
Almost quadratic gap between partition complexity and

query/communication complexity

Andris Ambainis1 Mārtiņš Kokainis1

Abstract

We show nearly quadratic separations between two pairs of complexity measures:

• We show that there is a Boolean function f with D(f) = Ω((Dsc(f))2−o(1)) where D(f) is
the deterministic query complexity of f and Dsc is the subcube partition complexity of f ;

• As a consequence, we obtain that there is f(x, y) such that Dcc(f) = Ω(log2−o(1) χ(f))
where Dcc(f) is the deterministic 2-party communication complexity of f (in the standard
2-party model of communication) and χ(f) is the partition number of f .

Both of those separations are nearly optimal: it is well known that D(f) = O((Dsc(f))2) and
Dcc(f) = O(log2 χ(f)).

1Faculty of Computing, University of Latvia. E-mail: andris.ambainis@lu.lv, martins.kokainis@lu.lv. Sup-
ported by the European Commission FET-Proactive project QALGO, ERC Advanced Grant MQC and Latvian State
Research programme NexIT project No.1.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 200 (2015)

1 Introduction

Both query complexity and communication complexity of a function f can be lower bounded by
an appropriate measure of complexity on partitions of the input set with the property that f is
constant on every part of the partition.

In the communication complexity setting, the partition number of f : X × Y → {0, 1} (denoted
by χ(f)) is the smallest number of rectangles Xi×Yi in a partition of X×Y with the property that f
is constant (either 0 or 1) on every Xi×Yi. If a deterministic communication protocol communicates
k bits, it specifies a partition into 2k rectangles. Therefore [Yao79], Dcc(f) ≥ logχ(f) where Dcc(f)
is the deterministic communication complexity of f in the standard two-party model.

The corresponding notion in query complexity is the subcube partition complexity Dsc(f) of a
function f : {0, 1}n → {0, 1} [FKW02, KRDS15]. It is defined as the smallest k for which {0, 1}n
can be partitioned into subcubes Si so that each Si defined by fixing at most k variables and, on
each Si, f is a constant. Again, it is easy to see that Dsc(f) is a lower bound for the deterministic
decision tree complexity D(f) (since any deterministic decision tree defines a partition of {0, 1}n).

Although we do not consider randomized complexity in this paper, we note that both of these
measures have randomized counterparts [FKW02, JK10, JLV14] which provide lower bounds for
randomized communication complexity and randomized query complexity.

We study the question: how tight are the partition lower bounds?
For communication complexity, Aho et al. [AUY83] showed that Dcc(f) = O(log2 χ(f)), by

observing that D(f) is upper-bounded by the square of the non-deterministic communication com-
plexity which, in turn, is at most logχ(f). Since then, it was an open problem to determine whether
any of these two bounds is tight.

For query complexity, it is well known that D(f) = O(C2(f)) (where C(f) is the standard
certificate complexity without the unambiguity requirement) [BdW02]. Since C(f) ≤ Dsc(f) , we
have D(f) = O((Dsc(f))2). On the other hand, Savicky [Sav02] has constructed a function f with
D(f) = Ω((Dsc(f))1.128...).

Recently, Göös, Pitassi and Watson [GPW15] made progress on these longstanding open ques-
tions, by constructing a function f with D(f) = Ω̃((Dsc(f))1.5) and showing that a separation
between D(f) and Dsc(f) can be “lifted” from query complexity to the communication complexity.
Thus, Dcc(f) = Ω̃(log1.5 χ(f))

We improve this result by constructing f with D(f) = Ω((Dsc(f))2−o(1)) (which almost matches
the upper bound of D(f) = O((Dsc(f))2)). This also implies a similar separation between Dcc(f)
and logχ(f), via the lifting result of [GPW15].

Our construction is based on the cheat-sheet method that was very recently developed by Aaron-
son, Ben-David and Kothari [ABK15] to give better separations between query complexity in differ-
ent models of computation and related complexity measures. (In particular, they used cheat sheets
to give the first superquadratic separation between quantum and randomized query complexities,
for a total Boolean function.)

The cheat-sheet method takes a function f and produces a new function fCS consisting of a
composition of several copies of f , together with “cheat-sheets” that allow a quick verification of
values of f , given a pointer to the right cheat sheet. In section 3, we observe that cheat-sheet
functions have the property that f−1CS(1) can be partitioned into subcubes of dimensions that can
be substantially smaller than Dsc(f).

This property does not immediately imply a better separation between D and Dsc, because

1

the cheat-sheet construction does not give a similar partition for f−1CS(0). However, we can com-
pose the cheat-sheet construction with several rebalancing steps which rebalance the complexity
of partitions for f−1CS(0) and f−1CS(1). Repeating this composed construction many times gives

D(f) = Ω((Dsc(f))2−o(1)).

2 Preliminaries

We use [n] to denote {1, 2, . . . , n} and log n to denote log2 n. We use the big-Õ notation which is
a counterpart of big-O notation that hides polylogarithmic factors:

• f(n) = Õ(g(n)) if f(n) = O(g(n) logc g(n)) for some constant c and

• f(n) = Ω̃(g(n)) if f(n) = Ω(g(n)
logc g(n)) for some constant c.

2.1 Complexity measures for Boolean functions

We study the complexity of Boolean functions f : {0, 1}n → {0, 1} (or, more generally, functions
f : Σ1 × Σ2 × . . . × Σn → {0, 1} where Σi are finite sets of arbitrary size). We denote the input
variables by x1, . . . , xn. Then, the function is f(x1, . . . , xn). Often, we use x as a shortcut for
(x1, . . . , xn) and f(x) as a shortcut for f(x1, . . . , xn).

ANDn denotes the function ANDn(x1, . . . , xn) which is 1 if x1 = . . . = xn = 1 and 0 otherwise.
ORn denotes the function ORn(x1, . . . , xn) which is 1 if xi = 1 for at least one i and 0 otherwise.

For functions f : {0, 1}n → {0, 1} and g : Σ1× . . .Σk → {0, 1}, their composition is the function
f ◦ gn : (Σ1 × . . .Σk)n → {0, 1} defined by

f ◦ gn(x11, . . . , x1k, . . . , xn1, . . . , xnk) = f(g(x(1)), . . . , g(x(n)))

where x(i) denotes (xi1, . . . , xik).
We consider the complexity of Boolean functions in the decision tree (query) model. More

information on this model can be found in the survey by Buhrman and de Wolf [BdW02]. A
summary of recent results (that appeared after [BdW02] was published) can be found in [ABK15].

Deterministic query complexity. A deterministic query algorithm or deterministic decision
tree is a deterministic algorithm A which accesses the input (x1, . . . , xn) by querying the input
variables xi. We say that A computes a function f(x1, . . . , xn) if, for any (x1, . . . , xn) ∈ {0, 1}n,
the output of A is equal to f(x1, . . . , xn). The deterministic query complexity of f , D(f), is the
smallest k such that there exists a deterministic query algorithm A that computes f(x1, . . . , xn)
and, on every (x1, . . . , xn), queries at most k input variables xi.

Partial assignments. A partial assignment in Σ1×Σ2× . . .Σn, where Σi are finite alphabets,
is a function a : Ia →

⋃n
i=1 Σi, where Ia ⊂ [n], satisfying a(i) ∈ Σi for all i ∈ Ia. We say that an

assignment a fixes a variable xi if i ∈ Ia. The length of a partial assignment is the size of the set
Ia. A string x ∈ Σ1 × Σ2 × . . .Σn is consistent with the assignment a if xi = a(i) for all i ∈ Ia;
then we denote x ∼ a. Every partial assignment defines an associated subcube, which is the set of
all strings consistent with that assignment:

SC = {x ∈ Σ1 × Σ2 × . . .Σn x ∼ a} .

In the other direction, for every subcube there is a unique partial assignment that defines it.

2

Certificate complexity. For b ∈ {0, 1}, a b-certificate for a function f : Σ1 × Σ2 × . . .Σn →
{0, 1} is a partial assignment a such that f(x) = b for all x ∼ a. The b-certificate complexity of
f (denoted by Cb(f)) is the smallest number k such that, for every x : f(x) = b, there exists a
b-certificate a of length at most k with x ∼ a. The certificate complexity of f (denoted by C(f)) is
the maximum of C0(f), C1(f).

Equivalently, we can say that Cb(f) is the smallest number k such that the set f−1(b) can be
written as a union of subcubes SC corresponding to partial assignments of length at most k.

Unambiguous certificate complexity. The unambiguous b-certificate complexity of f (de-
noted by UPb(f)) is the smallest number k such that we can choose a collection of b-certificates
a1, . . . , am of length at most k with the property that, for every x : f(x) = b, there is exactly one ai
with x ∼ ai. Equivalently, UPb(f) is the smallest number for which the set f−1(b) can be written
as a disjoint union of subcubes defined by fixing at most k variables.

The deterministic subcube partition complexity of f (denoted by Dsc(f) [KRDS15]) is defined
as maximum of UP0(f), UP1(f) and is the smallest k for which Σ1 × Σ2 × . . .Σn can be written
as a disjoint union of subcubes obtained by fixing at most k variables, with f being constant on
every subcube. Dsc(f) is also known as two-sided unambiguous certificate complexity [GPW15]
and has been studied under several other names (from non-overlapping cover size [BOH90] to
non-intersecting complexity [Bel06]).

2.2 Technical lemmas

Let f(x1, . . . , xn, y1, . . . , yk) : {0, 1}n×[N]k → {0, 1} be a function with some {0, 1}-valued variables
and some variables which take values in a larger set [N].

We can ’Booleanize’ f in a following way. Let d = dlogNe. We fix a mapping h from {0, 1}d
onto [N] and define f̃ : {0, 1}n+kd → {0, 1} with variables xi, i ∈ [n] and yij , i ∈ [k], j ∈ [d] by

f̃(x1, . . . , xn, y11, . . . , ykd) = f(x1, . . . , xn, h(y11, . . . , y1d), . . . , h(yk1, . . . , ykd)).

Similarly to equation (3) in [GPW15], we have

Lemma 1. For any measure m ∈ {D,UP0, UP1, C0, C1},

m(f̃) ≤ m(f) · dlogNe.

Moreover, D(f) ≤ D(f̃).

Proof. In appendix A.

A second technical result that we use is about combining partitions into subcubes for several
sets Σni

i into a partition for Σn1
1 × Σn2

2 × . . .× Σnm
m .

Lemma 2. Suppose that Σ1, . . . , Σm are finite alphabets and n1, . . . , nm ∈ N. Suppose that for
each i ∈ [m] there is a set Ki ⊂ Σni

i which can be partitioned into disjoint subcubes defined by
assignments of length at most di.

Then the set K1 × K2 × . . . × Km ⊂ Σn1
1 × Σn2

2 × . . . × Σnm
m can be partitioned into disjoint

subcubes defined by assignments of length at most d1 + . . .+ dm.

Proof. In appendix A.

3

2.3 Communication complexity

In the standard model of communication complexity [Yao79], we have a function f(x, y) : X×Y →
{0, 1}, with x given to one party (Alice) and y given to another party (Bob). Deterministic
communication complexity of f , Dcc(f) is the smallest k such that there is a protocol for Alice and
Bob that computes f(x, y) and, for any x and y, the amount of bits communicated between Alice
and Bob is at most k.

The counterpart of Dsc(f) for communication complexity is the partition number χ(f), defined
as the smallest k such that there X × Y can be partitioned into Xi × Yi for i ∈ [k] so that each
(x, y) ∈ X × Y belongs to exactly one of Xi × Yi and, for each i ∈ [k], f(x, y) is the same for all
(x, y) ∈ Xi × Yi.

3 Results

Theorem 3. There is a sequence of functions f with D(f) = Ω((Dsc(f))2−o(1)).

Proof sketch. We describe the main steps of the proof of Theorem 3 (with each step described
in more detail in the next subsection or in the appendix). We use the cheat-sheet construction
of Aaronson, Ben-David and Kothari [ABK15] which transforms a given function f into a new
function f t,cCS in a following way.

Definition 4. Suppose that Σ is a finite alphabet and f : Σn → {0, 1} satisfies C(f) ≤ c ≤ n. Let
t ∈ N be fixed. A function f t,cCS : Σtn × [n]2

ttc → {0, 1} for an input (x, y), x ∈ Σtn, y ∈ [n]2
ttc is

defined as follows:

• the input x is interpreted as a t× n matrix with entries xp,q ∈ Σ, p ∈ [t], q ∈ [n];

• for p ∈ [t], the pth row of x is denoted by x(p) = (xp,1, xp,2, . . . , xp,n) ∈ Σn and is interpreted
as an input to the function f , with the value of function denoted bp = f(x(p)) ∈ {0, 1}, ;

• the input y is interpreted as a three-dimensional array of size 2t×t×c with entries yp,q,r ∈ [n],
p ∈ [2t], q ∈ [t], r ∈ [c];

• we denote p̂ = 1 +
∑t

i=1 bi 2i−1 ∈ [2t];

• the function f t,cCS is defined to be 1 for the input (x, y) iff for each q ∈ [t] the following
properties simultaneously hold:

1. the c numbers yp̂,q,1, . . . , yp̂,q,c are pairwise distinct, and

2. the assignment aq : {yp̂,q,1, . . . , yp̂,q,c} → Σ, defined by

aq(yp̂,q,r) = xq,yp̂,q,r , for all r ∈ [c],

is a bq-certificate for f .

The function f t,cCS can be computed by computing f(x(p)) for all p ∈ [t], determining p̂ and
verifying whether the two properties hold. Alternatively, if someone guessed p̂, he could verify that
bp = f(x(p)) for all p ∈ [t] by just checking that the certificates aq (which could be substantially
faster than computing f(x(p)). This is the origin of the term “cheat sheet” [ABK15] - we can view

4

yp̂,q,r for q ∈ [t], r ∈ [c] as a cheat-sheet that allows to check bp = f(x(p)) without running a full
computation of f .

This construction has the following effect on the complexity measures D(f), C(f), UP0(f) and
UP1(f):

Lemma 5. Assume that f and c satisfy the conditions of Definition 4 and t ≥ 2 log (tD(f)). Then,
we have:

1. t
2D(f) ≤ D(f t,cCS) ≤ tD(f) + tc;

2. UP1(f
t,c
CS) ≤ 2tc;

3. UP0(f
t,c
CS) ≤ tDsc(f) + 2tc;

4. C(f t,cCS) ≤ 3tc.

Proof. In section 3.1.

We note that some of variables for the resulting function f t,cCS take values in [n], even if the

original f is Boolean. To obtain a Boolean function as a result, we “Booleanize” f t,cCS as described
in Lemma 1.

For our purposes, the advantage of Lemma 5 is that UP1(f
t,c
CS) for the resulting function f t,cCS may

be substantially smaller than UP1(f) (because UP1(f
t,c
CS) depends on C(f) which can be smaller

than UP1(f))!
However, going from f to fCS does not decrease UP0 (because UP0(f

t,c
CS) depends on Dsc(f)).

To deal with that, we combine the cheat-sheet construction with two other steps which rebalance
UP0 and UP1. These two steps are composition with AND and OR which have the following effect
on the complexity measures D(f), C(f), UP0(f) and UP1(f):

Lemma 6. Suppose that g : {0, 1}N → {0, 1}. Let fand = ANDn ◦ gn and for = ORn ◦ gn. Then

D(fand) = D(for) = nD(g);

C0(for) = nC0(g), C1(for) = C1(g);

C0(fand) = C0(g), C1(fand) = nC1(g);

UP0(for) ≤ nUP0(g), UP1(for) ≤ (n− 1)UP0(g) + UP1(g);

UP0(fand) ≤ (n− 1)UP1(g) + UP0(g), UP1(fand) ≤ nUP1(g).

Proof. In appendix B.

By combining Lemmas 1, 5 and 6, we get

Lemma 7. Let f : {0, 1}N → {0, 1} be fixed.
Suppose that t, c, n ∈ N satisfy max {nC0(f), C1(f)} ≤ c and t ≥ 2 log (tD(f)). Consider the

function

f ′ : {0, 1}tNn2+2ttcndlog(Nn)e → {0, 1}

defined as follows:
f ′ = ANDn ◦ h̃nCS,

5

where h̃CS is the boolean function associated to ht,cCS and h : {0, 1}Nn → {0, 1} is defined as

h := ORn ◦ fn.

Then the following estimates hold:

1. 0.5tn2D(f) ≤ D(f ′) ≤ tn(c+ nD(f))dlog(Nn)e;

2. Dsc(f ′) ≤ tn (2c+Dsc(f)) dlog(Nn)e;

3. C0(f
′) ≤ 3tcdlog(Nn)e;

4. C1(f
′) ≤ 3tcndlog(Nn)e.

Proof. In appendix B.

Applying Lemma 7 results in a function f ′ for which D(f ′) is roughly n2D(f) but Dsc(f) is
roughly nDsc(f). We use Lemma 7 repeatedly to construct a sequence of functions f (1), f (2), . . . in
which f (1) = ANDn and each next function f (m+1) is equal to the function f ′ obtained by applying
Lemma 7 to f (m) = f . The complexity of those functions is described by the next Lemma.

Lemma 8. Let m ∈ N. Then there are positive integers a0, a1, a2, a3 s.t. for all integers n ≥ 2
there exists N ∈ N and a function f (m) : {0, 1}N → {0, 1} satisfying

N ≤ a0 n9m log10m−10(n),

a1 n
2m−1 logm−1(n) ≤ D(f (m)) ≤ a2 n2m−1 log2m−2(n),

Dsc(f (m)) ≤ a3 nm log2m−2(n),

C0(f
(m)) ≤ a3 nm−1 log2m−2(n),

C1(f
(m)) ≤ a3 nm log2m−2(n).

Proof. In appendix B.

Theorem 3 now follows immediately from Lemma 8 which implies that for every m ∈ N we have
a family of functions satisfying

Dsc(f) = Õ(nm), D(f) = Ω̃(n2m−1).

Then, D(f) = Ω̃((Dsc(f))2−
1
m). Since this construction works for every m ∈ N, we get that

D(f) = Ω((Dsc(f))2−o(1)) for an appropriately chosen sequence of functions f .

Communication complexity implications. The standard strategy for transferring results
from the domain of query complexity to communication complexity is to compose a function f :
{0, 1}n → {0, 1} with a function g : X × Y → {0, 1}, obtaining the function

f ◦ gn(x1, . . . , xn, y1, . . . , yn) = f(g(x1, y1), . . . , g(xn, yn)).

We can then define x = (x1, . . . , xn) as Alice’s input and y = (y1, . . . , yn) as Bob’s input. Querying
the ith variable then corresponds to computing g(xi, yi) and, if we have a query algorithm which
makes D(f) queries, we can obtain a communication protocol for f ◦gn with a communication that
is approximately D(f)Dcc(g).

Building on an earlier work by Raz and McKenzie [RM99], Göös, Pitassi and Watson [GPW15]
have shown

6

Theorem 9. [GPW15] For any n, there is a function g : X × Y such that, for any f : {0, 1}n →
{0, 1}, we have

1. Dcc(f ◦ gn) = Θ(D(f) log n) and

2. logχ(f ◦ gn) = O(Dsc(f) log n).

In this theorem, Dcc(f ◦ gn) = O(D(f) log n) and logχ(f ◦ gn) = O(Dsc(f) log n) follow easily
by replacing queries to variables xi with computations of g. The part of the theorem that is not
obvious (and is quite difficult technically) is that one also has Dcc(f ◦ gn) = Ω(D(f) log n), i.e.
communication protocols for f ◦ gn cannot be better than the ones obtained from deterministic
query algorithms for f .

By combining Theorems 3 and 9, we immediately obtain

Corollary 10. There exists h with Dcc(h) = Ω(log2−o(1) χ(h)).

3.1 Proof of Lemma 5

Proof of Lemma 5. For brevity, we now denote f t,cCS as simply fCS. As before, the first tn variables
are indexed by pairs (p, q), where p ∈ [t], q ∈ [n]; the remaining 2ttc variables are indexed by triples
(p, q, r), where p ∈ [2t], q ∈ [t], r ∈ [c]. We denote x(p) = (xp,1, xp,2, . . . , xp,n) ∈ Σn for each p ∈ [t].

Lower bound on deterministic complexity. Let A be an adversarial strategy of setting the
variables x1, . . . , xn in the function f(x1, . . . , xn) that forces an algorithm to make at least D(f)
queries. We use t copies of this strategy A1, . . . ,At, with Ap setting the values of xp,1, . . . , xp,n in
f(xp,1, . . . , xp,n). The overall adversarial strategy is

1. If a variable xp,q is queried and its value has not been set yet, use Ap to choose its value;

2. If a variable yp,q,r is queried and its value has not been set yet:

(a) Let b be the qth bit of p.

(b) Choose a certificate a that certifies f(x1, . . . , xn) = a and contains all variables xi with
indices i = yp,q,r′ for which we have already chosen values. ‘ If possible, choose a so that,
in addition to those requirements, a is also consistent with the values among xq,1, . . . , xq,n
that we have have already fixed.

(c) Set yp,q,r be an index of a variable that is fixed by a but is not among yp,q,r′ that have
already been chosen.

(d) If xq,yp,q,r is not already fixed, fix it using the adversarial strategy Aq.

If less than tD(f)
2 queries are made, less than t

2 of f(x(p)) for p ∈ [t] have been fixed. Thus,

more than t
2 of f(x(p)) are not fixed yet. This means that there are more than 2

t
2 > tD(f) possible

choices for p̂ that are consistent with the answers to queries that have been made so far. Since less
than tD(f)

2 queries have been made, one of these choices has the property that no yp̂,q,r has been
queried for any q and r.

We now set the remaining variables xp,q so that f(x(p)) equals the pth bit of p̂. Since no yp̂,q,r
has been queried, we are free to set them so that the correct requirements are satisfied for every q
(yp̂,q,r are all distinct and aq(yp̂,q,r) = xq,yp̂,q,r) or so that they are not satisfied. Depending on that,
we can have fCS = 0 or fCS = 1.

7

Upper bound on deterministic complexity. We first use tD(f) queries to compute
f(xp,1, . . . , xp,n) for all p ∈ [t]. Once we know f(x(p)) for all p ∈ [t], we can calculate p̂ from
Definition 4. We then use tc queries to query yp̂,q,r for all q ∈ [t] and r ∈ [c] and tc queries to query
xq,yp̂,q,r for all q ∈ [t] and r ∈ [c]. Then, we can check all the conditions of Definition 4.

Unambiguous 1-certificate complexity.
We show UP1(fCS) ≤ 2tc by giving a mapping from 1-inputs (x, y) to 1-certificates a, with the

property that, for any two 1-inputs (x, y) and (x′, y′), the corresponding 1-certificates a and a′ are
either the same or contradict one another in some variable. Then, for every 1-input (x, y) there is
exactly one certificate a with (x, y) ∼ a.

To map a 1-input (x, y) to a 1-certificate a, we do the following:

1. Let bi = f(x(i)), for each i ∈ [t], and p̂ = 1 +
∑t

i=1 bi2
i−1. Since fCS(x, y) = 1, the c numbers

yp̂,i,1, . . . , yp̂,i,c are distinct and the assignment ai : {yp̂,i,1, . . . , yp̂,i,c} → Σ, defined by

ai(yp̂,i,r) = xi,yp̂,i,r , for all r ∈ [c],

is a valid bi-certificate for f . We define that a must fix all variables fixed by a1, . . . , at in the
same way (i.e., a fixes xi,j with indices j = yp̂,i,r, for all i ∈ [t] and r ∈ [c]).

2. We define that a also fixes the variables yp̂,q,r, q ∈ [t], r ∈ [c], to the values that they have in
the input (x, y).

In each stage tc variables are fixed. Thus, the length of the resulting partial assignment a is 2tc.
Notice that a is a 1-certificate for fCS, since the t assignments a1, . . . , at uniquely determine p̂,
and all variables yp̂,q,r are fixed to valid values, ensuring that fCS = 1.

We now show that, for any two different 1-certificates a, a′ constructed through this process,
there is no input (x, y) that satisfies both of them. If a and a′ differ in the part that is fixed in the
first stage, there are two possible cases:

1. There exists j ∈ [t] such that aj is 0-certificate for f , whereas a′j is a 1-certificate for f (or

vice-versa). Then there must be no x(j) that satisfies both of them.

2. For every q ∈ [t], aq and a′q are both bq-certificates, for the same bq ∈ {0, 1} but there exists
j ∈ [t] such that aj differs from a′j . In this case a1, . . . , at and a′1, . . . , a′t determine the same
value p̂.

Since aj and a′j are different certificates that fix the same variables (namely, they both fix xj,l
with indices l = yp̂,j,r, r ∈ [c]), they must fix at least one variable to different values. Then,
no x(j) can satisfy both aj and a′j .

If a and a′ are the same in the part fixed in the 1st stage, the values of the variables that we
fix in the 1st stage uniquely determine p̂ and, hence, the indices of variables that are fixed in the
2nd stage. Hence, the only way how a and a′ could differ in the part fixed in the 2nd stage is if the
same variable yp̂,q,r is fixed to different values in a and a′. This means that there is no (x, y) that
satisfies both a and a′.

Unambiguous 0-certificate complexity.
Similarly to the previous case, we give a mapping from 0-inputs (x, y) to 0-certificates a, with

the property that, for any two 0-inputs (x, y) and (x′, y′), the corresponding 0-certificates a and
a′ are either the same or contradict one another in some variable. To map a 0-input (x, y) to a
0-certificate a, we do the following:

8

1. We fix a partition of {0, 1}n into subcubes corresponding to assignments of length at most
Dsc(f) with the property that f is constant on every subcube. For each p ∈ [t], (xp,1, . . . , xp,n)
belongs to some subcube in this partition. Let ap be the certificate that corresponds to this
subcube. We define that a must fix all variables fixed by a1, . . . , at in the same way.

2. Let p̂ = 1 +
∑t

i=1 bi2
i−1 where bi = f(x(i)). (We note that a1, . . . , at determine the values

of f(x(1)), . . . , f(x(t)). Thus, p̂ is determined by the variables that we fixed at the previous
stage.) We define that a also fixes the variables yp̂,q,r to the values that they have in the input
(x, y).

3. If there is q ∈ [t] such that the set {yp̂,q,1, . . . , yp̂,q,c} is not equal to the set of variables fixed in
some bq-certificate (this includes the case when these c numbers are not distinct), the values
of variables fixed by a imply that fCS(x, y) = 0. In this case, we stop.

4. Otherwise, there must be q′ ∈ [t] such that the set
{
yp̂,q′,1, . . . , yp̂,q′,c

}
is equal to the set of

variables fixed in some bq′-certificate but the actual assignment xyp̂,q′,1 , . . . , xyp̂,q′,c is not a
valid bq′-certificate.

In this case, we define that a also fixes xyp̂,q,r for all q ∈ [t], r ∈ [c] to the values that they
have in the input (x, y). Since this involves fixing xyp̂,q′,1 , . . . , xyp̂,q′,c which do not constitute
a valid bq′-certificate, this implies fCS(x, y) = 0.

The first stage fixes at most tDsc(f) variables, the second stage fixes tc variables and the last stage
also fixes tc variables (some of which might have already been fixed in the 1st stage). Thus, the
length of the resulting 0-certificate a is at most tDsc(f) + 2tc.

We now show that, for any two different 0-certificates a, a′ constructed through this process,
there is no input (x, y) that satisfies both of them. If a and a′ differ in the part that is fixed in
the first stage, there exists j ∈ [t] such that aj differs from a′j . Since aj , a

′
j correspond to different

subcubes in a partition, there must be no x(j) that satisfies both of them.
If a and a′ are the same in the part fixed in the 1st stage, the values of the variables that we

fix in the 1st stage uniquely determine p̂ and, hence, the indices of variables that are fixed in the
2nd stage. Hence, the only way how a and a′ could differ in the part fixed in the 2nd stage is if the
same variable yp̂,q,r is fixed to different values in a and a′. This means that there is no (x, y) that
satisfies both a and a′.

If a and a′ are the same in the part fixed in the first two stages, the values of the variables that
we fix in these stages uniquely determine the indices of variables that are fixed in the last stage
and the same argument applies.

Certificate complexity. Since b-certificate complexity is no larger than unambiguous b-
certificate complexity, we immediately conclude that

C1(fCS) ≤ UP1(fCS) ≤ 2tc.

We show C0(fCS) ≤ 3tc by giving a mapping from 0-inputs (x, y) to 0-certificates a (now different
certificates are not required to contradict one another). Then, the collection of all 0-certificates a
to which some (x, y) is mapped covers f−1CS (0) (possibly with overlaps).

To map a 0-input (x, y) to a 0-certificate a, we do the following:

1. Let ap, for each p ∈ [t], be a f(x(p))-certificate that is satisfied by x(p) = (xp,1, . . . , xp,n). We
define that a must fix all variables fixed by a1, . . . , at in the same way.

9

2. Let p̂ = 1+
∑t

i=1 bi2
i−1 where bi = f(x(i)). (Notice that p̂ is determined by the variables that

we fixed at the previous stage.) We define that a also fixes the variables yp̂,q,r to the values
that they have in the input (x, y).

3. If there is q ∈ [t] such that the set {yp̂,q,1, . . . , yp̂,q,c} is not equal to the set of variables fixed
in some bq-certificate, the values of variables fixed by a imply that fCS(x, y) = 0. In this case,
we stop.

4. Otherwise, there must be q′ ∈ [t] such that the set
{
yp̂,q′,1, . . . , yp̂,q′,c

}
is equal to the set of

variables fixed in some bq′-certificate but the actual assignment xyp̂,q′,1 , . . . , xyp̂,q′,c is not a
valid bq′-certificate.

In this case, we define that a also fixes xyp̂,q,r for all q ∈ [t], r ∈ [c] to the values that they
have in the input (x, y). Since this involves fixing xyp̂,q′,1 , . . . , xyp̂,q′,c which do not constitute
a valid bq′-certificate, this implies fCS(x, y) = 0.

The first stage fixes at most tc variables, the second stage fixes tc variables and the last stage also
fixes tc variables (some of which might have already been fixed in the 1st stage). Thus, the length
of the resulting 0-certificate a is at most 3tc. We conclude that C0(fCS) ≤ 3tc and also

C(fCS) ≤ 3tc.

4 Conclusions

A deterministic query algorithm induces a partition of the Boolean hypercube {0, 1}n into subcubes
that correspond to different computational paths that the algorithm can take. If A makes at most
k queries, each subcube is defined by values of at most k input variables.

It is well known that one can also go in the opposite direction, with a quadratic loss. Given a
partition of {0, 1}n into subcubes Si defined by fixing at most k input variables with a function f
constant on every Si, one can construct a query algorithm that computes f with at most k2 queries
[JLV14].

In this paper, we show that this transformation from partitions to algorithms is close to being
optimal, by exhibiting a function f with a corresponding partition for which any deterministic
query algorithm requires Ω(k2−o(1)) queries. Together with the “lifting theorem” of [GPW15], this
implies a similar result for communication complexity: there is a communication problem f for
which the input set can be partitioned into 2k rectangles with f constant on every rectangle but
any deterministic communication protocol needs to communicate Ω(k2−o(1)) bits.

An immediate open question is whether randomized or quantum algorithms (protocols) still
require Ω(k2−o(1)) queries (bits). It looks plausible that the lower bound for deterministic query
complexity D(f) for our construction can be adapted to randomized query complexity, with a
constant factor loss every time when we iterate our construction. If this is indeed the case, we
would get a similar lower bound for randomized query algorithms. With randomized communication
protocols, the situation is more difficult because the Dcc(f ◦gn) = Θ(D(f) log n) result of [GPW15]
has no randomized counterpart [GJPW15].

In the quantum case, our composed function f no longer requires Ω(k2−o(1)) queries because
one could use Grover’s quantum search algorithm [Gro96] to evaluate ANDn and ORn. Using

10

this approach, we can show that the function f (m) of Lemma 8 can be computed with O(nm−
1
2)

quantum queries which is less than our bound on Dsc(f). Generally, it seems that we do not know
functions f for which quantum query complexity Q(f) is asymptotically larger than Dsc(f).

References

[ABK15] S. Aaronson, S. Ben-David, R. Kothari. Separations in query complexity using cheat
sheets. arXiv:1511.01937.

[AUY83] A. Aho, J. Ullman, M. Yannakakis. On notions of information transfer in VLSI circuits.
In Proceedings of the 15th Symposium on Theory of Computing (STOC), pages 133–139.
ACM, 1983.

[Bel06] A. Belovs. Non-intersecting Complexity. Proceedings of SOFSEM 2006: Theory and
Practice of Computer Science, Lecture Notes in Computer Science, 3831: 158-165, 2006.

[BOH90] Y. Brandman, A. Orlitsky, and J. Hennessy. A spectral lower bound technique for the
size of decision trees and two-level AND/OR circuits. IEEE Transactions on Computers,
39(2):282–287, 1990.

[BdW02] H. Buhrman, R. de Wolf. Complexity measures and decision tree complexity: a survey.
Theoretical Computer Science, 288(1): 21-43, 2002.

[FKW02] E. Friedgut, J. Kahn, A. Wigderson. Computing Graph Properties by Randomized
Subcube Partitions. Proceedings of RANDOM’2002, pp. 105-113.

[GSS13] J. Gilmer, M. Saks, S. Srinivasan. Composition limits and separating examples for some
Boolean function complexity measures. In Computational Complexity (CCC), 2013
IEEE Conference on, pages 185–196. IEEE, 2013.

[GJPW15] M. Göös, T. Jayram, T. Pitassi, T. Watson. Randomized Communication vs. Parti-
tion Number. Technical Report TR015-169, Electronic Colloquium on Computational
Complexity (ECCC), 2015.

[GPW15] M. Göös, T. Pitassi, T. Watson. Deterministic Communication vs. Partition Number.
IEEE Conference on Foundations of Computer Science (FOCS), IEEE, 2015.

[Gro96] L. K. Grover. A fast quantum mechanical algorithm for database search. Proceedings of
STOC’96, pp. 212-219. Also quant-ph/9605043.

[KRDS15] R. Kothari, D. Racicot-Desloges, M. Santha. Separating decision tree complexity from
subcube partition complexity. Proceedings of APPROX-RANDOM’2015, pp. 915-930.
Also arXiv:1504.01339.

[JK10] R. Jain, H. Klauck. The Partition Bound for Classical Communication Complexity and
Query Complexity. IEEE Conference on Computational Complexity 2010, pp. 247-258.
Also arxiv:0910.4266.

[JLV14] R. Jain, T. Lee, N. Vishnoi. A quadratically tight partition bound for classical commu-
nication complexity and query complexity. arxiv/1401.4512.

11

[RM99] R. Raz, P. McKenzie. Separation of the Monotone NC Hierarchy. Combinatorica, 19:
403-435, 1999.

[Sav02] P. Savicky. On determinism versus unambiguous nondeterminism for decision trees.
Technical Report TR02-009, Electronic Colloquium on Computational Complexity
(ECCC), 2002.

[Tal13] A. Tal. Properties and applications of boolean function composition. In Proceedings
of the 4th conference on Innovations in Theoretical Computer Science, pages 441–454,
2013.

[Yao79] A. Yao. Some complexity questions related to distributive computing. In Proceedings of
the 11th Symposium on Theory of Computing (STOC), pages 209–213. ACM, 1979.

12

Appendix

A Proofs of technical lemmas

Proof of Lemma 1. If we have a query algorithm for f , we can replace each query querying a variable
yi by d = dlogNe queries querying variables yi1, . . . , yid (and a computation of h(yi1, . . . , yid)))
and obtain an algorithm for f̃ . Conversely, we can transform an algorithm computing f̃ into an
algorithm computing f by replacing a query to yij by a query to yi.

For certificate complexity measures (Ca and UPa, a ∈ {0, 1}), let

x = (x1, . . . , xn, h(y11, . . . , y1d), . . . , h(yk1, . . . , ykd))

be the input to f corresponding to an input x̃ = (x1, . . . , xn, y11, . . . , ykd) to f̃ . We can transform
a certificate for the function f on the input x into a certificate for the function f̃ on the input x̃ by
replacing each variable yi with d = dlogNe variables yi1, . . . , yid. This gives Ca(f̃) ≤ Ca(f)·dlogNe.

If the certificates for f with which we start are unambiguous, then, for any two different cer-
tificates I1, I2, there is a variable in which they differ. If I1 and I2 differ in one of xi’s, the
corresponding certificates for f̃ differ in the same xi. If I1 and I2 differ in one of yi’s, the corre-
sponding certificates for f̃ differ in at least one of yij for the same i and some j ∈ [d]. This gives
UPa(f̃) ≤ UPa(f) · dlogNe.

Proof of Lemma 2. For each i ∈ [m] we can express Ki as

Ki =

ti⋃
j=1

Si,j ,

where Si,j ⊂ Σni
i are subcubes and for all j, j′ ∈ [ti] with j 6= j′ the subcubes are disjoint, i.e.,

Si,j ∩ Si,j′ = ∅. Let ai,j : Ii,j → Σi, Ii,j ⊂ [ni], |Ii,j | ≤ di, be the partial assignment, associated to
the subcube Si,j , j ∈ [ti], i ∈ [m].

Let J = [t1] × [t2] × . . . × [tm] and denote j = (j1, . . . , jm) ∈ J . For each k ∈ [m] denote
Nk = n1 + n2 + . . .+ nk. Define a set Sj for each j ∈ J as

Sj = S1,j1 × S2,j2 × . . .× Sm,jm .

Fix any j ∈ J . Clearly, Sj ⊂ Σn1
1 × Σn2

2 × . . .× Σnm
m .

Denote I + k = {i+ k i ∈ I} for a set I ⊂ R and k ∈ R. Notice that Sj is a subcube, with the
associated partial assignment Aj : Ij →

⋃
i∈[m] Σi, where the set I ⊂ [Nm] is defined as

I = I1,j1 ∪ (I2,j2 +N1) ∪ (I3,j3 +N2) ∪ . . . ∪ (Im,jm +Nm−1)

and

Aj(i) =



a1,j1(i), i ∈ I1,j1 ⊂ [N1],

a2,j2(i−N1), i ∈ I1,j1 +N1 ⊂ [N1 + 1 .. N2],

. . .

ak,jk(i−Nk−1), i ∈ Ik,jk +Nk−1 ⊂ [Nk−1 + 1 .. Nk],

. . .

am,jm(i−Nm−1), i ∈ Im,jm +Nm−1 ⊂ [Nm−1 + 1 .. Nm].

13

We also observe that the length of the assignment Aj defining Sj is

|Ij| = |I1,j1 |+ |I2,j2 |+ . . .+ |Im,jm | ≤ d1 + d2 + . . .+ dm.

Finally, Sj, j ∈ J define a partition of the whole space Σn1
1 × Σn2

2 × . . . × Σnm
m into disjoint

subcubes. To see that, fix any x = (x1, . . . , xm) with xi ∈ Σni
i , i ∈ [m]. Since Si,j , j ∈ [ti], partition

the space Σni
i , there is a unique ji ∈ [ti] such that xi ∈ Σni

i , for all i ∈ [m]. But then there is a
unique j = (j1, . . . , jm) ∈ J such that x ∈ Sj.

B Proofs of Lemmas 6-8

Proof of Lemma 6. The equalities D(fand) = D(for) = nD(g) immediately follow from [Tal13,
Lemma 3.1]. The equalities C0(for) = nC0(g) and C1(for) = C1(g) have been shown in [GSS13,
Proposition 31].

Since fand = ¬ORn ◦ (¬g)n, also C0(fand) = C0(g) and C1(fand) = nC1(g) follow from [GSS13,
Proposition 31]. It remains to show the upper bounds on UP0(for) and UP1(for) (the proof for
fand is similar).

Let UP0(g) = u0 and UP1(g) = u1. Then, for each b ∈ {0, 1}, g−1(b) can be partitioned into
disjoint subcubes defined by assignments of length at most ub.

For an input x ∈ {0, 1}Nn, let x = (x(1), . . . , x(n)), x(i) ∈ {0, 1}N . We have for(x) = 0 iff
g(x̃(k)) = 0 for all k ∈ [n]. Hence

f−1or (0) =
(
g−1(0)

)n
.

By Lemma 2, f−1or (0) can be partitioned into disjoint subcubes defined by assignments of length at
most nu0. Thus, UP0(for) ≤ nUP0(g).

For f−1or (1), we have

f−1or (1) =

n⋃
j=1

Kj ,Kj =
(
g−1(0)

)j−1 × g−1(1)× {0, 1}(n−j)N ⊂ {0, 1}Nn .

We note that the sets Kj are disjoint (since each Kj consists of all x ∈ {0, 1}Nn for which j is

the smallest index with g(x(j)) = 1). By Lemma 2,
(
g−1(0)

)j−1 × g−1(1) can be partitioned into
disjoint subcubes defined by assignments of length at most (j− 1)u0 +u1. This induces a partition
of Kj into subcubes defined by the same assignments.

Hence, f−1or (1) can be partitioned into disjoint subcubes defined by assignments of length at
most (n− 1)u0 + u1. That is, UP1(for) ≤ (n− 1)UP0(g) + UP1(g).

In particular, this implies that Dsc(for) ≤ nDsc(g); note that this also follows from [KRDS15,
Proposition 3].

Proof of Lemma 7. By Lemma 6,

D(h) = D(ORn) ·D(f) = nD(f),

Dsc(h) ≤ Dsc(ORn) ·Dsc(f) = nDsc(f),

C0(h) = nC0(f) ≤ c,
C1(h) = C1(f) ≤ c.

14

By Lemma 5,

D(ht,cCS) ≥ 0.5D(h) = 0.5tnD(f),

D(ht,cCS) ≤ tD(h) + tc = tnD(f) + tc,

UP1(h
t,c
CS) ≤ 2tc,

UP0(h
t,c
CS) ≤ tDsc(h) + 2tc ≤ tnDsc(f) + 2tc,

C(ht,cCS) ≤ 3tc.

By Lemma 1,

0.5tnD(f) ≤ D(h̃CS) ≤ t(nD(f) + c)dlog(Nn)e,

UP1(h̃CS) ≤ 2tcdlog(Nn)e,

UP0(h̃CS) ≤ (tnDsc(f) + 2tc)dlog(Nn)e,

C(h̃CS) ≤ 3tcdlog(Nn)e.

Finally, again by Lemma 6,

D(f ′) = nD(h̃CS),

C0(f
′) = C0(h̃CS),

C1(f
′) = nC1(h̃CS),

UP1(f
′) ≤ nUP1(h̃CS),

UP0(f
′) ≤ (n− 1)UP1(h̃CS) + UP0(h̃CS).

Consequently, we have the following estimates:

0.5tn2D(f) ≤ D(f ′) ≤ tn(nD(f) + c)D(f)dlog(Nn)e,
C0(f

′) ≤ 3tcdlog(Nn)e,
C1(f

′) ≤ 3tcndlog(Nn)e,
UP1(f

′) ≤ 2tcndlog(Nn)e,
UP0(f

′) ≤ (2tcn+ tnDsc(f)) dlog(Nn)e.

The last two inequalities imply Dsc(f ′) = max {UP1(f
′), UP0(f

′)} ≤ (2tcn+ tnDsc(f)) dlog(Nn)e,
concluding the proof.

Proof of Lemma 8. The proof is by induction on m. When m = 1, take a0 = a1 = a2 = a3 = 1.
Then for any n ≥ 2 one can choose N = n, f (1) = ANDn.

Suppose that for m = b there are constants a0, a1, a2, a3 s.t. for all n ≥ 2 there is f (m) :
{0, 1}N → {0, 1}, satisfying the given constraints. We argue that for m = b + 1 there are positive
integers

a′0 = 4(a2 + 4b)a0 + 128a42a3(a2 + 4b)(a0 + 19b− 10),

a′1 = 2(2b− 1)a1,

a′2 = 4(a2 + a3)(a2 + 4b)(a0 + 19b− 10),

a′3 = 12a3(a2 + 4b)(a0 + 19b− 10)

15

s.t. for all n ≥ 2 there is N ′ ∈ N and f ′ : {0, 1}N
′
→ {0, 1}, satisfying the necessary properties.

We fix n ≥ 2. Let f (b) be given by the inductive hypothesis. Let f (b+1) = f ′ where f ′ is
obtained by applying Lemma 7 to f = f (b), with parameters t = d4 log

(
a2 n

2b−1 log2b−2(n)
)
e+ 4

and c = max
{
nC0(f

(b)), C1(f
(b))
}

. Notice that for all D ≥ 2 setting t ≥ 4 log(D) + 4 yields

t ≥ 2 log(tD). Hence the chosen value of t satisfies t ≥ 2 log
(
tD(f (b))

)
and we have f (b+1) :

{0, 1}N
′
→ {0, 1}, where

N ′ = tNn2 + 2ttcndlog(Nn)e,

and, by Lemma 7,

0.5tn2D(f (b)) ≤ D(f (b+1)) ≤ tn(c+ nD(f (b)))dlog(Nn)e;

Dsc(f (b+1)) ≤ tn
(

2c+Dsc(f (b))
)
dlog(Nn)e;

C0(f
(b+1)) ≤ 3tcdlog(Nn)e;

C1(f
(b+1)) ≤ 3tcndlog(Nn)e.

Notice that

dlog(Nn)e ≤ (a0 + 19b− 10) log(n);

t = 4 + d4 log
(
a2 n

2b−1 log2b−2(n)
)
e ≤ 4(a2 + 4b) log(n);

t > 4 log
(
a2 n

2b−1 log2b−2(n)
)
≥ 4(2b− 1) log(n);

2t ≤ 32a42 n
8b−4 log8b−8(n);

c ≤ a3 nb log2b−2(n);

2c+Dsc(f (b)) ≤ 3a3 n
b log2b−2(n);

c+ nD(f (b)) ≤ (a2 + a3)n
2b log2b−2(n)

We conclude that

N ′ ≤ 4(a2 + 4b) log(n)a0 n
9b+2 log10b−10(n)+

32a42 n
8b−4 log8b−8(n)4(a2 + 4b) log(n)a3 n

b log2b−2(n)n(a0 + 19b− 10) log(n) =

4(a2 + 4b)a0 n
9b+2 log10b−9(n) + 128a42a3(a2 + 4b)(a0 + 19b− 10)n9b−3 log10b−8(n) ≤

a′0 n
9b+9 log10b(n).

Similarly,

D(f (b+1)) ≤ 4(a2 + 4b) log(n)n (a2 + a3)n
2b log2b−2(n)(a0 + 19b− 10) log(n) = a′2 n

2b+1 log2b(n),

D(f (b+1)) ≥ 2(2b− 1) log(n)n2 a1 n
2b−1 logb−1(n) = a′1 n

2b+1 logb(n),

Dsc(f (b+1)) ≤ 12(a2 + 4b) log(n)na3 n
b log2b−2(n)(a0 + 19b− 10) log(n) = a′3 n

b+1 log2b(n),

C0(f
(b+1)) ≤ 12(a2 + 4b) log(n)a3 n

b log2b−2(n)(a0 + 19b− 10) log(n) = a′3n
b log2b(n),

C1(f
(b+1)) ≤ 12(a2 + 4b) log(n)a3 n

b+1 log2b−2(n)(a0 + 11b− 10) log(n) = a′3n
b+1 log2b(n),

completing the inductive step.

16

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

