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Abstract

We study coding schemes for multiparty interactive communication over synchronous networks
that suffer from stochastic noise, where each bit is independently flipped with probability ε. We
analyze the minimal overhead that must be added by the coding scheme in order to succeed in
performing the computation despite the noise.

Our main result is a lower bound on the communication of any noise-resilient protocol over a
star network with n-parties. Specifically, we show a task that can be solved by communicating
Tn bits over the noise-free network, but for which any protocol with success probability of 1− o(1)
must communicate at least Ω(Tn logn

log logn ) bits when the channels are noisy. By a 1994 result
of Rajagopalan and Schulman, the slowdown we prove is the highest one can obtain on any
topology, up to a log log n factor.

We complete our lower bound with a matching coding scheme that achieves the same overhead;
thus, the capacity of star networks is Θ(log log n/ log n). Our bounds prove that, despite several
previous coding schemes with rate Ω(1) for certain topologies, no coding scheme with constant
rate Ω(1) exists for arbitrary n-party noisy networks.
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1 Introduction

Assume a network of n remote parties who perform a distributed computation of some function of
their private inputs, while their communication may suffer from stochastic noise. The task of coding
for interactive communication seeks for coding schemes that allow the parties to correctly compute
the needed function while limiting the overhead occurred by the coding. For the two party case,
n = 2, Schulman, in a pioneering line of results [Sch92, Sch93, Sch96], showed how to convert any
protocol that takes T rounds when the communication is noiseless, into a resilient protocol that
succeeds with high probability and takes O(T ) rounds when the communication channel is a binary
symmetric channel (BSC)1, that is, when the communication may suffer from random noise.

For the general case of n parties, Rajagopalan and Schulman [RS94] showed a coding scheme
that succeeds with high probability and takes O(T log n) rounds in the worst case. Here, a “round”
means simultaneous communication of a single bit over each one of the channels. More precisely, the
communication of the coding scheme in [RS94] depends on the specific way the parties are connected
to each other. Specifically, the scheme takes O(T log(d+ 1)) rounds, where d is the maximal number
of neighbors a party may have. Thus, for certain topologies like a line or a cycle, the slowdown is
constant O(1), however in the worst case, i.e., when the topology is a complete graph, the scheme
has a slowdown of O(log n).

The work of Alon et al. [ABE+15] shows how to improve the O(log n) slowdown when the
network’s topology is a complete graph. Specifically, they provide a coding scheme with high
probability of success and slowdown of O(1) for a rich family of “highly connected” topologies,
including the complete graph. Therefore, a constant-slowdown coding scheme is achievable either
when the degree is constant [RS94], or when the connectivity is large [ABE+15], i.e., when many
disjoint paths connect every two parties.

The main outstanding open question left by these works is whether a constant-slowdown coding
scheme can be obtained for all topologies. We answer this question in the negative and show a lower
bound on the overhead of any coding scheme with high probability of success, over a star network:

Theorem 1.1 (main, lower bound). Assume n parties connected as a star, and let ε < 1/2 be
given. There exists an n-party protocol χ that takes T rounds assuming noiseless channels, such
that any coding scheme that simulates χ with probability above 1/5 when each channel is a BSCε,
takes Ω(T logn

log logn) rounds.

By making “running χ” the interactive task to be performed, Theorem 1.1 implies the Ω( logn
log logn)

slowdown in interactive coding. By [RS94], our result is tight up to an O(log logn) factor, since
all topologies admit a scheme with a O(log n) slowdown. On the other hand, we show that coding
with a slowdown of O( logn

log logn) is achievable and therefore tight for interactive coding over a star
topology.

Theorem 1.2 (upper bound). Assume n parties connected as a star, and let ε < 1/2. For any
n-party protocol χ that takes T rounds assuming noiseless channels, there exists a coding scheme
that simulates χ assuming each channel is a BSCε, takes N = O(T logn

log logn) rounds, and succeeds

with probability 1− 2−Ω(N).

1The BSC channel, parametrized by a probability ε, flips each bit independently with probability ε, and leaves the
bit unflipped with probability 1 − ε.
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The upper bound follows quite straightforwardly from an observation by Alon et al. [ABE+15],
showing that as long as one round of the noiseless χ can be simulated with high probability, then the
entire protocol χ can be simulated with a high probability by employing the techniques of [RS94].
Over a star, it is quite simple to simulate log logn rounds of an arbitrary noiseless χ using only
O(log n) noisy rounds, with high probability. Thus, we can apply the technique of [ABE+15, RS94]
on segments of log log n rounds of χ, and achieve the stated coding scheme. We prove Theorem 1.2
in Section 4.

We devote Section 5 to prove the more involved lower bound of Theorem 1.1. Below we give a
rather intuitive overview of our lower bound result and the techniques we use.

1.1 Lower Bound: Overview and Techniques

In order to achieve our lower bound of Ω( logn
log logn) on the overhead, we consider protocols for the

pointer jumping task of depth T , between n parties (also called clients) and the center of the star
(also called the server). In the pointer jumping task, each client gets as an input a binary tree of
depth T , where each edge is labeled with a single bit. The server’s input is a 2n-ary tree of depth T
where each edge is labeled with an n-bit string. Solving the pointer jumping task is equivalent to
performing the following protocol: all parties begin from the root of their trees. At each round,
simultaneously for 1 ≤ i ≤ n, the i-th client receives a bit bi from the center and descends in his
tree to the bi-th child of its current node. The client then sends back to the server the label of
the edge through which it traversed. The server receives, at each round, the string B = b1 · · · bn
from the clients and descends to the B-th child of its current node. If the edge going to that node
is labeled with the n-bit string b′1 · · · b′n, then the server sends b′i to the i-th client. The process
then repeats, until the parties reach the T -th level in their respective tree. At the end, each party
outputs the leaf it has reached (or equivalently, it outputs the “path” it traversed). Note that the
T -level pointer jumping task can be solved using 2T rounds of alternating noiseless communication.
By alternating we mean here that the server speaks on, say, odd rounds, while the clients speak on
even rounds. Also note that the pointer jumping task is complete for interactive communication,
i.e., any interactive protocol for n+ 1 parties connected as a star can be represented as a specific
input-instance of the above pointer jumping task. See Section 3 for further details about the
multiparty pointer jumping task.

Next we assume the channels are noisy. In fact, we can weaken the noise model and assume
that the noise erases bits rather than flipping them, that is, we consider the binary erasure channel,
BECε; see Definition 2.1. Note that since the considered noise model is weaker, our lower bound
becomes stronger.

Consider any protocol that solves the pointer jumping task of depth T assuming the channels
are BECε. We divide the protocol into segments of length 0.1 log n rounds each and show that at
each such segment the protocol “advances” by at most O(log log n) levels in the underlying pointer
jumping task, in expectation. Very roughly, the reason for this slow progress follows from the
observation that during each segment of 0.1 log n rounds, with high probability there exists a set
of
√
n clients whose communication was completely erased. It follows that the server is missing

knowledge on
√
n parties and thus cannot infer its next node with high probability. On average, the

server sends a very small amount of information on the labels descending from its current node that
belong to the “correct” path. As a result, the clients practically receive no meaningful information
on the next level(s) of the server. This in turn limits the amount of information they can send on
their “correct” paths to O(log logn) bits in expectation, thus limiting the maximal advancement in
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the underlying pointer jumping task. For instance, if some client who does not know the correct
path in his input pointer-jumping tree, communicates to the server all the labels descending from
its current node, say in a breadth-first manner, the information sent during 0.1 log n rounds can
contain at most O(log log n) levels of this client’s correct path.

Not surprisingly, the technical execution of the above strategy requires tools for careful and
accurate bookkeeping of the information the parties have learned at any given time of the (noisy)
execution. The basic definition of information a party has about a random variable X sampled from

a space ΩX we employ is I(X)
def
= log |ΩX | −H(X), where H(X) is Shannon’s entropy of X given

the party’s current knowledge. Note that if a-priori X is uniformly distributed, I(X) is exactly
the mutual information between what the party knows and X. However, our information notion
behaves more nicely under conditioning (i.e. when changing what the party knows about X as the
protocol progresses), and seems generally easier to work with.

A central notion in our analysis is the cutoff round of the protocol, which relates to the deepest
level of the underlying pointer jumping task that the parties can infer from the communication they
have received so far. Very roughly, if the cutoff is k, then parties have small information on labels
below level k in the underlying tree of the party (or parties) connected to them. More precisely, for
any (partial) transcript π the parties observe, we define cutoff(π) to be the minimal round 1 ≤ k ≤ T
for which the parties have small amount of information about labels in the underlying pointer
jumping task that lie in the subtree rooted at the end of the correct path of depth k, conditioned on
the transcript π and on the correct path up to level k (see Definition 5.2 for the exact formulation).

The core of our analysis shows that, given a certain cutoff, cutoff(π) = `, and assuming the
parties communicate the next 0.1 log n rounds of the protocol (denote the observed transcript in
this new part as Πnew), then in expectation over the possible inputs, noise, and randomness of the
protocol, the cutoff does not increase by more than O(log log n); that is,

E[cutoff(π,Πnew) | cutoff(π) = `] ≤ `+O(log log n).

This implies that, unless the protocol runs for Ω(T logn
log logn) rounds, then the cutoff at the end of

the protocol is substantially smaller than T , with high probability. Using Fano’s inequality, this in
turn implies that the protocol cannot output the correct path (beyond the cutoff round) with high
probability.

Bounding the information revealed by the parties at each step is the deepest technical contribution
of this paper, and is done in methods which are close at spirit to a technique by Kol and Raz [KR13]
for obtaining lower bounds in the two-party case.2 We bound separately the information that the
server reveals and the information the clients reveal in each segment of 0.1 log n rounds (conditioned
on a given cutoff level, i.e., on the transcript of the protocol so far and on the correct path up to
the cutoff level).

Very informally, we show that the information revealed during a single chunk on labels below
a continuation of the correct path (i.e., the information captured by the “new” cutoff), can be
bounded by the product of (i) the probability to guess the continuation of the correct path (between
the current and the new cutoff levels), and (ii) the information that the transcript so far contains
on all the labels (either on the correct path or not) that lie below the new cutoff level. Indeed, if a
party wants to give information about the labels of its correct path, but that party doesn’t know
the correct path, it can’t do much more than guessing the path and sending information about that

2In fact, it is an interesting question whether our techniques can be used to simplify the analysis in [KR13].
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guess; alternatively, it can give information on labels in all possible paths, where the amount of
information of each label corresponds to the probability of this label to be part of the correct path.

We bound each one of the above terms separately. For the first part (i), we bound the guessing
probability of a continuation of the correct path as a function of the information the observed
transcript contains on the labels below the current cutoff in the tree of the other parties. For instance,
guessing the correct path in the server’s tree is bounded by the amount of information the transcript
gives on labels along the correct path in the clients’ trees, at the same levels (because these labels
exactly determine the path the server should take in his tree). The definition of the cutoff and the
fact that these levels lie below the cutoff level, give a bound the amount of information we have on
these labels, which can be translated to a bound on the probability of guessing the corresponding
path. Fano’s inequality is not strong enough to our needs (i.e., sub-exponential guessing probability
from sub-exponentially small information), and we devise a tighter bound via a careful analysis of
the positive and negative parts of the Kullback–Leibler divergence; see Lemma 2.15. This (entropy
vs. min-entropy) relation may be of independent interest.

To bound the second part (ii), we observe that the information on labels below the current cutoff
is bounded in expectation using the definition of the cutoff, up to possibly additional 0.1n log n bits
that were communicated during the new segment of 0.1 log n rounds.

The fact that the bound of part (ii) works only in expectation is a major hurdle, because it
prevents us from bounding the above product directly (these two multiplicands are dependent!).
We detour around this issue by narrowing down the probability space by conditioning on additional
information that makes the two multiplicands independent. As conditioning potentially increases the
information we wish to bound, it is essential to carefully limit the amount of additional information
we condition on, so that the bound remains meaningful. Giving more details (yet still very intuitively
speaking), we condition on all the labels that lie between the old and new cutoff levels, of either the
server’s input or the clients’ input, according to the specific information we are currently bounding.
We show that this conditioning only increases the information, thus bounding the conditioned version
in expectation, also bounds the unconditioned information that we care about. This conditioning,
however, takes out the dependency caused by the interaction (since the labels of one side are fixed
up to some given level) and makes the labels below the new cutoff independent of labels above it;
specifically, the correct path between the current and the new cutoff (which is involved in the first
multiplicand) is conditionally independent of the labels below the new cutoff (which are involved in
the second one). This independence allows us to bound the expectation of the above product by
bounding each term separately as described above.

1.2 Related work

As mentioned above, coding for interactive communication in the presence of random noise was
initiated by Schulman for the two-party case [Sch92, Sch93, Sch96]. The coding scheme by Schulman
achieves slowdown of O(1); however, it is not computationally efficient and can take exponential time
in the worst case. Gelles, Moitra, and Sahai [GMS11, GMS14], and later Braverman [Bra12], showed
how to obtain an efficient coding scheme while maintaining a constant slowdown. Other related
work in the two party setting considers the case of adversarial noise rather than random noise, in
various settings [BR14, BKN14, FGOS15, CPT13, AGS13, GSW14, GSW15, BE14, GHS14, GH14,
EGH15, GHK+16]; see [Gel15] for a survey.

In the two-party setting, the minimal possible slowdown over a BSCε as a function of the
noise parameter ε, was initially considered by Kol and Raz [KR13], who showed a lower bound
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of 1 + Ω(
√
ε log 1/ε) on the slowdown. Later, Haeupler [Hae14] showed that the order in which

the parties are speaking affects the slowdown, and if the parties are assumed to be alternating,
a slowdown of 1 + O(

√
ε) is achievable. When the noise is adversarial rather than random, the

slowdown increases to 1 +O(
√
ε log log 1/ε) [Hae14]. The slowdown in other types of channels, such

as the BECε or channels with noiseless feedback, was considered by Gelles and Haeupler [GH15], who
showed efficient coding schemes with an optimal slowdown of 1 + Θ(ε log 1/ε) over these channels.

As for the multiparty case, the work of Rajagopalan and Schulman [RS94] was the first to give a
coding scheme for the case of random noise over arbitrary topology, with a slowdown of O(log(d+1))
for d the maximal degree of the connectivity graph. As in the two-party case, that scheme is not
efficient, but can be made efficient using [GMS11, GMS14]. Alon, Braverman, Efremenko, Gelles,
and Haeupler [ABE+15] considered coding schemes over d-regular graphs with mixing time3 m, and
obtain a slowdown of O(m3 logm). This implies a coding scheme with a constant slowdown O(1)
whenever the mixing time is constant, m = O(1), e.g., over complete graphs.

For the case of adversarial noise in the multiparty setting, Jain, Kalai, and Lewko [JKL15] showed
an asynchronous coding scheme for star topologies with slowdown O(1) for up to O(1/n)-fraction of
noise. A communication-balanced version of that scheme was given by Lewko and Vitercik [LV15].
Hoza and Schulman [HS16] showed a coding scheme in the synchronous model that works for any
topology, tolerates O(1/n)-fraction of noise, and demonstrates a slowdown of O(mn log n) where m
here is the number of edges in the given connectivity graph.

Finally, we mention the work of Gallager [Gal88]. This work assumes a different setting than the
above works, namely, the case where parties are all connected via a noisy broadcast channel (the
noisy blackboard model). Gallager showed that a slowdown of O(log logn) is achievable for the task
where each party begins with a bit and needs to output the input bits of all other parties. Goyal,
Kindler, and Saks [GKS08] showed that this slowdown is tight by providing a matching slowdown
of Ω(log log n) for the same task in the noisy broadcast model. It is not clear whether there is a
direct connection between results in these two models—there does not seem to be a way to translate
results in either direction.

1.3 Open questions

It is already well established that topology matters in communication [CRR14] and in network
coding [LFB12]. Our work (along with previous results [RS94, ABE+15]) suggests that the same
holds also for the field of interactive communication when the noise is random. While for certain
topologies (e.g., a line, a cycle, a complete graph) one can achieve a coding scheme with slow-
down O(1), other topologies necessitate an overhead of Θ(log n/ log log n), e.g. the star topology.
The main open question is to better characterize the way topology affects slowdown.

Open Question 1. For any function f(n) ∈ o(log n), define the exact set of topologies for which
n-party interactive coding schemes with f(n) slowdown exist. In particular, characterize the set of
topologies for which n-party interactive coding schemes with O(1) slowdown exist.

While [RS94] shows that, given any topology, interactive coding with O(log n) slowdown exists,
our lower bound demonstrates a necessary slowdown of only Ω(log n/ log log n). This gap leads to
the following question:

3Intuitively speaking, the mixing time of a graph is the minimal number of steps a random walk needs in order to
end up at every node with approximately equal probability.
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Open Question 2. Show a topology (if such exists) for which Ω(log n) slowdown is necessary for
n-party interactive coding.

Currently, we do not have a candidate topology for an ω(log n/ log log n) overhead.

2 Preliminaries

For n ∈ N we denote by [n] the set {1, 2, . . . , n}. The log() function is taken to base 2. We denote
the natural logarithm by ln().

2.1 Coding over noisy networks

Given an undirected graph G = (V,E) we assume a network with n = |V | parties, where u, v ∈ V
share a communication channel if (u, v) ∈ E. In the case of a noisy network, each such link is
assumed to be a BSCε or a BECε.

Definition 2.1. For ε ∈ [0, 1] we define the binary symmetric channel BSCε : {0, 1} → {0, 1} in
which the input bit is flipped with probability ε, and remains the same with probability 1− ε. The
binary erasure channel BECε : {0, 1} → {0, 1,⊥}, turns each input bit into an erasure mark ⊥ with
probability ε, or otherwise keeps the bit intact. When a channel is accessed multiple times, each
instance is independent.

A round of communication in the network means the simultaneous transmission of 2|E| messages:
for any (u, v) ∈ E, u sends a bit to v and receives a bit from v. A protocol for an n-party
function f(x1, . . . , xn) = (y1, . . . , yn), is a distributed algorithm between n parties {p1, . . . , pn},
where each pi begins the protocol with an input xi, and after N rounds of communication outputs yi.
The communication complexity of a protocol, CC(), is the number of bits sent throughout the
protocol. Note that given any network G, the round complexity of a protocol and its communication
complexity differ by a factor of 2|E|.

Assume χ is a protocol over a noiseless network G. We say that a protocol χ′ simulates χ over
a channel C with rate R if, when χ′ is run with inputs (x1, . . . , xn) over the network G where each
communication channel is C, the parties output χ(x1, . . . , xn) with high probability and it holds
that CC(χ)/CC(χ′) = R. We also use the terms slowdown and overhead to denote the inverse of the
rate, R−1, that is, the (multiplicative) increase in the communication due to the coding.

2.2 Information, entropy, and min-entropy

Throughout, we will use Un to denote a random variable uniformly distributed over {0, 1}n.

Definition 2.2 (information). Let X be a random variable over a finite discrete domain Ω. The
information of X is given by

I(X)
def
= log |Ω| −H(X),

where H(X) is the Shannon entropy of X, H(X) =
∑

x∈Ω Pr(X = x) log(1/Pr(X = x)).
Given a random variable Y , the conditional information of X given Y is

I(X | Y )
def
= log |Ω| −H(X | Y )

= EyI(X | Y = y).
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Lemma 2.3 (superadditivity of information). Let X1, . . . , Xn be n random variables. Then,

n∑
i=1

I(Xi) ≤ I(X1, . . . , Xn).

The equality is satisfied when X1, . . . , Xn are mutually independent.

Proof. Using the subadditivity of the entropy function, we get

n∑
i=1

I(Xi) =
∑
i

(log |Ωi| −H(Xi)) ≤ log

(∏
i

|Ωi|

)
−H(X1, . . . , Xn) = I(X1, . . . , Xn).

Lemma 2.4. Let X,Y be random variables over a finite discrete domains ΩX and ΩY , respectively.
Then,

1. I(X | Y ) = I(X) + I(X;Y )

2. I(X | Y ) ≤ I(X) + log |ΩY |

3. I(X | Y ) ≤ I(X,Y )

where I(X;Y ) = H(X) +H(Y )−H(X,Y ) is the mutual information between X and Y (not to be
confused with I(X,Y ) = log |ΩX |+ log |ΩY | −H(X,Y )).

Proof. We prove the three claims by order,

1.

I(X | Y ) = log |ΩX | −H(X | Y )

= log |ΩX | −H(X) +H(Y )−H(Y | X)

= I(X) + I(X;Y ).

2. Follows from (1) and the fact that I(X;Y ) ≤ log |ΩY |.

3.

I(X,Y ) = log |ΩX |+ log |ΩY | −H(X,Y )

≥ log |ΩX |+H(Y )− (H(Y ) +H(X | Y ))

= I(X | Y ).

Definition 2.5 (min-entropy). Let X be a random variable over a discrete domain Ω. The min-
entropy of X is given by

H∞(X) = log(1/pmax(X)).

pmax(X) is the probability of the most probable value of X, i.e., pmax(X)
def
= maxx∈Ω Pr(X = x). At

times, pmax is called the guessing probability of X.
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We relate information (or, entropy) with the guessing probability (or, min-entropy) via the next
Lemma, which is a special case of Fano’s inequality.

Lemma 2.6. Let X be a random variable over a discrete finite domain Ω. It holds that

I(X) ≥ pmax(X) log(|Ω|)− h(pmax(X)),

where h(x) = −x log x− (1− x) log(1− x) is the binary entropy.

Proof. The lemma is an immediate corollary of the following version of Fano’s inequality,

H(X) ≤ log |Ω|(1− 2−H∞(X)) + h(2−H∞(X)). (1)

Let us prove Eq. (1). Assume without loss of generality that Ω = {1, . . . , n}. Let pi = Pr(X = i),
and again assume without loss of generality that for any i < j, it holds that pi ≥ pj . Thus,
pmax(X) = p1. If p1 = 1, the claim is trivial. Otherwise,

H(X) = p1 log
1

p1
+

n∑
i=2

pi log
1

pi
. (2)

Define Y to be distributed over {2, . . . , n} with probabilities Pr(Y = i) = pi/(1−p1). Note that this
is a valid distribution as all the probabilities are non-negative, and

∑
i Pr(Y = i) = 1. Note that

H(Y ) =

n∑
i=2

pi
1− p1

log
1− p1

pi
=

(
n∑
i=2

pi
1− p1

log
1

pi

)
− log

1

1− p1
.

Going back to Eq. (2), we have

H(X) = p1 log
1

p1
+ (1− p1)H(Y ) + (1− p1) log

1

1− p1

≤ h(p1) + (1− p1) log |Ω|,

which holds because H(Y ) ≤ log(|Ω| − 1) < log |Ω|. Then Eq. (1) and the lemma follow by
substituting p1 = pmax(X) = 2−H∞(X).

We note here that similar claims to the above lemmas hold when when we additionally condition on
some event E ; indeed, one can apply these lemmas on the random variable (X | E).

Another key tool we use is the Kullback-Leibler divergence.

Definition 2.7 (KL-divergence [KL51]). Let X,Y be random variables over a discrete domain Ω.
The KL-divergence of X and Y is

D(X‖Y )
def
=
∑
ω∈Ω

Pr(X = ω) log

(
Pr(X = ω)

Pr(Y = ω)

)
.

Define Ω+ = {ω ∈ Ω : Pr(X = ω) > Pr(Y = ω)} and Ω− = Ω\Ω+. We can split the
KL-Divergence into its positive and negative parts,

D(X‖Y ) = D+(X‖Y )− D−(X‖Y ),

where D+(X‖Y ) =
∑

ω∈Ω+ Pr(X = ω) log
(

Pr(X=ω)
Pr(Y=ω)

)
and D−(X‖Y ) = −

∑
ω∈Ω− Pr(X = ω) log

(
Pr(X=ω)
Pr(Y=ω)

)
.

8



Lemma 2.8. Let X,Y be random variables over a discrete domain Ω. Then, for every Ω′ ⊆ Ω it
holds that ∑

ω∈Ω′

Pr(X = ω) log

(
Pr(X = ω)

Pr(Y = ω)

)
≤ D+(X‖Y ) .

Proof. Immediate from the definition of D+(·‖·).

Lemma 2.9 (Pinsker Inequality). Let X,Y be random variables over a discrete domain Ω, then

‖X − Y ‖2 ≤ 2 ln(2) · D(X‖Y ),

where ‖X − Y ‖ =
∑

ω∈Ω |Pr(X = ω)− Pr(Y = ω)|.

We now upper bound the negative part of the KL-Divergence. Note that one can easily show
that D−(X‖Y ) ≤ 1, but we will need a better upper bound that applies when D−(X‖Y )� 1.

Lemma 2.10.

D−(X‖Y ) ≤

√
2

ln(2)
D(X‖Y ) .

Proof. For every ω ∈ Ω, let pω
def
= Pr(X = ω) and qω

def
= Pr(Y = ω). We can relate any negative

term of the divergence with a difference of probabilities via the following claim:

Claim 2.11. For pω ≤ qω it holds that ln(2)pω log qω
pω
≤ qω − pω.

Proof. Note that the equality holds for pω = qω. If we take the derivative with respect to qω, the
LHS is pω

qω
and the RHS is 1. Since pω

qω
≤ 1 when pω ≤ qω, the claim holds.

Note that by definition, D−(X‖Y ) =
∑

ω: pω≤qω pω log qω
pω

. From the claim above it holds that

D−(X‖Y ) ≤ 1
ln(2)‖X − Y ‖. The lemma then follows from Pinsker’s inequality (Lemma 2.9).

2.3 Technical lemmas

We now prove several technical lemmas which we will use throughout the paper.

Lemma 2.12. Let Z,D,X1, . . . , Xn be random variables. Let f : Z → [n] be some function.
Suppose that, conditioned on D = d, Z and (X1, . . . , Xn) are independent. Denote the guessing
probability pmax(f(Z) | D = d) = 2−H∞(f(Z)|D=d), then

Ez∼Z|D=dI(Xf(Z) | D = d, Z = z) ≤ pmax(f(Z) | D = d) · I(X1, . . . , Xn | D = d).
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Proof.

Ez∼Z|D=dI(Xf(Z) | D = d, Z = z) =
∑
z

Pr(Z = z | D = d)I(Xf(z) | D = d, Z = z)

=
n∑
i=1

 ∑
z:f(z)=i

Pr(Z = z | D = d)

 I(Xi | D = d)

=
n∑
i=1

Pr(f(Z) = i | D = d)I(Xi | D = d)

≤
n∑
i=1

pmax(f(Z) | D = d) · I(Xi | D = d)

≤ pmax(f(Z) | D = d) · I(X1, . . . , Xn|D = d).

The second line follows due the fact that Z and (X1, . . . , Xn) are independent conditioned on
D = d, grouping together terms with the same f(Z) value. The last inequality follows from the
super-additivity of information (Lemma 2.3).

Lemma 2.13. Let X1, . . . , Xn ≥ 0 and Y1, . . . , Yn ≥ 0 be random variables, with expectations
µi = E[Xi] and ξi = E[Yi], and assume that

∑n
i=1 µi ≤ C1 and

∑n
i=1 ξi ≤ C2, for some constants

C1, C2. Set M(t1, t2) = argmini{(Xi < t1) ∧ (Yi < t2)} to be the minimal index i for which both
Xi < t1 and Yi < t2. Then,

E[M(t1, t2)] ≤ C1

t1
+
C2

t2
.

Proof.

E[M(t1, t2)] =

n∑
i=1

Pr[M(t1, t2) ≥ i]

=

n∑
i=1

Pr[(X1 ≥ t1 ∨ Y1 ≥ t2) ∧ · · · ∧ (Xi ≥ t1 ∨ Yi ≥ t2)]

≤
n∑
i=1

Pr[Xi ≥ t1 ∨ Yi ≥ t2]

≤
n∑
i=1

(Pr[Xi ≥ t1] + Pr[Yi ≥ t2])

≤
n∑
i=1

(
µi
t1

+
ξi
t2

)
≤ C1

t1
+
C2

t2
.

where the penultimate inequality is due Markov’s inequality.

Lemma 2.14. Let T be a set of binary random variables, ordered as a tree of depth n. For any
fixed path P of depth i ≤ n starting from the root of T , let T [P ] be the set of variables along that
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path, and let pmax(T [P ]) = 2−H∞(T [P ]) be the maximal probability that some assignment to T [P ] can
obtain. For any i ≤ n define

pmax(i) = max
P s.t. |P |=i

{pmax(T [P ])} .

Then for any t ≥ 0 it holds that

n∑
i=t

pmax(i) < 2I(T ) + 4
√
I(T ) + 20 · 2−t/4 .

This lemma is an immediate corollary of the following stronger Lemma 2.15, that proves a
similar claim when considering any subset S of n binary random variables. In particular, for the
special case of Lemma 2.14, the subset S contains variables along a single path in T (note that the
parameter n in the above Lemma corresponds to |S| of Lemma 2.15).

Lemma 2.15. Let B = (B1, . . . , Bn) be a sequence of n random variables, where Bi ∈ {0, 1}. For

any S ⊆ [n] we let B(S)
def
= {Bi | i ∈ S} be the variables indexes by S. Let pmax(S) = 2−H∞(B(S))

i.e., the maximal probability that B(S) can attain. For 1 ≤ i ≤ n, let pmax(i) = max|S|=i pmax(S).
Then it holds that for any t ≥ 0,

n∑
i=t

pmax(i) < 2I(B) + 4
√
I(B) + 20 · 2−t/4 .

Proof. For any n-bit string s we define ps
def
= Pr(B = s) the probability that B attains the value s.

For any 1 ≤ i ≤ n, we fix Si and βi = b1b2 · · · bi to be a specific subset of size i of variables and its
assignment that attains the maximal probability, i.e., for which Pr(B(Si) = βi) = pmax(i). Define

Vi
def
= {s ∈ {0, 1}n | s(Si) = βi} as the set of all the binary strings s of length n whose restriction to

Si equals to βi. Define

Wi
def
= Vi \

⋃
j>i

Vj


to be the set of all the strings s such s(Si) = βi, but for any j > i, s(Sj) 6= βj . Let wi

def
=
∑

s∈Wi
ps.

Note that W1,W2, . . . ,Wn are disjoint and that Vi = ∪nj=iWj , thus it is clear that pmax(i) ≤
∑n

j=iwi.
Therefore it holds that

n∑
i=t

pmax(i) =
n∑
i=t

n∑
j=i

wj =
n∑
j=t

(j − t+ 1) · wj ≤
n∑
j=t

j · wj . (3)

Next we want to give an upper bound on
∑n

j=t jwj . Recall that any convex function f satisfies∑
i pif(xi) ≥ wf(

∑
i pixi/w) when for any i, pi > 0 and

∑
i pi = w. For a given j, consider the sum∑

s∈Wj
ps log(2nps). From the convexity of the log function we thus get,

∑
s∈Wj

ps log(2nps) ≥

∑
s∈Wj

ps

 log

(
2n
∑

s∈Wj
ps

|Wj |

)
= wj log

(
2n

|Wj |
wj

)
≥ wj log(2jwj),

11



where the last inequality holds since |Wj | ≤ 2n−j . Therefore,

n∑
j=t

∑
s∈Wj

ps log (2nps) ≥
n∑
j=t

wj log
(
2jwj

)
=

n∑
j=t

jwj +
n∑
j=t

wj logwj . (4)

Claim 2.16.
∑n

j=twj log(1/wj) ≤ 10 · 2−t/4 + 1
2

∑n
j=t jwj.

Proof. Split the sum to indices where wj < 2−j/2 and indices where wj ≥ 2−j/2,

n∑
j=t,wj≥2−j/2

wj log(1/wj)+

n∑
j=t,wj<2−j/2

wj log(1/wj) ≤
1

2

n∑
j=t

jwj+
1

2

n∑
j=t

j

2j/2
≤ 1

2

n∑
j=t

jwj+10·2−t/4,

where the last inequality is just a rough bound, and the inequality just before it follows since
wj log 1/wj is increasing in interval (0, e−1).

Thus from Claim 2.16 it follows that

n∑
j=t

jwj +

n∑
j=t

wj logwj ≥
n∑
j=t

jwj − (10 · 2−t/4 +
1

2

n∑
j=t

jwj) ≥
1

2

n∑
j=t

jwj − 10 · 2−t/4 .

Equation (4) then implies that,

n∑
j=t

jwj ≤ 2

n∑
j=t

∑
s∈Wj

ps log(2nps) + 20 · 2−t/4 .

Since the Wj are disjoint, we have (via Lemma 2.8) that

n∑
j=t

∑
s∈Wj

ps log(2nps) ≤ D+(B‖Un) = D(B‖Un) + D−(B‖Un).

Recall that D(B‖Un) = I(B) by definition. From Lemma 2.10 it follows that D−(B‖Un) ≤
√

2
ln 2I(B).

Thus we get that
n∑
j=t

jwj ≤ 2I(B) +

√
8

ln 2
I(B) + 20 · 2−t/4 .

The above and Eq. (3) complete the proof.

3 Multiparty interactive communication over noisy networks

In the following we assume a network of n + 1 parties that consists of a server pS and n clients
p1, . . . , pn. The network consists of a communication channel (pi, pS) for every i ∈ [n], that is, the
topology is a star.
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3.1 The pointer jumping task

We assume the parties want to compute a generalized pointer jumping task. Formally, the pointer
jumping task of depth T over star-networks is the following. Each client pi holds a binary tree xi of
depth T where each edge is labelled by a bit b. The server holds a 2n-ary tree xS of depth T where
each edge of the tree is labeled with an n-bit string from {0, 1}n.

The server starts from the root of xS . At each round, the server receives from the clients n bits
which it interprets as an index i ∈ [2n]. The server then transmits back to the clients the label on
the i-th edge descending from his current node (one bit per client). The node at the end of this
edge becomes the server’s new node. Similarly, each client receives at each round a bit b from the
server, and sends back the label of the edge indexed by b descending from its current node. For
the first round, we can assume that the clients take the left child of the root of xi and transmit to
the server the label of that edge. The above is repeated until both the server and the clients have
reached depth T in their trees. The parties then output the path from the root to their current
node (i.e., to a leaf at depth T ).

We denote this “correct” output of party pi by pathi. The entire output is denoted path =
(pathS , path1, . . . , pathn). For a certain party i ∈ [n]∪ {S}, and a level 1 ≤ k ≤ T we let pathi(k) be
the first k edges of pathi.

We use the following notations throughout. Given any tree T of depth N , we denote its first k
levels by T ≤k and its N − k last levels by T >k. Given a path z = (e1, e2, . . .), we denote by T [z]
the subtree of T rooted at the end of the path that begins at the root of T and follows the
edge-sequence z. [For instance, many times z will be the correct path so far (e.g., until some round `)
in the input tree xi; then we will care about the subtrees xi[pathi(`)], effectively obtaining a new
instance of the pointer jumping task, with a smaller depth.] We let x = (xS , x1, . . . , xn) be the entire
input and also use the short notation x = (xS , x[n]) for the server’s and clients’ part, respectively.

The above notation composes in a straightforwards way, e.g., x≤k and x[n]
≤k denote the appropriate

set of partial trees in x and x[n], respectively, and x[path(`)] denotes the set of subtrees xi[pathi(`)].
We will sometimes be negligent and write xi[path(`)] for xi[pathi(`)]. See Figure 1 for an illustration
of some of the notations.

The above pointer jumping task is complete for the case of a star network. That is, any noiseless
protocol over a star network can be described as a pointer jumping task by setting the inputs
(xS , x1, . . . , xn) appropriately. For our purpose we will have the inputs distributed randomly. That
is, for every client, the label on each edge is distributed uniformly in {0, 1} independently of all
other edges; for the server, each label is uniform and independent over {0, 1}n. We denote the
random variable describing the input of pi by Xi. The correct path also becomes a random variable
which we denote PATHi and which is a function of the inputs. The same holds for the subtree of a
certain input, given the certain path of some depth `, etc.

Lastly, we denote by π an observed transcript (possibly noisy) of the protocol. That is, π is
the string received by the parties (in some natural order); note that no single party observes the
entire transcript π, but each party observes some part of it. The corresponding random variable is
denoted Π. At times π will denote a partial transcript, that is, the communication observed by the
parties up to some round k of the protocol.
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xi[pathi(3)]

xi
≤3

xi
>3

pathi

1 0

1 1 0 1

0 11 11 00 0

(a) A possible input xi of some client pi; pathi(3)
is marked with bold edges.

001

110 000

110

xS [pathS(1)]

· · ·

(b) A possible input xS of the server

Figure 1: An illustration of the inputs, the “correct” path (marked with bold lines) and the sub-input
conditioned on a partial correct path.

3.2 Inputs independence conditioned on the transcript

An important property that will be needed for our lower bound, is the fact that the inputs of
the users are independent, even when conditioned on the transcript so far. This implies that only
party pi is capable of sending useful information about its input xi, regardless of the transcript so
far (and therefore, if the communication of pi is noisy, the information is lost; it is impossible that a
different party pj compensates for this loss)

Lemma 3.1. Conditioned on the observed transcript Π, the random variables XS , X1, . . . , Xn are
mutually independent.

Proof. The proof goes by induction on the length of Π. The base case where |Π| = 0 is trivial from
the definition of the inputs XS , X1, . . . , Xn.

Assume the claim holds for some transcript Π = π of length `− 1, and consider the next bit Π`,
sent without loss of generality by pi, where i ∈ {S}∪ [n]. This bit (in case it was not changed by the
channel) depends only on Xi and the previous communication Π, that is Π` = f(Π, Xi). To simplify
notations, denote by X6=i = (XS , X1, . . . , Xi−1, Xi+1, . . . , Xn) all the variables except Xi. We have,

Pr(X1 = x1, . . . , XS = xS | Π = π,Π` = b)

=
Pr(X1 = x1, . . . , XS = xS ,Π` = b | Π = π)

Pr(Π` = b | Π = π)
by definition

=
Pr(X6=i = x 6=i | Π = π) Pr(Xi = xi,Π` = b | Π = π)

Pr(Π` = b | Π = π)

by induction, since
Xi, f(Xi,Π) ⊥ X6=i | Π

=

∏
j 6=i

Pr(Xj = xj | Π = π)

 Pr(Xi = xi,Π` = b | Π = π)

Pr(Π` = b | Π = π)

=
∏
j 6=i

Pr(Xj = xj | Π = π,Π` = b)× Pr(Xi = xi | Π = π,Π` = b),
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where the last transition follows since Xi and X6=i are independent given Π, thus conditioning on a
function of either Xi or Π does not change the probability.

Finally, note that if b was changed by the channel, b′ = b ⊕ E the claim still holds since the
noise E is independent of all the other variables (i.e., we can condition on E and reduce to the case
above). If the bit b was erased (in the case of a BEC) then the claim trivially holds.

As a corollary to the above, note that conditioned on any piece of information that the parties
can communicate as part of their transcripts, the variables XS , X1, . . . , Xn remain independent.
Specifically, the above holds if we condition on the correct path (up to some level), or on some levels
of the inputs—we can assume a protocol in which the parties simply communicate that information
(so it is a part of Π), and apply the above lemma.

Corollary 3.2. The random variables XS , X1, . . . , Xn are independent, conditioned on the observed
transcript Π = π, (parts of) the correct path PATH = path, and parts of the inputs.

4 Upper Bound

Showing an upper bound of O(log n/ log log n) on the slowdown for multiparty interactive communi-
cation on star networks is rather straightforward. Essentially, all that we need to show is that every
log n rounds of communication, the parties can advance Θ(log log n) levels in the underlying pointer
jumping task.

Theorem 4.1. For any ε < 1/2, There exists a coding scheme for the pointer jumping task of
depth T over a star network with n+ 1 parties, that takes Oε(T

logn
log logn) rounds and succeeds with

high probability if each communication channel is a BSCε.

Proof. First, let us recall the existence of good error correction codes.

Lemma 4.2 (Shannon Coding Theorem [Sha48]). For any discrete memoryless channel CH with
capacity C and any k, there exists a code ECC : {0, 1}k → {0, 1}n and ECC−1 : {0, 1}n → {0, 1}k
with n = O( 1

C k) such that for any m ∈ {0, 1}k it holds that,

Pr
[
ECC−1(CH(ECC(m))) 6= m

]
< 2−Ω(n).

The coding scheme is as follows. Assume that the parties have already correctly solved the
pointer jumping task until a certain depth γ ≥ 0. Each client encodes the next log logn levels
of his input (this is a subtree of size log n, rooted at the current position) using a good Shannon
error correcting code given by Lemma 4.2. The encoded message is of length O(log n), and we
are guaranteed that the server can correctly decode the entire subtree with probability 1 − n−c,
for some constant c > 1 to our choice. Using a union bound, the server gets all the subtrees of
the clients with high probability 1− n−c+1. Next, the server computes the correct path (of length
log logn) that corresponds to each party, and sends an encoding of this path to the corresponding
party. The process then repeats from the new depth γ + log log n. The entire scheme therefore takes

T
log logn ·O(log n) rounds and succeeds with probability 1− T

log logn · n
−Ω(1).

However, T may be very large with respect to n. To further improve the probability of success
and prove Theorem 1.2, we use a theorem by Rajagopalan and Schulman (see [ABE+15, Section 3]).

15



Theorem 4.3 ([RS94, ABE+15]). For any T round protocol over any n-party network G with
maximal degree d, there exists a coding scheme Π, that takes O(T ) rounds and succeeds with
probability 1−n(2(d+ 1)p)Ω(T ) given that any symbol transmitted in the network is correctly received
with probability 1− p.

In the scheme we describe above any log logn symbols are correctly decoded with probability
1−p where we can choose p to be small enough, e.g., by taking p = O(n−2). In this case the theorem
guarantees a coding scheme for the pointer jumping task with the same slowdown ofO(log n/ log log n)
as above, which succeeds with probability 1− n−Ω(T/ log logn), that is, 1− 2−Ω(T logn/ log logn).

5 Lower Bound

In this section we prove our main theorem of a lower bound of Ω( logn
log logn) on the slowdown of coding

for interactive communication over star networks. Toward the lower bound, we can assume the
noisy channel is actually a BECε rather than a BSCε. This only makes the noise model weaker,
and renders the lower bound stronger. In the following we assume the channel erasure probability
is ε = 1/3. The specific value of ε < 1 only affects the constants involved and does not affect the
validity of our result. Fixing its value will allow an easier exposition of the result.

Our main theorem is the following,

Theorem 5.1. There exists a constant c such that for large enough n, any protocol that solves the
pointer jumping task of depth T over star networks with n+ 1 parties in less than c ·T logn

log logn rounds

assuming each communication channel is a BEC1/3, has a success probability at most 1/5.

We begin by defining the cutoff of the protocol: an information-based measure of progress which
is related to the advancement in the underlying pointer jumping task.

Definition 5.2. For any transcript π, and any input x = (xs, x1, . . . , xn), the cutoff of the protocol
cutoff(π, x) is the minimal number k, such that both the equations below are satisfied,

I(XS [pathS(k)] | Π = π,PATH(k) = path(k)) ≤ 2−0.1
√
n, and (5)

n∑
i=1

I(Xi[pathi(k)] | Π = π,PATH(k) = path(k)) ≤ 0.01n. (6)

Given any transcript π, and any input x = (xS , x1, . . . , xn), and given any continuation of the
transcript πnew, we define the server’s cutoff level cutoffS(π, πnew, x) as the minimal number k for
which

I(XS [pathS(k)] | Π = π ◦ πnew, PATH(k) = path(k)) ≤ 2−0.2
√
n, and (7)

n∑
i=1

I(Xi[pathi(k)] | Π = π,PATH(k) = path(k)) ≤ 0.01n. (8)

In both cases, if no such k exists we set cutoff = T or cutoffS = T , respectively.

The operational meaning of the cutoff is that if k is the cutoff level, then the parties know very
little information on the correct paths beyond the first k edges in that path.
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Note that if cutoff(π, x) = k then for any x′ such that x′≤k = x≤k, it holds that cutoff(π, x′) = k.
Furthermore, the cutoff is only a function of the path up to level k, that is, if cutoff(π, x) = k
then for any input x′ where pathx(k) = pathx′(k) it holds that cutoff(π, x′) = k; When the path
is fixed (but we do not care about the specific input), we will usually abuse notations and write
cutoff(π, path(k)) = k.

Proposition 5.3. Fix a protocol that solves the pointer jumping task of depth T over a star network
with n+ 1 parties, that succeeds with probability at least 1/5 on average, i.e., a protocol for which
PrX,Π(correct output) ≥ 1/5. Then,

EX,Π[cutoff(Π, X)] ≥
(

1

5
− 2

n

)
T.

Proof. Recall that the event cutoff(π, x) = k depends only on π and path(k) and is independent
of x>k. We show that if cutoff(π, path(k)) = k for some k < T , then the protocol gives the
correct output with only small probability of 2/n. This will bound the probability of the event
cutoff(Π, X) < T by 1/5 − 2/n, and will prove that in expectation (over all inputs and possible
transcripts), the cutoff is at least T/5− 2T/n.

Claim 5.4. Given π and k < T and path(k) such that cutoff(π, path(k)) = k,

Pr[correct output | Π = π,PATH(k) = path(k)] <
2

n
.

Proof. Let L be the n-bit label of PATHS(k + 1). Note that this label is included in the subtree
XS [path(k)]. If cutoff(π, path(k)) = k, then by the cutoff’s definition

I(XS [pathS(k)] | Π = π,PATH(k) = path(k)) ≤ 2−0.1
√
n,

and by Lemma 2.6 it holds that

2−H∞(L|Π=π,PATH(k)=path(k)) ≤ 1 + 2−0.1
√
n

|L|
≤ 2

n
.

Then, the probability that the protocol is correct is at least the probability that the clients (here
treated as a single party) output the correct label L

Pr[correct output | Π = π,PATH(k) = path(k)] ≤ 2−H∞(L|Π=π,PATH(k)=path(k),X[n])

= 2−H∞(L|Π=π,PATH(k)=path(k))

≤ 2

n
.

where the equality holds since the input of the server is independent of the input of the users
conditioned on π and path(k). This is implied by Lemma 3.1 (as also stated by Corollary 3.2):
consider a protocol that, after completing the pointer jumping task, communicates the correct path
during its last T rounds. That is, path(k) is simply part of the transcript of this protocol. Now
Lemma 3.1 suggests that, because the inputs are independent when conditioned on that transcript,
and because the path is simply the suffix of the transcript, then the inputs are independent
conditioned on both the correct path and the prefix of the transcript (that doesn’t contain the
path)
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The above holds for any k < T and any π, path(k) for which cutoff(π, path(k)) = k. Therefore,
conditioned on the event that cutoff(Π, X) < T the protocol outputs the correct value with
probability at most 2/n, that is, PrX,Π[correct output | cutoff(Π, X) < T ] ≤ 2/n. Since the protocol
is correct with probability 1/5 on average over the inputs and randomness of the protocol (and the
noise), the claim follows. Indeed,

1

5
≤PrX,Π[correct output]

= Pr[cutoff(Π, X) < T ] Pr[correct output | cutoff(Π, X) < T ]

+ Pr[cutoff(Π, X) = T ] Pr[correct output | cutoff(Π, X) = T ]

≤Pr[cutoff(Π, X) < T ] · 2/n+ Pr[cutoff(Π, X) = T ] · 1,

ergo,

Pr[cutoff(Π, X) = T ] ≥ 1

5
− 2

n

and

EX,Π[cutoff(Π, X)] ≥ T
(

1

5
− 2

n

)
,

as claimed.

In order to prove the main theorem we show that during every 0.1 log n rounds of communication,
the cutoff level increases by at most O(log log n), in expectation. Formally,

Theorem 5.5. Given a protocol for the pointer jumping task, let π be the transcript of the protocol
observed up to some round, and let Πnew be a random variable describing the observed transcript
over the next 0.1 log n rounds. Then, for any ` ≤ T , and for any x≤` it holds that

E [cutoff(π ◦Πnew, X) | Π = π,PATH(`) = path(`), cutoff(π,X) = `] ≤ `+O(log log n).

Note that the expectation is over the inputs, the noise, and the protocol’s randomness.

With the above propositions, the proof of Theorem 5.1 is immediate: if the protocol can output
the correct answer with probability at least 1/5, it must be that the expected cutoff level at the
end of the protocol is > T/5− o(T ), but this would take O(T logn

log logn) rounds of communication, in
expectation. Formally,

Proof. (Theorem 5.1) Using Theorem 5.5, for any protocol for the pointer jumping task there

exists a (small enough) constant c > 0 such that after running cT logn
log logn rounds of the protocol,

the expected cutoff for the observed transcript is small, EX,Π[cutoff(Π, X)] < T/10. Therefore, it
cannot be that the protocol correctly solves the T -depth pointer jumping with probability above 1/5
as this will contradict Proposition 5.3.

We now turn to prove the key technical Theorem 5.5. Intuitively speaking, the main idea is the
following. We cut the protocol into chunks of length 0.1 log n rounds and treat each one separately,
showing that the cutoff level cannot increase during that chunk by more than O(log logn). We can
assume that at the beginning of each chunks all the parties are given the information about the
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correct path up to the depth matching the current cutoff level, and reduce this case (in some sense4)
to a new instance of the pointer jumping task starting at that depth.

During the 0.1 log n rounds of the next chunk, with probability at least 1− 2−
√
n, there exists a

subset Q of
√
n parties about which the server does not have much information (beyond the cutoff

point) whose communication was completely erased by the channel throughout this chunk. We can
assume that other than this set of parties Q, the communication is noiseless. In this case, it is
quite intuitive that the cutoff levels cannot increase by too much: the server is missing any relevant
information about the inputs of parties in Q beyond the cutoff level, thus the information that it
sends during that chunk is practically meaningless, and the server’s cutoff level remains more or less
the same. Additionally, since the server did not communicate a lot of meaningful information about
his input, the clients do not know how to proceed and cannot send too much relevant information;
thus, their cutoff level does not increase too much as well. On the other hand, in the rare case where
no subset Q exists (i.e., the communication in this chunk is practically noiseless), the cutoff may
tremendously increase, however since this event is so rare it will add only O(1) to the accumulated
cutoff level throughout the entire protocol, in expectation.

Proof. (Theorem 5.5) We begin by showing that with high probability, there exists a subset of
size
√
n of the clients, for which the server knows very little information beyond the cutoff level,

and yet in the next 0.1n log n rounds their communication was completely erased by the channel.

Definition 5.6. Given a transcript π and an input x so that cutoff(π, x) = k. For i ∈ [n], we say
that a client pi is critical if

I (Xi[PATHi(k)] | Π = π,PATH(k) = path(k)) ≤ 0.02.

Lemma 5.7. Let π be the transcript so far and consider the next 0.1 log n rounds of communication.
Denote by Esilence the event that there exists a subset Q of parties of size at least

√
n, such that all

the parties in Q are critical and all the bits sent by parties in Q were erased by the channel. Then,

Pr[Esilence] > 1− 2−
√
n.

Proof. There are at least n/2 critical parties, or otherwise,∑
i

I (Xi[PATHi(k)] | Π = π,PATH(k) = path(k)) ≥ n

2
· 0.02 ≥ 0.01n,

and k cannot be the cutoff round, by Definition 5.2. Moreover, note that the probability that all the
0.1 log n transmissions of a specific party pi are erased (or even the 0.2 log n bits sent and received by

this party), is 1
3

0.1 logn ≥ n−0.4. Let Q be the set of all critical parties whose entire communication
was deleted, using Chernoff bound and assuming large enough n,

Pr
[
|Q| <

√
n
]
< exp

(
−n

0.6

4

)
.

Here we use the fact that ε = 1/3, however it is clear that for any other constant ε we can reduce
the length of a chunk to be c log n such that, say, εc logn ≥ n−0.4 and all the other proofs below
remain valid, maybe up to adjusting the constants as needed.

4The main difference is that previous communication may have leaked some information on this new instance, and
we need to account for this information as well.
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For any ` ≤ T , any fixing path(`) and any transcript π denote by E(π,path(`),`) the event that
(Π = π,PATH(`) = path(`), cutoff(π,X) = `). Recall that whether the cutoff is ` depends only
on π and the first ` levels the correct path, therefore E(π,path(`),`) is either empty or equal to
(Π = π,PATH(`) = path(`)). For any continuation πnewS of bits sent by the server in the new chunk
define ES(π,πnewS ,path(`),`) the event (Π = π,Πnew

S = πnewS ,PATH(`) = path(`), cutoffS(π,Πnew
S , X) = `).

The proof of the theorem will follow from the next three propositions:

Proposition 5.8. For any ` ≤ T , any path(`) and any transcript π

E[cutoffS(π,Πnew, X) | E(π,path(`),`), Esilence] ≤ `+ 60.

Proposition 5.9. Split the observed new transcript Πnew = (Πnew
S ,Πnew

[n] ) to the parts corresponding

to information sent by the server and by the clients, respectively. For any `′ ≤ ` ≤ T , any fixing
path(`), any transcript π, and any (server’s) new transcript πnewS ,

E[cutoff(π ◦Πnew, X) | E(π,path(`′),`′), E
S
(π,πnewS ,path(`),`), Esilence] ≤ `+ 5 log log n.

Proposition 5.10. For any ` ≤ T , any fixing path(`) and any transcript π

E[cutoff(π ◦Πnew, X) | E(π,path(`),`), Esilence] ≤ `+O(log n log logn).

The above three propositions prove the theorem: When the good event Esilence doesn’t happen, the
cutoff increases by at most O(log n log log n) (Proposition 5.10), but this happens with probability
at most Pr[Esilence] < 2−

√
n (Lemma 5.7), thus the expected contribution to the increase of the

cutoff by such chunks is bounded by a negligible amount of O(log n log log n) · 2−
√
n. Otherwise,

assuming the previous cutoff was `, then with the information of Πnew the server’s cutoff level
according to Proposition 5.8, is in expectation at most `S ≤ `+ 60. Finally, given that the server’s
cutoff is `S , Proposition 5.9 guarantees that the new cutoff (i.e., when considering Πnew for both
the server and the clients), is in expectation at most `S + 5 log log n = `+O(log log n).

We now prove the above three propositions in turn.

5.1 Bounding the server’s cutoff: Proof of Proposition 5.8.

In order to prove Proposition 5.8 we need to find the minimal round k that satisfies Eqs. (7)–(8),
and show that this round is in expectation at most `+ 60, provided that the old cutoff level is `,
and that Esilence occurs. We begin in Subsection 5.1.1 by bounding the information on XS revealed
by the transcript so far, as a function of k, towards satisfying Eq. (7). In Subsection 5.1.2 we bound
the information on the Xi’s as a function of k, toward satisfying Eq. (8). Finally, in subsection 5.1.3
we use the two bounds on the information to derive a bound the new server’s cutoff k.

5.1.1 Bounding the information in Eq. (7)

Recall the setting: the protocol has run for some rounds, producing the transcript Π = π so that
the cutoff until that point is `. In other words, we are given (π, path(`)) ∈ E(π,path(`),`).

Now we run the protocol for another 0.1 log n rounds and obtain a new transcript Πnew, describing
the bits observed in those new 0.1 log n rounds, up to erasures. We condition on the event Esilence
that guarantees that there is a set of

√
n critical clients whose communication (in Πnew) was
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completely erased. Next, we reveal to all parties the correct path of depth ` (i.e., we condition on
PATH(`) = path(`)), and we wish to find the expected new cutoff induced by π ◦Πnew.

Let us first set some notations that will be used throughout the first part of the proof. Let
Z(k) = PATHS(k + `) be the correct path of length k in XS , below the cutoff level.5 Given specific
transcripts π, πnew, a specific path path(`) and specific fixing xS [pathS(`)]≤k of the k first levels of
the input of the server in the subtree induced by pathS(`), we define the short-handed events

E def
= (Π = π,Πnew = πnew,PATH(`) = path(`)), and

E+ def
= (E , XS [Z(0)]≤k = xS [path(`)]≤k).

The information measure in Eq. (7) conditions exactly on E . However, we will need to condition on
even a smaller event space (i.e., on E+) in order to utilize independence between several variables. To
this end, we use the following fact, that shows an independence between the correct path (between
levels ` and `+ k), to the server’s input at depths below `+ k, when conditioning on E+. This will
be instrumental when using Lemma 2.12 to bound the information measure related with the cutoff.

Claim 5.11. Conditioned on the event

E+ =
(
XS [Z(0)]≤k = xS [path(`)]≤k,Π = π,Πnew = πnew,PATH(`) = path(`)

)
,

the variables PATH(k + `) and XS [Z(0)]>k are independent.

Proof. Once we condition on XS [Z(0)]≤k = xS [path(`)]≤k and PATHS(`) = pathS(`) , then
PATH(k + `) becomes a function only of X[n]

>` ∩X[n]
≤k+`, and these are all independent of X>`

S ,
when conditioned on the transcript and on the other parts of E+ (which can be included as part of
the transcript), via Corollary 3.2.

We now get to the core of the proof. For any k > 0, define the random functions

S∗(k | πnew, path(k + `))
def
= I(XS [pathS(k + `)] | Π = π,Πnew = πnew,PATH(k + `) = path(k + `)),

S(k | πnew, xS [pathS(`)]≤k)
def
=

Eρ∼PATH(k+`)|E+I(XS [ρS(k + `)] | Π = π,Πnew = πnew,PATH(k + `) = ρ,XS [Z(0)]≤k = xS [pathS(`)]≤k).

To clarify the above notation, note that ρ ∼ PATH(k + `) is a variable of the expectation going over
all respective paths of length k + ` (for all parties), and we can write ρ = (ρ1, . . . , ρn, ρS) according
to its parts.

The random variables S∗(k) precisely describe the measure we need to bound for Eq. (7), however
we will actually bound the measure S(k) which in turn bounds S∗(k) via the next claim. We take
this detour because we cannot bound S∗(k) directly, however bounding S(k) is possible once we
take advantage of the independence between PATH and XS in non-overlapping depths of the trees,
as stated by Lemma 5.11.

Claim 5.12. Given any π, πnew, path(`) and any k,

Epath(k+`)|E,EsilenceS
∗(k | πnew, path(k + `)) ≤ ExS [pathS(`)]≤k|E,EsilenceS(k | πnew, xS [pathS(`)]≤k).

5Since we condition on PATH(`) = path(`), the remaining unfixed random variables are only the suffix of length k.
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Proof. First, note that E determines whether Esilence occurs or not (indeed: πnew determines which
bits are erased, and π, path(`) determine the set of critical parties), therefore it suffices to condition
on E alone. Starting with the definition of S(k),

ExS [pathS(`)]≤k|ES(k | πnew, xS [path(`)]≤k)

= ExS [pathS(`)]≤k|E

Eρ∼PATH(k+`)|xS [pathS(`)]≤k,E

I(XS [ρS(k + `)] | Π = π,Πnew = πnew,PATH(k + `) = ρ,XS [Z(0)]≤k = xS [pathS(`)]≤k)

exchanging the order of expectations, and using Definition 2.2,

= Eρ∼PATH(k+`)|E

ExS [pathS(`)]≤k|ρ,E

I(XS [ρS(k + `)] | Π = π,Πnew = πnew,PATH(k + `) = ρ,XS [Z(0)]≤k = xS [pathS(`)]≤k)

= Eρ∼PATH(k+`)|EI(XS [ρS(k + `)] | Π = π,Πnew = πnew,PATH(k + `) = ρ,XS [Z(0)]≤k)

conditioning on XS [Z(0)]≤k can only increase the information (Lemma 2.4), thus,

≥ Eρ∼PATH(k+`)|EI(XS [ρS(k + `)] | Π = π,Πnew = πnew,PATH(k + `) = ρ)

= Eρ∼PATH(k+`)|ES
∗(k | πnew, ρ).

Lemma 5.13. Given any (π, path(`)) ∈ E(π,path(`),`),

T−∑̀
k=34

Eπnew,xS [path(`)]≤k|π,path(`),Esilence

[
S(k | πnew, xS [path(`)]≤k)

]
≤ n log n · 2−0.5

√
n.

Proof. The outline of the proof is as follows. First we use Lemma 2.12 to bound S(k | πnew, xS [path(`)]≤k)
as the product of the probability to guess the correct path between layers ` and ` + k, and the
information on the subtrees rooted in level `+ k. We then bound each part independently to obtain
the stated claim.

Let the {Xi} of Lemma 2.12 be all the subtrees of XS rooted at the end of a path of depth k+ `,
whose prefix is pathS(`). Note that those subtrees and (the last k edges in each of) PATH(k + `)
are independent conditioned on E+, due to claim 5.11 above. Also note that the union of all these
subtrees is contained in XS [Z(0)]>k. It follows that (Lemma 2.12)

S(k | πnew, xS [path(`)]≤k) ≤ pmax(Z(k) | E+)× I(XS [Z(0)]>k | E+). (9)

First, we bound the second term. We show that the expected amount of information we gain in
the new chunk of communication on the input of the server (below the cutoff level `) is bounded by
the ≈ 0.2n log n bits that were communicated in the new chunk.

Claim 5.14. Given any (π, path(`)) ∈ E(π,path(`),`), for any k it holds that

Eπnew,xS [path(`)]≤k|π,path(`),Esilence

[
I
(
XS [Z(0)]>k

∣∣∣ E+
)]
≤ n log n.
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Proof. Note that XS [Z(0)] = (XS [Z(0)]≤k, XS [Z(0)]>k). The claim follows using Lemma 2.4(3),

Eπnew,xS [path(`)]≤k|π,path(`),Esilence
I
(
XS [Z(0)]>k | XS [Z(0)]≤k = xS [path(`)]≤k, E

)
= Eπnew|π,path(`),EsilenceI

(
XS [Z(0)]>k | XS [Z(0)]≤k, E

)
≤ Eπnew|π,path(`),EsilenceI (XS [Z(0)] | E)

where the transition is via Lemma 2.4(3). Substituting E back for better clarity, via Definition 2.2
we get

= Eπnew|π,path(`),EsilenceI (XS [Z(0)] | PATH(`) = path(`),Π = π,Πnew = πnew)

= I(XS [Z(0)] | PATH(`) = path(`),Π = π, Π̃new)

≤ I (XS [Z(0)] | Π = π,PATH(`) = path(`)) + log |Ω
Π̃new
|

≤ 2−0.1
√
n + 0.2n log n

≤ n log n.

where Π̃new is distributed like Πnew conditioned on (Esilence,Π = π,PATH(`) = path(`)). The
penultimate transition holds since cutoff(π, path(`)) = `, thus without Π̃new the information is
bounded by 2−0.1

√
n ≤ 1. Furthermore, Πnew contains only 0.2n log n bits, some of which may be

erased but this gives no extra information on XS (in fact, half of these bits are sent by the clients
and those are (conditionally) independent of XS and give no further information, but we can count
them as well). Therefore, conditioning on Π̃new can increase the information by at most 0.2n log n
in expectation due to Lemma 2.4(2).

Since Claim 5.14 bounds the second part of Eq. (9) only in expectation, we cannot bound directly
the expectation of the product, without showing that these two parts are independent. To this end,
we bound the first term directly (not in expectation), and show that the bound is independent of
the expectation variables.

Bounding pmax(Z(k) | E+) is based on the technical Lemma 2.14. We use the fact that the
correct path Z(k) in the server’s tree is determined by the labels on the correct paths in the clients’
trees. Since the amount of information on these labels (beyond the cutoff point) is small, Lemma 2.14
asserts that the probability to guess Z(k) is also small.

First, note that in the derivation below we consider only πnew for which Esilence occurs; other
transcripts never appear in the expectation of the lemma’s statement. Also recall we are guaranteed
that (π, path(`)) ∈ E(π,path(`),`). For any specific k, we can think of Z(k) as composed of n binary

variables where each represents the path induced by a different client, Z(k)
def
= (Z1(k), . . . , Zn(k)).

Let a1(k), a2(k), . . . , an(k) be n paths of length k that attain the maximal probability, that is, paths
that satisfy

Pr[Z1(k) = a1(k), Z2(k) = a2(k), . . . , Zn(k) = an(k) | E+] = pmax(Z(k) | E+). (10)

Note that Z1(k), . . . , Zn(k) and XS [Z(0)]≤k induce paths P1(k), . . . , Pn(k) on X1, . . . , Xn, re-
spectively. Each Pi starts at the end of pathi(`) and is of length k. That path is uniquely determined
by the i-th bit of the labels along Z(k) in XS [Z(0)]. Then, Eq. (10) equals

pmax(Z(k) | E+) = Pr[label(P1(k)) = a1(k), . . . , label(Pn(k)) = an(k) | E+].
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Via Corollary 3.2, the labels of Pi are independent of labels of Pj for j 6= i, conditioned on E+

(because these labels are just part of the variables Xi), and the above equals

pmax(Z(k) | E+) =
∏
i∈[n]

Pr[label(Pi(k)) = ai(k) | E+]

≤
∏
i∈Q

Pr[label(Pi(k)) = ai(k) | E+]

≤
∏
i∈Q

max
P ′i (k)

Pr[label(P ′i (k)) = ai(k) | E+],

where Q is the set of all critical clients (for cutoff(π, path(`)) = `), and P ′i (k) is any path of length
k + ` in Xi, whose prefix is path(`). That is, instead of looking at a specific path Pi, we are looking
at all the possible paths, and take the one that maximizes the probability.

Note that since we only consider πnew for which Esilence occurs, any critical party is fully erased
in πnew so the probability of label(Pi(k)) is independent of πnew.6 Also note that once we consider
the path Pi(k) that maximizes the probability (out of all possible paths), then the specific path we
take no longer matters. Then, the above probability is just the probability that some label pattern
occurs in Xi (between levels ` and k + `), and this probability is (conditionally) independent of XS

by Corollary 3.2. Continuing with the above, explicitly writing the elements of E+ and removing the
conditioning on XS [Z(0)]≤k (which are just part of XS) and the conditioning on πnew as explained
above, we obtain

pmax(Z(k) | E+) ≤
∏
i∈Q

max
P ′i (k)

Pr[label(P ′i (k)) = ai(k) | Π = π,PATH(`) = path(`)]. (11)

We observe that we can use the bound in Eq. (11) not only for a specific k, but even for their
sum for k ≥ 34. This observation will be useful shortly. Formally,

T−∑̀
k=34

∏
i∈Q

max
P ′i (k)

Pr[label(P ′i (k)) = ai(k) | Π = π,PATH(`) = pathi(`)]

≤
∏
i∈Q

T−∑̀
k=34

max
P ′i (k)

Pr[label(P ′i (k)) = ai(k) | Π = π,PATH(`) = pathi(`)]

which can be bounded using Lemma 2.14 by

≤
∏
i∈Q

(
2Ii + 4

√
Ii + 20 · 2−34/4

)
,

where here Ii = I(Xi[pathi(`)] | Π = π,PATH(`) = path(`)). Since each party i ∈ Q is critical we
know by Definition 5.6 that ∀i ∈ Q, Ii ≤ 0.02, and since |Q| ≥

√
n when Esilence occurs (Lemma 5.7)

6We can assume that both the incoming and outgoing communication of pi is erased. However, in fact a stronger
claim holds even if we only assume the outgoing communication is erased. The incoming bits are sent by the server
and, conditioned on π, are independent of Xi; see also Claim 5.19.
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we conclude that

T−∑̀
k=34

∏
i∈Q

max
P ′i (k)

Pr[label(P ′i (k)) = ai(k) | Π = π,PATH(`) = pathi(`)]

≤
∏
i∈Q

(
2 · 0.02 + 4

√
0.02 + 20 · 2−34/4

)
≤ 2−0.5

√
n. (12)

Putting all the ingredients together, we now bound the expectation of
∑

k≥34 S(k | πnew, xS [pathS(`)]≤k)

over all the possible new transcripts and fixings of xS [pathS(`)]≤k that occur with positive probabil-
ity conditioned on Esilence and (π, path(`)) ∈ E(π,path(`),`), and complete the proof of this lemma.
Starting with Eq. (9),

T−∑̀
k=34

Eπnew,xS [path(`)]≤k|π,path(`),Esilence

[
S(k | πnew, xS [path(`)]≤k)

]
≤

T−∑̀
k=34

Eπnew,xS [path(`)]≤k|π,path(`),Esilence

[
pmax(Z(k) | E+)× I(XS [Z(0)]>k | E+)

]
now we can bound pmax(Z(k) | E+) using Eq. (11) (note that the expectation is only on transcripts
and inputs in Esilence, E(π,path(`),`) as assumed in the derivation of Eq. (11))

≤
T−∑̀
k=34

Eπnew,xS [path(`)]≤k|π,path(`),Esilence

[∏
i∈Q

max
P ′i

Pr[label(P ′i ) = ai | Π = π,PATH(`) = path(`)]

× I(XS [Z(0)]>k | E+)
]

now, the first term of the product is constant with respect to the expectation,

≤
T−∑̀
k=34

∏
i∈Q

max
P ′i

Pr[label(P ′i ) = ai | Π = π,PATH(`) = path(`)]

× Eπnew,xS [path(`)]≤k|π,path(`),Esilence

[
I(XS [Z(0)]>k | E+)

]
≤ 2−0.5

√
n × n log n.

Where the last step is due Eq. (12) and Claim 5.14.

5.1.2 Bounding the information in Eq. (8)

Similarly to the information about the server’s XS , we need to bound the information about the
clients’ Xi’s to satisfy Eq. (8), but note that here we only consider π and not πnew (thus, there is
no need to condition on Esilence). Still, the information measure in Eq. (8) may have increased due
to the fact we condition on path(k + `) instead of path(`). We now show that this cannot lead to
increasing the server’s cutoff level by more than a constant.
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We will abuse notations in this second part and redefine Z1(k), . . . , Zn(k) to be the correct paths in
X1, . . . , Xn of length k+`, that is, we let Zi(k) = PATHi(k+`). Given any (π, path(`)) ∈ E(π,path(`),`)

we define

C∗i (k | path(k + `))
def
= I (Xi[pathi(k + `)] | Π = π,PATH(k + `) = path(k + `)) ,

C∗(k | path(k + `))
def
=

n∑
i=1

C∗i (k | path(k + `)),

which is indeed the measure we need to bound in order to satisfy Eq. (8). As above, we will bound
C∗(k) via the measures C(k). Re-define the event E as

E def
= (Π = π,PATH(`) = path(`)),

and let

Ci(k | xi[pathi(`)]
≤k)

def
= Eρ∼PATH(k+`)|xi[pathi(`)]

≤k,E

I(Xi[ρi] | Xi[pathi(`)]
≤k = xi[pathi(`)]

≤k,PATH(k + `) = ρ, E),

C(k | x[n][path(`)]≤k)
def
=

n∑
i=1

Ci(k | xi[pathi(`)]
≤k).

Indeed, the measure C(k) gives an upper bound on C∗(k), in expectation on the fixing of the k
levels of the clients beyond the cutoff level. Formally,

Claim 5.15. Given any π, path(`), and for any k, and any i ∈ [n],

Epath(k+`)|EC
∗
i (k | path(k + `)) ≤ Exi[pathi(`)]≤k|ECi(k | xi[pathi(`)]

≤k).

Proof. The proof is very similar to the proof of Claim 5.12.

Exi[path(`)]≤k|ECi(k | xi[pathi(`)]
≤k)

= Exi[path(`)]≤k|EEρ∼PATH(k+`)|xi[pathi(`)]
≤k,EI(Xi[ρi] | Xi[pathi(`)]

≤k = xi[pathi(`)]
≤k,PATH(k + `) = ρ, E)

= Eρ∼PATH(k+`)|EExi[path(`)]≤k|ρ,EI(Xi[ρi] | Xi[pathi(`)]
≤k = xi[pathi(`)]

≤k,PATH(k + `) = ρ, E)

= Eρ∼PATH(k+`)|EI(Xi[ρi] | Xi[pathi(`)]
≤k,PATH(k + `) = ρ, E)

using Lemma 2.4(1) we get

≥ Eρ∼PATH(k+`)|EI(Xi[ρi] | PATH(k + `) = ρ, E)

= Eρ∼PATH(k+`)|EC
∗
i (k | ρ).

Next, we bound the sum of expectations of C(k) for k > 1.

Lemma 5.16. Given any (π, path(`)) ∈ E(π,path(`),`),

T−∑̀
k=1

Ex[n][path(`)]≤k|E

[
C(k | x[n][path(`)]≤k)

]
< 0.25n.
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Proof. The proof follows the same steps of Lemma 5.13, but the scenario here is somewhat simpler.
We use Lemma 2.12 on each Ci: again the variables {Xi} of Lemma 2.12 are set to be all various
subtrees Xi[Zi(k)] obtained by all the possible different Zi(k) that are consistent with E . Again
note that, similar to the reasoning in Claim 5.11, the path Zi(k) is independent of the labels in the
subtrees of Xi rooted at the end of a path of length k+ ` with prefix pathi(`), conditioned on E and
on Xi[pathi(`)]

≤k; this independence is required for applying Lemma 2.12. Also note that the union
of all these subtrees is exactly Xi[Z(0)]>k. Lemma 2.12 then implies that

Ci(k | xi[pathi(`)]
≤k) ≤ pmax

(
Zi(k)

∣∣∣ Xi[pathi(`)]
≤k = xi[pathi(`)]

≤k, E
)

× I
(
Xi[pathi(`)]

>k
∣∣∣ Xi[pathi(`)]

≤k = xi[pathi(`)]
≤k, E

)
. (13)

We begin with bounding the term pmax

(
Zi(k)

∣∣ Xi[pathi(`)]
≤k = xi[pathi(`)]

≤k, E
)
. For any

specific k, assume a path ~ai(k) of length k that maximizes this probability,

Pr[Zi(k) = ~ai(k) | Xi[pathi(`)]
≤k = xi[pathi(`)]

≤k, E ].

Once fixing ~ai(k), it is implied that there exists a path P (k) of length k in XS (starting from level `,
as a continuation of pathS(`) which is fixed given path(`)),7 whose labels, restricted to the i-th bit,
is exactly ~ai(k). The probability to have a path with such labels is bounded by

≤ max
P (k)

Pr[labeli(P (k)) = ~ai(k) | Xi[pathi(`)]
≤k = xi[pathi(`)]

≤k, E ]

= max
P (k)

Pr[labeli(P (k)) = ~ai(k) | E ],

where the last step follows from Corollary 3.2 that guarantees us the independence of the labels
(of XS

>`) from all the other inputs Xi
>`, even when conditioning on the transcript so far π, and

on E .
We can then bound the sum of the guessing probability for any k:

T−∑̀
k=1

pmax(Zi(k) | Xi[pathi(`)]
≤k = xi[pathi(`)]

≤k, E)

≤
T−∑̀
k=1

max
P

Pr[labeli(P (k)) = ~ai(k) | E ]

≤ 2I + 4
√
I + 20 · 2−1/4

≤ 25 (14)

where the penultimate transition is via Lemma 2.14 by letting T of the lemma be all the labels
of XS [pathS(`)]>`, setting I = I(XS [pathS(`)]>` | E), and recalling that ` is the cutoff level (given
(π, path(`)) ∈ E(π,path(`),`)), which in turn implies by its definition that I ≤ 2−0.1

√
n ≤ 1.

7We note that the paths in XS and the corresponding labels in X[n] are shifted by 1 level in depth, which is due
the alternating nature of the protocol and our arbitrary decision to let the clients start (assuming all of them take the
left son of their root node). To ease the readability of the proof, we will neglect this edge issue and omit the ±1 shift
in the indices.
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Now that the first term of Eq. (13) is bounded by a fixed number, bounding the expectation of
the C(k) reduces to bounding the expectation of the second term in Eq. (13).

T−∑̀
k=1

Ex[path(`)]≤k|E

[
C(k | x[path(`)]≤k)

]
=

T−∑̀
k=1

Ex[path(`)]≤k|E

[ n∑
i=1

Ci(k | xi[pathi(`)]
≤k)
]

≤
T−∑̀
k=1

Ex[path(`)]≤k|E

[ n∑
i=1

pmax

(
Zi(k)

∣∣∣ Xi[pathi(`)]
≤k = xi[pathi(`)]

≤k, E
)

× I
(
Xi[pathi(`)]

>k
∣∣∣ Xi[pathi(`)]

≤k = xi[pathi(`)]
≤k, E

) ]
≤

T−∑̀
k=1

Ex[path(`)]≤k|E

[ n∑
i=1

max
P

Pr[labeli(P ) = ~ai(k) | E ]× I(Xi[pathi(`)]
>k | Xi[pathi(`)]

≤k = xi[pathi(`)]
≤k, E)

]
≤

T−∑̀
k=1

n∑
i=1

max
P

Pr[labeli(P ) = ~ai(k) | E ]× Ex[path(`)]≤k|E

[
I(Xi[pathi(`)]

>k | Xi[pathi(`)]
≤k = xi[pathi(`)]

≤k, E)
]

now, by the definition of information, and using Lemma 2.4(3),

=
T−∑̀
k=1

n∑
i=1

max
P

Pr[labeli(P ) = ~ai(k) | E ]× I(Xi[pathi(`)]
>k | Xi[pathi(`)]

≤k, E)

≤
n∑
i=1

T−∑̀
k=1

max
P

Pr[labeli(P ) = ~ai(k) | E ]× I(Xi[pathi(`)] | E)

using Eq. (14),

≤ 25

n∑
i=1

I(Xi[pathi(`)] | E)

recall that ` is the cutoff level, i.e., that (π, path(`)) ∈ E(π,path(`),`),

≤ 25 · 0.01n

≤ 0.25n.

5.1.3 Completing the proof of Proposition 5.8

With the above bounds on the information revealed as a function of the increase k in the new
server’s cutoff level, we use Lemma 2.13 to bound the expected increase in cutoffS .
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Proof. (Proposition 5.8) Given (π, path(`)) ∈ E(π,path(`),`) consider the following two series of
non-negative random variables{

S̃(k)
def
= Eπnew,path(k+34+`)|π,path(`),Esilence [S

∗(k + 34 | πnew, path(k + 34 + `))]
}
k≥0

, and{
C̃(k)

def
= Epath(k+34+`)|π,path(`),Esilence

[ n∑
i=1

C∗i (k + 34 | path(k + 34 + `))
]}

k≥0

We note again that C(k) (as defined in Section 5.1.2) does not assume the event Esilence, while
the above C̃(k) does. This has no affect on the bounds derived in Section 5.1.2 as this event is
completely independent of C(k): the information in C() is conditioned only on π and not on πnew,
while the event Esilence relates only to πnew and is independent of any previous communication.

Lemma 5.13 and Claim 5.12 tell us that
∑

k S̃(k) ≤ n log n · 2−0.5
√
n, and similarly Lemma 5.16

and Claim 5.15 certify that
∑

k C̃(k) ≤ 0.25n. Therefore from Lemma 2.13 it follows that the

expectation of the minimal k∗ for which S̃(k∗) < 2−0.2
√
n as well as C̃(k∗) < 0.01n is bounded by

E[k∗] ≤ n log n · 2−0.5
√
n

2−0.2
√
n

+
0.25n

0.01n
≤ 26.

We recall that the server’s cutoff is the minimal round k in which both the information described by
S∗(k) is below 2−0.2

√
n and C∗(k) is below 0.01n. From the above, it is then immediate that, given

any (π, path(`)) ∈ E(π,path(`),`), we can bound the expected increase in the server’s cutoff by

E [cutoffS(π,Πnew, X) | π, path(`), Esilence] = Eπnew,x|π,path(`),Esilence [cutoffS(π, πnew, x)]

≤ `+ 34 + 26

= `+ 60,

thus,

E
[
cutoffS(π,Πnew, X) | E(π,path(`),`), Esilence

]
≤ `+ 60,

as claimed.

5.2 Bounding the cutoff: Proof of Proposition 5.9.

Next, we show that given that the server’s cutoff did not advance by much after seeing πnew, then
the protocol’s cutoff (when considering πnew for both the server and the clients) cannot advance
more that O(log log n) with respect to the server’s cutoff.

Proof. (Proposition 5.9) Let us first recall the setting. We are given `′ ≤ ` ≤ T , and π, path(`),
πnewS , so that the following holds. The cutoff assuming the old transcript is `′, that is, (π, path(`′)) ∈
E(π,path(`′),`′), The server’s cutoff given π, πnewS is `, that is, (π, πnewS , path(`)) ∈ ES(π,πnewS ,path(`),`).

Additionally, we assume that the event Esilence occurs in the new segment of communication, i.e.,
we only care about πnew[n] that have positive probability given Esilence and the fixed transcript and

path given above. We want to show that the new cutoff considering the new transcript, is at most
`+O(log log n) in expectation over the inputs and πnew[n] .
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The proof resembles the proof of Proposition 5.8: we bound the information on the respective
subtrees of XS and X[n] using Lemma 2.12 and Lemma 2.15 and then bound the expected depth
of the new subtrees whose information is below the threshold (i.e., satisfying Eqs. (5)–(6)) via
Lemma 2.13.

Recall we can split πnew = (πnewS , πnew[n] ) into the parts sent by the server and the clients

respectively. Throughout the proof we will be using the short notations

E = (Π = π,Πnew = πnew,PATH(`) = path(`)) ,

ES = (Π = π,Πnew
S = πnewS ,PATH(`) = path(`)).

For i ∈ [n] define Zi(k) = PATHi(k + `). Given any π, πnewS , path(`) we define the random
functions

C∗i (k | πnew[n] , path(k + `))
def
= I (Xi[pathi(k + `)] | Π = π,Πnew = πnew,PATH(k + `) = path(k + `))

and

Ci(k | πnew[n] , xi[pathi(`)]
≤k)

def
= Eρ∼PATH(k+`)|xi[pathi(`)]

≤k,E

I(Xi[ρi] | Xi[pathi(`)]
≤k = xi[pathi(`)]

≤k,PATH(k + `) = ρ, E),

C(k | πnew[n] , x[n][path(`)]≤k)
def
=

n∑
i=1

Ci(k | πnew[n] , xi[pathi(`)]
≤k).

We remind that,
∑

iC
∗
i (k) is indeed the quantity we wish to bound (to satisfy Eq. (6)), and that

for any πnew[n] , the measure C(k) upper bounds
∑

iC
∗
i (k) in expectation, via Claim 5.15 (note that

Claim 5.15 can be used as is, by considering the entire transcript π ◦ πnew as the transcript we
condition on, in that claim).

Lemma 5.17. Given any (π, πnewS , path(`)) ∈ ES(π,πnewS ,path(`),`),

T−∑̀
k=4 log logn

Eπnew
[n]

,x[n][path(`)]≤k|ES

[
C
(
k | πnew[n] , x[n][path(`)]≤k

)]
< 21n.

Proof. The first part of the proof follows the same reasoning and notational conventions used in
the proof of Proposition 5.8 (or specifically, Lemma 5.16), and we don’t repeat here the detailed
arguments leading to the following derivation.

T−∑̀
k=4 log logn

Eπnew
[n]

,x[n][path(`)]≤k|ES

[
C(k | πnew[n] , x[n][path(`)]≤k)

]

=
T−∑̀

k=4 log logn

n∑
i=1

Eπnew
[n]

,x[n][path(`)]≤k|ES

[
Ci(k | πnew[n] , xi[pathi(`)]

≤k)
]

≤
T−∑̀

k=4 log logn

n∑
i=1

Eπnew
[n]

,x[n][path(`)]≤k|ES

[
pmax(Zi(k) | Xi[pathi(`)]

≤k = xi[pathi(`)]
≤k, E)

× I(Xi[pathi(`)]
>k | Xi[pathi(`)]

≤k = xi[pathi(`)]
≤k, E)

]
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≤
T−∑̀

k=4 log logn

n∑
i=1

Eπnew
[n]

,x[n][path(`)]≤k|ES

[
max
P (k)

Pr[labeli(P (k)) = ~ai(k) | E ]

× I(Xi[pathi(`)]
>k | Xi[pathi(`)]

≤k = xi[pathi(`)]
≤k, E)

]
≤

n∑
i=1

T−∑̀
k=4 log logn

max
P (k)

Pr[labeli(P (k)) = ~ai(k) | E ]

× Eπnew
[n]

,x[n][path(`)]≤k|ES

[
I(Xi[pathi(`)]

>k | Xi[pathi(`)]
≤k = xi[pathi(`)]

≤k, E)
]

=
n∑
i=1

T−∑̀
k=4 log logn

max
P (k)

Pr[labeli(P (k)) = ~ai(k) | E ]

× Eπnew
[n]

,|ES
[
I(Xi[pathi(`)]

>k | Xi[pathi(`)]
≤k, E)

]
which by Lemma 2.4(3) gives

=
n∑
i=1

T−∑̀
k=4 log logn

max
P (k)

Pr[labeli(P (k)) = ~ai(k) | E ]× Eπnew
[n]
|ES [I(Xi[pathi(`)] | E)] (15)

We now bound the two multiplicands of Eq. (15) separately.

Claim 5.18. For any i ∈ [n],

T−∑̀
k=4 log logn

max
P (k)

Pr[labeli(P (k)) = ~ai(k) | E ] ≤ 6 · 2−0.1
√
n +

20

log n
.

Proof. Recall that P (k) describes a path of length k in XS [path(`)]. The maximal probability guess
of the labels of P (k) (restricted to the i-th bit) for k ≥ 4 log log n is given by Lemma 2.14, setting
the variable T of the lemma as T = XS [path(`)] (restricted to the i-th bit in each label), and using
the fact that cutoffS(π, πnew, path(`)) = `, so that I(T ) ≤ I(XS [path(`)] | E) ≤ 2−0.2

√
n. Thus,

T−∑̀
k=4 log logn

max
P (k)

Pr[labeli(P (k)) = ~ai(k) | E ] ≤ 2I(T ) + 4
√
I(T ) + 20 · 2− log logn

≤ 6 · 2−0.1
√
n +

20

log n
.

Before we bound the second multiplicand of Eq. (15), we prove the following technical claim.

Claim 5.19. Let Π = π be an observed transcript up to some point, and let Πnew be a continuation
of Π. Write Πnew = (Πnew

S ,Πnew
[n] ) splitting the observed transcript to the corresponding indices

sent by the server and by the clients, respectively. Then, X[n] is independent of Πnew
S conditioned

on (Π = π,Πnew
[n] = πnew[n] ).

Proof. First, we assume there are no erasures in Πnew
S . Consider the string Πnew

S : each bit in it is
a function of XS and the communication the server sees, that is Πnew

S = f(XS ,Π[n],Π
new
[n] ). It is
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clear that if we fix and condition on a specific (Π = π,Πnew
[n] = πnew[n] ), then Πnew

S = g(XS) where the
function g is determined solely by π, πnew[n] .

Pr(X[n] = x[n],Π
new
S = πnewS | Π = π,Πnew

[n] = πnew[n] )

= Pr(X[n] = x[n], f(XS ,Π[n],Π
new
[n] ) = πnewS | Π = π,Πnew

[n] = πnew[n] )

= Pr(X[n] = x[n], g(XS) = πnewS | Π = π,Πnew
[n] = πnew[n] )

by Lemma 3.1, XS and X[n] are independent, conditioned on any (partial) transcript,

= Pr(X[n] = x[n] | Π = π,Πnew
[n] = πnew[n] ) Pr(g(XS) = πnewS | Π = π,Πnew

[n] = πnew[n] )

= Pr(X[n] = x[n] | Π = π,Πnew
[n] = πnew[n] ) Pr(Πnew

S = πnewS | Π = π,Πnew
[n] = πnew[n] ),

which completes the proof. The same holds if bits from Πnew
S are flipped or erased, since the noise

is independent of all the other variables.

Claim 5.20.
n∑
i=1

Eπnew
[n]
|ES [I(Xi[pathi(`)] | E)] ≤ n log n.

Proof. Writing E explicitly in the claim’s statement, we have

n∑
i=1

Eπnew
[n]
|ESI(Xi[pathi(`)] | Π = π,PATH(`) = path(`),Πnew

S = πnewS ,Πnew
[n] = πnew[n] ).

For any i ∈ [n], Claim 5.19 suggests that the event Πnew
S = πnewS is independent of X[n] conditioned

on the transcript so far (and the path, etc.). Therefore, conditioning on it does not change the
(conditional) distribution of X[n], and we can remove the conditioning on Πnew

S = πnewS without
affecting the information,

=

n∑
i=1

Eπnew
[n]
|ESI(Xi[pathi(`)] | Π = π,PATH(`) = path(`),Πnew

[n] = πnew[n] )

by linearity of expectation and the superadditivity of information (Lemma 2.3),

≤ Eπnew
[n]
|ESI(X[n][path(`)] | Π = π,PATH(`) = path(`),Πnew

[n] = πnew[n] )

= I(X[n][path(`)] | Π = π,PATH(`) = path(`), Π̃new
[n] )

where Π̃new
[n] is distributed according to Πnew

[n] conditioned on ES . Recall that Πnew
[n] contains up

to 0.1n log n bits (some may be erased); similarly, Π̃new
[n] also contains at most 0.1n log n bits of

information. Using Lemma 2.4(2),

≤ I(X[n][path(`)] | Π = π,PATH(`) = path(`)) + 0.1n log n
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now note that, conditioned on (Π = π,PATH(`) = path(`)), the variables X1, . . . , Xn are mutually
independent by Lemma 3.1, thus the superadditivity (Lemma 2.3) in this case satisfies an equality,

= 0.1n log n+
n∑
i=1

I(Xi[pathi(`)] | Π = π,PATH(`) = path(`))

finally, since ` is the server’s cutoff given the transcript π (and πnewS ), we get

≤ 0.1n log n+ 0.01n

≤ n log n.

Substituting the bounds in Claim 5.18 and Claim 5.20 back into Eq. (15) completes the proof of
Lemma 5.17.

Now that we have bounded the information on the clients’ trees, we need to bound the information
on the server’s tree as well (to satisfy Eq. (5)). This repeats the same methods we have seen above,
but in a slightly relaxed setting: the server is currently at the cutoff level, and the communication
πnew[n] doesn’t give any new information on XS .

We denote by Z(k) = PATHS(k+ `) the correct path of length k in XS , below the server’s cutoff
level. Given any π, πnewS , path(`) define

S∗(k | πnew[n] , path(k + `)) = I(XS [pathS(k + `)] | Π = π,Πnew = πnew,PATH(k + `) = path(k + `)),

S(k | πnew[n] , xS [path(`)]≤k) = Eρ∼PATH(k+`)|xS [path(`)]≤k,E

I(XS [ρS(k + `)] | XS [Z(0)]≤k = xS [path(`)]≤k,PATH(k + `) = ρ, E)

Note that an immediate corollary of the derivation in Claim 5.12 is the following,

Corollary 5.21. Given any π, path(`), and πnew = (πnewS , πnew[n] ), it holds that

Epath(k+`)|ES
∗(k | πnew[n] , path(k + `)) ≤ ExS [path(`)]≤k|ES(k | πnew[n] , xS [path(`)]≤k).

We can now continue to bound the sum of expectations of the quantities S∗(k).

Lemma 5.22. Given any (π, πnewS , path(`)) ∈ E(π,πnewS ,path(`),`), and any πnew[n] assuming Esilence,

T−∑̀
k=1

Epath(k+`)|E

[
S∗(k | πnew[n] , path(k + `))

]
≤ n2 · 2−0.2

√
n.

Proof. The proof follows at large the arguments of Lemma 5.13, and we repeat here the minimal
required details.

Lemma 2.12 asserts that

S(k | πnew, xS [path(`)]≤k) ≤ pmax(Z(k) | XS [path(`)]≤k = xS [path(`)]≤k, E)

× I(XS [Z(0)]>k | XS [path(`)]≤k = xS [path(`)]≤k, E). (16)
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where again, the {Xi} of Lemma 2.12 are all the subtrees of XS rooted at the end of a path of
depth k + `, whose prefix is pathS(`). We note that those subtrees and (the last k edges in each of)
PATH(k + `) are independent conditioned on E , due to claim 5.11, and that the union of all these
subtrees is contained within XS [Z(0)]>k.

Starting with the term in the Lemma’s statement, we use Corollary 5.21 and Eq. (16) to get

T−∑̀
k=1

Epath(k+`)|E

[
S∗(k | πnew[n] , path(k + `))

]
≤

T−∑̀
k=1

ExS [path(`)]≤k|E

[
S(k | πnew[n] , xS [path(`)]≤k)

]
≤

T−∑̀
k=1

ExS [path(`)]≤k|E

[
pmax(Z(k) | XS [path(`)]≤k = xS [path(`)]≤k, E)

× I(XS [Z(0)]>k | XS [path(`)]≤k = xS [path(`)]≤k, E)
]
. (17)

To ease the readability, in the following let us use the shorthand notation

E+ = (XS [path(`)]≤k = xS [path(`)]≤k, E).

Using a similar reasoning to the derivation of Eq. (11) we now bound pmax(Z(k) | E+) as a
function of the information we have on labels below the cutoff. Again we think of Z(k) as composed

of n binary variables that each depends on a different user, Z(k)
def
= (Z1(k), . . . , Zn(k)), and let

a1(k), a2(k), . . . , an(k) be n paths of length k that attain the maximal probability. Recall that
Z1(k), . . . , Zn(k) and XS [Z(0)]≤k induce paths P1(k), . . . , Pn(k) on X1, . . . , Xn, respectively. Each
Pi starts at the end of pathi(`) and is of length k. That path is uniquely determined by the i-th bit
of the labels along Z(k) in XS [Z(0)]. Then, we can write

pmax(Z(k) | E+) = Pr[label(P1(k)) = a1(k), . . . , label(Pn(k)) = an(k) | E+].

Via Corollary 3.2, the labels of Pi are independent of labels of Pj for j 6= i, conditioned on E+

(because these labels are just part of the variables Xi), and the above equals

pmax(Z(k) | E+) =
∏
i∈[n]

Pr[label(Pi(k)) = ai(k) | E+]

≤
∏
i∈Q

Pr[label(Pi(k)) = ai(k) | E+]

≤
∏
i∈Q

max
P ′i (k)

Pr[label(P ′i (k)) = ai(k) | E+],

where Q here is the set of all clients that were completely erased in the new part. Since Esilence
occurs, we know that Q is non-empty.

We write E+ explicitly, and remind that for any i ∈ Q the part πnewi is completely erased and
thus independent of the probability of seeing a specific label in the input. Furthermore, as explained
earlier, once we go over all the possible paths P ′i , the probability of label(P ′i (k)) is merely the
probability to see some labels in Xi in those specific levels, and those are independent of XS . Also,
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recall that, given the transcript π and the fact that party i was completely erased, πnewS is a function
of only X6=i which is again (conditionally) independent of the probability to see certain labels in Xi

(Corollary 3.2). We get,

pmax(Z(k) | E+) ≤
∏
i∈Q

max
P ′i (k)

Pr[label(P ′i (k)) = ai(k) | Π = π,PATH(`) = path(`)].

Continuing with Eq. (17),

≤
T−∑̀
k=1

ExS [path(`)]≤k|E

∏
i∈Q

max
P ′i (k)

Pr[label(P ′i (k)) = ai(k) | Π = π,PATH(`) = path(`)]

× I(XS [Z(0)]>k | XS [path(`)]≤k = xS [path(`)]≤k, E)

=
T−∑̀
k=1

∏
i∈Q

max
P ′i (k)

Pr[label(P ′i (k)) = ai(k) | Π = π,PATH(`) = path(`)]

× ExS [path(`)]≤k|EI(XS [Z(0)]>k | XS [Z(0)]≤k = xS [path(`)]≤k, E)

=

T−∑̀
k=1

∏
i∈Q

max
P ′i (k)

Pr[label(P ′i (k)) = ai(k) | Π = π,PATH(`) = path(`)]× I(XS [Z(0)]>k | XS [Z(0)]≤k, E)

with Lemma 2.4(3), and recalling that ` is the server’s cutoff,

≤
T−∑̀
k=1

∏
i∈Q

max
P ′i (k)

Pr[label(P ′i (k)) = ai(k) | Π = π,PATH(`) = path(`)]× I(XS [Z(0)] | E)

≤
T−∑̀
k=1

∏
i∈Q

max
P ′i (k)

Pr[label(P ′i (k)) = ai(k) | Π = π,PATH(`) = path(`)]× 2−0.2
√
n

now, change the order of summation and product (this only adds positive elements),

≤ 2−0.2
√
n
∏
i∈Q

T−∑̀
k=1

max
P ′i (k)

Pr[label(P ′i (k)) = ai(k) | Π = π,PATH(`) = path(`)]

which, by Lemma 2.14, is bounded by

≤ 2−0.2
√
n
∏
i∈Q

(
2Ii + 4

√
Ii + 20 · 2−1/4

)
with Ii ≤ I(Xi[pathi(`)] | Π = π,PATH(`) = path(`)). We know that ` is the server cutoff, which
implies

∑
i∈[n] Ii < 0.01n, and thus, for any party i ∈ Q we have Ii < 0.01n. Because |Q| ≤ n we

get,

≤ 2−0.2
√
n · n · (2 · 0.01n+ 4

√
0.01n+ 20)

≤ n2 · 2−0.2
√
n.
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Finally we can bound the expected increase of the cutoff, via Lemma 2.13. Similar to Proposi-
tion 5.8, given (π, πnewS , path(`)) ∈ ES(π,πnewS ,path(`),`) consider the following two series of non-negative

random variables{
S̃(k)

def
= Eπnew

[n]
,path(k+`)|π,πnewS ,path(`),Esilence

[
S∗(k + 4 log log n | πnew[n] , path(k + 4 log log n+ `))

]}
k≥0

and{
C̃(k)

def
= Eπnew

[n]
,path(k+4 log logn+`)|π,πnewS ,path(`)

[ n∑
i=1

C∗i (k + 4 log log n | πnew[n] , path(k + `))
]}

k≥0

.

Lemma 5.22 shows that
∑

k S̃(k) ≤ n2 · 2−0.2
√
n (it is bounded for any transcript πnew[n] for which

Esilence occurs, and thus also in expectation over these transcripts). Lemma 5.17 (along with
Claim 5.15) proves that

∑
k C̃(k) ≤ 21n. With these bounds, Lemma 2.13 then guarantees that

the expectation of the minimal round k∗ for which S̃(k∗) < 2−0.1
√
n as well as C̃(k∗) ≤ 0.01n is

bounded by

E[k∗] ≤ n2 · 2−0.2
√
n

2−0.1
√
n

+
21n

0.01n
≤ 2500.

We conclude that, for large enough n,

E
[
cutoff(π,Πnew, X) | ES(π,πnewS ,path(`),`), Esilence

]
= Eπnew

[n]
,x|ES

(π,πnew
S

,path(`),`)
,Esilence

[cutoff(π, πnew, x)]

≤ `+ 4 log log n+ 2500

≤ `+ 5 log log n.

5.3 Bounding the cutoff when Esilence occurs: Proof of Proposition 5.10.

Finally, we need to take care of the rare event Esilence where there is no subset of size
√
n whose

communication was completely erased. We can actually relax the requirement and assume no noise
at all has happened. We show that during 0.1 log n noiseless rounds, the cutoff level cannot increase
by more than O(log n log logn).

Proof. (Proposition 5.10) We show that the communication during 0.1 log n rounds in which no
noise happened at all, can be reduced to the communication done in k′ segments (each of 0.1 log n
round) such that in each one of the segments Esilence occurs. We show that in expectation, k′ is
bounded by O(log n). During each such segment, the cutoff increases by at most O(log logn).
Therefore, the cutoff’s progress during a segment with no noise at all, is bounded in expectation by
k′ ·O(log log n) = O(log n log logn).

We begin by reducing a single round with no erasures at all, to multiple segments in which
Esilence occurs. Let k be the minimal number of 0.1 log n-round segments that it takes until all
parties succeed to communicate at least one bit, assuming in each such segment the event Esilence
occurs.
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Assuming a BEC1/3 (changing the erasure probability will just changes the constants below), for
any c ≥ 1 we have,

Pr[k ≥ c] ≤ Pr[at least one party is completely erased in first c segments | Esilence in all c segments]

≤ Pr[at least one party is completely erased in first c segments]

Pr[Esilence occurs in all c segments ]

≤
n · (1

3)0.1c logn

(1− 2−
√
n)c

.

Assuming large enough n, and (say) c ≥ 100, it holds that

Pr[k ≥ c] ≤
(

1

(1− 2−
√
n)n0.1

)c
,

so that their sum for c ≥ 100 converges to a small constant, and it then follows that,

E[k] =
∞∑
c=1

Pr[k ≥ c] ≤ 500.

This implies, that a single round of noiseless communication is simulated in expectation by at
most k = 500 segments (of 0.1 log n rounds each), where each segment is conditioned on Esilence.
Therefore, the communication of an entire chunk of 0.1 log n noiseless rounds, can be simulated by at
most k′ = 500 · 0.1 log n segments of communication in expectation, where in each segment Esilence
occurs.

Using Propositions 5.8 and 5.9, we know that during each segment of 0.1 log n rounds in which
Esilence occurs, the cutoff increases by at most O(log logn), in expectation. Thus, in a segment
where Esilence did not occur, the cutoff increases, in expectation, by at most

500 · 0.1 log n×O(log log n) = O(log n log log n).
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