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Abstract

The Minimum Circuit Size Problem (MCSP) is known to be hard for statistical zero knowl-
edge via a BPP-Turing reduction (Allender and Das, 2014), whereas establishing NP-hardness of
MCSP via a polynomial-time many-one reduction is difficult (Murray and Williams, 2015) in the
sense that it implies ZPP 6= EXP, which is a major open problem in computational complexity.

In this paper, we provide strong evidence that current techniques cannot establish NP-
hardness of MCSP, even under polynomial-time Turing reductions or randomized reductions:
Specifically, we introduce the notion of oracle-independent reduction to MCSP, which captures
all the currently known reductions. We say that a reduction to MCSP is oracle-independent
if the reduction can be generalized to a reduction to MCSPA for any oracle A, where MCSPA

denotes an oracle version of MCSP. We prove that no language outside P is reducible to MCSP

via an oracle-independent polynomial-time Turing reduction. We also show that the class of
languages reducible to MCSP via an oracle-independent randomized reduction that makes at
most one query is contained in AM∩ coAM. Thus, NP-hardness of MCSP cannot be established
via such oracle-independent reductions unless the polynomial hierarchy collapses.

We also extend the previous results to the case of more general reductions: We prove
that establishing NP-hardness of MCSP via a polynomial-time nonadaptive reduction implies
ZPP 6= EXP, and that establishing NP-hardness of approximating circuit complexity via a
polynomial-time Turing reduction also implies ZPP 6= EXP. Along the way, we prove that ap-
proximating Levin’s Kolmogorov complexity is provably not EXP-hard under polynomial-time
Turing reductions, which is of independent interest.

1 Introduction

The Minimum Circuit Size Problem (MCSP) asks, given a truth-table T ∈ {0, 1}2n and a size-
parameter s, whether there exists a circuit on n variables of size at most s whose truth-table is T .
Although it is easy to see that MCSP is in NP, MCSP is not known to be NP-hard.

MCSP is closely related to circuit complexity by its definition, and hence it is one of the cen-
tral problems in computational complexity. There are a number of formal connections from the
complexity of MCSP to important open problems of computational complexity: for example, if
MCSP ∈ P then EXPNP 6⊆ P/poly [14]; if MCSP ∈ coNP then MA can be derandomized (MA = NP)
[1]. Therefore, it is important to determine the structural complexity of MCSP.

While there is substantial evidence that MCSP is not tractable in the sense that MCSP 6∈ BPP,
it remains open whether MCSP is the hardest problem in NP, that is, NP-hard or not. In this
paper, we will discuss why it is so difficult to establish NP-hardness of MCSP. We note that, when
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discussing relative hardness of a problem, there are several types of reductions. Our main focus
will be general and powerful reductions such as polynomial-time Turing reductions and randomized
reductions. That is, what problems (e.g., SAT) can we solve by using MCSP as an oracle?

1.1 Background

In the seminal paper by Kabanets and Cai [14], on one hand, they exhibited evidence that MCSP is
intractable; namely, they proved that factoring Blum integers can be solved faster than any known
algorithms, assuming that MCSP ∈ P. On the other hand, they also proved that establishing NP-
hardness of MCSP is difficult: if MCSP is NP-hard under a certain type of restricted polynomial-
time reductions, then some circuit lower bounds hold (and, in particular, EXP 6⊆ P/poly); thus,
establishing NP-hardness of MCSP (under the restricted reductions) is at least as difficult as proving
EXP 6⊆ P/poly. To summarize,MCSP is “harder” than factoring Blum integers, whereas establishing
NP-hardness is difficult.

These two sides have been significantly pushed forward. On the positive side on hardness of
MCSP, Allender, Buhrman, Koucký, van Melkebeek and Ronneburger [1] proved cryptographic
problems, such as the discrete logarithm problem and integer factoring, can be solved in BPPMCSP

(i.e., these problems reduce toMCSP under BPP-Turing reductions). Allender and Das [2] strength-
ened these results by showing that every language in statistical zero knowledge is in BPPMCSP.

The negative side on hardness ofMCSP was considerably strengthened by Murray andWilliams [17].
They showed that, if MCSP is NP-hard under polynomial-time many-one reductions, then EXP 6=
NP ∩ P/poly (and, in particular, EXP 6= ZPP), which is one of the central open problems in com-
putational complexity. Thus, it is difficult to establish NP-hardness of MCSP under (general)
polynomial-time many-one reductions. Moreover, they showed that, under local reductions (i.e.,
that cannot look at a whole input), MCSP is provably not hard even for PARITY. Allender, Holden,
and Kabanets [4] showed similar results for an oracle version of MCSP. For example, they showed
that PSPACE is provably not reducible to MCSPQBF via a log space reduction; here, for an oracle
A, MCSPA denotes a problem of asking the smallest size of a circuit with A-oracle gates.

Thus, the current status of our understanding of MCSP is as follows: under the restricted
reductions (e.g., local reductions), MCSP is not “hard” at all, which suggests that such restricted
reductions are insufficient to discuss the relative hardness of MCSP; under polynomial-time many-
one reductions, it is difficult to establish NP-hardness ofMCSP; nevertheless, BPP-Turing reductions
to MCSP are powerful enough to solve every problem in statistical zero knowledge.

Therefore, it is very interesting to investigate whether one can push the positive side and
establish NP-hardness of MCSP, or else the negative side can be pushed: More specifically, can we
prove NP-hardness of MCSP under general reductions, such as BPP reductions? Can we extend the
results of Murray and Williams [17] (as well as [4]) to more general reductions?

1.2 Oracle-independent Reductions

In this paper, we push the negative side further, and show that current techniques cannot be easily
extended to show NP-hardness of MCSP. Specifically, we observe that current techniques do not
rely on any inherent property of MCSP and instead rely on common properties that MCSPA shares
for an arbitrary oracle A. We thus introduce the notion of oracle-independent reductions to MCSP

and then give upper bounds on classes of languages that reduces to MCSP via such reductions. We
say that a reduction to MCSP is oracle-independent if the reduction can be generalized to MCSPA
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for an arbitrary oracle A. In other words, the reduction exploits only properties common to MCSPA

for any oracle A (instead of unrelativizing properties of MCSP).
All the known efficient reductions to MCSP are oracle-independent. The main ingredient used

by almost all the reductions [1, 2] is the construction from a one-way function to a pseudorandom
generator by H̊astad, Impagliazzo, Levin, and Luby [12]: Specifically, since the output of a pseu-
dorandom (function) generator is efficiently computable, the output regarded as a truth-table has
significantly low circuit complexity, compared to that of a truth-table chosen from a uniform distri-
bution. Thus, MCSP constitutes a statistical test that distinguishes a pseudorandom distribution
from a uniform distribution, which enables us to break a one-way function on average, thanks to
[12]. This argument exploits only the fact that MCSP constitutes a statistical test. It is easy to see
that an oracle version MCSPA can also constitute a statistical test, and hence such reductions are
oracle-independent.

Recently, new types of reductions to MCSP that do not rely on breaking a one-way function
have been developed by Allender, Grochow, and Moore [3]. Based on new ideas, they showed
that a certain graph isomorphism problem is reducible to MCSP via a randomized reduction with
zero-sided error. We will see that their reductions are also oracle-independent.

A high-level reason why these reductions are oracle-independent is as follows: We are prone to
rely on the fact that a randomly chosen truth-table requires high circuit complexity, because it is in
general difficult to obtain a circuit lower bound on an explicit function. The fact that many truth-
tables require high circuit complexity remains unchanged for any oracle version MCSPA, and hence
a reduction that only exploits this fact (as a circuit lower bound) is inevitably oracle-independent.

We provide strong evidence that NP-hardness of MCSP cannot be shown via such oracle-
independent reductions. For deterministic reductions, we prove that nothing interesting is reducible
to MCSP via an oracle-independent reduction:

Theorem 1. No language outside P can reduce to MCSP under polynomial-time Turing oracle-
independent reductions. In other words, if a language L polynomial-time-Turing-reduces to MCSPA

for any oracle A, then L ∈ P; it can be also simply stated as
⋂

A

PMCSPA

= P.

In contrast to previous work [14, 17, 4] which shows that NP-hardness of MCSP implies surprising
consequences (e.g., EXP 6⊆ P/poly), we emphasize that this theorem gives us an inherent limitation
of a deterministic oracle-independent reduction. One implication is that NP-hardness of MCSP

cannot be shown via a deterministic oracle-independent reduction unless P = NP.
We note that this precisely captures the limit of what we can deterministically reduce to MCSP.

Indeed, currently no (nontrivial) deterministic reduction to MCSP is known at all. The theorem
suggests one reason behind this fact: in order to construct a deterministic reduction to MCSP, we
need to use a property of MCSP that cannot be generalized to MCSPA for all A, which appears
very difficult due to our few knowledge about nonrelativizing circuit lower bounds.

It should be also noted1 that Theorem 1 implies that there exists an oracle A such thatMCSP 6≤p
T

MCSPA (unlessMCSP ∈ P). At first glance (mainly due to its notation), it might be counterintuitive
that an oracle version MCSPA becomes “easier” than MCSP. The point is that the oracle A in the
notation MCSPA refers to the fact that a circuit that is minimized has oracle access to A, but this
does not necessarily increase the computational difficulty of minimizing such an A-oracle circuit.

1 This observation was given by one of the referees of CCC 2016 in the review report.
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Indeed, we exploit this fact to prove Theorem 1. Roughly speaking, for any oracle-independent
reduction to MCSP, we adversarially choose an oracle A so that any query that the reduction makes
has circuit complexity of O(log n). Specifically, let T1, . . . , TnO(1) be the truth-tables queried by the
reduction (on some computation path); we encode these truth-tables into A so that the truth-table
of A(i, -) is equal to Ti for any i. For this oracle, the reduction cannot query any truth-table that
has high circuit complexity (relative to oracle A) because the size of the circuit that outputs A(i, x)
on input x is O(logn) for any i. We then simulate the reduction by exhaustively2 search small
circuits of size up to O(logn).

We also prove that even randomized oracle-independent reduction is not sufficient to establish
NP-hardness of MCSP:

Theorem 2. If a language L is reducible to MCSP via an oracle-independent randomized reduction
with negligible error that makes at most one query, then L ∈ AM ∩ coAM. In other words,

⋂

A

BPPMCSPA[1] ⊆ AM ∩ coAM.

Here, BPPB[1] denotes the class of languages reducible to an oracle B via a randomized reduction
with negligible error that makes at most one query.

In particular,
⋂

A BPPMCSPA[1] does not contain NP unless NP ⊆ coAM (and in particular the
polynomial hierarchy collapses [7]). Therefore, it is impossible to establish NP-hardness of MCSP

via such reductions (unless the polynomial hierarchy collapses).

Oracle-independent Reductions vs. Relativization

We note that an oracle-independent reduction is different from simple relativization. In a relativiza-
tion setting, Ko [15] showed the existence of a relativized world where MCSP is an NP-intermediate
problem: MCSP is neither in coNP nor is NP-complete under polynomial-time Turing reductions.
Specifically, he constructed an oracle A such that NPA is not contained in PMCSPA, A, thereby show-
ing a relativized world where MCSP cannot be NP-hard under polynomial-time Turing reductions.
This shows the computational limit of MCSP in a relativized world.

In contrast, we discuss the computational limit of MCSP in a real world when MCSP is used by
oracle-independent reductions. Technically, by exploiting the fact that NP-machines have an oracle
access, Ko [15] constructed an oracle A so that some NPA-computation would go beyond the class

PMCSPA, A. On the other hand, we construct an oracle A so that PMCSPA

-computation cannot be
strong; in fact, it is essentially the same as P.

1.3 Reductions to MCSP Imply Separations of Complexity Classes

We also extend the results of Murray and Williams [17] to the case of polynomial-time nonadaptive
reductions and polynomial-time Turing reductions. In the former case, we prove that the same (in
fact, slightly stronger) consequence can be obtained:

2 When the “size” of a circuit refers to the number of its wires, we cannot enumerate all such circuits in polynomial
time since there are O(log n)O(logn) = n

O(log logn) possible circuits of size less than O(log n), which gives only a weak
upper bound. We will thus regard the “size” of a circuit as its description length, and also require that we can encode
a truth-table into an oracle efficiently.
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Theorem 3. It holds that PMCSP
|| ∩ P/poly 6= EXP (unconditionally). As a consequence, if MCSP

is NP-hard via a polynomial-time nonadaptive reduction, then PNP
|| ∩ P/poly 6= EXP.

Here, PMCSP
|| denotes the class of languages reducible to MCSP via a polynomial-time nonadaptive

reduction.
Our proof is based on the firm links between circuit complexity and resource-bounded Kol-

mogorov complexity, which were established by a line of work [1, 5]. In fact, the proof is so simple
that we can include a proof sketch here: Allender, Koucký, Ronneburger and Roy [5] showed that
Levin’s Kolmogorov complexity [16] (denoted by Kt) is polynomially related to circuit complexity
if and only if EXP ⊆ P/poly; thus, assuming that EXP ⊆ P/poly, circuit complexity is essentially
equal to Kt-complexity. Moreover, it is well-known that EXP 6= PKt

|| (since a polynomial-time algo-

rithm cannot output any strings of high Kt-complexity). Thus, assuming that EXP ⊆ P/poly, we
also have EXP 6= PMCSP

|| . This implies that EXP 6= PMCSP
|| ∩ P/poly (as otherwise we may assume

EXP ⊆ P/poly). Therefore, at the core of the proof of the unconditional separation in Theorem 3
is EXP 6= PKt

|| .
Now we would like to extend the argument above into the case of polynomial-time Turing

reductions. Unfortunately, we could not prove EXP 6= PKt (and this is an open problem since [1]).
Nevertheless, we prove that a promise problem of approximating Kt within additive error ω(log n)
is not EXP-hard under polynomial-time Turing reductions, which is of independent interest:

Theorem 4. For any nondecreasing function g(n) = ω(log n), let GapgKt denote a promise prob-
lem that asks for approximating Kt(x) within additive error g(|x|) on input x. Then, EXP 6=
PGapgKt.

We note that, for a fixed exponential time t(n) ≥ 2n
2
, Buhrman and Mayordomo [8] proved that

Kt is not EXP-hard under polynomial-time Turing reductions. Here, Kt denotes resource-bounded
Kolmogorov complexity such that a universal Turing machine that outputs x is required to run in
time t(|x|).

Now we can translate the property of Kt-complexity into that of MCSP, under the assumption
that EXP ⊆ P/poly. As a consequence, we obtain:

Theorem 5. Let GapkMCSP be a promise problem that asks for approximating the logarithm
of circuit complexity within a factor of k. Then, there exists a constant k ≥ 1 such that EXP 6=
PGapkMCSP∩P/poly. In particular, if a language L is reducible to GapkMCSP via a polynomial-time
Turing reduction for all k ≥ 1, then PL ∩ P/poly 6= EXP.

In particular, establishing NP-hardness of GapkMCSP via a polynomial-time Turing reduction
requires separating PNP ∩ P/poly from EXP.

Interestingly, as observed in [5], the BPP-reductions of [1, 2] are extremely robust in terms of
approximation. Specifically:

Theorem 6 (Analogous to [5, Theorem 19]). For all k ≥ 1, every language in statistical zero
knowledge is reducible to GapkMCSP via a BPP-Turing reduction.

These two results exhibit a striking contrast between BPP-reductions and polynomial-time
Turing reductions: BPP-reductions enable us to base hardness of approximating circuit complexity
on hardness of statistical zero knowledge, whereas derandomizing the BPP-reduction requires a
separation of complexity classes.
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Organization

The rest of the paper is organized as follows. In Section 2, we introduce some notation and the
definition of circuit complexity. In Section 3, we observe that the known reductions to MCSP are
oracle-independent. We prove Theorems 1 and 2 in Sections 4 and 5, respectively. In Section 6, we
extend the results of Murray and Williams [17] into the case of more general reductions.

2 Preliminaries

Since we need to specify an exact definition of circuit complexity in order to discuss some subtle
details, we specify how to encode two strings into one string:

Definition. For two strings x, y ∈ {0, 1}∗, define the pairing function as 〈x, y〉 := 1|x|0xy.

We often write (x, y) instead of (〈x, y〉). We also abbreviate 〈x, 〈y, z〉〉 as 〈x, y, z〉. Note that
| 〈x, y〉 | = 2|x|+ |y|+ 1.

An oracle A is a subset of strings (i.e., A ⊆ {0, 1}∗). We identify a subset A of strings with
its characteristic function A : {0, 1}∗ → {0, 1}. When we use diagonalization arguments, it is
convenient to have the notion of finite oracle:

Definition. 1. We say that A0 is a finite oracle if A0 : {0, 1}∗ → { 0, 1,⊥} and A0(x) = ⊥ for
all but finitely many strings x ∈ {0, 1}∗, where ⊥ means “undefined.”

2. For an oracle A ⊆ {0, 1}∗ and a finite oracle A0, we say that A is consistent with A0 if
A(x) = A0(x) for any x ∈ {0, 1}∗ such that A0(x) 6= ⊥.

3. Similarly, for l ∈ N, we say that A and A0 are consistent up to length l if it holds that
A(x) = 1 if and only if A0(x) = 1 for all strings x ∈ {0, 1}∗ of length at most l.

For a nonnegative integer n ∈ N, we write [n] := { 1, · · · , n }. For a string x ∈ {0, 1}n and
i ∈ [n], we denote by xi the ith bit of x. We also denote by in an integer i padded to length n.
More specifically:

Definition. For n ∈ N and i ∈ [2n], let in denote the ith string of {0, 1}n in the lexicographic
order.

For a set R, we write r ∈R R to indicate that r is a random sample from the uniform distribution
on R. For a distribution D, we write r ∼ D to indicate that r is a random sample from D.

2.1 Definition of Circuit Size

Throughout this paper, we regard the description length of a circuit as its size. Thus, it is convenient
to define the size of a circuit in terms of Kolmogorov complexity.

Definition. Let U be a Turing machine. The Kolmogorov complexity KU (x) of a string x ∈ {0, 1}∗
with respect to U is defined as KU (x) := min{ |d| | U(d) = x }.

While we follow this standard definition, we use Kolmogorov complexity in a somewhat non-
standard way for discussing circuit complexity. We assume that a string x for which we consider its
Kolmogorov complexity is a truth-table of a Boolean function. Thus, |x| is 2n for some n ∈ N. We
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use a circuit interpreter for U instead of a universal Turing machine. In particular, for technical
reasons, throughout this paper we will use a specific interpreter I that is defined below.

We first fix our standard (oracle) circuit interpreter. We assume any standard way to encode
circuits by binary strings. Note that a circuit may be an oracle circuit that can use oracle gates
outputting A(z) for a given input z to the gate when a circuit is used with oracle A. Let I0 denote
a circuit interpreter for this encoding: that is, for any oracle A and a given description d of an
oracle circuit C, the interpreter IA0 (d) yields the truth-table of CA. (Thus, |IA0 (d)| = 2n for some
n and IA0 (d) = CA(1n) · · ·CA(2nn).)

We will use the following facts that the standard circuit interpreter IA0 should have:

1. IA0 (d) is computable in time polynomial in |d| and |IA0 (d)|, given oracle access to A.

2. For all but finitely many truth-tables T ∈ {0, 1}∗ (where |T | is a power of 2), there exists a
circuit description of size less than |T |2: that is, KI0

(T ) < |T |2.

3. Any oracle circuit C whose description length is at most m cannot query to an oracle any
string of length greater than m. Thus, the output of CA only depends on the membership in
A of strings of length at most m.

We modify the standard circuit interpreter I0 so that we can describe some type of circuits
succinctly. For any n ∈ N and d ∈ {0, 1}∗, let CA

n,d(x) be an oracle circuit that computes A(x, d)
(i.e., A(〈x, d〉)) for a given input x ∈ {0, 1}n, by using a single oracle gate with input 〈x, d〉.

Definition. Define an interpreter IA as follows:

IA(0d) := IA0 (d),

IA(1n, d) := IA0 (C
A
n,d) = A(1n, d)A(2n, d) · · ·A(2nn, d),

for any n ≥ 1 and d ∈ {0, 1}∗. For the other strings d (e.g., d = 1101), leave IA(d) undefined.
For A = ∅, we write I instead of I∅.

Remark. 1. Recall that 〈1n, d〉 = 1n01nd; hence IA is well-defined. Also, the definition of IA

ensures that the description length of a circuit CA
n,d is at most | 〈1n, d〉 | = 2n+ |d|+1, which

is exactly equal to the length of a query 〈in, d〉 to oracle A.

2. For A = ∅, we have KI (x) = KI0
(x)+1 for any x ∈ {0, 1}∗\{0}∗; hence, there is essentially no

difference between our circuit complexity measure KI (x) and a standard description length
KI0

(x). In particular, the results of Section 6 hold under any standard circuit complexity
(e.g., that counts the number of gates or wires).

3. For a general oracle A, since we assumed that the circuit CA
n,d can be described succinctly, we

cannot guarantee that minimizing our complexity measure KIA is computationally equivalent
to minimizing standard circuit complexity. However, all of the previous work (e.g., [15, 4])
that we are aware of holds under our encoding scheme.

We define the minimum oracle circuit size problem MCSPA by using IA as a circuit interpreter:

Definition. The minimum oracle circuit size problem MCSPA relative to an oracle A ⊆ {0, 1}∗
takes a truth-table T ∈ {0, 1}∗ and a size-parameter s ∈ N, and decides if KIA(T ) ≤ s.
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3 Why Are the Known Reductions Oracle-independent?

In this section, we argue that the known reductions to MCSP are oracle-independent. We observe
that the existing reductions only exploit (as a circuit lower bound) the fact that many truth-tables
require high (unrelativized) circuit complexity. Indeed, in the case of the reductions [1, 2] that rely
on breaking a one-way function, the following holds:

Theorem 7 (Allender and Das [2]; see also [5, 1]). Let ǫ ∈ (0, 1) be a constant and let B be an
oracle of polynomial density such that KI (x) ≥ |x|ǫ for any x ∈ B (i.e., B is a statistical test that
accepts “random” strings) . Then, every language in statistical zero knowledge is reducible to B
via a BPP-reduction.

Here, we say that an oracle B is of polynomial density if there exists a polynomial p such that
Prx∈R{0,1}n [x ∈ B] ≥ 1/p(n) for any n ∈ N.

It is easy to see that such an oracle B can be computed, given oracle access to MCSP: indeed,
define B := {x ∈ {0, 1}∗ | KI (x) ≥ |x|1/2 }; it is obvious that B ∈ PMCSP; moreover, since there are
at most 2

√
n+1 strings that have circuit complexity at most

√
n for any n ∈ N, almost all strings

of length n are in B. Therefore, every language in statistical zero knowledge is reducible to MCSP

via a BPP-reduction.
This argument is still valid in the case of an oracle version MCSPA: indeed, we may define

an oracle BA as {x ∈ {0, 1}∗ | KIA(x) ≥ |x|1/2 } (∈ PMCSPA

); since KI (x) ≥ KIA(x) for any
x ∈ {0, 1}∗, the hypothesis of the theorem remains satisfied.

Next, we show that an oracle-independent one-query reduction to MCSP allows us to convert
a randomized algorithm with two-sided error into a randomized algorithm with zero-sided error.
Moreover, the error probability is negligible.

Theorem 8 (Kabanets and Cai [14]). BPP ⊆ ⋂

A ZPPMCSPA[1].

Proof Sketch. Pick a truth-table T uniformly at random. By making a query to MCSPA, check if
KIA(T ) = nΩ(1). (Note that this also implies that KI (T ) = nΩ(1).) Now, if we successfully found a
truth-table T that requires high circuit complexity, then we can use the pseudorandom generator
by Impagliazzo and Wigderson [13] to derandomize a BPP computation. See [14] for the details.

�

Finally, we observe that the new reductions by Allender, Grochow, and Moore [3] are oracle-
independent. In fact, their reductions are not known to work under a usual definition of circuit
size; instead, they presented reductions to a minimum circuit size problem, where “circuit size”
here refers to KT-complexity. Let us recall KT-complexity briefly:

Definition (KT-complexity [1]). Fix a universal (oracle) Turing machine U . For an oracle A, the
KTA-complexity of a string x is defined as

KTA(x) := min{ |d|+ t | UA,d(i) = xi in t steps for all i ∈ [|x|+ 1] }.

Here, x|x|+1 is defined as ⊥ (a stop symbol).

It is known that KTA-complexity is polynomially related to circuit complexity relative to A;
hence, we may regard KTA as a version of circuit complexity. In order to capture KT-complexity
by our notation, we define a circuit interpreter IA0 as follows: On input 1t0d, run the universal
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Turing machine UA,d(i) for each i ≥ 1 one by one in time at most t. Let n be the minimum i such
that UA,d(i) outputs ⊥. Output the concatenation of UA,d(1), · · · , UA,d(n − 1). This definition
ensures that KIA0

(x) = KTA(x) + 1, and that KIA(x) ≤ KIA0
(x) + 1 = KTA(x) + 2.

For this particular interpreter IA, we prove:

Theorem 9 (Allender, Grochow, and Moore [3]). For any oracle A, the rigid graph isomorphism
problem is reducible to MCSPA via a one-query BPP-reduction.

Proof Sketch. We only observe why their reduction still works for MCSPA, where A denotes an
arbitrary oracle A. See [3] for the details.

Given two graphs (G0, G1), they constructed a string x′ whose length is a power of 2 and
a threshold θ that satisfy the following: If the graphs are isomorphic, then KT(x′) ≪ θ with
probability 1. If the graphs are rigid and not isomorphic, then x′ contains information about a
uniformly chosen random string of length at least θ, and hence KT(x′) ≥ KU (x

′) ≫ θ with high
probability. (Here, KU (x

′) denotes the time-unbounded Kolmogorov complexity.)
Now consider an arbitrary oracle A. We claim that the rigid graph isomorphism problem

reduces to checking if (x′, θ) ∈ MCSPA. Suppose that the graphs are isomorphic; in this case,
we have KIA(x

′) ≤ KTA(x′) + 2 ≤ KT(x′) + 2 ≪ θ. On the other hand, suppose that the
graphs are rigid and not isomorphic. Since x′ contains information about a uniformly chosen
random string, an information-theoretic argument shows that KUA(x′) ≫ θ with high probability
(even relative to A). By the universality of U , we have KUA(x′) ≤ KIA(x

′) + O(1). Therefore,
KIA(x

′) ≥ KUA(x′)−O(1) ≫ θ. �

To summarize, on one hand, relativization does not increase circuit complexity (KIA(x
′) ≤

KI (x
′)); on the other hand, we are prone to rely on the fact that a uniformly chosen random string

requires high circuit complexity, which remains true for any MCSPA.
We mention that, for a specific oracle A, an efficient reduction to MCSPA is known. Allender,

Buhrman, Koucký, van Melkebeek and Ronneburger [1] showed that PSPACE ⊆ ZPPMCSPQBF

. Since
their proof relies on the fact that QBF is PSPACE-complete, the proof cannot be generalized to a
reduction to MCSP; hence, their reduction cannot be regarded as an oracle-independent reduction
to MCSP.

4 Limits of Oracle-independent Turing Reductions to MCSP

We show upper bounds for classes of languages that reduce to MCSP in an oracle-independent
manner (i.e., in a way that one does not use a property of MCSP rather than that of a relativized
version MCSPA). For example, we consider a situation where a language L is reducible to MCSPA

for any A via a polynomial-time Turing reduction; more precisely, for every A, there exists a
polynomial-time Turing reduction from L to MCSPA, i.e., L ∈ ⋂

A PMCSPA

. That is, only properties

common to MCSPA for any oracle A are used to show that L is in PMCSPA

. We would like to show
that L is relatively easy in such situations.

In fact, we can indeed show that any language L in
⋂

A PMCSPA

is in P.

Theorem 1 (restated). Let L ⊆ {0, 1}∗ be a language such that for any oracle A, there exists a

polynomial-time Turing reduction from L to MCSPA. Then L is in P. In short,
⋂

A PMCSPA

= P.

9



We will prove this theorem as follows: We will argue that, for each polynomial-time reduction
M , we can adversarially choose an oracle AM so that the reduction M cannot query any truth-
table of high circuit complexity (by encoding the truth-tables queried by M into the oracle AM ).
However, the assumption of the theorem states that a reduction M can depend on an oracle A,
and hence A cannot depend on M . We first get around this difficulty by swapping the order of
quantifiers: we reduce our theorem to the following lemma, in which a machine M cannot depend
on A.

Lemma 10. Let L ⊆ {0, 1}∗ be a language and A0 be an arbitrary finite oracle. Suppose that

there exists a polynomial-time oracle Turing machine M such that MMCSPA

(x) = L(x) for any
x ∈ {0, 1}∗ and any oracle A consistent with A0. Then, L ∈ P.

Note that, in this lemma, a single machine M is required to compute L with respect to every
oracle version MCSPA. We will later prove this lemma by choosing, for each reduction M and
input x, an oracle AM,x so that the reduction M to MCSPAM,x can be simulated in polynomial
time. Before its proof, we show that Lemma 10 implies Theorem 1 by using a simple diagonalization
argument.

Proof of Theorem 1 based on Lemma 10. We prove the contraposition: Assuming L 6∈ P, the aim
is to construct an oracle A such that L 6∈ PA. Such an oracle A =

⋃

eBe is constructed in stages.
Let all the polynomial-time oracle Turing machines be {M1,M2, · · · }.

At stage e, we construct a finite oracle Be. At stage 0, set B0(y) := ⊥ for all y ∈ {0, 1}∗. At
stage e ≥ 1, we apply Lemma 10 for M = Me and A0 = Be−1: by the assumption that L 6∈ P, there

exist some string xe and some oracle Be consistent with Be−1 such that MMCSPBe

e (xe) 6= L(xe).

We may assume that Be is a finite oracle: indeed, since the computation of MMCSPBe

e on input xe
makes a finite number of queries to MCSPBe , the answers of the queries also depend on a finite
portion of Be. Define an oracle A as the union of all the oracles Be whose ⊥ is replaced by 0.

Since A is consistent with Be, it holds that MMCSPBe

e (xe) = MMCSPA

e (xe) for each e ≥ 1. By

the definition of xe, we have M
MCSPBe

e (xe) 6= L(xe). Therefore, M
MCSPA

e (xe) 6= L(xe) holds for any

e, and hence L 6∈ PMCSPA

. �

Now we give a proof of Lemma 10. The idea is as follows: For any reduction M and any input
x, we simulate the reduction M by answering M ’s query by exhaustively searching all the circuits
of size at most O(log n). On this specific computation path of M , we claim that there exists some
oracle AM,x such that the simulated computation path coincides with the computation path of the
reduction M to MCSPAM,x , thereby showing that the output of the simulation of M is L(x): Since
M is a polynomial-time machine, the number of the queries on the computation path is at most
nO(1). Thus, the index i of the queries can be described in O(logn) bits, and hence the description
length of the oracle circuit CAM,x(j) := AM,x(j, i) is at most O(logn). By defining AM,x(j, i) := Tij

for each truth-table Ti queried by M , any truth-table Ti admits a circuit of size at most O(logn).
Let us turn to a formal proof. Let M be a polynomial-time oracle machine that computes

L given oracle access to MCSPA in time nc for some constant c, where A denotes an arbitrary
oracle consistent with A0. We define a polynomial-time machine M0 that simulates M without
using MCSPA as follows: On input x ∈ {0, 1}∗ of length n, simulate M on input x, and accept if
and only if M accepts. If M makes a query (T, s), then we try to compute the circuit complexity
KIA0 (T ) of the truth-table T relative to a finite oracle A0, by an exhaustive search up to size at
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most 4c logn. (More specifically, we compute the shortest description d of length at most 4c logn
such that IA0(d) = T , where we regard A0 ⊆ {0, 1}∗ as an oracle by replacing ⊥ by 0 in finite
oracle A0.) If the circuit complexity KIA0 (T ) has turned out to be greater than 4c logn, then define
s′ := 4c logn; otherwise define s′ := KIA0 (T ) (≤ 4c logn ). (i.e., s′ := min{ 4c log n, KIA0 (T ) }.)
Answer “Yes” to the query if and only if s′ ≤ s.

It is easy to see that M0 is indeed a polynomial-time machine, since there are only 2O(logn)

circuits of size at most O(logn). (Recall that we regard a circuit size as a description length.)
Thus, it is sufficient to prove the following:

Claim 11. For all sufficiently large n and all inputs x of length n, there exists an oracle AM,x

consistent with A0 such that M0(x) = MMCSP
AM,x

(x).

Note that the assumption of Lemma 10 implies that MMCSP
AM,x

(x) = L(x). Thus, the claim
implies that M0(x) = L(x) and hence L ∈ P.

Proof of Claim 11. Fix n sufficiently large and an input x ∈ {0, 1}n. For i ∈ [nc], let Ti be the
truth-table in the ith query that M makes on the computation path simulated by M0 on input x.

We define an oracle AM,x = A as follows (here, AM,x is abbreviated as A for notational con-
venience): For any string q ∈ {0, 1}∗ of length less than 4c logn, define A(q) = 1 if and only if
A0(q) = 1. For strings of length 4c logn, we encode Ti into oracle A so that the circuit complex-
ity of Ti relative to A is at most 4c log n: Specifically, we would like to define a description di
of length (exactly equal to) 4c logn so that IA(di) = Ti. To this end, let ai := log |Ti| and define
di :=

〈

1ai , iki
〉

, where ki ∈ N is defined so that |di| = 2ai+1+ki = 4c logn. Here, iki is well-defined:
indeed, we have ai = log |Ti| ≤ c log n, which implies that ki := 4c logn − 2ai − 1 ≥ c logn, and
thus i ≤ 2c logn ≤ 2ki . Now define A(j

ai
, iki) := Tij for each j ∈ [2ai ]. By the definition of IA,

the truth-table Ti can be described succinctly: IA(di) = A(1ai , iki) · · ·A(2aiai , iki) = Ti; thus, the
circuit complexity KIA(Ti) of Ti is at most |di| = 4c logn.

It remains to show that, for each query (Ti, s) that M makes on the computation path simulated
byM0, circuit complexity s′ (= min{ 4c logn, KIA0 (Ti) } ) calculated byM0 coincides with KIA(Ti);

note that this implies that M0(x) = MMCSPA

(x), because the computation path simulated by M0

coincides with that of M relative to MCSPA. In order to see KIA(Ti) = min{ 4c log n, KIA0 (Ti) },
first we note that A and A0 are consistent up to length 4c logn− 1; thus, for small circuits, circuit
complexity relative to A remains the same with circuit complexity relative to A0, because small
circuits cannot query long strings of length 4c logn. Formally, suppose that KIA0 (Ti) < 4c logn
(i.e., s′ = KIA0 (Ti)). In this case, there exists some description d of length less than 4c logn
such that IA0(d) = Ti. Since the circuit described by d cannot make any query of length greater
than |d|, it holds that IA0(d) = IA(d). Thus KIA(Ti) ≤ KIA0 (Ti) < 4c log n. Similarly, we have
KIA0 (Ti) ≤ KIA(Ti), and hence KIA(Ti) = KIA0 (Ti) = s′. Now suppose that KIA0 (Ti) ≥ 4c logn
(i.e., s′ = 4c logn). We claim that KIA(Ti) = 4c logn. Since we have KIA(Ti) ≤ 4c logn by the
definition of A, it is sufficient to show that KIA(Ti) < 4c logn is not true. Assume, by way of
contradiction, that KIA(Ti) < 4c log n. By the same argument above, it must be the case that
KIA(Ti) ≥ KIA0 (Ti) ≥ 4c logn, which is a contradiction. �

This completes the proof of Lemma 10.

Remark. If we regard a size of a circuit as the number of its wires, then the upper bound P becomes
DTIME(nO(log logn)). Specifically, letMCSP′A denotes a version ofMCSPA in which a size of a circuit
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is measured by the number of its wires. Then we have
⋂

A PMCSP′A ⊆ DTIME(nO(log logn)). This
can be proved by simply changing M0 in the proof above so that M0 exhaustively search all the
circuits of at most O(logn) wires in time O(logn)O(logn) = nO(log logn).

5 Limits of Oracle-independent Randomized Reductions to MCSP

In this section, we discuss the limits of a randomized reduction to MCSP that can be generalized
to a reduction to MCSPA for an arbitrary oracle A. Our focus is a randomized reduction with
negligible two-sided error that can make at most one query:

Definition. Let L,B ⊆ {0, 1}∗ be a language and an oracle, respectively. We say that L reduces to
B via a one-query BPP-reduction and write L ∈ BPPB[1] if there exist polynomial-time machines
M,Q and a negligible function ǫ such that, for any x ∈ {0, 1}∗,

Pr
r∈{0,1}|x|O(1)

[M(x, r, B(Q(x, r))) = L(x)] ≥ 1− ǫ(|x|).

Here, we say that a function ǫ is negligible if for all polynomials p, for all sufficiently large n ∈ N,
the function is bounded by the inverse of p: that is, ǫ(n) < 1

p(n) .

Note that we require the error probability to be negligible. Since the number of queries is
restricted to one, we cannot apply the standard error-reduction argument; hence, this definition
may be stronger than a definition whose error probability is a constant. We leave as an open
problem improving our result to the case when the error probability is a constant.

We prove that there is no language outside AM ∩ coAM that can reduce to MCSPA for an
arbitrary oracle A via a one-query randomized reduction:

Theorem 2 (restated). Let L ⊆ {0, 1}∗ be a language such that for any oracle A, there exists a
one-query BPP-reduction from L to MCSPA. Then L is in AM ∩ coAM. In short,

⋂

A

BPPMCSPA[1] ⊆ AM ∩ coAM.

As with Theorem 1, we first swap the order of quantifiers. However, in order to swap the order
of quantifiers, we need to enumerate all the negligible functions, which is not countably many; thus,
we sidestep this by requiring that the error probability is an inverse polynomial 1/q in the running
time of machines M and Q. Also, since a one-query BPP-reduction is closed under complement,
we only have to show that the target language is in AM.

Lemma 12. There exists some universal polynomial q (specified later) that satisfies the following:
Let L,A0 be a language and a finite oracle, respectively. Suppose that there exist a polynomial p
and Turing machines M,Q such that M and Q run in time p(n) and

Pr
r∈{0,1}p(n)

[M(x, r,MCSPA(Q(x, r))) = L(x)] ≥ 1− 1

q(p(n))

for any x ∈ {0, 1}∗ of length n and any oracle A ⊆ {0, 1}∗ consistent with A0. Then, we have
L ∈ AM.

We prove that Lemma 12 implies Theorem 2:
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Proof of Theorem 2 based on Lemma 12. We prove the contraposition: Assuming L 6∈ AM, we will

construct an oracle A such that L 6∈ BPPMCSPA[1] by diagonalization.
Enumerate all the tuples { (Me, Qe, ce) }e≥1, where Me and Qe are polynomial-time machines

and ce ∈ N. We assume that, for each tuple (Me, Qe, ce), there exist infinitely many e′ ∈ N such
that (Me, Qe, ce) = (Me′ , Qe′ , ce′).

At stage e ≥ 1, we construct a finite oracle Be that fools a one-query BPP reduction (Me, Qe)
that runs in time nce : If Me or Qe does not run in time nce , then we define Be := Be−1. Otherwise,
we can apply the contraposition of Lemma 12 to Me and Qe: there exist some input xe and some
oracle Be consistent with Be−1 such that Prr[Me(xe, r,MCSPBe(Qe(xe, r))) = L(xe)] < 1 − 1

q(nce ) .
We can make Be a finite oracle, since Me depends on only a finite portion of Be. This completes
stage e. Define A as the union of all the oracles Be whose ⊥ is replaced by 0.

We claim that L 6∈ BPPMCSPA[1]. Assume otherwise. Then there exist a constant c > 1, a
negligible function ǫ, and machines M and Q that run in time nc such that

Pr
r
[M(x, r,MCSPA(Q(x, r))) = L(x)] ≥ 1− ǫ(|x|) (1)

for all x ∈ {0, 1}∗. Fix a sufficiently large n0 ∈ N such that ǫ(n) < 1
q(nc+1)

for all n ≥ n0. Let M
′ be

the Turing machine3 that, on input x, outputs a hardwired answer L(x) if |x| ≤ n0, and simulates
M otherwise. Note that the running time of M ′ is at most nc+1.

By the construction above, there exists e ≥ n0 such that (Me, Qe, ce) = (M ′, Q, c + 1). By
the definition of xe, we have Prr[M

′(xe, r,MCSPA(Q(xe, r))) = L(xe)] < 1 − 1
q(|xe|c+1)

. Moreover,

since M ′ outputs a correct answer with probability 1 on input x of length at most n0, it holds that
|xe| > n0; thus, we have ǫ(|xe|) < 1

q(|xe|c+1)
; in addition, the machine M ′ behaves in the same way

with M . Hence, the success probability of (M,Q) on input xe is equal to that of (M ′, Q) on input
xe, which is bounded above by 1− 1

q(|xe|c+1)
< 1− ǫ(|xe|). This contradicts (1). �

Now we outline the proof of Lemma 12.
We will first show that we may assume that all the queries that Q makes have a truth-table

of a fixed length 2t and a fixed size-parameter s for some t, s ∈ N. There is no loss of generality
in assuming this because there are only polynomially many possibilities: the number of all the
possible lengths of a truth-table and size-parameters is at most nc for some c. Moreover, we may
fix how to use the answer of a query: specifically, for a random choice r, define f : {0, 1} → {0, 1}
(which has 4 possible choices) so that f(b) = M(x, r, b). (For example, f(b) = b means that M
accepts if and only if the query is a positive instance of MCSPA.)

We classify the set of random choices r into Rf,t,s according to these parameters (f, t, s). If
x ∈ L, then there must exist some (f, t, s) such that f(MCSPA(Q(x, r))) = 1 with high probability
over the choice of r ∈R Rf,t,s. On the other hand, if x 6∈ L, then any (f, t, s) must satisfy
f(MCSPA(Q(x, r))) = 0 with high probability. Therefore, it is sufficient to prove that, for a specific
(f, t, s), there exists an AM protocol that checks if f(MCSPA(Q(x, r))) = 1 with high probability
conditioning on r ∈ Rf,t,s.

Let us assume that f(b) = b for simplicity. Then, it is sufficient to estimate the probability

Pf,t,s := Pr
r∈RRf,t,s

[f(MCSPA(Q(x, r))) = 1] = Pr
r∈RRf,t,s

[Q(x, r) ∈ MCSPA]

3
M

′ can be implemented by a Turing machine as follows: Read the first n0 + 1 bits of the input (if any). If the
input length is at most n0, then output the hardwired answer. Otherwise, move the head of the input tape to the
initial position, and continue the computation of M . This implementation costs at most 2n0 additional steps.
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by an AM protocol. If the probability Pf,t,s is close to 1, then the distribution induced by Q(x, r)
concentrates on a limited number of instances: indeed, since there are at most 2s+1 positive in-
stances in MCSPA for a size-parameter s, the query Q(x, r) must be one of such instances with
probability at least Pf,t,s. Conversely, suppose that the query distribution Q(x, r) concentrates on
a limited number of instances { (T1, s), (T2, s), · · · }; we may encode Ti into an oracle A and force
these instances to be positive (i.e., (Ti, s) ∈ MCSPA); as a result, the probability Pf,t,s is not small
(since the instances (Ti, s) are positive). Therefore, the task reduces to checking whether the query
distribution concentrates on a limited number of instances.

To this end, we will use the heavy samples protocol [6]. We say that an instance (T, s) is
β-heavy if the probability that (T, s) is queried (i.e., (T, s) = Q(x, r)) is at least β. The heavy
samples protocol allows us to estimate the probability that Q(x, r) is β-heavy.

Lemma 13 (The heavy samples protocol; Trevisan and Bogdanov [6]). Let D = {Dn }n∈N be a
polynomial-time samplable distribution. There exist a universal constant c (c = 211 will do) and
an AM ∩ coAM protocol that solves the following promise problem: Given input 1n and a threshold
β ∈ [0, 1], accept if Pry∼Dn [ y is cβ-heavy ] ≥ 3

4 , and reject if Pry∼Dn [ y is β-heavy ] ≤ 1
4 .

Since the problem setting is slightly different from that of [6], we include a proof of this lemma
based on the lower bound protocol (Goldwasser and Sipser [10]) and the upper bound protocol
(Fortnow [9]) in Appendix A.

Now we give a formal proof of Lemma 12. For the proof, we need to show an AM protocol
deciding whether x ∈ L; we will show the protocol by a sequence of claims.

We begin with clarifying our setting and introducing some notation. Let p(n) be a polynomial
that is an upper bound of the running time of M and Q. Fix a sufficiently large n ∈ N and an
input x ∈ {0, 1}n.

Let f : {0, 1} → {0, 1} be a function, and t, s ∈ N. We define Rf,t,s ⊆ {0, 1}p(n) as the set of all
the random choices r ∈ {0, 1}p(n) such that M(x, r, b) = f(b) for all b ∈ {0, 1} and (T, s) = Q(x, r)
and |T | = 2t. That is, f specifies how to use the answer from oracle MCSPA, and t and s specify
the length of the truth-table and the size-parameter in the query, respectively. Let X := { (f, t, s) |
Rf,t,s 6= ∅ }. We may assume, without loss of generality, that s ≤ p(n)2 as otherwise Q(x, r) is
obviously a positive instance; hence, |X| ≤ 22 · log p(n) · p(n)2 ≤ 4p(n)3.

Define Pf,t,s := Prr[f(MCSPA(Q(x, r))) = 1 | r ∈ Rf,t,s] for (f, t, s) ∈ X. Let us divide the
probability that M accepts x by conditioning on r ∈ Rf,t,s:

Pr
r
[M(x, r,MCSPA(Q(x, r)) = 1] =

∑

(f,t,s)∈X
Pr
r
[r ∈ Rf,t,s] · Pf,t,s. (2)

Since there are polynomially many choices for (f, t, s), there must be some (f, t, s) ∈ X that can
be used as a “witness” for x ∈ L in our AM protocol. Specifically, the following claim holds:

Claim 14. Let δ(n) :=
√

1/q(p(n)) and δ′(n) := 9p(n)3δ(n).

1. If x ∈ L, then there exists (f, t, s) ∈ X such that Pr[r ∈ Rf,t,s] ≥ 2δ(n) and Pf,t,s ≥ 1− δ′(n).

2. If x 6∈ L, then Pf,t,s ≤ δ(n) for all (f, t, s) ∈ X such that Pr[r ∈ Rf,t,s] ≥ δ(n).

Proof of Claim 14.
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1. Suppose that x ∈ L; then, the probability (2) is at least 1 − δ(n)2. Assume, by way of
contradiction, that Pf,t,s < 1 − δ′(n) for all (f, t, s) ∈ X such that Pr[r ∈ Rf,t,s] ≥ 2δ(n).
Then,

1− δ(n)2 ≤
∑

(f,t,s)∈X
Pr
r
[r ∈ Rf,t,s] · Pf,t,s

=
∑

(f,t,s)∈X
Pr[r∈Rf,t,s]≥2δ(n)

Pr
r
[r ∈ Rf,t,s] · Pf,t,s +

∑

(f,t,s)∈X
Pr[r∈Rf,t,s]<2δ(n)

Pr
r
[r ∈ Rf,t,s] · Pf,t,s

≤ 1− δ′(n) + 2|X|δ(n) ≤ 1− 9p(n)3δ(n) + 8p(n)3δ(n) = 1− p(n)3δ(n).

Thus p(n)3 ≤ δ(n) < 1, which is a contradiction.

2. Let X ′ be the set of all (f, t, s) ∈ X such that Pr[r ∈ Rf,t,s] ≥ δ(n). Suppose that x 6∈ L;
then,

δ(n)2 ≥
∑

(f,t,s)∈X
Pr
r
[r ∈ Rf,t,s] · Pf,t,s ≥ δ(n) ·

∑

(f,t,s)∈X′

Pf,t,s,

which clearly implies that Pf,t,s is at most δ(n) for each (f, t, s) ∈ X ′.

�

In our AM protocol, the prover first sends (f, t, s) to the verifier; an honest prover is supposed
to send (f, t, s) ∈ X that satisfies the first condition in Claim 14 above. Then, what we need is to
show a verifier of an AM protocol as stated in the following claim.

Claim 15. There exists a verifier V of an AM protocol such that, for a given x ∈ {0, 1}∗ and
(f, t, s) ∈ X,

1. if Pr[r ∈ Rf,t,s] ≥ 2δ(n) and Pf,t,s ≥ 1 − δ′(n), then V accepts with high probability by
communicating with some prover, and

2. if Pr[r ∈ Rf,t,s] < δ(n) or Pf,t,s ≤ δ(n), then V rejects with high probability with any prover.

We explain below how to define this verifier V . Recall that 1/δ(n) = nO(1); thus, it is easy to
distinguish the case when Pr[r ∈ Rf,t,s] ≥ 2δ(n) and the case when Pr[r ∈ Rf,t,s] < δ(n). The
following claim states this formally.

Claim 16. There exists a randomized polynomial-time algorithm that, given x ∈ {0, 1}∗ and
(f, t, s) ∈ X,

1. accepts with high probability if Pr[r ∈ Rf,t,s] ≥ 2δ(n), and

2. rejects with high probability if Pr[r ∈ Rf,t,s] < δ(n).

Proof Sketch. Sample r1, · · · , rm ∈R {0, 1}p(n) uniformly at random for m = O(n/δ(n)2). Accept
if and only if the number of i’s such that ri ∈ Rf,t,s is at least 1.5 ·δ(n)m. By applying the Chernoff
bound, this algorithm distinguishes the two cases with probability at least 1− 2−n. �

Therefore in our AM protocol, verifier V first uses this algorithm to check whether Pr[r ∈
Rf,t,s] ≥ 2δ(n) or Pr[r ∈ Rf,t,s] < δ(n). If Pr[r ∈ Rf,t,s] < δ(n) is confirmed by the algorithm, then
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V can immediately reject (f, t, s) and halt. Thus, it remains to design a part where V determines
whether Pf,t,s ≥ 1 − δ′(n) or Pf,t,s ≤ δ(n) (≤ δ′(n) ) holds, assuming that Pr[r ∈ Rf,t,s] ≥ δ(n).
Note that this assumption implies that the uniform distribution on Rf,t,s can be sampled efficiently:
indeed, sample r ∈R {0, 1}p(n) until we obtain an element r such that r ∈ Rf,t,s; this sampling
algorithm succeeds within O(1/δ(n)) steps in expectation.

Now our task is to define an AM protocol determining whether Pf,t,s is close to 1 or smaller than
δ′(n), assuming that the query distribution Q(x, r) where r ∈R Rf,t,s can be sampled efficiently.
Note that Pf,t,s may depend on x and MCSPA. We will show that the task above can be reduced
to checking whether a certain concentration occurs, by defining A so that heavy queries become
positive instances. Then we will check if such a concentration occurs by the heavy samples protocol
of Lemma 13.

In order to reduce Claim 15 to the heavy samples protocol, we introduce some notation: Fix
(f, t, s) ∈ X. Let us sort all the truth-tables {T1, · · · , T22

t } = {0, 1}2t of length 2t in the order
of heaviness: namely, let pi := Prr∈RRf,t,s

[Q(x, r) = (Ti, s)] and p1 ≥ p2 ≥ · · · ≥ p22t . Let p(I)

denote
∑

i∈I pi for I ⊆ [22
t
]. Define the set of α-heavy indices (with respect to the distribution

induced by Q(x, r) where r ∈R Rf,t,s) as Iα := { i ∈ [22
t
] | pi ≥ α } for α ≥ 0. Note that

p(Iα) = Prr∈RRf,t,s
[Q(x, r) is α-heavy ]. We also define Pid,t,s := Prr∈RRf,t,s

[Q(x, r) ∈ MCSPA ].
We will show that the condition that Pid,t,s is close to 1 is (almost) characterized by the fact that

the query distribution is concentrated on { (Ti, s) | i ∈ Iβ }, namely the set of β-heavy instances for
some threshold β > 0.

Claim 17. There exists an oracle A consistent with A0 up to length 7 log p(n) that satisfies the
following: for any (f, t, s) ∈ X such that Pr[r ∈ Rf,t,s] ≥ δ(n) and s > 7 log p(n) hold,

1. if Pid,t,s ≥ 1− δ′(n), then p(Icβ) ≥ 1− 3cδ′′(n), and

2. if Pid,t,s ≤ δ′(n), then p(Iβ) ≤ δ′′(n).

Here, we define δ′′(n) := 2 p(n)7 δ′(n) = 18 p(n)10 δ(n) and β := δ′′(n) 2−s, and c denotes the
universal constant in Lemma 13.

This claim allows us to apply the heavy samples protocol. Let us complete the proof of Claim
15 before proving Claim 17.

Proof of Claim 15. As explained above, it is sufficient to show that our verifier V can check whether
Pf,t,s ≥ 1− δ′(n) or Pf,t,s ≤ δ′(n), assuming that Pr[r ∈ Rf,t,s] ≥ δ(n).

If f ≡ 1 or f ≡ 0, then the task is trivial: in the former case, Pf,t,s = 1 and hence V may
immediately accept; in the latter case, V rejects.

If s ≤ 7 log p(n), then we may decide whether Q(x, r) ∈ MCSPA0 or not by an exhaustive search
in time 2O(s) = nO(1). Since A and A0 are consistent up to length 7 log p(n), as in the proof of
Lemma 10, it holds that Q(x, r) ∈ MCSPA0 if and only if Q(x, r) ∈ MCSPA. Therefore, we may
estimate Pf,t,s by sampling r ∈R Rf,t,s and then decide whether Q(x, r) ∈ MCSPA by the exhaustive
search.

Otherwise, we have s > 7 log p(n) and hence Claim 17 can be applied. Now suppose that
f(b) = b for any b ∈ {0, 1}. In this case, it holds that Pf,t,s = Pid,t,s; thus Claim 17 states that, if
Pf,t,s ≥ 1− δ′(n) then p(Icβ) ≥ 1− 3cδ′′(n), and if Pf,t,s ≤ δ′(n) then p(Iβ) ≤ δ′′(n). Now we may
apply the heavy samples protocol for the query distribution induced by Q(x, r) where r ∈R Rf,t,s,
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in order to check whether p(Icβ) ≥ 1 − 3cδ′′(n) or p(Iβ) ≤ δ′′(n): more specifically, V accepts in
the former case by running the AM protocol of Lemma 13.

Similarly, if f(b) = 1−b, then we have Pf,t,s = 1−Pid,t,s. This implies the same condition except
for flipping YES and NO: if Pf,t,s ≥ 1 − δ′(n) then p(Iβ) ≤ δ′′(n); if Pf,t,s ≤ δ′(n) then p(Icβ) ≥
1 − 3cδ′′(n). Thus, we may apply the heavy samples protocol to check whether p(Iβ) ≤ δ′′(n) or
p(Icβ) ≥ 1 − 3cδ′′(n): specifically, V accepts in the former case by running the coAM protocol of
Lemma 13.

Note that we may pick the polynomial q that specifies the error probability so that 3cδ′′(n) ≤ 1
4

(which allows us to use Lemma 13): indeed, if we define q(n) := O(n22) then we have δ(n) =
√

1/q(p(n)) = O(p(n)−11) and hence 3cδ′′(n) = O(p(n)10 δ(n)) = o(1). �

All that remains is to show Claim 17. The intuition is as follows: Suppose that the probability
that a positive instance is queried is large (i.e., Pid,t,s ≥ 1 − δ′(n)). Since there are at most 2s+1

truth-tables that have circuit complexity at most s, the query distribution must concentrate on
such positive instances; thus p([2s+1]) is also large, which in particular implies that p(Icβ) is large
(since β is in fact chosen so that p(Iβ) is roughly equal to p([2s+1])).

Conversely, suppose that the query distribution concentrates on heavy instances { (T1, s), . . . ,
(T2k , s) } (i.e., p([2k]) is large) for some k. In this case, we may encode the heavy truth-tables into
the oracle A; thereby we can force these truth-tables to be positive instances, which implies that
p([2k]) ≤ Pid,t,s; hence Pid,t,s cannot be small. The details follow:

Proof of Claim 17. 1. Suppose that Pid,t,s ≥ 1− δ′(n). Then,

1− δ′(n) ≤ Pr
r∈RRf,t,s

[Q(x, r) ∈ MCSPA]

=
∑

i : (Ti,s)∈MCSPA

pi ≤
2s+1
∑

i=1

pi = p([2s+1]),

where in the last inequality we used the fact that there are at most 2s+1 positive instances in
MCSPA. Now,

1− δ′(n) ≤ p([2s+1]) = p([2s+1] ∩ Icβ) + p([2s+1] \ Icβ) ≤ p(Icβ) + 2s+1 · cβ,

which implies that p(Icβ) ≥ 1− 2s+1 · cβ − δ′(n) ≥ 1− 2cδ′′(n)− δ′(n) ≥ 1− 3cδ′′(n).

2. Note that an oracle A can depend on input x, but A must not depend on a specific (f, t, s).
Thus, we define A so that, for all (f, t, s) ∈ X, the heavy queries { (T1, s), · · · , (T2k , s) }
(with respect to the distribution induced by Q(x, r) where r ∈R Rf,t,s) become positive
instances. (Note that truth-tables Ti depend on (f, t, s).) For any string y of length at most
7 log p(n), we define A(y) := 1 if and only if A0(y) = 1, which ensures that A and A0 are
consistent up to length 7 log p(n). For each (f, t, s) ∈ X such that s > 7 log p(n), define
k := s − 7 log p(n); for each i ∈ [2k], we would like to define A so that IA(d) = Ti for
some description d of length exactly equal to s. To this end, define d :=

〈

1t,
〈

f, s, iki
〉〉

and
A(j

t
,
〈

f, s, iki
〉

) = Tij for all j ∈ [2t], where ki is chosen so that |d| = 2t+2 log s+ki+O(1) = s.
Thus, ki := s − 2t − 2 log s − O(1) ≥ s − 7 log p(n) = k. This ensures that iki is well-

defined. These imply that KIA(Ti) ≤ s; hence, (Ti, s) ∈ MCSPA for all i ∈ [2k] and therefore
p([2k]) ≤ Pid,t,s.
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Now fix (f, t, s) ∈ X such that k = s− 7 log p(n) > 0 and Pid,t,s ≤ δ′(n) hold. Since k and s
are close, it holds that

p([2s+1]) = p({ 1, · · · , 2k }) + p({ 2k + 1, · · · , 2 · 2k }) + · · ·+ p({ 2s+1 − 2k + 1 · · · , 2s+1 })
≤ 2s+1/2k · p([2k]) ≤ 2s+1−k · Pid,t,s = 2p(n)7 · Pid,t,s ≤ 2p(n)7 · δ′(n) = δ′′(n).

We claim that this implies p(Iβ) ≤ δ′′(n): Indeed, let j := max Iβ . If j > 2s, then δ′′(n) ≥
p([2s+1]) ≥ p([2s+1]∩ Iβ) ≥ β ·min{ 2s+1, j } > β · 2s = δ′′(n), which is a contradiction. Thus,
we have j ≤ 2s, and hence p(Iβ) ≤ p([2s+1]) ≤ δ′′(n) as desired.

�

This completes the proof of Lemma 12.

6 Hardness of MCSP Implies Separations of Complexity Classes

In this section, we give a reinterpretation of the results of Murray and Williams [17] by using Levin’s
Kolmogorov complexity, and extend these results to the case of polynomial-time nonadaptive re-
ductions and polynomial-time Turing reductions. Our proofs are based on the firm links between
circuit complexity and resource-bounded Kolmogorov complexity, which have been established by
a line of work [1, 5]. First, we introduce Levin’s Kt-complexity.

Definition (Levin’s Kolmogorov Complexity [16]). Fix an efficient universal Turing machine U .
The Levin’s Kolmogorov complexity Kt(x) of a string x is defined as

Kt(x) := min{ |d|+ log t | U(d) outputs x in time t }.

Our proof is principally based on the fact that EXP ⊆ P/poly if and only if circuit complexity
KI is polynomially related to Levin’s Kolmogorov complexity Kt.

Lemma 18 (Allender, Koucký, Ronneburger and Roy [5]). EXP ⊆ P/poly if and only if there exists
a polynomial poly in two variables such that KI (x) ≤ poly(Kt(x), log |x|).

We would like to separate the class of languages reducible toMCSP from EXP, under the assumption
that EXP ⊆ P/poly. Under this assumption, Lemma 18 suggests that circuit complexity and Kt-
complexity are essentially the same (in the sense that these are polynomially related to each other).
Therefore, we will first separate the class of languages reducible to Kt from EXP, and then, based
on Lemma 18, translate the property of Kt into that of MCSP, assuming EXP ⊆ P/poly.

6.1 The Case of Nonadaptive Reductions

In the case of polynomial-time nonadaptive reductions, it is well known that PKt
|| 6= EXP.

Proposition 19 (folklore). EXPKt
|| = EXP. (Here, Kt is identified with the oracle { (x, s) ∈

{0, 1}∗ × N | Kt(x) ≤ s }.)

Note that this implies PKt
|| 6= EXP by the time hierarchy theorem.
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Proof. Let M be any EXPKt
|| machine. Given input x ∈ {0, 1}∗ of length n, let Q(x) be the set of

queries (without size-parameter s) that M makes. Since M is a nonadaptive oracle machine, Q(x)
can be computed in exponential time. Therefore, any query q ∈ Q(x) can be described by the input

x and an index i ∈ [2n
O(1)

] in exponential time; hence, Kt(q) ≤ |x|+ nO(1) + log 2n
O(1)

= nO(1).
Given the fact that Kt(q) ≤ nO(1), we may compute Kt(q) by an exhaustive search in exponential

time. Thus, by answering M ’s queries by the exhaustive search, we can compute M ’s output in
exponential time. �

Under the assumption that EXP ⊆ P/poly, we can translate the property of Kt into that of
circuit complexity:

Theorem 20. If EXP ⊆ P/poly then EXPMCSP
|| = EXP.

Proof Sketch. Let (T, s) be any query of an EXPMCSP
|| machine. Since Kt(T ) is nO(1), the circuit

complexity KI (T ) of T is also bounded above by nO(1) by Lemma 18. Thus, the circuit complexity
of all the queries can be computed by an exhaustive search in time exponential in n. �

This theorem allows us to obtain a nontrivial separation of PMCSP
|| ∩ P/poly from EXP:

Corollary 21. PMCSP
|| ∩ P/poly 6= EXP.

Proof. Assume, by way of contradiction, that PMCSP
|| ∩P/poly = EXP. In particular, EXP ⊆ P/poly.

Thus, by Theorem 20, we have EXPMCSP
|| = EXP. Therefore, EXPMCSP

|| = EXP = PMCSP
|| , which

contradicts the (relativized) time hierarchy theorem [11]. �

This result exhibits a singular property of MCSP. In particular, reducing a language L to MCSP

via a polynomial-time nonadaptive reduction implies a separation of PL
|| ∩ P/poly from EXP.

Corollary 22. If L ≤p
tt MCSP, then PL

|| ∩ P/poly 6= EXP.

Proof. The hypothesis implies that PL
|| ⊆ PMCSP

|| , and by the previous corollary it holds that EXP 6⊆
PMCSP
|| ∩ P/poly, from which the result follows. �

We give some specific remarks:

Remark. 1. If MCSP is ZPP-hard under polynomial-time nonadaptive reductions, then ZPP 6=
EXP, which is a notorious open problem.

2. If MCSP is NP-complete under polynomial-time nonadaptive reductions, then PNP
|| ∩P/poly 6=

EXP. (The consequence is also a tiny improvement of Murray and Williams [17], who showed
that NP ∩ P/poly 6= EXP under the assumption that NP ≤p

m MCSP.)
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6.2 On Hardness of Approximating Kt-complexity and Circuit Complexity

Now we turn to the case of polynomial-time Turing reductions. We first introduce some definitions
about promise problems:

Definition. 1. A promise problem Π = (ΠY ,ΠN ) is a pair of disjoint languages ΠY and ΠN ,
where ΠY is the set of YES instances and ΠN is the set of NO instances.

2. We say that an oracle A satisfies the promise of Π = (ΠY ,ΠN ) if, for any x ∈ {0, 1}∗, it
holds that x ∈ ΠY implies x ∈ A, and that x ∈ ΠN implies x 6∈ A.

3. We say that a language L is reducible to a promise problem Π via a polynomial-time Turing
reduction M and write L ≤p

T Π if MA(x) = L(x) for any x ∈ {0, 1}∗ and any oracle A that
satisfies the promise of Π.

We show that approximating Kt-complexity within additive error g(n) = ω(log n) is not EXP-
complete under polynomial-time Turing reductions. We denote such a promise problem by GapgKt:

Definition. For a function g : N → N, define a promise problem GapgKt := (ΠY ,ΠN ) by

ΠY := { (x, s) ∈ {0, 1}∗ × N | Kt(x) ≤ s },
ΠN := { (x, s) ∈ {0, 1}∗ × N | Kt(x) > s+ g(|x|) }.

For this promise problem, we prove:

Theorem 4 (restated). For any nondecreasing function g(n) = ω(log n), it holds that PGapgKt 6=
EXP.

The proof is similar to a simplified proof in [1, Corollary 40] showing that resource-bounded
Kolmogorov complexity Kt for a fixed exponential time t(n) ≥ 2n

2
is not EXP-hard (originally

proved by Buhrman and Mayordomo [8]).

Proof. It is sufficient to prove that every unary language in PGapgKt can be solved in a fixed
exponential time. Indeed, by the time hierarchy theorem, there exists a unary language in EXP that
requires time complexity larger than the fixed exponential time, which implies that PGapgKt 6= EXP.

We first note that Kt(x) ≤ |x| + O(log |x|) for any x ∈ {0, 1}∗, since every string can be
described by itself in polynomial time. Let l(n) be such a (nondecreasing) upper bound (i.e.,
l(n) = n+O(logn)).

Let L ⊆ {0}∗ be an arbitrary unary language in PGapgKt, and M be a polynomial-time machine
that witnesses L ∈ PGapgKt.

The proof idea is as follows: We would like to simulate M on input 0n without oracle access
to GapgKt in time 22n ≪ 2n

O(1)
. To this end, we try to answer M ’s query q by exhaustively

searching up to Kt-complexity l(n). While we cannot obtain the correct value Kt(q) for a query q
such that Kt(q) > l(n), we guess the value Kt(q) to be l(n). Then, we will argue that each query
q can be computed efficiently and hence Kt(q) is relatively small; therefore, the guessed value of
Kt-complexity gives a good approximation. A formal proof follows.

We define a machine M0 that simulates M on input 0n (without oracle access to GapgKt): On
input 0n, M0 simulates M on the same input, and accepts if and only if M accepts. If the machine
M makes a query (q, s) ∈ {0, 1}∗×N to a GapgKt oracle, then we perform an exhaustive search up
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to Kt-complexity l(n), which allows us to compute σn(q) := min{Kt(q), l(n) }. (Namely, for each
d ∈ {0, 1}∗ of length at most l(n), run the universal Turing machine U on input d for time 2l(n)−|d|,
which takes overall 2l(n)nO(1) time.) We answer “Yes” to the query q if and only if σn(q) ≤ s. The
machine M0 runs in time 2l(n)nO(1) ≤ 22n (i.e., a fixed exponential time). Hence, it remains to
prove that, for each n ∈ N, there exists an oracle A that satisfies the promise of GapgKt such that

M0(0
n) = MA(0n), which in particular implies that M0(0

n) = L(0n).
A crucial observation here is that each query that M makes on the computation path simulated

by M0 can be described succinctly in terms of Kt-complexity: Specifically, fix an input 0n and
define the set Qn = { (q1, s1), · · · , (qm, sm) } of queries that M makes on the computation path
simulated by M0, where m = nO(1) is the number of the queries. Then, the ith query (qi, si)
can be described by n and an index i ∈ [m] in time 2l(n)nO(1). Therefore, it holds that Kt(qi) ≤
O(logn)+log 2l(n)nO(1) = l(n)+O(log n). By the assumption, we have O(logn) ≤ g(n) for all large
n; hence, Kt(qi) ≤ l(n) + g(n). This means that the difference between Kt(qi) and the threshold
l(n) up to which we performed an exhaustive search is at most g(n).

Now, for each n ∈ N, define an oracle A as follows: (q, s) ∈ A if and only if σn(q) ≤ s for
any (q, s) ∈ Qn, and (q, s) ∈ A if and only if Kt(q) ≤ s for any (q, s) 6∈ Qn. (Here, σn(q) denotes
min{Kt(q), l(n) }.) By this definition, it holds that MA(0n) = M0(0

n); thus all that remains is to
show that A satisfies the promise of GapgKt (which implies that MA(0n) = L(0n)).

Namely, for all (q, s) ∈ Qn, we would like to claim that (q, s) ∈ A holds if (q, s) is a YES
instance of GapgKt (i.e., Kt(q) ≤ s), and that (q, s) 6∈ A holds if (q, s) is a NO instance of
GapgKt (i.e., Kt(q) ≥ s + g(|q|)). Note that if Kt(q) ≤ l(n) then σn(q) = Kt(q); hence in this
case, the claim is obviously satisfied. In what follows, we may assume that Kt(q) > l(n) (and
thus σn(q) = l(n)). In particular, this implies that n ≤ |q|: indeed, by the definition of l(n),
we have Kt(q) ≤ l(|q|), which implies l(n) < Kt(q) ≤ l(|q|); hence, n ≤ |q| follows. Therefore,
Kt(q) ≤ l(n) + g(n) ≤ l(n) + g(|q|). Now assume that Kt(q) > s + g(|q|) (i.e., (q, s) is a NO
instance). This implies that σn(q) = l(n) ≥ Kt(q)− g(|q|) > s, and hence (q, s) 6∈ A as desired. On
the other hand, if Kt(q) ≤ s (i.e., (q, s) is an YES instance), then we have σn(q) ≤ Kt(q) ≤ s, and
hence (q, s) ∈ A. �

Next, assuming that EXP ⊆ P/poly, we translate the property of Kt-complexity into that of
MCSP. However, since these two measures are just polynomially related, the narrow gap of Kt does
not seem to be translated into a narrow gap of MCSP. Thus, we define GapkMCSP as a promise
problem that asks for approximating the logarithm of circuit complexity within a factor of k:

Definition. For a constant k ≥ 1, define a promise problem GapkMCSP := (ΠY ,ΠN ) by

ΠY := { (T, s) ∈ {0, 1}∗ × N | logKI (T ) ≤ s },
ΠN := { (T, s) ∈ {0, 1}∗ × N | logKI (T ) > ks }.

We can apply the same proof idea to GapkMCSP. In fact, thanks to the fact that the gap
between ΠY and ΠN is wide, we can prove a somewhat strong consequence:

Theorem 23. If EXP ⊆ P/poly, then for any ǫ > 0, there exists a constant k ≥ 1 such that

PGapkMCSP ⊆ DTIME(2n
ǫ
). In particular, EXP 6= PGapkMCSP ∩ P/poly for some k.

Proof. The proof idea is exactly the same with that of Theorem 4: We first simulate a PGapkMCSP

machine by answering its query T by an exhaustive search up to circuit complexity l(n) for some
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l(n). Then, since any query T can be described succinctly in terms of Kt-complexity, the circuit
complexity KI (T ) of the query T is also relatively small by Lemma 18; hence, the incomplete
exhaustive search gives a somewhat good approximation. While the theorem can be proved based
on Lemma 18, we incorporate a proof of Lemma 18 and give an entire proof below for completeness.

Let us define an EXP-complete language B ⊆ {0, 1}∗ as all the tuples 〈Q, x, t〉 such that the
Turing machine Q accepts x in time t. Since B ∈ EXP ⊆ P/poly, there exist some constant k0 ∈ N

and some family of circuits {Cm }m∈N of size at most mk0 that computes B on input length m.

Fix a small constant ǫ > 0. Define k := (k0+1)/ǫ. Let L ∈ PGapkMCSP and M be a polynomial-

time oracle machine that witnesses L ∈ PGapkMCSP.
Define l(n) := nǫ. As in the proof of Theorem 4, we define a machine M0 that simulates M

(without oracle access to GapkMCSP) as follows: M0 takes input x ∈ {0, 1}∗ of length n, simulates
M on input x, and accepts if and only if M accepts. If M makes a query (T, s), then answer
to the query by an exhaustive search up to circuit size l(n). (Specifically, compute σx(T ) :=
min{KI (T ), l(n) } and answer “Yes” if and only if σx(T ) ≤ s.) The machine M0 runs in time
2l(n)nO(1) ≤ 2n

2ǫ
for all large n.

Fix input x ∈ {0, 1}∗ of length n. Let Qx = { (T1, s1), · · · , (TnO(1) , snO(1)) } be the set of all
the queries that M makes on the computation path simulated by M0. We claim that for each
(Ti, si) ∈ Qx, the circuit complexity KI (Ti) is relatively small: Indeed, each truth-table Ti in Qx

can be computed in time t(n) := 2n
2ǫ
, by simulating M in the same way with M0. Let Q be the

Turing machine that takes as input x ∈ {0, 1}∗ of length n and indices i, j ∈ [nO(1)], and outputs Tij .
By the definition of B, it holds that B(Q, 〈x, i, j〉 , t(n)) = Q(x, i, j) = Tij . Also, by the definition
of Cm, we have B(Q, 〈x, i, j〉 , t(n)) = Cm(Q, 〈x, i, j〉 , t(n)) for m = | 〈Q, 〈x, i, j〉 , t(n)〉 |. Note that
m = 4n+O(log n)+log t(n) ≤ 5n for all large n. Now let us fix x ∈ {0, 1}n and i ∈ [nO(1)]: namely,
define Dx,i(j) = Cm(Q, 〈x, i, j〉 , t(n)); then, the truth-table of Dx,i coincides with Ti. Therefore,

KI (Ti) ≤ |Dx,i| ≤ |Cm| ≤ mk0 ≤ (5n)k0 ≤ nkǫ = l(n)k

for all large n. (Here, |Cm| denotes the circuit size of Cm.)
Now we claim that σx(Ti) = min{KI (Ti), l(n) } approximates KI (Ti) for all (Ti, si) ∈ Qx:

specifically, we claim that log σx(Ti) ≤ logKI (Ti) < k log σx(Ti). If KI (Ti) ≤ l(n), then σx(Ti) =
KI (Ti) and the claim is obvious. Now assume that KI (Ti) > l(n), which implies that σx(Ti) = l(n).
Thus we have σx(Ti) = l(n) < KI (Ti) < l(n)k = σx(Ti)

k.
From the inequalities above, for all but finitely many x ∈ {0, 1}∗, it is easy to see that there

exists an oracle A such that A satisfies the promise of GapkMCSP and M0(x) = MA(x) = L(x).
�

As in Corollary 22, we obtain:

Corollary 24. If L ≤p
T GapkMCSP for all k ≥ 1, then PL ∩ P/poly 6= EXP.

Proof. The hypothesis implies that PL ⊆ PGapkMCSP for all k ≥ 1, and Theorem 23 shows EXP 6⊆
PGapkMCSP ∩ P/poly for some k ≥ 1, from which the result follows. �

Remark. 1. As in the case of nonadaptive reductions, establishing NP-hardness of GapkMCSP
for all k ≥ 1 via a polynomial-time Turing reduction implies that PNP ∩ P/poly 6= EXP.
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2. One interesting consequence is that if MCSP itself is reducible to GapkMCSP for all k ≥ 1
via a polynomial-time Turing reduction, then PMCSP ∩ P/poly 6= EXP, which we do not know
how to prove. Thus, establishing such “robustness” of MCSP via a polynomial-time Turing
reduction is at least as hard as separating PMCSP ∩ P/poly from EXP.

Finally, we observe that every language in statistical zero knowledge is reducible to GapkMCSP
via a BPP-reduction. As observed in [5], hardness of statistical zero knowledge implies hardness
of approximating the minimum circuit complexity of a truth-table T within a factor of |T |1−ǫ for
any ǫ ∈ (0, 1). Similarly, it implies hardness of GapkMCSP for all k ≥ 1 (i.e., a problem of
approximating the logarithm of the circuit complexity within an arbitrary constant factor).

Theorem 6 (restated). For all k ≥ 1, every language in statistical zero knowledge is reducible to
GapkMCSP via a BPP-Turing reduction.

Proof. Let A be an arbitrary oracle that satisfies the promise of GapkMCSP. Let s(n) := 1
2k log n.

Define an oracle B := {x ∈ {0, 1}∗ | (x, s(|x|)) 6∈ A }. It is sufficient to show that B satisfies the
hypothesis of Theorem 7.

First, we claim that B does not contain any string of low circuit complexity. Suppose that
x ∈ B. Then we have (x, s(|x|)) 6∈ A, which implies that (x, s(|x|)) is not an YES instance of
GapkMCSP. This means that logKI (x) > s(|x|); hence, KI (x) > |x|1/2k.

Next, we claim that the oracle B is of polynomial density. It is sufficient to prove that {x ∈
{0, 1}∗ | KI (x) > |x|1/2 } ⊆ B: Indeed, suppose that KI (x) > |x|1/2 for a string x ∈ {0, 1}∗; then
we have logKI (x) > ks(|x|), which implies that (x, s(|x|)) is a NO instance of GapkMCSP; hence,
x ∈ B. �
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A Heavy Samples Protocol

For completeness, we show how to use the lower bound protocol and the upper bound protocol in
order to estimate the probability that a sampled element is heavy.

Lemma 13 (The heavy samples protocol; Trevisan and Bogdanov [6] (restated)). Let D = {Dn }n∈N
be a polynomial-time samplable distribution. There exist a universal constant c (c = 211 will do) and
an AM ∩ coAM protocol that solves the following promise problem: Given input 1n and a threshold
β ∈ [0, 1], accept if Pry∼Dn [ y is cβ-heavy ] ≥ 3

4 , and reject if Pry∼Dn [ y is β-heavy ] ≤ 1
4 .

Note that we may assume that β is a discrete value: indeed, since D has a polynomial-time
sampler, the probability that an element is sampled is a multiple of 2−poly(n) for some polynomial
poly(n).
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Proof. Let S be a polynomial-time sampler of D. Namely, given an input 1n and a random coin
flip of length m, the probabilistic polynomial-time machine S outputs a sample of length n from
Dn.

First, we show an AM protocol by using the lower bound protocol. The AM protocol works
as follows: Sample y ∼ Dn. Run the lower bound protocol to check whether |S−1

n (y)| ≥ 2m · cβ
or |S−1

n (y)| ≤ 2m · β, and accept if and only if the lower bound protocol succeeds. Here, S−1
n (y)

denotes { r ∈ {0, 1}m | S(1n, r) = y }. The correctness follows from the following lemma:

Lemma 25 (Lower bound protocol; Goldwasser and Sipser [10]). There exists an AM protocol such
that, given an input 1n, a threshold s ∈ N and a string y ∈ {0, 1}n,

1. if |S−1
n (y)| ≥ cs, then the verifier accepts with high probability for some prover, and

2. if |S−1
n (y)| ≤ s, then the verifier rejects with high probability for any prover.

We claim the correctness of the AM protocol. If Pry∼Dn [ y is cβ-heavy ] ≥ 3
4 , then with prob-

ability at least 3
4 , the sampled string y ∼ Dn is cβ-heavy. Conditioning on this, the lower bound

protocol accepts with high probability (say, with probability at least 8
9). Therefore, the over-

all acceptance probability is at least 3
4 · 8

9 = 2
3 . A similar argument applies to the case when

Pry∼Dn [ y is β-heavy ] ≤ 1
4 .

Next, we show a coAM protocol by using the upper bound protocol. In order to apply the
upper bound protocol for checking whether |S−1

n (y)| ≤ s for s = 2mβ, we need to sample a random
element r ∈R S−1

n (y) that is not known to a prover. Thus, we first sample a random element
r ∈R {0, 1}m privately, and then define y := S(1n, r). (Note that y is distributed according to Dn.)
Run the upper bound protocol to check whether |S−1

n (y)| ≤ s or |S−1
n (y)| ≥ cs, and accept if and

only if the upper bound protocol succeeds.
The correctness of the coAM protocol follows from the same argument as the AM protocol and

the following lemma.

Lemma 26 (Upper bound protocol; Fortnow [9]). There exists an AM protocol satisfying the
following: Suppose that a verifier has a random element r ∈R S−1

n (y) that is not known by a
prover. Given an input 1n, a threshold s ∈ N, and a string y ∈ {0, 1}n,

1. if |S−1
n (y)| ≤ s, then the verifier accepts with probability at least 15

16 for some prover, and

2. if |S−1
n (y)| ≥ cs, then the verifier rejects with probability at least 15

16 for any prover.

Since a random element r is chosen uniformly at random, it is also distributed uniformly on
S−1
n (y), conditioning on the event that S(1n, r) = y. Thus, the hypothesis of the upper bound

protocol is satisfied. �
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