
Limits of Minimum Circuit Size Problem as Oracle

Shuichi Hirahara∗

The University of Tokyo

Osamu Watanabe†

Tokyo Institute of Technology

Abstract

The Minimum Circuit Size Problem (MCSP) is known to be hard for statistical zero knowl-
edge via a BPP-reduction (Allender and Das, 2014), whereas establishing NP-hardness of MCSP

via a polynomial-time many-one reduction is difficult (Murray and Williams, 2015) in the sense
that it implies ZPP 6= EXP, which is a major open problem in computational complexity.

In this paper, we provide strong evidences that current techniques cannot establish NP-
hardness of MCSP, even under polynomial-time Turing reductions or randomized reductions:
Specifically, we introduce the notion of black-box reduction to MCSP, which captures all the
currently known reductions. We say that a reduction to MCSP is black-box if the reduction
can be generalized to a reduction to MCSPA for any oracle A, where MCSPA denotes an oracle
version of MCSP. We prove that essentially no language is reducible to MCSP via a polynomial-
time Turing reduction in a black-box way. We also show that the class of languages reducible
to MCSP via a black-box randomized reduction that makes at most one query is contained in
AM ∩ coAM. Thus, NP-hardness of MCSP cannot be established via such black-box reductions
unless the polynomial hierarchy collapses.

We also extend the previous results to the case of more general reductions: We prove
that establishing NP-hardness of MCSP via a polynomial-time nonadaptive reduction implies
ZPP 6= EXP, and that establishing NP-hardness of approximating circuit complexity via a
polynomial-time Turing reduction also implies ZPP 6= EXP. Along the way, we prove that ap-
proximating Levin’s Kolmogorov complexity is provably not EXP-hard under polynomial-time
Turing reductions, which is of independent interest.

1 Introduction

The Minimum Circuit Size Problem (MCSP) asks, given a truth-table T ∈ {0, 1}2n and a size-
parameter s, whether there exists a circuit on n variables of size at most s whose truth-table is T .
It is easy to see that MCSP is in NP. However, although MCSP is widely believed to be intractable,
it is not known to be NP-hard.

In the seminal paper by Kabanets and Cai [14], on one hand, they exhibited evidences that
MCSP is intractable; namely, they proved that factoring Blum integers can be solved faster than any
known algorithms, assuming that MCSP ∈ P. On the other hand, they also proved that establishing
NP-hardness of MCSP is difficult: if MCSP is NP-hard under a certain type of restricted polynomial-
time reductions, then some circuit lower bounds hold (and, in particular, EXP 6⊆ P/poly); thus,
establishing NP-hardness of MCSP (under the restricted reductions) is at least as difficult as proving

∗
hirahara@is.s.u-tokyo.ac.jp

†
watanabe@is.titech.ac.jp

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 198 (2015)

mailto:hirahara@is.s.u-tokyo.ac.jp
mailto:watanabe@is.titech.ac.jp

EXP 6⊆ P/poly. To summarize, MCSP is “harder” than factoring Blum integer, whereas establishing
NP-hardness is difficult.

These two sides have been significantly pushed forward. On the positive side on hardness
of MCSP, Allender, Buhrman, Koucký,van Melkebeek and Ronneburger [1] proved cryptographic
problems, such as the discrete logarithm problem and integer factoring, can be solved in BPPMCSP.
Allender and Das [2] strengthened these results by showing that every problem in statistical zero
knowledge is in Promise-BPPMCSP.

The negative side on hardness ofMCSP was considerably strengthened by Murray andWilliams [17].
They showed that, if MCSP is NP-hard under polynomial-time many-one reductions, then EXP 6=
NP ∩ P/poly (and, in particular, EXP 6= ZPP), which is one of central open problems in com-
putational complexity. Thus, it is difficult to establish NP-hardness of MCSP under (general)
polynomial-time many-one reductions. Moreover, they showed that, under local reductions (i.e.,
that cannot look at a whole input), MCSP is provably not hard even for PARITY. Allender, Holden,
and Kabanets [4] showed similar results for an oracle version of MCSP (denoted by MCSPA for an
oracle A).

Thus, the current status of our understanding of MCSP is as follows: under the restricted
reductions (i.e., local reductions), MCSP is not “hard” at all; under polynomial-time many-one
reductions, it is difficult to establish NP-hardness of MCSP; nevertheless, BPP-Turing reductions
to MCSP are powerful enough to solve every problem in statistical zero knowledge.

Therefore, it is very interesting to investigate whether one can push the positive side further, or
else the negative side can be pushed: More specifically, can we prove NP-hardness of MCSP under
more general reductions, such as polynomial-time Turing reductions or BPP-Turing reductions?
Can we extend the results of Murray and Williams [17] (as well as [4]) into more general reductions?

1.1 Black-box Reductions

In this paper, we mainly push the negative side further. We give upper bounds on classes of
languages reducible to MCSP in a black-box manner: We say that a reduction to MCSP is black-
box if the reduction can be generalized to MCSPA for an arbitrary oracle A. In other words, the
reduction exploits only properties common to MCSPA for any oracle A (instead of unrelativizing
properties of MCSP).

In fact, all the known efficient reductions to MCSP are black-box in our sense. The main
ingredient used by almost all the reductions [1, 2] is the construction from a one-way function to
a pseudorandom generator by H̊astad, Impagliazzo, Levin, and Luby [12]: Specifically, since the
output of a pseudorandom generator is efficiently computable, the output regarded as a truth-
table has significantly low circuit complexity, compared to that of a truth-table chosen from a
uniform distribution. Thus, MCSP constitutes a statistical test that distinguishes a pseudorandom
distribution from a uniform distribution, which enables us to break a one-way function on average,
thanks to [12]. This argument exploits only the fact that MCSP constitutes a statistical test. It
is easy to see that an oracle version MCSPA can also constitute a statistical test, and hence such
reductions are black-box.

Recently, new types of reductions to MCSP that do not rely on breaking a one-way function
have been developed by Allender, Grochow, and Moore [3]. Based on new ideas, they showed
that a certain graph isomorphism problem is reducible to MCSP via a randomized reduction with
zero-sided error. We will see that their reductions are also black-box.

2

A high-level reason why these reductions are black-box is as follows: We are prone to rely on
the fact that a randomly chosen truth-table requires high circuit complexity, because it is in general
difficult to obtain a circuit lower bound on an explicit function. The fact that many truth-tables
require high circuit complexity remains unchanged for any oracle version MCSPA, and hence a
reduction that only exploits this fact is inevitably black-box.

We provide strong evidences that NP-hardness of MCSP cannot be shown via such black-box
reductions. For deterministic reductions, we prove that essentially nothing is reducible to MCSP in
a black-box way.

Theorem 1. No language outside P can reduce to MCSP even under polynomial-time Turing re-
ductions in a black-box way: that is,

⋂

A

PMCSPA

= P.

This result explains why (nontrivial) deterministic reductions to MCSP are not known at all.
In the case of randomized reductions, we prove:

Theorem 2. If a language L is reducible to MCSP via a black-box randomized reduction with
negligible error that makes at most one query, then L ∈ AM ∩ coAM: that is,

⋂

A

BPPMCSPA[1] ⊆ AM ∩ coAM.

In particular,
⋂

A BPPMCSPA[1] does not contain NP unless NP ⊆ coAM (and in particular the
polynomial hierarchy collapses [7]).

1.2 Reductions to MCSP Imply Separations of Complexity Classes

We also extend the results of Murray andWilliams [17] into the case of polynomial-time nonadaptive
reductions and polynomial-time Turing reductions. In the former case, we prove that the same (in
fact, slightly stronger) consequence can be obtained:

Theorem 3. It holds that PMCSP
|| ∩ P/poly 6= EXP (unconditionally). As a consequence, if MCSP

is NP-hard via a polynomial-time nonadaptive reduction, then PNP
|| ∩ P/poly 6= EXP.

Our proof is based on the firm links between circuit complexity and resource-bounded Kol-
mogorov complexity, which were established by a line of work [1, 5]. In fact, the proof is so simple
that we can include a proof sketch here: Allender, Koucký, Ronneburger and Roy [5] showed that
Levin’s Kolmogorov complexity [16] (denoted by Kt) is polynomially related to circuit complexity
if and only if EXP ⊆ P/poly; thus, assuming that EXP ⊆ P/poly, circuit complexity is essentially
equal to Kt-complexity. Moreover, it is well-known that EXP 6= PKt

|| (since a polynomial-time algo-

rithm cannot output any strings of high Kt-complexity). Thus, assuming that EXP ⊆ P/poly, we
also have EXP 6= PMCSP

|| . This implies that EXP 6= PMCSP
|| ∩ P/poly (as otherwise we may assume

EXP ⊆ P/poly). Therefore, at the core of the proof of the unconditional separation in Theorem 3
is EXP 6= PKt

|| .
Now we would like to extend the argument above into the case of polynomial-time Turing

reductions. Unfortunately, we could not prove EXP 6= PKt (and this is an open problem since [1]).
Nevertheless, we prove that a promise problem of approximating Kt within additive error ω(log n)
is not EXP-hard under polynomial-time Turing reductions, which is of independent interest:

3

Theorem 4. For any nondecreasing function g(n) = ω(log n), let GapgKt denote a promise prob-
lem that asks for approximating Kt(x) within additive error g(|x|) on input x. Then, EXP 6=
PGapgKt.

We note that, for a fixed exponential time t(n) ≥ 2n
2
, Buhrman and Mayordomo [8] proved that

Kt is not EXP-hard under polynomial-time Turing reductions. Here, Kt denotes resource-bounded
Kolmogorov complexity such that a universal Turing machine that outputs x is required to run in
time t(|x|).

Now we can translate the property of Kt-complexity into that of MCSP, under the assumption
that EXP ⊆ P/poly. As a consequence, we obtain:

Theorem 5. Let GapkMCSP be a promise problem that asks for approximating the logarithm
of circuit complexity within a factor of k. Then, there exists a constant k ≥ 1 such that EXP 6=
PGapkMCSP∩P/poly. In particular, if a language L is reducible to GapkMCSP via a polynomial-time
Turing reduction for all k ≥ 1, then PL ∩ P/poly 6= EXP.

In particular, establishing NP-hardness of GapkMCSP via a polynomial-time Turing reduction
requires separating PNP ∩ P/poly from EXP.

Interestingly, as observed in [5], the BPP-reductions of [1, 2] are extremely robust in terms of
approximation. Specifically:

Theorem 6 (Analogous to [5, Theorem 19]). For all k ≥ 1, every language in statistical zero
knowledge is reducible to GapkMCSP via a BPP-reduction.

These two results exhibit a striking contrast between BPP-reductions and polynomial-time
Turing reductions: BPP-reductions enables us to base hardness of approximating circuit complexity
on hardness of statistical zero knowledge, whereas derandomizing the BPP-reduction requires a
separation of complexity classes.

1.3 Related Work

Ko [15] showed the existence of a relativized world where MCSP is an NP-intermediate problem:
MCSP is neither in coNP nor is NP-complete under polynomial-time Turing reductions. Specifically,
he constructed an oracle A such that MCSPA 6∈ coNPA and NPA 6⊆ PMCSPA,A.

Here, we clarify the difference between this relativization result and a black-box reduction: In
the relativization, the Turing reduction is allowed to have oracle access to A itself (in addition to
oracle access to MCSPA), and the class NP also has oracle access to A. In contrast, we only allow a
black-box reduction to have oracle access to MCSPA, but not grant oracle access to A itself. Thus,
these two computational models are different, and the techniques that we use is also different.

Organization

The rest of the paper is organized as follows. In Section 2, we introduce some notation and the
definition of circuit complexity. In Section 3, we observe that the known reductions to MCSP are
black-box. We prove Theorems 1 and 2 in Sections 4 and 5, respectively. In Section 6, we extend
the results of Murray and Williams [17] into the case of more general reductions.

4

2 Preliminaries

Since we need to specify an exact definition of circuit complexity in order to discuss some subtle
details, we specify how to encode two strings into one string:

Definition. For two strings x, y ∈ {0, 1}∗, define the pairing function as 〈x, y〉 := 1|x|0xy.

We often write (x, y) instead of (〈x, y〉). We also abbreviate 〈x, 〈y, z〉〉 as 〈x, y, z〉. Note that
| 〈x, y〉 | = 2|x|+ |y|+ 1.

An oracle A is a subset of strings (i.e., A ⊆ {0, 1}∗). We identify a subset A of strings with
its characteristic function A : {0, 1}∗ → {0, 1}. When we use diagonalization arguments, it is
convenient to have the notion of finite oracle:

Definition. 1. We say that A0 is a finite oracle if A0 : {0, 1}∗ → { 0, 1,⊥} and A0(x) = ⊥ for
all but finitely many strings x ∈ {0, 1}∗, where ⊥ means “undefined.”

2. For an oracle A ⊆ {0, 1}∗ and a finite oracle A0, we say that A is consistent with A0 if
A(x) = A0(x) for any x ∈ {0, 1}∗ such that A0(x) 6= ⊥.

3. Similarly, for l ∈ N, we say that A and A0 are consistent up to length l if it holds that
A(x) = 1 if and only if A0(x) = 1 for all strings x ∈ {0, 1}∗ of length at most l.

For a nonnegative integer n ∈ N, we write [n] := { 1, · · · , n }. For a string x ∈ {0, 1}n and
i ∈ [n], we denote by xi the ith bit of x. We also denote by in an integer i padded to length n.
More specifically:

Definition. For n ∈ N and i ∈ [2n], let in denote the ith string of {0, 1}n in the lexicographic
order.

For a set R, we write r ∈R R to indicate that r is a random sample from the uniform distribution
on R. For a distribution D, we write r ∼ D to indicate that r is a random sample from D.

2.1 Definition of Circuit Size

Throughout this paper, we regard the description length of a circuit as its size. Thus, it is convenient
to define the size of a circuit in terms of Kolmogorov complexity.

Definition. Let U be a Turing machine. The Kolmogorov complexity KU (x) of a string x ∈ {0, 1}∗
with respect to U is defined as KU (x) := min{ |d| | U(d) = x }.

While we follow this standard definition, we use Kolmogorov complexity in a somewhat non-
standard way for discussing circuit complexity. We assume that a string x for which we consider
its Kolmogorov complexity is a truth-table of a Boolean function. Thus, |x| is 2n for some n ∈ N.
We use an circuit interpreter for U instead of a universal Turing machine. In particular, from some
technical reason, we will use throughout this paper, a specific interpreter I that is defined below.

We first fix our standard (oracle) circuit interpreter. We assume any standard way to encode
circuits by binary strings. Note that a circuit may be an oracle circuit that can use oracle gate
outputting A(z) for a given input z to the gate when a circuit is used with oracle A. Let I0 denote
a circuit interpreter for this encoding: that is, for any oracle A and a given description d of an
oracle circuit C, the interpreter IA0 (d) yields the truth-table of CA. (Thus, |IA0 (d)| = 2n for some
n and IA0 (d) = CA(1n) · · ·CA(2nn).)

We will use the following facts that the standard circuit interpreter IA0 should have:

5

1. IA0 (d) is computable in time a polynomial in |d| and |IA0 (d)|, given oracle access to A.

2. For all but finitely many truth-tables T ∈ {0, 1}∗ (where |T | is a power of 2), there exists a
circuit description of size less than |T |2: that is, KI0

(T) < |T |2.

3. Any oracle circuit C whose description length is at most m cannot query to an oracle any
string of length greater than m. Thus, the output of CA only depends on the memberships
in A of strings of length at most m.

We modify the standard circuit interpreter I0 so that we can describe some type of circuits
succinctly. For any n ∈ N and d ∈ {0, 1}∗, let CA

n,d(x) be an oracle circuit that computes A(x, d)
(i.e., A(〈x, d〉)) for a given input x ∈ {0, 1}n, by using a single oracle gate with input 〈x, d〉.

Definition. Define an interpreter IA as follows:

IA(0d) := IA0 (d),

IA(1n, d) := IA0 (C
A
n,d) = A(1n, d)A(2n, d) · · ·A(2nn, d),

for any n ≥ 1 and d ∈ {0, 1}∗. For the other strings d (e.g., d = 1101), leave IA(d) undefined.
For A = ∅, we write I instead of I∅.

Remark. 1. Recall that 〈1n, d〉 = 1n01nd; hence IA is well-defined. Also, the definition of IA

ensures that the description length of a circuit CA
n,d is at most | 〈1n, d〉 | = 2n+ |d|+1, which

is exactly equal to the length of a query 〈in, d〉 to oracle A.

2. The definition of our interpreter may appear to be slightly strange, but for A = ∅, we have
KI (x) = KI0

(x)+ 1 for any x ∈ {0, 1}∗ \ {0}∗. Moreover, all of the previous work that we are
aware of holds under our encoding scheme.

We define the minimum oracle circuit size problem MCSPA by using IA as a circuit interpreter:

Definition. The minimum oracle circuit size problem MCSPA relative to an oracle A ⊆ {0, 1}∗
takes a truth-table T ∈ {0, 1}∗ and a size-parameter s ∈ N, and decides if KIA(T) ≤ s.

3 Why Are the Known Reductions Black-box?

In this section, we argue that the known reductions to MCSP are black-box. We observe that the
existing reductions only exploit (as a circuit lower bound) the fact that many truth-tables require
high (unrelativized) circuit complexity. Indeed, in the case of the reductions [1, 2] that rely on
breaking a one-way function, the following holds:

Theorem 7 (Allender and Das [2]; see also [5, 1]). Let ǫ ∈ (0, 1) be a constant and let B be
an oracle of polynomial density such that KI (x) ≥ |x|ǫ for any x ∈ B. Then, every language in
statistical zero knowledge is reducible to B via a BPP-reduction.

Here, we say that an oracle B is of polynomial density if there exists a polynomial p such that
Prx∈R{0,1}n [x ∈ B] ≥ 1/p(n) for any n ∈ N.

It is easy to see that such an oracle B can be computed, given oracle access to MCSP: indeed,
define B := {x ∈ {0, 1}∗ | KI (x) ≥ |x|1/2 }; it is obvious that B ∈ PMCSP; moreover, since there are

6

at most 2
√
n+1 strings that have circuit complexity at most

√
n for any n ∈ N, almost all strings

of length n are in B. Therefore, every language in statistical zero knowledge is reducible to MCSP

via a BPP-reduction.
This argument is still valid in the case of an oracle version MCSPA: indeed, we may define

an oracle BA as {x ∈ {0, 1}∗ | KIA(x) ≥ |x|1/2 } (∈ PMCSPA

); since KI (x) ≥ KIA(x) for any
x ∈ {0, 1}∗, the hypothesis of the theorem remains satisfied.

Next, we show that a black-box one-query reduction to MCSP allows us to convert a randomized
algorithm with two-sided error into a randomized algorithm with zero-sided error. Moreover, the
error probability is negligible.

Theorem 8 (Kabanets and Cai [14]). BPP ⊆ ⋂

A ZPPMCSPA[1].

Proof Sketch. Pick a truth-table T uniformly at random. By making a query to MCSPA, check if
KIA(T) = nΩ(1). (Note that this also implies that KI (T) = nΩ(1).) Now, if we successfully found a
truth-table T that requires high circuit complexity, then we can use the pseudorandom generator
by Impagliazzo and Wigderson [13] to derandomize a BPP computation. See [14] for the details.

�

Finally, we observe that the new reductions by Allender, Grochow, and Moore [3] are black-box.
In fact, their reductions are not known to work under a usual definition of circuit size; instead,
they presented reductions to a minimum circuit size problem, where “circuit size” here refers to
KT-complexity. Let us recall KT-complexity briefly:

Definition (KT-complexity [1]). Fix a universal (oracle) Turing machine U . For an oracle A, the
KTA-complexity of a string x is defined as

KTA(x) := min{ |d|+ t | UA,d(i) = xi in t steps for all i ∈ [|x|+ 1] }.

Here, x|x|+1 is defined as ⊥ (a stop symbol).

It is known that KTA-complexity is polynomially related to circuit complexity relative to A;
hence, we may regard KTA as a version of circuit complexity. In order to capture KT-complexity
by our notation, we define a circuit interpreter IA0 as follows: On input 1t0d, run the universal
Turing machine UA,d(i) for each i ≥ 1 one by one in time at most t. Let n be the minimum i such
that UA,d(i) outputs ⊥. Output the concatenation of UA,d(1), · · · , UA,d(n − 1). This definition
ensures that KIA0

(x) = KTA(x) + 1, and that KIA(x) ≤ KIA0
(x) + 1 = KTA(x) + 2.

For this particular interpreter IA, we prove:

Theorem 9 (Allender, Grochow, and Moore [3]). For any oracle A, the rigid graph isomorphism
problem is reducible to MCSPA via a one-query BPP-reduction.

Proof Sketch. We only observe why their reduction still works for MCSPA, where A denotes an
arbitrary oracle A. See [3] for the details.

Given two graphs (G0, G1), they constructed a string x′ whose length is a power of 2 and
a threshold θ that satisfy the following: If the graphs are isomorphic, then KT(x′) ≪ θ with
probability 1. If the graphs are rigid and not isomorphic, then x′ contains information about a
uniformly chosen random string of length at least θ, and hence KT(x′) ≥ KU (x

′) ≫ θ with high
probability. (Here, KU (x

′) denotes the time-unbounded Kolmogorov complexity.)

7

Now consider an arbitrary oracle A. We claim that the rigid graph isomorphism problem
reduces to checking if (x′, θ) ∈ MCSPA. Suppose that the graphs are isomorphic; in this case,
we have KIA(x

′) ≤ KTA(x′) + 2 ≤ KT(x′) + 2 ≪ θ. On the other hand, suppose that the
graphs are rigid and not isomorphic. Since x′ contains information about a uniformly chosen
random string, an information-theoretic argument shows that KUA(x′) ≫ θ with high probability
(even relative to A). By the universality of U , we have KUA(x′) ≤ KIA(x

′) + O(1). Therefore,
KIA(x

′) ≥ KUA(x′)−O(1) ≫ θ. �

To summarize, on one hand, relativization does not increase circuit complexity (KIA(x
′) ≤

KI (x
′)); on the other hand, we are prone to rely on the fact that a uniformly chosen random string

requires high circuit complexity, which remains true for any MCSPA.

4 Limits of Black-box Turing Reductions to MCSP

We show upper bounds for classes of languages that reduce to MCSP in a black-box manner (i.e., in
a way that one does not use a property of MCSP rather than that of a relativized version MCSPA).
For example, we consider a situation where a language L is reducible to MCSPA for any A via
a polynomial-time Turing reduction; more precisely, for every A, there exists a polynomial-time
Turing reduction from L to MCSPA, i.e., L ∈ ⋂

A PMCSPA

. That is, only properties common to

MCSPA for any oracle A are used to show that L is in PMCSPA

. We would like to show that L is
relatively easy in such situations.

In fact, we can indeed show that any language L in
⋂

A PMCSPA

is in P.

Theorem 10. Let L ⊆ {0, 1}∗ be a language such that for any oracle A, there exists a polynomial-

time Turing reduction from L to MCSPA. Then L is in P. In short,
⋂

A PMCSPA

= P.

At the core of a proof of Theorem 10 is the following lemma:

Lemma 11. Let L ⊆ {0, 1}∗ be a language and A0 be an arbitrary finite oracle. Suppose that

there exists a polynomial-time oracle Turing machine M such that MMCSPA

(x) = L(x) for any
x ∈ {0, 1}∗ and any oracle A consistent with A0. Then, L ∈ P.

The main difference between this lemma and the theorem is that the order of the quantifiers is
swapped. In the theorem, a polynomial-time oracle machine that witnesses L ∈ PMCSPA

is allowed
to depend on A, whereas, in the lemma, a specific machine M is required to compute L with respect
to every oracle A.

Before proving the lemma, we show that it implies the theorem by a simple diagonalization.

Proof of Theorem 10. We prove the contraposition: Assuming L 6∈ P, the aim is to construct an
oracle A such that L 6∈ PA. Such an oracle A =

⋃

eBe is constructed in stages. Let all the
polynomial-time oracle Turing machine be {M1,M2, · · · }.

At stage e, we construct a finite oracle Be. At stage 0, set B0(y) := ⊥ for all y ∈ {0, 1}∗. At
stage e ≥ 1, we apply Lemma 11 for M = Me and A0 = Be−1: by the assumption that L 6∈ P, there

exist some string xe and some oracle Be consistent with Be−1 such that MMCSPBe

e (xe) 6= L(xe).

We may assume that Be is a finite oracle: since the computation of MMCSPBe

e on input xe makes a
finite number of queries to MCSPBe , and the answers of the queries also depend on a finite portion
of Be. Define an oracle A as the union of all the oracles Be whose ⊥ is replaced by 0.

8

Since A is consistent with Be, it holds that MMCSPBe

e (xe) = MMCSPA

e (xe) for each e ≥ 1. By

the definition of xe, we have M
MCSPBe

e (xe) 6= L(xe). Therefore, M
MCSPA

e (xe) 6= L(xe) holds for any

e, and hence L 6∈ PMCSPA

. �

Now we give a proof of Lemma 11. The idea is to encode into A a string that is asked by a
polynomial-time oracle machine; thereby we force any string that is queried by the machine to have
circuit complexity at most O(logn), relative to the oracle A. Assuming that the circuit complexity
of a string is at most O(logn), one can compute the circuit complexity by an exhaustive search.
Note that the circuit complexity here refers to the description length of a circuit, and hence there
are at most nO(1) circuits of circuit complexity at most O(log n).

Let us turn to a formal proof. Let M be a polynomial-time oracle machine that computes L
relative to MCSPA in time nc for some c, where A denotes an arbitrary oracle consistent with A0.
We define a polynomial-time machine M0 that simulates M without using MCSPA as follows: On
input x ∈ {0, 1}∗ of length n, simulate M on input x, and accept if and only if M accepts. If M
makes a query (T, s), then we try to compute the circuit complexity KIA0 (T) of the truth-table T
relative to a finite oracle A0, by an exhaustive search up to size at most 4c logn. (More specifically,
we compute the shortest description d of length at most 4c logn such that IA0(d) = T , where we
regard A0 ⊆ {0, 1}∗ as an oracle by replacing ⊥ by 0 in finite oracle A0.) If the circuit complexity
KIA0 (T) has turned out to be greater than 4c logn, then define s′ := 4c logn; otherwise define
s′ := KIA0 (T) (≤ 4c logn). (i.e., s′ := min{ 4c logn, KIA0 (T) }.) Answer “Yes” to the query if
and only if s′ ≤ s.

It is easy to see that M0 is indeed a polynomial-time machine, since there are only 2O(logn)

circuits of size at most O(log n). Thus, it is sufficient to prove the following:

Claim 12. For all sufficiently large n and all inputs x of length n, there exists an oracle A consistent
with A0 such that M0(x) = MMCSPA

(x).

Since MMCSPA

(x) = L(x) by the hypothesis, this claim implies that L ∈ P.

Proof of Claim 12. Fix n sufficiently large and an input x ∈ {0, 1}n. For i ∈ [nc], let Ti be the
truth-table in the ith query that M makes on the computation path simulated by M0 on input x.

We define oracle A as follows: For any string q ∈ {0, 1}∗ of length less than 4c log n, define
A(q) = 1 if and only if A0(q) = 1. For strings of length 4c logn, we encode Ti into oracle A so that
the circuit complexity of Ti relative to A is at most 4c log n: Specifically, we would like to define
a description di of length 4c log n so that IA(di) = Ti. To this end, let ai := log |Ti| and define
di :=

〈

1ai , iki
〉

, where ki ∈ N is defined so that |di| = 2ai+1+ki = 4c logn. Here, iki is well-defined:
indeed, we have ai = log |Ti| ≤ c log n, which implies that ki := 4c logn − 2ai − 1 ≥ c logn, and
thus i ≤ 2c logn ≤ 2ki . Now define A(j

ai
, iki) := Tij for each j ∈ [2ai]. By the definition of IA,

the truth-table Ti can be described succinctly: IA(di) = A(1ai , iki) · · ·A(2aiai , iki) = Ti; thus, the
circuit complexity KIA(Ti) of Ti is at most |di| = 4c logn.

It remains to show that, for each query (Ti, s) that M makes on the computation path simulated
byM0, circuit complexity s′ (= min{ 4c logn, KIA0 (T) }) calculated byM0 coincides with KIA(Ti);

note that this implies that M0(x) = MMCSPA

(x), because the computation path simulated by M0

coincides with that of M relative to MCSPA. Suppose that KIA0 (Ti) < 4c logn (i.e., s′ = KIA0 (Ti)).
In this case, there exists some description d of length less than 4c log n such that IA0(d) = Ti.
Since the circuit described by d cannot make any query of length greater than |d|, it holds that

9

IA0(d) = IA(d) (note that A and A0 are consistent up to length 4c logn − 1). Thus KIA(Ti) ≤
KIA0 (Ti) < 4c logn. Similarly, we have KIA0 (Ti) ≤ KIA(Ti), and hence KIA(Ti) = KIA0 (Ti) = s′.
Now suppose that KIA0 (Ti) ≥ 4c logn. In this case, we have s′ = 4c log n and KIA(Ti) ≤ 4c log n.
Assume, by way of contradiction, that KIA(Ti) < 4c log n. By the same argument above, it must
be the case that KIA(Ti) ≥ KIA0 (Ti) ≥ 4c logn, which is a contradiction. �

This completes the proof of Lemma 11.

5 Limits of Black-box Randomized Reductions to MCSP

In this section, we discuss the limits of a randomized reduction to MCSP that can be generalized
to a reduction to MCSPA for an arbitrary oracle A. Our focus is a randomized reduction with
negligible two-sided error that can make at most one query:

Definition. Let L,B ⊆ {0, 1}∗ be a language and an oracle, respectively. We say that L reduces to
B via a one-query BPP-reduction and write L ∈ BPPB[1] if there exist polynomial-time machines
M,Q and a negligible function ǫ such that, for any x ∈ {0, 1}∗,

Pr
r∈{0,1}|x|O(1)

[M(x, r, B(Q(x, r))) = L(x)] ≥ 1− ǫ(|x|).

Here, we say that a function ǫ is negligible if for all polynomial p, for all sufficiently large n ∈ N,
the function is bounded by the inverse of p: that is, ǫ(n) < 1

p(n) .

Note that we require the error probability to be negligible. Since the number of queries is
restricted to one, we cannot apply the standard error-reduction argument; hence, this definition
may be stronger than a definition whose error probability is a constant. We leave as an open
problem improving our result to the case when the error probability is a constant.

We prove that there is no language outside AM ∩ coAM that can reduce to MCSPA for an
arbitrary oracle A via a one-query randomized reduction:

Theorem 13. Let L ⊆ {0, 1}∗ be a language such that for any oracle A, there exists a one-query
BPP-reduction from L to MCSPA. Then L is in AM ∩ coAM. In short,

⋂

A

BPPMCSPA[1] ⊆ AM ∩ coAM.

As with Theorem 10, we first swap the order of quantifiers. However, in order to swap the order
of quantifiers, we need to enumerate all the negligible functions, which is not countably many; thus,
we sidestep this by requiring that the error probability is an inverse polynomial 1/q in the running
time of machines M and Q. Also, since a one-query BPP-reduction is closed under complement,
we only have to show that the target language is in AM.

Lemma 14. There exists some universal polynomial q (specified later) that satisfies the following:
Let L,A0 be a language and a finite oracle, respectively. Suppose that there exist a polynomial p
and Turing machines M,Q such that M and Q run in time p(n) and

Pr
r∈{0,1}p(n)

[M(x, r,MCSPA(Q(x, r))) = L(x)] ≥ 1− 1

q(p(n))

for any x ∈ {0, 1}∗ of length n and any oracle A ⊆ {0, 1}∗ consistent with A0. Then, we have
L ∈ AM.

10

We prove that Lemma 14 implies Theorem 13:

Proof of Theorem 13. We prove the contraposition: Assuming L 6∈ AM, we will construct an oracle

A such that L 6∈ BPPMCSPA[1] by diagonalization.
Enumerate all the tuples { (Me, Qe, ce) }e≥1, where Me and Qe are polynomial-time machines

and ce ∈ N. We assume that, for each tuple (Me, Qe, ce), there exist infinitely many e′ ∈ N such
that (Me, Qe, ce) = (Me′ , Qe′ , ce′).

At stage e ≥ 1, we construct a finite oracle Be that fools a one-query BPP reduction (Me, Qe)
that runs in time nce : If Me or Qe does not run in time nce , then we define Be := Be−1. Otherwise,
we can apply the contraposition of Lemma 14 to Me and Qe: there exist some input xe and some
oracle Be consistent with Be−1 such that Prr[Me(xe, r,MCSPBe(Qe(xe, r))) = L(xe)] < 1 − 1

q(nce) .
We can make Be a finite oracle, since Me depends on only a finite portion of Be. This completes
stage e. Define A as the union of all the oracles Be whose ⊥ is replaced by 0.

We claim that L 6∈ BPPMCSPA[1]. Assume otherwise. Then there exist a constant c > 1, a
negligible function ǫ, and machines M and Q that run in time nc such that

Pr
r
[M(x, r,MCSPA(Q(x, r))) = L(x)] ≥ 1− ǫ(|x|) (1)

for all x ∈ {0, 1}∗. Fix a sufficiently large n0 ∈ N such that ǫ(n) < 1
q(nc+1)

for all n ≥ n0. Let M
′ be

the Turing machine1 that, on input x, outputs a hardwired answer L(x) if |x| ≤ n0, and simulates
M otherwise. Note that the running time of M ′ is at most nc+1.

By the construction above, there exists e ≥ n0 such that (Me, Qe, ce) = (M ′, Q, c + 1). By
the definition of xe, we have Prr[M

′(xe, r,MCSPA(Q(xe, r))) = L(xe)] < 1 − 1
q(|xe|c+1)

. Moreover,

since M ′ outputs a correct answer with probability 1 on input x of length at most n0, it holds that
|xe| > n0; thus, we have ǫ(|xe|) < 1

q(|xe|c+1)
; in addition, the machine M ′ behaves in the same way

with M . Hence, the success probability of (M,Q) on input xe is equal to that of (M ′, Q) on input
xe, which is bounded above by 1− 1

q(|xe|c+1)
< 1− ǫ(|xe|). This contradicts (1). �

Now we outline the proof of Lemma 14.
We will first show that we may assume that all the queries that Q makes have a truth-table

of a fixed length 2t and a fixed size-parameter s for some t, s ∈ N. There is no loss of generality
in assuming this because there are only polynomially many possibilities: the number of all the
possible lengths of a truth-table and size-parameters is at most nc for some c. Moreover, we may
fix how to use the answer of a query: specifically, for a random choice r, define f : {0, 1} → {0, 1}
(which has 4 possible choices) so that f(b) = M(x, r, b). (For example, f(b) = b means that M
accepts if and only if the query is a positive instance of MCSPA.)

We classify the set of random choices r into Rf,t,s according to these parameters (f, t, s). If
x ∈ L, then there must exist some (f, t, s) such that f(MCSPA(Q(x, r))) = 1 with high probability
over the choice of r ∈R Rf,t,s. On the other hand, if x 6∈ L, then any (f, t, s) must satisfy
f(MCSPA(Q(x, r))) = 0 with high probability. Therefore, it is sufficient to prove that, for a specific
(f, t, s), there exists an AM protocol that checks if f(MCSPA(Q(x, r))) = 1 with high probability
conditioning on r ∈ Rf,t,s.

1
M

′ can be implemented by a Turing machine as follows: Read the first n0 + 1 bits of the input (if any). If the
input length is at most n0, then output the hardwired answer. Otherwise, move the head of the input tape to the
initial position, and continue the computation of M . This implementation costs at most 2n0 additional steps.

11

Let us assume that f(b) = b for simplicity. Then, it is sufficient to estimate the probability

Pf,t,s := Pr
r∈RRf,t,s

[f(MCSPA(Q(x, r))) = 1] = Pr
r∈RRf,t,s

[Q(x, r) ∈ MCSPA]

by an AM protocol. If the probability Pf,t,s is close to 1, then the distribution induced by Q(x, r)
concentrates on a limited number of instances: indeed, since there are at most 2s+1 positive in-
stances in MCSPA for a size-parameter s, the query Q(x, r) must be one of such instances with
probability at least Pf,t,s. Conversely, suppose that the query distribution Q(x, r) concentrates on
a limited number of instances { (T1, s), (T2, s), · · · }; we may encode Ti into an oracle A and force
these instances to be positive (i.e., (Ti, s) ∈ MCSPA); as a result, the probability Pf,t,s is not small
(since the instances (Ti, s) are positive). Therefore, the task reduces to checking whether the query
distribution concentrates on a limited number of instances.

To this end, we will use the heavy samples protocol [6]. We say that an instance (T, s) is
β-heavy if the probability that (T, s) is queried (i.e., (T, s) = Q(x, r)) is at least β. The heavy
samples protocol allows us to estimate the probability that Q(x, r) is β-heavy.

Lemma 15 (The heavy samples protocol; Trevisan and Bogdanov [6]). Let D = {Dn }n∈N be a
polynomial-time samplable distribution. There exist a universal constant c (c = 211 will do) and
an AM ∩ coAM protocol that solves the following promise problem: Given input 1n and a threshold
β ∈ [0, 1], accept if Pry∼Dn [y is cβ-heavy] ≥ 3

4 , and reject if Pry∼Dn [y is β-heavy] ≤ 1
4 .

Since the problem setting is slightly different from that of [6], we include a proof of this lemma
based on the lower and upper bound protocols in Appendix A.

Now we give a formal proof of Lemma 14. For the proof, we need to show an AM protocol
deciding whether x ∈ L; we will show the protocol by a sequence of claims.

We begin with clarifying our setting and introducing some notation. Let p(n) be a polynomial
that is an upper bound of the running time of M and Q. Fix a sufficiently large n ∈ N and an
input x ∈ {0, 1}n.

Let f : {0, 1} → {0, 1} be a function, and t, s ∈ N. We define Rf,t,s ⊆ {0, 1}p(n) as the set of all
the random choices r ∈ {0, 1}p(n) such that M(x, r, b) = f(b) for all b ∈ {0, 1} and (T, s) = Q(x, r)
and |T | = 2t. That is, f specifies how to use the answer from oracle MCSPA, and t and s specify
the length of the truth-table and the size-parameter in the query, respectively. Let X := { (f, t, s) |
Rf,t,s 6= ∅ }. We may assume, without loss of generality, that s ≤ p(n)2 as otherwise Q(x, r) is
obviously a positive instance; hence, |X| ≤ 22 · log p(n) · p(n)2 ≤ 4p(n)3.

Define Pf,t,s := Prr[f(MCSPA(Q(x, r))) = 1 | r ∈ Rf,t,s] for (f, t, s) ∈ X. Let us divide the
probability that M accepts x by conditioning on r ∈ Rf,t,s:

Pr
r
[M(x, r,MCSPA(Q(x, r)) = 1] =

∑

(f,t,s)∈X
Pr
r
[r ∈ Rf,t,s] · Pf,t,s. (2)

Since there are polynomially many choices for (f, t, s), there must be some (f, t, s) ∈ X that can
be used as a “witness” for x ∈ L in our AM protocol. Specifically, the following claim holds:

Claim 16. Let δ(n) :=
√

1/q(p(n)) and δ′(n) := 9p(n)3δ(n).

1. If x ∈ L, then there exists (f, t, s) ∈ X such that Pr[r ∈ Rf,t,s] ≥ 2δ(n) and Pf,t,s ≥ 1− δ′(n).

2. If x 6∈ L, then Pf,t,s ≤ δ(n) for all (f, t, s) ∈ X such that Pr[r ∈ Rf,t,s] ≥ δ(n).

12

Proof of Claim 16.

1. Suppose that x ∈ L; then, the probability (2) is at least 1 − δ(n)2. Assume, by way of
contradiction, that Pf,t,s < 1 − δ′(n) for all (f, t, s) ∈ X such that Pr[r ∈ Rf,t,s] ≥ 2δ(n).
Then,

1− δ(n)2 ≤
∑

(f,t,s)∈X
Pr
r
[r ∈ Rf,t,s] · Pf,t,s

=
∑

(f,t,s)∈X
Pr[r∈Rf,t,s]≥2δ(n)

Pr
r
[r ∈ Rf,t,s] · Pf,t,s +

∑

(f,t,s)∈X
Pr[r∈Rf,t,s]<2δ(n)

Pr
r
[r ∈ Rf,t,s] · Pf,t,s

≤ 1− δ′(n) + 2|X|δ(n) ≤ 1− 9p(n)3δ(n) + 8p(n)3δ(n) = 1− p(n)3δ(n).

Thus p(n)3 ≤ δ(n) < 1, which is a contradiction.

2. Suppose that x 6∈ L; then, the probability (2) is bounded above by δ(n)2. Thus, for all
(f, t, s) ∈ X such that Pr[r ∈ Rf,t,s] ≥ δ(n),

δ(n)2 ≥
∑

(f,t,s)∈X
Pr
r
[r ∈ Rf,t,s] · Pf,t,s ≥ δ(n) · Pf,t,s,

which implies that Pf,t,s ≤ δ(n).

�

In our AM protocol, the prover first sends (f, t, s) to the verifier; an honest prover is supposed
to send (f, t, s) ∈ X that satisfies the first condition in Claim 16 above. Then, what we need is to
show a verifier of an AM protocol as stated in the following claim.

Claim 17. There exists a verifier V of an AM protocol such that, for a given x ∈ {0, 1}∗ and
(f, t, s) ∈ X,

1. if Pr[r ∈ Rf,t,s] ≥ 2δ(n) and Pf,t,s ≥ 1 − δ′(n), then V accepts with high probability by
communicating with some prover, and

2. if Pr[r ∈ Rf,t,s] < δ(n) or Pf,t,s ≤ δ(n), then V rejects with high probability with any prover.

We explain below how to define this verifier V . Recall that 1/δ(n) = nO(1); thus, it is easy
to distinguish the case when Pr[r ∈ Rf,t,s] ≥ 2δ(n) and the case when Pr[r ∈ Rf,t,s] < δ(n), The
following claim states this formally.

Claim 18. There exists a randomized polynomial-time algorithm that, given x ∈ {0, 1}∗ and
(f, t, s) ∈ X,

1. accepts with high probability if Pr[r ∈ Rf,t,s] ≥ 2δ(n), and

2. rejects with high probability if Pr[r ∈ Rf,t,s] < δ(n).

13

Proof Sketch. Sample r1, · · · , rm ∈R {0, 1}p(n) uniformly at random for m = O(n/δ(n)2). Accept
if and only if the number of i’s such that ri ∈ Rf,t,s is at least 1.5 ·δ(n)m. By applying the Chernoff
bound, this algorithm distinguishes the two cases with probability at least 1− 2−n. �

Therefore in our AM protocol, verifier V first use this algorithm to check whether Pr[r ∈ Rf,t,s] ≥
2δ(n) or Pr[r ∈ Rf,t,s] < δ(n). If Pr[r ∈ Rf,t,s] < δ(n) is confirmed by the algorithm, then V can
immediately reject (f, t, s) and halt. Thus, it remains to design a part where V determines whether
Pf,t,s ≥ 1− δ′(n) or Pf,t,s ≤ δ(n) (≤ δ′(n)) holds, assuming that Pr[r ∈ Rf,t,s] ≥ δ(n). Note that
this assumption implies that the uniform distribution on Rf,t,s can be sampled efficiently: indeed,
sample r ∈R {0, 1}p(n) until we obtain an element r such that r ∈ Rf,t,s; this sampling algorithm
succeeds within O(1/δ(n)) steps in expectation.

Now our task is to define an AM protocol determining whether Pf,t,s is close to 1 or smaller than
δ′(n), assuming that the query distribution Q(x, r) where r ∈R Rf,t,s can be sampled efficiently.
Note that Pf,t,s may depend on x and MCSPA. We will show that the task above can be reduced
to checking whether a certain concentration occurs, by defining A so that heavy queries become
positive instances. Then we will check if such a concentration occurs by the heavy samples protocol
of Lemma 15.

In order to reduce Claim 17 to the heavy samples protocol, we introduce some notation: Fix
(f, t, s) ∈ X. Let us sort all the truth-tables {T1, · · · , T22

t } = {0, 1}2t of length 2t in the order
of heaviness: namely, let pi := Prr∈RRf,t,s

[Q(x, r) = (Ti, s)] and p1 ≥ p2 ≥ · · · ≥ p22t . Let p(I)

denote
∑

i∈I pi for I ⊆ [22
t
]. Define the set of α-heavy indices (with respect to the distribution

induced by Q(x, r) where r ∈R Rf,t,s) as Iα := { i ∈ [22
t
] | pi ≥ α } for α ≥ 0. Note that

p(Iα) = Prr∈RRf,t,s
[Q(x, r) is α-heavy]. We also define Pid,t,s := Prr∈RRf,t,s

[Q(x, r) ∈ MCSPA].
We will show that the condition that Pid,t,s is close to 1 is (almost) characterized by the fact that

the query distribution is concentrated on { (Ti, s) | i ∈ Iβ }, namely the set of β-heavy instances for
some threshold β > 0.

Claim 19. There exists an oracle A consistent with A0 up to length 7 log p(n) that satisfies the
following: for any (f, t, s) ∈ X such that Pr[r ∈ Rf,t,s] ≥ δ(n) and s > 7 log p(n) hold,

1. if Pid,t,s ≥ 1− δ′(n), then p(Icβ) ≥ 1− 3cδ′′(n), and

2. if Pid,t,s ≤ δ′(n), then p(Iβ) ≤ δ′′(n).

Here, we define δ′′(n) := 2 p(n)7 δ′(n) = 18 p(n)10 δ(n) and β := δ′′(n) 2−s, and c denotes the
universal constant in Lemma 15.

This claim allows us to apply the heavy samples protocol. Let us complete the proof of Claim
17 before proving Claim 19.

Proof of Claim 17. As explained above, it is sufficient to show that our verifier V can check whether
Pf,t,s ≥ 1− δ′(n) or Pf,t,s ≤ δ′(n), assuming that Pr[r ∈ Rf,t,s] ≥ δ(n).

If f ≡ 1 or f ≡ 0, then the task is trivial: in the former case, Pf,t,s = 1 and hence V may
immediately accept; in the latter case, V rejects.

If s ≤ 7 log p(n), then we may decide whether Q(x, r) ∈ MCSPA0 or not by an exhaustive search
in time 2O(s) = nO(1). Since A and A0 are consistent up to length 7 log p(n), as in the proof of
Lemma 11, it holds that Q(x, r) ∈ MCSPA0 if and only if Q(x, r) ∈ MCSPA. Therefore, we may

14

estimate Pf,t,s by sampling r ∈R Rf,t,s and then decide whether Q(x, r) ∈ MCSPA by the exhaustive
search.

Otherwise, we have s > 7 log p(n) and hence Claim 19 can be applied. Now suppose that
f(b) = b for any b ∈ {0, 1}. In this case, it holds that Pf,t,s = Pid,t,s; thus Claim 19 states that, if
Pf,t,s ≥ 1− δ′(n) then p(Icβ) ≥ 1− 3cδ′′(n), and if Pf,t,s ≤ δ′(n) then p(Iβ) ≤ δ′′(n). Now we may
apply the heavy samples protocol for the query distribution induced by Q(x, r) where r ∈R Rf,t,s,
in order to check whether p(Icβ) ≥ 1 − 3cδ′′(n) or p(Iβ) ≤ δ′′(n): more specifically, V accepts in
the former case by running the AM protocol of Lemma 15.

Similarly, if f(b) = 1−b, then we have Pf,t,s = 1−Pid,t,s. This implies the same condition except
for flipping YES and NO: if Pf,t,s ≥ 1 − δ′(n) then p(Iβ) ≤ δ′′(n); if Pf,t,s ≤ δ′(n) then p(Icβ) ≥
1 − 3cδ′′(n). Thus, we may apply the heavy samples protocol to check whether p(Iβ) ≤ δ′′(n) or
p(Icβ) ≥ 1 − 3cδ′′(n): specifically, V accepts in the former case by running the coAM protocol of
Lemma 15.

Note that we may pick the polynomial q that specifies the error probability so that 3cδ′′(n) ≤ 1
4

(which allows us to use Lemma 15): indeed, if we define q(n) := O(n22) then we have δ(n) =
√

1/q(p(n)) = O(p(n)−11) and hence 3cδ′′(n) = O(p(n)10 δ(n)) = o(1). �

All that remains is to show Claim 19. The intuition is as follows: Suppose that the probability
that a positive instance is queried is large (i.e., Pid,t,s ≥ 1 − δ′(n)). Since there are at most 2s+1

truth-tables that have circuit complexity at most s, the query distribution must concentrate on
such positive instances; thus p([2s+1]) is also large, which in particular implies that p(Icβ) is large
(since β is in fact chosen so that p(Iβ) is roughly equal to p([2s+1])).

Conversely, suppose that the query distribution concentrates on heavy instances { (T1, s), . . . ,
(T2k , s) } (i.e., p([2k]) is large) for some k. In this case, we may encode the heavy truth-tables into
the oracle A; thereby we can force these truth-tables to be positive instances, which implies that
p([2k]) ≤ Pid,t,s; hence Pid,t,s cannot be small. The details follow:

Proof of Claim 19. 1. Suppose that Pid,t,s ≥ 1− δ′(n). Then,

1− δ′(n) ≤ Pr
r∈RRf,t,s

[Q(x, r) ∈ MCSPA]

=
∑

i : (Ti,s)∈MCSPA

pi ≤
2s+1
∑

i=1

pi = p([2s+1]),

where in the last inequality we used the fact that there are at most 2s+1 positive instances in
MCSPA. Now,

1− δ′(n) ≤ p([2s+1]) = p([2s+1] ∩ Icβ) + p([2s+1] \ Icβ) ≤ p(Icβ) + 2s+1 · cβ,

which implies that p(Icβ) ≥ 1− 2s+1 · cβ − δ′(n) ≥ 1− 2cδ′′(n)− δ′(n) ≥ 1− 3cδ′′(n).

2. Note that an oracle A can depend on input x, but A must not depend on a specific (f, t, s).
Thus, we define A so that, for all (f, t, s) ∈ X, the heavy queries { (T1, s), · · · , (T2k , s) }
(with respect to the distribution induced by Q(x, r) where r ∈R Rf,t,s) become positive
instances. (Note that truth-tables Ti depend on (f, t, s).) For any string y of length at most
7 log p(n), we define A(y) := 1 if and only if A0(y) = 1, which ensures that A and A0 are

15

consistent up to length 7 log p(n). For each (f, t, s) ∈ X such that s > 7 log p(n), define
k := s − 7 log p(n); for each i ∈ [2k], we would like to define A so that IA(d) = Ti for
some description d of length exactly equal to s. To this end, define d :=

〈

1t,
〈

f, s, iki
〉〉

and
A(j

t
,
〈

f, s, iki
〉

) = Tij for all j ∈ [2t], where ki is chosen so that |d| = 2t+2 log s+ki+O(1) = s.
Thus, ki := s − 2t − 2 log s − O(1) ≥ s − 7 log p(n) = k. This ensures that iki is well-

defined. These imply that KIA(Ti) ≤ s; hence, (Ti, s) ∈ MCSPA for all i ∈ [2k] and therefore
p([2k]) ≤ Pid,t,s.

Now fix (f, t, s) ∈ X such that k = s− 7 log p(n) > 0 and Pid,t,s ≤ δ′(n) hold. Since k and s
are close, it holds that

p([2s+1]) = p({ 1, · · · , 2k }) + p({ 2k + 1, · · · , 2 · 2k }) + · · ·+ p({ 2s+1 − 2k + 1 · · · , 2s+1 })
≤ 2s+1/2k · p([2k]) ≤ 2s+1−k · Pid,t,s = 2p(n)7 · Pid,t,s ≤ 2p(n)7 · δ′(n) ≤ δ′′(n).

We claim that this implies p(Iβ) ≤ δ′′(n): Indeed, let j := max Iβ . If j > 2s, then δ′′(n) ≥
p([2s+1]) ≥ p([2s+1]∩ Iβ) = β ·min{ 2s+1, j } > β · 2s = δ′′(n), which is a contradiction. Thus,
we have j ≤ 2s, and hence p(Iβ) ≤ p([2s+1]) ≤ δ′′(n) as desired.

�

This completes the proof of Lemma 14.

6 Hardness of MCSP Implies Separations of Complexity Classes

In this section, we give a reinterpretation of the results of Murray and Williams [17] by using Levin’s
Kolmogorov complexity, and extend these results to the case of polynomial-time nonadaptive re-
ductions and polynomial-time Turing reductions. Our proofs are based on the firm links between
circuit complexity and resource-bounded Kolmogorov complexity, which have been established by
a line of work [1, 5]. First, we introduce Levin’s Kt-complexity.

Definition (Levin’s Kolmogorov Complexity [16]). Fix an efficient universal Turing machine U .
The Levin’s Kolmogorov complexity Kt(x) of a string x is defined as

Kt(x) := min{ |d|+ log t | U(d) outputs x in time t }.

The principal relationship that bases our proof is the fact that EXP ⊆ P/poly if and only if
circuit complexity KI is polynomially related to Levin’s Kolmogorov complexity Kt.

Lemma 20 (Allender, Koucký, Ronneburger and Roy [5]). EXP ⊆ P/poly if and only if there exists
a polynomial poly in two variables such that KI (x) ≤ poly(Kt(x), log |x|).

Our proof strategy is as follows: Assume that EXP ⊆ P/poly; then, Levin’s complexity and
circuit complexity are essentially the same (in the sense that these are polynomially related to each
other); hence, any “robust” property of Kt-complexity can be translated into a property of circuit
complexity KI .

16

6.1 The Case of Nonadaptive Reductions

In the case of polynomial-time nonadaptive reductions, it is well known that PKt
|| 6= EXP.

Proposition 21 (folklore). EXPKt
|| = EXP. (Here, Kt is identified with the oracle { (x, s) ∈

{0, 1}∗ × N | Kt(x) ≤ s }.)
Note that this implies PKt

|| 6= EXP by the time-hierarchy theorem.

Proof. Let M be any EXPKt
|| machine. Given input x ∈ {0, 1}∗ of length n, let Q(x) be the set of

queries (without size-parameter s) that M makes. Since M is a nonadaptive oracle machine, Q(x)
can be computed in exponential time. Therefore, any query q ∈ Q(x) can be described by the input

x and an index i ∈ [2n
O(1)

] in exponential time; hence, Kt(q) ≤ |x|+ nO(1) + log 2n
O(1)

= nO(1).
Given the fact that Kt(q) ≤ nO(1), we may compute Kt(q) by an exhaustive search in exponential

time. Thus, by answering M ’s queries by the exhaustive search, we can compute M ’s output in
exponential time. �

Thus, under the assumption that EXP ⊆ P/poly, we can translate the property of Kt into that
of circuit complexity:

Theorem 22. If EXP ⊆ P/poly then EXPMCSP
|| = EXP.

Proof Sketch. Let (T, s) be any query of an EXPMCSP
|| machine. Since Kt(T) is nO(1), the circuit

complexity KI (T) of T is also bounded above by nO(1) by Lemma 20. Thus, the circuit complexity
of all the queries can be computed by an exhaustive search in time exponential in n. �

This theorem allows us to obtain a nontrivial separation of PMCSP
|| ∩ P/poly from EXP:

Corollary 23. PMCSP
|| ∩ P/poly 6= EXP.

Proof. Assume, by way of contradiction, that PMCSP
|| ∩P/poly = EXP. In particular, EXP ⊆ P/poly.

Thus, by Theorem 22, we have EXPMCSP
|| = EXP. Therefore, EXPMCSP

|| = EXP = PMCSP
|| , which

contradicts the (relativized) time hierarchy theorem [11]. �

This result exhibits a singular property of MCSP. In particular, reducing a language L to MCSP

via a polynomial-time nonadaptive reduction implies a separation of PL
|| ∩ P/poly from EXP.

Corollary 24. If L ≤p
tt MCSP, then PL

|| ∩ P/poly 6= EXP.

Proof. The hypothesis implies that PL
|| ⊆ PMCSP

|| , and by the previous corollary it holds that EXP 6⊆
PMCSP
|| ∩ P/poly, from which the result follows. �

We give some specific remarks:

Remark. 1. If MCSP is ZPP-hard under polynomial-time nonadaptive reductions, then ZPP 6=
EXP, which is a notorious open problem.

2. If MCSP is NP-complete under polynomial-time nonadaptive reductions, then PNP
|| ∩P/poly 6=

EXP. (The consequence is also a tiny improvement of Murray and Williams [17], who showed
that NP ∩ P/poly 6= EXP under the assumption that NP ≤p

m MCSP.)

17

6.2 On Hardness of Approximating Kt-complexity and Circuit Complexity

Now we turn to the case of polynomial-time Turing reductions. We first introduce some definitions
about promise problems:

Definition. 1. A promise problem Π = (ΠY ,ΠN) is a pair of disjoint languages ΠY and ΠN ,
where ΠY is the set of YES instances and ΠN is the set of NO instances.

2. We say that an oracle A satisfies the promise of Π = (ΠY ,ΠN) if, for any x ∈ {0, 1}∗, it
holds that x ∈ ΠY implies x ∈ A, and that x ∈ ΠN implies x 6∈ A.

3. We say that a language L is reducible to a promise problem Π via a polynomial-time Turing
reduction M and write L ≤p

T Π if MA(x) = L(x) for any x ∈ {0, 1}∗ and any oracle A that
satisfies the promise of Π.

We show that approximating Kt-complexity within additive error g(n) = ω(log n) is not EXP-
complete under polynomial-time Turing reductions. We denote such a promise problem by GapgKt:

Definition. For a function g : N → N, define a promise problem GapgKt := (ΠY ,ΠN) by

ΠY := { (x, s) ∈ {0, 1}∗ × N | Kt(x) ≤ s },
ΠN := { (x, s) ∈ {0, 1}∗ × N | Kt(x) > s+ g(|x|) }.

For this promise problem, we prove:

Theorem 25. For any nondecreasing function g(n) = ω(log n), it holds that PGapgKt 6= EXP.

The proof is similar to a simplified proof in [1, Corollary 40] showing that resource-bounded
Kolmogorov complexity Kt for a fixed exponential time t(n) ≥ 2n

2
is not EXP-hard (originally

proved by Buhrman and Mayordomo [8]).

Proof. We claim that every unary language in PGapgKt can be solved in a fixed exponential time.
By the time-hierarchy theorem, there exists a unary language in EXP that requires time complexity
larger than the fixed exponential time, which implies that PGapgKt 6= EXP.

We first note that Kt(x) ≤ |x| + O(log |x|) for any x ∈ {0, 1}∗, since every string can be
described by itself in polynomial time. Let l(n) be such a (nondecreasing) upper bound (i.e.,
l(n) = n+O(logn)).

Let L ⊆ {0}∗ be an arbitrary unary language in PGapgKt, and M be a polynomial-time machine
that witnesses L ∈ PGapgKt.

We define a machine M0 that simulates M on input 0n (without oracle access to GapgKt): On
input 0n, M0 simulates M on the same input, and accepts if and only if M accepts. If the machine
M makes a query (q, s) ∈ {0, 1}∗×N to a GapgKt oracle, then we perform an exhaustive search up
to Kt-complexity l(n), which allows us to compute σn(q) := min{Kt(q), l(n) }. (Namely, for each
d ∈ {0, 1}∗ of length at most l(n), run the universal Turing machine U on input d for time 2l(n)−|d|,
which takes overall 2l(n)nO(1) time.) We answer “Yes” to the query q if and only if σn(q) ≤ s. The
machine M0 runs in time 2l(n)nO(1) ≤ 22n (i.e., a fixed exponential time). Hence, it remains to
prove that, for each n ∈ N, there exists an oracle A that satisfies the promise of GapgKt such that

M0(0
n) = MA(0n), which in particular implies that M0(0

n) = L(0n).

18

A crucial observation here is that each query that M makes on the computation path simulated
by M0 can be described succinctly in terms of Kt-complexity: Specifically, fix an input 0n and
define the set Qn = { (q1, s1), · · · , (qm, sm) } of queries that M makes on the computation path
simulated by M0, where m = nO(1) is the number of the queries. Then, the ith query (qi, si)
can be described by n and an index i ∈ [m] in time 2l(n)nO(1). Therefore, it holds that Kt(qi) ≤
O(logn)+log 2l(n)nO(1) = l(n)+O(log n). By the assumption, we have O(logn) ≤ g(n) for all large
n; hence, Kt(qi) ≤ l(n) + g(n). This means that the difference between Kt(qi) and the threshold
l(n) up to which we performed an exhaustive search is at most g(n).

Now, for each n ∈ N, define an oracle A as follows: (q, s) ∈ A if and only if σn(q) ≤ s for
any (q, s) ∈ Qn, and (q, s) ∈ A if and only if Kt(q) ≤ s for any (q, s) 6∈ Qn. (Here, σn(q) denotes
min{Kt(q), l(n) }.) By this definition, it holds that MA(0n) = M0(0

n); thus all that remains is to
show that A satisfies the promise of GapgKt (which implies that MA(0n) = L(0n)).

Namely, for all (q, s) ∈ Qn, we would like to claim that (q, s) ∈ A holds if (q, s) is an YES
instance of GapgKt (i.e., Kt(q) ≤ s), and that (q, s) 6∈ A holds if (q, s) is a NO instance of
GapgKt (i.e., Kt(q) ≥ s + g(|q|)). Note that if Kt(q) ≤ l(n) then σn(q) = Kt(q); hence in this
case, the claim is obviously satisfied. In what follows, we may assume that Kt(q) > l(n) (and
thus σn(q) = l(n)). In particular, this implies that n ≤ |q|: indeed, by the definition of l(n),
we have Kt(q) ≤ l(|q|), which implies l(n) < Kt(q) ≤ l(|q|); hence, n ≤ |q| follows. Therefore,
Kt(q) ≤ l(n) + g(n) ≤ l(n) + g(|q|). Now assume that Kt(q) > s + g(|q|) (i.e., (q, s) is a NO
instance). This implies that σn(q) = l(n) ≥ Kt(q)− g(|q|) > s, and hence (q, s) 6∈ A as desired. On
the other hand, if Kt(q) ≤ s (i.e., (q, s) is an YES instance), then we have σn(q) ≤ Kt(q) ≤ s, and
hence (q, s) ∈ A. �

Next, assuming that EXP ⊆ P/poly, we translate the property of Kt-complexity into that of
MCSP. However, since these two measures are just polynomially related, the narrow gap of Kt does
not seem to be translated into a narrow gap of MCSP. Thus, we define GapkMCSP as a promise
problem that asks for approximating the logarithm of circuit complexity within a factor of k:

Definition. For a constant k ≥ 1, define a promise problem GapkMCSP := (ΠY ,ΠN) by

ΠY := { (T, s) ∈ {0, 1}∗ × N | logKI (T) ≤ s },
ΠN := { (T, s) ∈ {0, 1}∗ × N | logKI (T) > ks }.

We can apply the same proof idea to GapkMCSP. In fact, thanks to the fact that the gap
between ΠY and ΠN is wide, we can prove a somewhat strong consequence:

Theorem 26. If EXP ⊆ P/poly, then for any ǫ > 0, there exists a constant k ≥ 1 such that

PGapkMCSP ⊆ DTIME(2n
ǫ
). In particular, EXP 6= PGapkMCSP ∩ P/poly for some k.

Proof. Let us define an EXP-complete language B ⊆ {0, 1}∗ as all the tuples 〈Q, x, t〉 such that the
Turing machine Q accepts x in time t. Since B ∈ EXP ⊆ P/poly, there exist some constant k0 ∈ N

and some family of circuits {Cm }m∈N of size at most mk0 that computes B on input length m.

Fix a small constant ǫ > 0. Define k := (k0+1)/ǫ. Let L ∈ PGapkMCSP and M be a polynomial-

time oracle machine that witnesses L ∈ PGapkMCSP.
Define l(n) := nǫ. As in the proof of Theorem 25, we define a machine M0 that simulates

M (without oracle access to GapkMCSP) as follows: M0 takes input x ∈ {0, 1}∗ of length n,
simulates M on input x, and accepts if and only if M accepts. If M makes a query (T, s), then

19

answer to the query by an exhaustive search up to circuit size l(n). (Specifically, compute σx(T) :=
min{KI (T), l(n) } and answer “Yes” if and only if σx(T) ≤ s.) The machine M0 runs in time
2l(n)nO(1) ≤ 2n

2ǫ
for all large n.

Fix input x ∈ {0, 1}∗ of length n. Let Qx = { (T1, s1), · · · , (TnO(1) , snO(1)) } be the set of all
the queries that M makes on the computation path simulated by M0. We claim that for each
(Ti, si) ∈ Qx, the circuit complexity KI (Ti) is relatively small: Indeed, each truth-table Ti in Qx

can be computed in time t(n) := 2n
2ǫ
, by simulating M in the same way with M0. Let Q be the

Turing machine that takes as input x ∈ {0, 1}∗ of length n and indices i, j ∈ [nO(1)], and outputs Tij .
By the definition of B, it holds that B(Q, 〈x, i, j〉 , t(n)) = Q(x, i, j) = Tij . Also, by the definition
of Cm, we have B(Q, 〈x, i, j〉 , t(n)) = Cm(Q, 〈x, i, j〉 , t(n)) for m = | 〈Q, 〈x, i, j〉 , t(n)〉 |. Note that
m = 4n+O(log n)+log t(n) ≤ 5n for all large n. Now let us fix x ∈ {0, 1}n and i ∈ [nO(1)]: namely,
define Dx,i(j) = Cm(Q, 〈x, i, j〉 , t(n)); then, the truth-table of Dx,i coincides with Ti. Therefore,

KI (Ti) ≤ |Dx,i| ≤ |Cm| ≤ mk0 ≤ (5n)k0 ≤ nkǫ = l(n)k

for all large n. (Here, |Cm| denotes the circuit size of Cm.)
Now we claim that σx(Ti) = min{KI (Ti), l(n) } approximates KI (Ti) for all (Ti, si) ∈ Qx:

specifically, we claim that log σx(Ti) ≤ logKI (Ti) < k log σx(Ti). If KI (Ti) ≤ l(n), then σx(Ti) =
KI (Ti) and the claim is obvious. Now assume that KI (Ti) > l(n), which implies that σx(Ti) = l(n).
Thus we have σx(Ti) = l(n) < KI (Ti) < l(n)k = σx(Ti)

k.
From the inequalities above, for all but finitely many x ∈ {0, 1}∗, it is easy to see that there

exists an oracle A such that A satisfies the promise of GapkMCSP and M0(x) = MA(x) = L(x).
�

As in Corollary 24, we obtain:

Corollary 27. If L ≤p
T GapkMCSP for all k ≥ 1, then PL ∩ P/poly 6= EXP.

Proof. The hypothesis implies that PL ⊆ PGapkMCSP for all k ≥ 1, and Theorem 26 shows EXP 6⊆
PGapkMCSP ∩ P/poly for some k ≥ 1, from which the result follows. �

Remark. 1. As in the case of nonadaptive reductions, establishing NP-hardness of GapkMCSP
for all k ≥ 1 via a polynomial-time Turing reduction implies that PNP ∩ P/poly 6= EXP.

2. One interesting consequence is that if MCSP itself is reducible to GapkMCSP for all k ≥ 1
via a polynomial-time Turing reduction, then PMCSP ∩ P/poly 6= EXP, which we do not know
how to prove. Thus, establishing such “robustness” of MCSP via a polynomial-time Turing
reduction is at least as hard as separating PMCSP ∩ P/poly from EXP.

Finally, we observe that every language in statistical zero knowledge is reducible to GapkMCSP
via a BPP-reduction. As observed in [5], hardness of statistical zero knowledge implies hardness
of approximating the minimum circuit complexity of a truth-table T within a factor of |T |1−ǫ for
any ǫ ∈ (0, 1). Similarly, it implies hardness of GapkMCSP for all k ≥ 1 (i.e., a problem of
approximating the logarithm of the circuit complexity within an arbitrary constant factor).

Theorem 6 (restated). For all k ≥ 1, every language in statistical zero knowledge is reducible to
GapkMCSP via a BPP-reduction.

20

Proof. Let A be an arbitrary oracle that satisfies the promise of GapkMCSP. Let s(n) := 1
2k log n.

Define an oracle B := {x ∈ {0, 1}∗ | (x, s(|x|)) 6∈ A }. It is sufficient to show that B satisfies the
hypothesis of Theorem 7.

First, we claim that B does not contain any string of low circuit complexity. Suppose that
x ∈ B. Then we have (x, s(|x|)) 6∈ A, which implies that (x, s(|x|)) is not an YES instance of
GapkMCSP. This means that logKI (x) > s(|x|); hence, KI (x) > |x|1/2k.

Next, we claim that the oracle B is of polynomial density. It is sufficient to prove that {x ∈
{0, 1}∗ | KI (x) > |x|1/2 } ⊆ B: Indeed, suppose that KI (x) > |x|1/2 for a string x ∈ {0, 1}∗; then
we have logKI (x) > ks(|x|), which implies that (x, s(|x|)) is a NO instance of GapkMCSP; hence,
x ∈ B. �

21

References

[1] Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef Ronneb-
urger. Power from random strings. SIAM J. Comput., 35(6):1467–1493, 2006.

[2] Eric Allender and Bireswar Das. Zero knowledge and circuit minimization. In Proceedings of the
39th International Symposium on Mathematical Foundations of Computer Science (MFCS),
pages 25–32, 2014.

[3] Eric Allender, Joshua Grochow, and Cristopher Moore. Graph isomorphism and circuit size.
Electronic Colloquium on Computational Complexity (ECCC), 22:162, 2015.

[4] Eric Allender, Dhiraj Holden, and Valentine Kabanets. The minimum oracle circuit size
problem. In Proceedings of 32nd International Symposium on Theoretical Aspects of Computer
Science (STACS), pages 21–33, 2015.

[5] Eric Allender, Michal Koucký, Detlef Ronneburger, and Sambuddha Roy. The pervasive reach
of resource-bounded kolmogorov complexity in computational complexity theory. J. Comput.
Syst. Sci., 77(1):14–40, 2011.

[6] Andrej Bogdanov and Luca Trevisan. On worst-case to average-case reductions for NP prob-
lems. SIAM J. Comput., 36(4):1119–1159, 2006.

[7] Ravi Boppana, Johan H̊astad, and Stathis Zachos. Does co-NP have short interactive proofs?
Inf. Process. Lett., 25(2):127–132, 1987.

[8] Harry Buhrman and Elvira Mayordomo. An excursion to the Kolmogorov random strings. J.
Comput. Syst. Sci., 54(3):393–399, 1997.

[9] Lance Fortnow. The complexity of perfect zero-knowledge. In Proceedings of the 19th Annual
ACM Symposium on Theory of Computing (STOC), pages 204–209, 1987.

[10] Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive proof
systems. In Proceedings of the 18th Annual ACM Symposium on Theory of Computing (STOC),
pages 59–68, 1986.

[11] Juris Hartmanis and Richard Stearns. On the computational complexity of algorithms. Trans-
actions of the American Mathematical Society, pages 285–306, 1965.

[12] Johan H̊astad, Russell Impagliazzo, Leonid Levin, and Michael Luby. A pseudorandom gen-
erator from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.

[13] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits: Deran-
domizing the XOR lemma. In Proceedings of the 29th Annual ACM Symposium on the Theory
of Computing (STOC), pages 220–229, 1997.

[14] Valentine Kabanets and Jin-yi Cai. Circuit minimization problem. In Proceedings of the 32nd
Annual ACM Symposium on Theory of Computing (STOC), pages 73–79, 2000.

[15] Ker-I Ko. On the complexity of learning minimum time-bounded turing machines. SIAM J.
Comput., 20(5):962–986, 1991.

22

[16] Leonid Levin. Randomness conservation inequalities; information and independence in math-
ematical theories. Information and Control, 61(1):15–37, 1984.

[17] Cody Murray and Ryan Williams. On the (non) NP-hardness of computing circuit complexity.
In Proceedings of 30th Conference on Computational Complexity (CCC), pages 365–380, 2015.

A Heavy Samples Protocol

For completeness, we show how to use the lower bound protocol and the upper bound protocol in
order to estimate the probability that a sampled element is heavy.

Lemma 15 (The heavy samples protocol; Trevisan and Bogdanov [6] (restated)). Let D = {Dn }n∈N
be a polynomial-time samplable distribution. There exist a universal constant c (c = 211 will do) and
an AM ∩ coAM protocol that solves the following promise problem: Given input 1n and a threshold
β ∈ [0, 1], accept if Pry∼Dn [y is cβ-heavy] ≥ 3

4 , and reject if Pry∼Dn [y is β-heavy] ≤ 1
4 .

Note that we may assume that β is a discrete value: indeed, since D has a polynomial-time
sampler, the probability that an element is sampled is a multiple of 2−poly(n) for some polynomial
poly(n).

Proof. Let S be a polynomial-time sampler of D. Namely, given an input 1n and a random coin
flip of length m, the probabilistic polynomial-time machine S outputs a sample of length n from
Dn.

First, we show an AM protocol by using the lower bound protocol. The AM protocol works
as follows: Sample y ∼ Dn. Run the lower bound protocol to check whether |S−1

n (y)| ≥ 2m · cβ
or |S−1

n (y)| ≤ 2m · β, and accept if and only if the lower bound protocol succeeds. Here, S−1
n (y)

denotes { r ∈ {0, 1}m | S(1n, r) = y }. The correctness follows from the following lemma:

Lemma 28 (Lower bound protocol; Goldwasser and Sipser [10]). There exists an AM protocol such
that, given an input 1n, a threshold s ∈ N and a string y ∈ {0, 1}n,

1. if |S−1
n (y)| ≥ cs, then the verifier accepts with high probability for some prover, and

2. if |S−1
n (y)| ≤ s, then the verifier rejects with high probability for any prover.

We claim the correctness of the AM protocol. If Pry∼Dn [y is cβ-heavy] ≥ 3
4 , then with prob-

ability at least 3
4 , the sampled string y ∼ Dn is cβ-heavy. Conditioning on this, the lower bound

protocol accepts with high probability (say, with probability at least 8
9). Therefore, the over-

all acceptance probability is at least 3
4 · 8

9 = 2
3 . A similar argument applies to the case when

Pry∼Dn [y is β-heavy] ≤ 1
4 .

Next, we show a coAM protocol by using the upper bound protocol. In order to apply the
upper bound protocol for checking whether |S−1

n (y)| ≤ s for s = 2mβ, we need to sample a random
element r ∈R S−1

n (y) that is not known to a prover. Thus, we first sample a random element
r ∈R {0, 1}m privately, and then define y := S(1n, r). (Note that y is distributed according to Dn.)
Run the upper bound protocol to check whether |S−1

n (y)| ≤ s or |S−1
n (y)| ≥ cs, and accept if and

only if the upper bound protocol succeeds.
The correctness of the coAM protocol follows from the same argument as the AM protocol and

the following lemma.

23

Lemma 29 (Upper bound protocol; Fortnow [9]). There exists an AM protocol satisfying the
following: Suppose that a verifier has a random element r ∈R S−1

n (y) that is not known by a
prover. Given an input 1n, a threshold s ∈ N, and a string y ∈ {0, 1}n,

1. if |S−1
n (y)| ≤ s, then the verifier accepts with probability at least 15

16 for some prover, and

2. if |S−1
n (y)| ≥ cs, then the verifier rejects with probability at least 15

16 for any prover.

Since a random element r is chosen uniformly at random, it is also distributed uniformly on
S−1
n (y), conditioning on the event that S(1n, r) = y. Thus, the hypothesis of the upper bound

protocol is satisfied. �

24

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

