+1) → R which satisfies the
following equality

h (1, x1, . . . , xn, 1, x1, . . . , xn, . . . , 1, x1, . . . , xn) = g(x1, . . . , xn)

for all x1, . . . , xn ∈ R and |h(y)| ≤ B(d) for all y ∈ {−1, 1}d(n+1).
We expand the polynomial g in the Fourier basis as

g(x) =
∑
T⊂[n]:
|T |≤d

ĝTχT (x),

where χT (x) =
∏
i∈T xi. For each χT (x), we define a corresponding block multilinear polynomial

χ′T

(
z(1), z(2), . . . , z(d)

)
=

∑
B⊂[d]:
|B|=|T |

∑
b:

b:B→T
b – bijection

(d− r)!
d!

∏
j∈B

z
(j)
b(j)

∏
k∈[d]\B

z
(k)
0 .

where r = |T |. We then take

h
(
z(1), z(2), . . . , z(d)

)
=
∑
T

ĝTχ
′
T

(
z(1), z(2), . . . , z(d)

)
.
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If we set

ẑ
(j)
k =

{
1, k = 0;

xk, k ∈ [n]

for some x ∈ Rn, we get

χ′T

(
ẑ(1), ẑ(2), . . . , ẑ(d)

)
=

∑
B⊂[d]:
|B|=|T |

∑
b:

b:B→T
b – bijection

(d− r)!
d!

∏
j∈B

xb(j) =

(
d

r

)
r!

(d− r)!
d!

∏
j∈T

xs = χT (x)

and, therefore, h (1, x, 1, x, . . . , 1, x) = g(x).
Since h is multilinear, its maximum over z(j) ∈ [−1; 1]n+1, j ∈ [d], coincides with its maximum

over z(j) ∈ {−1, 1}n+1, j ∈ [d]. Moreover, we can assume that z
(j)
0 = 1 for all j ∈ [d]. (If z

(j)
0 = −1,

we multiply all z
(j)
i by -1 and |h

(
z(1), z(2), . . . , z(d)

)
| stays unchanged.) Therefore, if we define

h′
(
x(1), x(2), . . . , x(d)

)
= h

(
1, x(1), 1, x(2), . . . , 1, x(d)

)
,

the maximum of |h
(
z(1), . . . , z(d)

)
| over z(j) ∈ {−1, 1}n+1, j ∈ [d] is the same as the maximum of

|h′
(
x(1), . . . , x(d)

)
| over x(j) ∈ {−1, 1}n, j ∈ [d].

We have h′
(
x(1), . . . , x(d)

)
=
∑

T ĝTχ
′′
T

(
x(1), . . . , x(d)

)
where

χ′′T

(
x(1), x(2), . . . , x(d)

)
=

∑
B⊂[d]:
|B|=|T |

∑
b:

b:B→T
b – bijection

(d− r)!
d!

∏
j∈B

x
(j)
b(j).

In section B.2, we show

Lemma 23. For all u(1), . . . , u(m) ∈ Rn and all T ⊆ [n], |T | ≤ m, we have

χ′′T

(
u(1), u(2), . . . , u(m)

)
=

1

m!

∑
S⊂[m]:
S 6=∅

(−1)m−|S| |S|m χT

(∑
j∈S u

(j)

|S|

)
(6)

By multiplying (6) with ĝT and summing over all T : |T | ≤ d, we get

h′
(
x(1), x(2), . . . , x(d)

)
=

1

d!

∑
S⊂[d]:
S 6=∅

(−1)d−|S| |S|d g

(∑
j∈S x

(j)

|S|

)
.

By taking absolute values, we get

∣∣∣h′ (x(1), x(2), . . . , x(d))∣∣∣ ≤ 1

d!

∑
S⊂[d]:
S 6=∅

|S|d
∣∣∣∣∣g
(∑

j∈S x
(j)

|S|

)∣∣∣∣∣ .
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For all x(1), . . . , x(d) ∈ {−1, 1}n and any nonempty S ⊂ [d], we have
∑

j∈S x
(j)

|S| ∈ [−1; 1]n. Since

g is multilinear and satisfies |g(x)| ≤ 1 for all x ∈ {−1, 1}n, then g also satisfies |g(x)| ≤ 1 for all
x ∈ [−1; 1]n. We conclude that the maximum of

∣∣h (x(1), x(2), . . . , x(d))∣∣ is at most

1

d!

∑
S⊂[d]:
S 6=∅

|S|d =
1

d!

d∑
s=1

(
d

s

)
sd := B(d).

It remains to show that B(d) = Θ
(
αd
√
d

)
. Let β = 1/α = W (1/e). It is known [17] that

d∑
s=1

(
d

s

)
sd ∼ 1√

1 + β

(
d

eβ

)d
.

By Stirling’s formula,

d! ∼
√

2πd

(
d

e

)d
.

Thus

B(d) ∼ 1√
2π(1 + β)d

(
d

eβ

)d(d
e

)−d
=

αd√
2π(1 + β)d

= Θ

(
αd√
d

)
.

B.2 Proof of Lemma 23

We start with proving two auxiliary lemmas.

Lemma 24. Suppose that l,m ∈ N, l ≤ m and k ∈ [0 ..m− k]. Then we have

m∑
s=l

(−1)m−s sk

(m− s)! (s− l)!
=

{
0, k < m− l,
1, k = m− l.

Proof. Let ∆ be the difference operator: ∆f = f(x + 1) − f(x), where f : R → R. We then have
([15], equation (5.40)):

∆nf(x) =

n∑
t=0

(
n

t

)
(−1)n+tf(n+ t),

where n ∈ N. Apply this to f(x) = xk, where k ∈ [0 .. n] and notice that if k < n then ∆nf = 0
and if k = n then ∆nf = n!:

n∑
t=0

(
n

t

)
(−1)n+t(x+ t)k =

{
0, k < n

n!, k = n,
for all x ∈ R.

Multiplying this equality with (−1)n+k

n! yields

n∑
t=0

(−1)t(x− t)k

(n− t)! t!
=

{
0, k < n

1, k = n,
for all x ∈ R.
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Now let n = m− l, x = m, t = m− s, then s = m− t ∈ [l ..m] and we obtain the desired equality:

m∑
s=l

(−1)m−ssk

(m− s)! (s− l)!
=

{
0, k < m− l
1, k = m− l.

Lemma 25. Suppose that d,m, n ∈ N, d ≤ m and d ≤ n. Let χ : Rn → R be defined with

χ(u1, . . . , un) = u1u2 . . . ud.

Then the following identity holds for all u(1), . . . , u(m) ∈ Rn:

∑
T⊂[m]:
T 6=∅
|T |≤d

(m− |T |)!
(d− |T |)!

(−1)d−|T | χ

∑
j∈T

u(j)

 =
∑
S⊂[m]:
S 6=∅

(−1)m−|S| |S|m−d χ

∑
j∈S

u(j)

 .

Proof. Fix arbitrary vectors u(1), . . . , u(m) ∈ Rn. Notice that for all nonempty S ⊂ [m] we have

χ

∑
j∈S

u(j)

 =
∑
i:

i:[d]→S

u
(i(1))
1 u

(i(2))
2 · · ·u(i(d))d .

It follows that we have to show∑
T⊂[m]:
T 6=∅
|T |≤d

(m− |T |)!
(d− |T |)!

(−1)d−|T |
∑
i:

i:[d]→T

u
(i(1))
1 u

(i(2))
2 · · ·u(i(d))d

=
∑
S⊂[m]:
S 6=∅

(−1)m−|S| |S|m−d
∑
b:

b:[d]→S

u
(b(1))
1 u

(b(2))
2 · · ·u(b(d))d . (7)

We proceed by showing that coefficients at every monomial in the LHS and RHS of (7) are the
same.

Fix an arbitrary monomial u
(l1)
1 . . . u

(ld)
d . Let L = {l1, . . . , ld} ⊂ [n] (the size of L, of course,

may be less than d). For each S ⊃ L there is a unique map b : [d] → S such that b(i) = li for all

i ∈ [d]. On the other hand, if L 6⊂ S, there is no such map. Hence the coefficient at u
(l1)
1 . . . u

(ld)
d in

the RHS of (7) is equal to ∑
S⊂[m]:
L⊂S

(−1)m−|S| |S|m−d .

By similar arguments, the coefficient at u
(l1)
1 . . . u

(ld)
d in the LHS of (7) is equal to∑

T⊂[m]:
|T |≤d
L⊂T

(m− |T |)!
(d− |T |)!

(−1)d−|T |.
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Thus we need to show that∑
T⊂[m]:
|T |≤d
L⊂T

(m− |T |)!
(d− |T |)!

(−1)d−|T | =
∑
S⊂[m]:
L⊂S

(−1)m−|S| |S|m−d . (8)

Let l = |L|. It is easy to see that there are exactly
(
m−l
s−l
)

sets S of size s such that L ⊂ S ⊂ [m].

Similarly, there are exactly
(
m−l
t−l
)

sets T of size t such that L ⊂ T ⊂ [m]. It follows that (8) is
equivalent to

d∑
t=l

(m− t)!
(d− t)!

(−1)d−t
(
m− l
t− l

)
=

m∑
s=l

(−1)m−ssm−d
(
m− l
t− l

)
, (9)

which can be simplified to

d∑
t=l

(−1)d−t

(d− t)! (t− l)!
=

m∑
s=l

(−1)m−s
sm−d

(m− s)! (s− l)!
. (10)

By Lemma 24, the RHS of (10) equals

m∑
s=l

(−1)m−s
sm−d

(m− s)! (s− l)!
=

{
0, l < d

1, l = d.

On the other hand, again by Lemma 24,

d∑
t=l

(−1)d−t

(d− t)! (t− l)!
=

{
0, 0 < d− l
1, 0 = d− l.

Thus (10) holds, which shows the statement.

We now prove lemma 23.
If T = ∅, the desired equality becomes

1 =
1

m!

m∑
s=1

(−1)m−s
(
m

s

)
sm. (11)

Since the RHS of (11) is
m∑
s=1

(−1)m−s
sm−1

(m− s)!(s− 1)!
,

we see that (11) follows from Lemma 24.
Hence, we can assume that T is non-empty. We now denote d = |T |. W.l.o.g. we can suppose

that T = [d]. For brevity, we denote χT as simply χ.
We obviously have that χ(cx) = cdχ(x) for all scalars c. Thus, we have to show the equality

∑
J⊂[m]:
|J |=d

∑
b:

b:J→[d]
b – bijection

∏
j∈J

u
(j)
b(j) =

1

(m− d)!

∑
S⊂[m]:
S 6=∅

(−1)m−|S| |S|m−d χ

∑
j∈S

u(j)

 . (12)
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Fix any J ⊂ [m] of size d. To simplify the notation we assume that J = [d]. We consider
G : Rnd → R defined by

G
(
u(1), u(2), . . . , u(d)

)
=

∑
i:

i : [d]→[d]
i - bijection

u
(i(1)))
1 u

(i(2))
2 . . . u

(i(d))
d . (13)

We can view G as a map G : Ed → R, where E = Rn, which is

• d-linear: for all u(1), . . . , u(d), v ∈ E, α, β ∈ R and all i ∈ [d] we have

G
(
u(1), u(2), . . . , u(i−1), αu(i) + βv, u(i+1), . . . , u(d)

)
=

= αG
(
u(1), . . . , u(i−1), u(i), u(i+1), . . . , u(d)

)
+ βG

(
u(1), . . . , u(i−1), v, u(i+1), . . . , u(d)

)
,

• symmetric: for all bijections σ : [d]→ [d] and all u(1), . . . , u(d) ∈ E we have

G
(
u(1), u(2), . . . , u(d)

)
= G

(
u(σ(1)), u(σ(2)), . . . , u(σ(d))

)
.

As shown by Thomas ([24], Eq. (7) and (3)), we have

Lemma 26. [24] If G is d-linear and symmetric, we have

d!G
(
u(1), u(2), . . . , u(d)

)
=

∑
T⊂[d], T 6=∅

(−1)d−|T |g

∑
j∈T

u(j)

 ,

where g(x) := G(x, x, . . . , x).

For our choice of G (equation (13)), we have g(x) = d!χ(x). Therefore,

∑
i:

i : [d]→[d]
i - bijection

u
(i(1)))
1 u

(i(2))
2 . . . u

(i(d))
d =

∑
T⊂[d]
T 6=∅

(−1)d−|T |χ

∑
j∈T

u(j)

 .

If we perform the same argument with an arbitrary J : |J | = d instead of J = [d], we get

∑
i:

i : J→[d]
i - bijection

∏
j∈J

u
(i(j)))
j =

∑
T⊂J
T 6=∅

(−1)d−|T |χ

∑
j∈T

u(j)

 .

By summing over all J and combining the result with (12), we get that

∑
J⊂[m]:
|J |=d

∑
T⊂J
T 6=∅

(−1)d−|T |χ

∑
j∈T

u(j)

 =
1

(m− d)!

∑
S⊂[m]:
S 6=∅

(−1)m−|S| |S|m−d χ

∑
j∈S

u(j)

 . (14)
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Let a set T ⊂ [m] of size |T | ≤ d be fixed. Then there are
(m−|T |
d−|T |

)
sets J ⊂ [m] of size |J | = d

satisfying T ⊂ J . Hence (14) can be rewritten as

∑
T⊂[m]:
T 6=∅
|T |≤d

(
m− |T |
d− |T |

)
(−1)d−|T |χ

∑
j∈T

u(j)

 =
1

(m− d)!

∑
S⊂[m]:
S 6=∅

(−1)m−|S| |S|m−d χ

∑
j∈S

u(j)

 . (15)

But this equality (after multiplying it by (m− d)!) follows from Lemma 25, concluding the proof.

C Proof of Theorem 15

We use the notion of certificate complexity. Let C be an assignment of values C : S → {0, 1} for
some S ⊆ [n]. We say that x = (x1, . . . , xn) is consistent with C if it satisfies xi = C(i) for all
i ∈ S. We say that C is a certificate for f on an input x if x is consistent with C and, for any
y ∈ {0, 1}n that is consistent with C, we have f(y) = f(x).

The certificate complexity of f on an input x (denoted by C(f, x)) is the smallest |S| in a
certificate C for f on the input x. The certificate complexity of f (denoted C(x)) is the maximum of
C(f, x) over all x ∈ {0, 1}n. (For more information on the certificate complexity and its connections
to other complexity measures, we refer the reader to the survey by Buhrman and de Wolf [12].)

We use the same function as in the Q(f) = Ω̃(deg2(f)) result of Aaronson et al. [2]. The
construction of this function [2] starts by designing a function g : {−1, 1}n → {0, 1} with Q(g) =
Ω̃(n) and C(g) = Õ(

√
n). (We omit the definition of g because Q(g) = Ω̃(n) and C(g) = Õ(

√
n)

are the only properties of g that we use.)
Then, they define f as follows:

1. The first c = 10n log n input variables of f are interpreted as c inputs x(1) ∈ {0, 1}n, . . . , x(c) ∈
{0, 1}n to the function g.

2. These input variables are followed by 2c groups of variables y(m), m ∈ {0, 1}c, with each group
containing cC(g) log n variables. The content of each y(m) is interpreted as descriptions for
c sets S1, . . . , Sc ⊆ [n] with |Sj | = C(g). A set Sj is interpreted as a sequence of indices for
C(g) variables for the function g(x(j)).

3. f = 1 if and only if, for some m ∈ {0, 1}c, the group y(m) contains descriptions for sets Si

such that, for each i ∈ [c], the variables x
(i)
j , j ∈ Si form an mi-certificate.

As shown in [2], f satisfies Q(f) = Ω̃(n) and deg(f) = Õ(
√
n). A polynomial p of degree Õ(

√
n)

that represents f can be constructed as follows:

1. p =
∑

m∈{0,1}c pm;

2. pm =
∑

S1,...,Sc
pm,S1,...,Sc , with the summation over all tuples (S1, . . . , Sc) such that, for all

i ∈ [c], Si is a possible certificate for g(x) = mi;

3. pm,S1,...,Sc = qm,S1,...,Sc

∏c
i=1 ri,mi,Si ;

4. qm,S1,...,Sc = 1 if the contents of y(m) describe sets S1, . . . , Sc and qm,S1,...,Sc = 0 otherwise;
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5. ri,mi,Si = 1 if the values of variables x
(i)
j , j ∈ Si certify that g(x(i)) = mi and ri,mi,Si = 0

otherwise.

In the non-block-multilinear case, qm,S1,...,Sc is the product of
1+y

(m)
i
2 ’s (for i’s where we need

y
(m)
i = 1) and

1−y(m)
i
2 ’s (for i’s where we need y

(m)
i = −1). ri,mi,Si is constructed similarly, by

taking a product of
1+x

(i)
j

2 ’s and
1−x(i)j

2 ’s for j ∈ Si, to obtain the condition that xij take the values

that are necessary so that xij , j ∈ Si certify g(x(i)) = mi.

We now modify this construction to obtain bmdeg(f) = Õ(
√
n). Our polynomial has blocks

of variables z(i), for i ∈ [cC(g)(log n + 1)], with each z(i) consisting of a variable z
(i)
0 , c subblocks

x(i,1), . . . , x(i,c) and 2c subblocks y(i,m) for m ∈ {0, 1}c.
The structure of the polynomial p stays the same and we only modify the constructions of

qm,S1,...,Sc and ri,mi,Si . To construct qm,S1,...,Sc , we use the first cC(g) log n blocks z(i), taking the

value of y
(m)
i from the ith block and using z

(i)
0 instead of 1 in the terms

1±y(m)
i
2 .

To construct ri,mi,Si , we use z(k) for k ∈ {(c log n+ (i− 1))C(g) + 1, . . . , (c log n+ i)C(g)} and

take ri,mi,Si to be the average of the desired product of
z
(k)
0 +x

(k,i)
j

2 ’s and
z
(k)
0 −x

(k,i)
j

2 ’s over all the ways

how one could use one term per block z(k).
It is easy to see that, if all blocks z(i) contain the same assignment z, then p(z, . . . , z) is the

same polynomial as in the non-block-multilinear case and is equal to f(z). We now show that
|p| ≤ 1 for any choice of z(1), z(2), . . . in which all the variables are in {−1, 1}.

For each m, all polynomials qm,S1,...,Sc use the same variables z
(i)
0 and y

(i,m)
i and are defined

so that, for any choice of values for z
(i)
0 ’s and y

(i,m)
i ’s, at most one of qm,S1,...,Sc is ±1 and the

rest are 0. Let Sm,1, . . . , Sm,c be the sets for which qm,Sm,1,...,Sm,c = ±1 (if such sets exist). Then,

p(z(1), . . . , z(cC(g)(logn+1))) is equal to the sum

∑
m∈{0,1}c

am

c∏
i=1

ri,mi,Sm,i (16)

for some choice of signs am ∈ {−1, 1}. We show

Lemma 27. Let Sm,i, m ∈ {0, 1}c, i ∈ [c] be such that Sm,i is an mi-certificate for the function g.
Then, ∣∣∣∣∣∣

∑
m∈{0,1}c

am

c∏
i=1

ri,mi,Sm,i

∣∣∣∣∣∣ ≤ 1

for any choice of signs am ∈ {−1, 1}.

Proof. By induction on c. For c = 1, this simplifies to

− 1 ≤ a0r1,0,S0,1 + a1r1,1,S1,1 ≤ 1 (17)

when S0,1 is a set of variables for a 0-certificate and S1,1 is a set of variables for a 1-certificate. Since
a 0-certificate and a 1-certificate cannot be true at the same time, there must be j ∈ S0,1 ∩ S1,1
with xj taking one value in the 0-certificate and another value in the 1-certificate.
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Let p0 be the probability that, when we choose a block z(i) randomly among the blocks that

are used to define r1,m1,S1 ’s, we get the value of x
(i,1)
j which matches the 0-certificate. Then, the

probability of getting the value that matches the 1-certificate is 1−p0 and we get that r1,0,S0,1 ≤ p0
and r1,1,S1,1 ≤ 1− p0. This implies (17) for any choice of signs a0, a1 ∈ {−1, 1}.

For c > 1, we can use the same argument to show that, for any m ∈ {0, 1}c−1, we have
rc,0,Sm0 ≤ pm and rc,1,Sm1 ≤ 1− pm for some pm that depends on m. Therefore, the sum of Lemma
27 is upper bounded by

∑
m∈{0,1}c−1

(
pmam0

c−1∏
i=1

ri,mi,Sm0,i + (1− pm)am1

c−1∏
i=1

ri,mi,Sm1,i

)
.

We can express this sum as a probabilistic combination of sums

∑
m∈{0,1}c−1

am

c−1∏
i=1

ri,mi,Sm,i (18)

where each Sm,i is either Sm0,i or Sm1,i and each am is either am0 or am1. Each of sums (18) is at
most 1 in absolute value by the inductive assumption.
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