
Building above read-once polynomials: identity testing

and hardness of representation?

Meena Mahajan1, B. V. Raghavendra Rao2, and Karteek Sreenivasaiah3??

1 The Institute of Mathematical Sciences, Chennai, India. meena@imsc.res.in
2 Indian Institute of Technology Madras, Chennai, India. bvrr@cse.iitm.ac.in

3 Max Planck Institute for Informatics, Saarbrücken, Germany. karteek@mpi-inf.mpg.de

Abstract. Polynomial Identity Testing (PIT) algorithms have focussed on polynomials computed
either by small alternation-depth arithmetic circuits, or by read-restricted formulas. Read-once poly-
nomials (ROPs) are computed by read-once formulas (ROFs) and are the simplest of read-restricted
polynomials. Building structures above these, we show the following:
1. A deterministic polynomial-time non-black-box PIT algorithm for

∑(2) ·
∏
·ROF.

2. Weak hardness of representation theorems for sums of powers of constant-free ROPs and for ROFs
of the form

∑
·
∏
·
∑

.
3. A partial characterization of multilinear monotone constant-free ROPs.

1 Introduction

A polynomial is said to be identically zero if the coefficients of all monomials are zero. The
Polynomial Identity Testing (PIT) problem is the most fundamental computational question
that can be asked about polynomials: is the polynomial given by some implicit represen-
tation identically zero? The implicit representations of the polynomials can be arithmetic
circuits, branching programs etc., or the polynomial could be presented as a black-box, where
the black-box takes a query in the form of an assignment to the variables and outputs the
evaluation of the polynomial on the assignment. PIT has a randomized polynomial time al-
gorithm on almost all input representations, independently discovered by Schwartz [Sch80],
by Zippel [Zip79] and by Demillo and Lipton in [DL78]. However, obtaining determinis-
tic polynomial time algorithms for PIT remained open since then. In 2004, Kabanets and
Impagliazzo [KI04] showed that a deterministic polynomial time algorithm for PIT im-
plies lower bounds (either NEXP 6⊂ P/poly or permanent does not have polynomial size
arithmetic circuits), thus making it one of the central problems in algebraic complexity. Fol-
lowing [KI04], intense efforts over the last decade have been directed towards de-randomizing
PIT (see for instance [SY10,Sax14]). The attempts fall into two categories: considering special
cases ([Sax14]), and optimizing the random bits used in the Schwartz-Zippel-Demillo-Lipton
test [BHS08,BE11].

The recent progress on PIT mainly focusses on special cases where the polynomials are
computed by restricted forms of arithmetic circuits. They can be seen as following one of
the two main lines of restrictions: 1. Shallow circuits based on alternation depth of circuits

? Partially supported by the Indo-German Max Planck Center for Computer Science (IMPECS).
?? Much of this work was done while the author was working in The Institute of Mathematical Sciences, Chennai,

India.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 202 (2015)

computing the polynomial. 2. Restriction on the number of times a variable is read by
formulas (circuits with fanout 1) computing the polynomial.

The study of PIT on shallow circuits began with depth two circuits, where determinis-
tic polynomial time algorithms are known even when the polynomial is given as a black-
box [BOT88,KS01]. Further, there were several interesting approaches that led to determin-
istic PIT algorithms on depth three circuits with bounded top fan-in [DS07,KS07]. However,
progressing from bounded top fan-in depth three circuits seemed to be a big challenge. In
2008, Agrawal and Vinay [AV08] explained this difficulty, showing that deterministic polyno-
mial time algorithms for PIT on depth four circuits imply sub-exponential time deterministic
algorithms for general circuits. There has been a lot of work towards obtaining black-box
algorithms for PIT on restricted classes of depth three and four circuits, see [Sax14,SY10]
for further details. Recently, Gupta, Kamath, Kayal and Saptharishi [GKKS13] showed that,
over infinite fields, deterministic polynomial time algorithms for PIT on depth three circuits
would also imply lower bounds for the permanent. Thus it is natural to look for other re-
stricted models where deterministic polynomial time algorithms for PIT may be designed
using current techniques.

A formula computing a polynomial that depends on all of its variables must read each
variable at least once (count each leaf labeled x as reading the variable x). The simplest such
formulas read each variable exactly once; these are Read-Once Formulas ROFs, and the poly-
nomials computed by such formulas are known as read-once polynomials (ROP). In the case
of an ROP f presented by a read-once formula computing it, a simple reachability algorithm
on formulas can be applied to test if f ≡ 0. Shpilka and Volkovich [SV08] gave a determin-
istic polynomial time algorithm for PIT on ROPs in the black-box model. Generalizing this
to formulas that read a variable more than once, they obtained a deterministic polynomial
time algorithm for polynomials explicitly presented as a sum of O(1) ROFs. Anderson et.
al [AvMV11] showed that if a read-k formula, with k ∈ O(1), is additionally restricted to
compute multilinear polynomials at every gate, then PIT on such formulas can be done
in deterministic polynomial time. The result by [AvMV11] subsumes the result in [SV08]
since a k-sum of read-once formulas is read-k and computes multilinear polynomials at every
gate. However, both [SV08] and [AvMV11] crucially exploit the multilinearity property of
the polynomials computed under the respective models. In [MRS14], the authors explored
eliminating the multilinear-at-each-gate restriction, and gave a non-blackbox deterministic
polynomial time algorithm for read-3 formulas. However for the case of Read-k formulas
for k ≥ 4, even the non-blackbox version of the problem is open. Note that multilinearity
checking itself is equivalent to PIT on general circuits [FMM12].

Our results: In this paper, we explore further structural properties of ROPs and polynomi-
als that can be expressed as polynomial functions of a small number of ROPs. Our structural
observations lead to efficient algorithms on special classes of bounded-read formulas.

We attempt to extend the class considered in [SV08] (namely, formulas of the form
∑

i fi
where each fi is an ROF) to the class of polynomials of the form

∑k
i=1 figi where the fis and

gis are presented as ROFs and k is some constant. These are read-2k polynomials, not neces-

2

sarily multilinear. When k = 2, this class can be seen as a special case of read-4 polynomials.
It turns out that we can in fact do much better. We describe an efficient deterministic non-
blackbox PIT algorithm even when the number of polynomials in the product is unbounded.
It solves PIT for polynomials of the form f1f2f3 · · · fm + g1g2 · · · gs where fis and gis are
presented as ROFs, but m, s can be unbounded; that is, the class

∑(2) ·
∏
·ROF. Note that

this class of polynomials includes non-multilinear polynomials and also polynomials with no
bound on the number of times variables are read. Thus it is incomparable with the classes
considered in [SV08], [AvMV11] and [MRS14]. This result is presented in Section 3. First,
we describe the algorithm over the ring of integers and the field of rationals; Theorem 1. In
this case, even the bit-complexity is polynomial. Our algorithm exploits the structural de-
composition properties of ROPs and combines this with an algorithm that extracts greatest
common divisors of the coefficients in an ROP. We then describe how to modify it to work
over any field with polynomially many field operations; Theorem 2. This modification was
suggested to us by Amir Shpilka at Dagstuhl seminar 14121.

Central to the PIT algorithm in [SV08] is a “hardness of representation” lemma showing
that the polynomial Mn = x1x2 · · ·xn, consisting of just a single monomial, cannot be
represented as a sum of less than n/3 ROPs of a particular form (0-justified). More recently,
a similar hardness of representation result appeared in [Kay12]: if Mn is represented as a
sum of powers of low-degree (at most d) polynomials, then the number of summands is
exp(Ω(n/d)). As is implicit in [Kay12], such a hardness of representation statement can
be used to give a PIT algorithm. We analyze this connection explicitly, and show that the
results in [Kay12] lead to a deterministic sub-exponential time algorithm for black-box PIT
for sums of powers of polynomials with appropriate size and degree (Section 4, Theorem 3).

A minor drawback of both these statements is that they consider a model that cannot even
individually compute all monomials. One would expect any reasonable model of representing
polynomials to be able to computeMn. In Section 5, we consider the restriction of read-once
formulas to constant-free formulas that are only allowed leaf labels ax, where x is a variable
and a is a field element. This model can compute any single monomial. We show (Theorem 4)
that the elementary symmetric polynomial Symn,d of degree d cannot be written as a sum of
powers of such formulas unless the number of summands is Ω(log(n/d)). This appears weak
compared to the n/3 bound from [SV08], but this is to be expected since unlike in [SV08]
where the ROPs could only be added, we allow sums of powers. We also consider 0-justified
read-once formulas of the form

∑
·
∏
·
∑

, and obtain a similar hardness-of-representation
result for the polynomial Mn against sums of powers of polynomials computed by such
formulas, showing that n

1
2
−ε summands are needed (Theorem 5). Again, this appears weak

compared to the exp(Ω(n/d)) bound from [Kay12], but unlike in [Kay12] where the degree
of the inner functions is a parameter, our inner ROPs could have arbitrarily high degree.

Finally we return to the question of characterizing which polynomials are ROPs. This
question has been recently answered by Volkovich [Vol14]. We focus on the fields of rationals
or reals, and consider monotone polynomials (no negative coefficients). For specific multilin-
ear monotone polynomials, several tight lower bounds on the sizes of monotone arithmetic
circuits computing them are known, from [Val79] upto [RY11]. In the context of restricted-

3

read circuits, our study explores the question of not size but expressibility: when is a mono-
tone polynomial computable at all by a constant-free ROF? (We show that any such ROF
will also have to be monotone.) Using the characterization of Boolean read once formulas
from [KLN+93], we answer this question completely when the coefficients are all 0 or 1. This
result, Theorem 6, is described in Section 6.

2 Preliminaries

An arithmetic formula on n variables X = {x1, . . . , xn} is a rooted binary tree with leaves
labeled from F ∪ X and internal nodes labeled by ◦ ∈ {+,×}. Each node computes a
polynomial in the obvious way, and the formula computes the polynomial computed at the
root gate. An arithmetic formula is said to be read-once (ROF) if each x ∈ X appears at
most once at a leaf. Polynomials computed by ROFs are called read-once polynomials ROPs.

It is more convenient for us to allow leaves to be labeled by forms ax+ b for some x ∈ X
and some a, b ∈ F. This does not change the class of polynomials computed, even when
restricted to ROFs. Henceforth we assume that ROFs are of this form.

The alternation depth of the formula is the maximum number of maximal blocks of +
and × gates on any root-to-leaf path in the formula.

We say that an ROF is constant-free (denoted CF-ROF) if the labels at the leaves are of
the form ax for x ∈ X and a ∈ F \ {0}. We call polynomials computed by such formulas
constant-free ROPs, denoted CF-ROP.

For a polynomial f ∈ F[x1, x2, · · · , xn], a set S ⊆ [n] and a possibly partial assignment
a that assigns values to all xj for j ∈ S, let f |S→aS denote the polynomial on variables
{xi : i 6∈ S} obtained from f by setting xj = aj for j ∈ S. For a set of assignments A ⊆ Fn,
we say f |A ≡ 0 if and only if f vanishes on all assignments in A. For any i ∈ [n], we say that
the polynomial f depends on the variable xi non-trivially if ∂f

∂x
is not identically zero. Using

notation from [SV08], for a polynomial f , var(f) denotes the set of variables that f depends
on non-trivially. We say that f is 0-justified if for all S ⊆ var(f), var(f |S→0S) = var(f) \ S.
For multilinear f 6≡ z (and hence for ROPs), this is equivalent to the condition that for each
variable x ∈ var(f), the degree-1 monomial x has a non-zero coefficient in f . (Note that the
identically-zero polynomial is vacuously 0-justified.)

We re-state an important result by Noga Alon here:

Proposition 1 (Combinatorial Nullstellensatz, [Alo99]). Let P ∈ F[x1, . . . , xn] be a
polynomial where for every i ∈ [n], the degree of xi is bounded by t. Let R ⊆ F have size at
least t+ 1, and S = Rn. Then P ≡ 0⇔ P |S ≡ 0.

3 Identity testing for
∑(2) ·

∏
·ROPs

In this section we show that PIT can be solved efficiently for formulas presented in the form
f1f2 . . . fm + g1g2 . . . gs, where each of the fi, gj is an ROF.

The idea is to decompose each fi, gj into their irreducible factors, obtaining ROFs for these
factors, and and then match them up using the PIT algorithm from [SV08]. However, the

4

decomposition is unique only up to scalar multiples, and this presents some difficulties. We
first describe how to circumvent this difficulty when the field is rationals. Then we describe
how to do the same over arbitrary fields.

Theorem 1. Given Read-Once Formulas computing each of the polynomials f1, f2, · · · , fr,
g1, g2, . . . , gs ∈ Q[x1, . . . , xn], checking if f1 · f2 · · · fr ≡ g1 · g2 · · · gs can be done in determin-
istic polynomial time.

A crucial ingredient in our proof is the following structural decomposition property
from [RS11,RS13] and its constructive version; this is a direct consequence of the properties
of ROPs given in [SV08].

Lemma 1 ([RS13]). Let f be an ROP. Then exactly one of the following holds:

1. k ≥ 1, there exist ROPs f1, . . . , fk, with var(fi) ∩ var(fj) = ∅ for all distinct i, j ∈ [k],
such that f = a + f1 + · · · + fk, for some a ∈ F, and each fi is either uni-variate or
decomposes into variable-disjoint factors.

2. k ≥ 2, there exist ROPs f1, . . . , fk, with var(fi) ∩ var(fj) = ∅ for all distinct i, j ∈ [k],
such that f = f1×f2×· · ·×fk for some a ∈ F\{0}, and none of the fis can be factorised
into variable-disjoint factors.

Furthermore, ROFs computing such fis can be constructed from an ROF computing f in
polynomial time.

Given an ROF over Q, we can clear all denominators to get an ROF over Z, without
changing the status of the PIT question. So we now assume that all the numbers a, b appear-
ing in the ROF (recall, leaf labels are of the form ax+b) are integers. For a polynomial p(X),
let content(p(X)) denote the greatest common divisor (gcd) of the non-zero coefficients of
p. For an ROF f , we use content(f) to mean the content of the polynomial computed by f .
The next crucial ingredient in our proof is that for an ROF f , we can efficiently compute
content(f).

Lemma 2. There is a polynomial-time algorithm that, given an ROF f in Z[X], computes
content(f) and constructs an ROF f ′ in Q[X] such that f = content(f) · f ′.

Proof. It suffices to show how to compute content(f); then the ROF f ′ is just 1
content(f)

× f .
We prove this by induction on the structure of f .

For a polynomial p ∈ Z[X], let p̂ = p− p(0), where p(0) = p(0, . . . , 0), and let p̂′ be the
polynomial such that p̂ = content(p̂)p̂′. We proceed bottom-up, computing content(p) and
content(p̂) for the polynomials p computed at each node of the ROF f .

If f is a single leaf node, then computing content(f) and content(f̂) is trivial. Otherwise,
say f = g ◦ h. Since f is an ROF, var(g) ∩ var(h) = ∅.
Case f = g + h: Then f̂ = ĝ + ĥ, and f(0) = g(0) + h(0). So

content(f) := gcd(content(ĝ), content(ĥ), g(0) + h(0)),

content(f̂) := gcd(content(ĝ), content(ĥ)).

Case f = g × h: Then f̂ = ĝĥ+ h(0)ĝ + g(0)ĥ, and f(0) = g(0)h(0).

5

Claim (Folklore). For any two variable-disjoint polynomials p, q ∈ Z[X], content(pq) =
content(p) · content(q).

Proof. This is known as Gauss’s lemma. We include a proof for completeness. Let p =
content(p)(a1M1 + a2M2 + · · ·+ akMk) and q = content(q)(b1N1 + b2N2 + · · ·+ b`N`), where
Mi, Nj are monomials. We have gcd(a1, . . . , ak) = gcd(b1, . . . , b`) = 1 by the definition of
content. Since p and q are variable-disjoint, every monomial of the form content(p)·content(q)·
(aibjMiNj) appears in the polynomial p × q, and there are no other monomials, and hence
content(p) · content(q)|content(p × q). For the converse, it suffices to show that gcd(S) = 1,
where S = {aibj | i ∈ [k], j ∈ [`]}. Suppose not. Let c be the largest prime that divides all
numbers in S. Then, ∀i ∈ [k],

c|aib1 and c|aib2 and . . . and c|aibk.
Hence c|ai or (c|b1, c|b2, · · · , c|b`) .
Hence c|ai or c = 1, since gcd(b1, . . . , b`) = 1.

Thus we conclude that c divides gcd(a1, . . . , ak) = 1, a contradiction. ut

Using this claim, we see that

content(f) := content(g)× content(h),

content(f̂) := gcd(content(ĝ)content(ĥ), h(0)content(ĝ), g(0)content(ĥ)).

ut

Now we have all the ingredients for proving Theorem 1.

Proof (of Theorem 1). Let f = f1 ·f2 · · · fr and g = g1 ·g2 · · · gs. As discussed above, without
loss of generality, each fi, gi is in Z[X]. Using Lemma 1 and 2, we can compute the irreducible
variable-disjoint factors of each fi and each gi, and also pull out the content for each factor.
That is, we express each fi as αifi,1 · · · fi,ki , and each gi as βigi,1 · · · gi,`i where the fi,js, gi,js
are irreducible and have content 1. Due to the content = 1 condition, this decomposition is
unique. We obtain ROFs in Q[X] for each of the fi,js and gi,js. (The ROFs are in Q[X], but
the polynomials fi,j, gi,j they compute are in Z[X].)

Note that if
∑

i ki 6=
∑

j `j, then there cannot be a component-wise matching between
the factors of f and g, and hence we conclude f 6≡ g. Otherwise,

∑
i ki =

∑
j `j. We now

form multisets of the factors of f and of g, and we knock off equivalent factors one by one.
(See Algorithm 1.) Detecting equivalent factors (the condition in Step 6) requires an identity
test p ≡ q?, or p− q ≡ 0?, for ROFs in Q[X]. Since we have explicit ROFs computing p and
q, this can be done using [SV08].

Consider the bit complexity of the above procedure. For moving over to Z[X], polynomial
time suffices. Before factorising the ROPs computed by the ROFs, we can convert each ROF
to an unbounded-fanin ROF where nodes strictly alternate between + and ×, ensure that no
node has more than one input that is a scalar, and prune out all zeroes. Applying Lemma 1

6

Algorithm 1 Test if
∏r

i=1 αi
∏ki

j=1 fi,j ≡
∏s

i=1 βi
∏`i

j=1 gi,j
1: S ← {f1,1, · · · , f1,k1 , f2,1, · · · , f2,k2 , . . . , fr,1, · · · , fr,kr}
2: T ← {g1,1, · · · , g1,`1 , g2,1, · · · , g2,`2 , . . . , gs,1, · · · , gs,`s}
3: (Both S and T are multisets; repeated factors are retained with multiplicity.)
4: for p ∈ S do
5: for q ∈ T do
6: if p ≡ q then
7: if S and T have unequal number of copies of p and q then
8: Return No
9: else

10: S ← S \ {p}. (Remove all copies).
11: T ← T \ {q}. (Remove all copies).
12: end if
13: end if
14: end for
15: end for
16: if (α1α2 · · ·αr = β1β2 · · ·βs) ∧ (S = T = ∅) then
17: Return Yes
18: else
19: Return No
20: end if

merely involves graph-theoretic navigation on the ROFs computing each fi, gj, moving down
from the root until a + gate is encountered. Applying Lemma 2 involves applying a gcd
algorithm polynomially many times on numbers obtained from the coefficients in the formula.
Since we have formulas, not circuits, all computed numbers have polynomial bit complexity.
To detect equivalent factors, we use the PIT test from [SV08] on p−q, where p, q are computed
by explicitly given ROFs. The test amounts to setting W = {0, 1}, finding a common 0-1
“justifying assignment” â by identifying the variables that p, or q (or both) depend on, and
evaluating p− q at O(n7) assignments. (For each ŵ ∈ W n with Hamming-weight at most 6,
evaluate p− q at ŵ − â.) Clearly, the test has polynomial bit-complexity as well. ut

Extension to arbitrary fields

Recently, Amir Shpilka pointed out to us (at Dagstuhl Seminar 14121) that the proof of
Theorem 1 can be modified to work for polynomials over any field F. Now time refers to
the number of field operations. We sketch the proof specifically for the part that is different
from proof of Theorem 1:

Theorem 2 (Amir Shpilka). Given Read-Once Formulas computing each of the polyno-
mials f1, f2, · · · , fr, g1, g2, . . . , gs ∈ F[x1, . . . , xn], checking if f1 · f2 · · · fr ≡ g1 · g2 · · · gs can
be done in deterministic polynomial time.

Proof. We use Lemma 1 to obtain a product of irreducible factors for each fi and gi. That
is, we express each fi as fi,1 · · · fi,ki , and each gi as gi,1 · · · gi,`i where the fi,js and gi,js are
irreducible. Since these polynomials are over an arbitrary field F, the notion of content does
not exist. The factorization is now unique only up to scalar multiples. We show how to handle
this.

7

Similar to proof of Theorem 1, we want to find a match on the right side for each
irreducible component from the left side. For ease of notation, let p = fi,j and q = gu,v. We
want to check if q is a match for p. i.e., is p = cq for some c ∈ F? Since p and q are both
ROPs, the individual degree of each variable is at most 1. We know that p 6≡ 0 and q 6≡ 0.
By Proposition 1, it must be the case that there is an a ∈ {0, 1}n such that p(a) 6= 0. We
find a using Algorithm 2. Step 3 of the algorithm can be achieved using the algorithm from
[SV08].

Algorithm 2 Find a ∈ {0, 1}n such that p(a) 6= 0
1: for k = 1 to n do
2: a[k]← 0
3: if p|xk=0 ≡ 0 then
4: a[k]← 1
5: p← p|xk=1

6: else
7: p← p|xk=0

8: end if
9: end for

Once we have a, we check that q(a) is non-zero (if it is zero, then q and p cannot be
matched). Now q is a scalar multiple of p if and only if p ≡ cq, where c = p(a)/q(a). We
then check if p − cq ≡ 0, again using the algorithm from [SV08]. If yes, then we knock off
p and q from their respective sides and continue this process of finding a component wise
matching while retaining c as a scalar multiple on the right side. If p−cq 6≡ 0, then q is not a
match for p and we continue trying to find a match for p exactly like in proof of Theorem 1.
If no match is found, then the inputs are not identically equal. If all factors from both sides
have been knocked off, then we check if Πici = 1. If yes, we conclude that the polynomial
(f1 · f2 · · · fr)− (g1 · g2 · · · gs) is identically zero. Else, the polynomial is not identically zero.

ut

4 PIT for sums of powers of low degree polynomials

In this section, we give a blackbox identity testing algorithm for the class of multilinear
polynomials that can be expressed as a sum of powers of low-degree polynomials.

We say that a polynomial f has a sum-powers representation of degree d and size s if
there are polynomials fi each of degree at most d, and a set of positive integers ei, such that
f = f e11 + . . . + f ess . In [Kay12], it is shown that computing the full multilinear monomial
Mn = x1x2 · · ·xn using sums of powers of low-degree polynomials requires exponentially
many summands:

Proposition 2. [Kay12] There is a constant c such that for the polynomial x1x2 · · ·xn, any
sum-powers representation of degree d requires size s ≥ 2

cn
d .

Recall that an ROP f is said to be 0-justified if for every S ⊆ {x1, . . . , xn}, var(f |S→0) =
var(f) \ S. Shpilka and Volkovich [SV08] proved that sum of less than n/3 0-justified-ROPs

8

cannot equal Mn, and used it to obtain a black-box PIT algorithm for bounded sums of
ROPs. Using these ideas along with Proposition 2, we note that such a hardness of repre-
sentation for sums of powers of low-degree polynomials, where the final sum is multilinear,
gives sub-exponential time algorithms for black-box PIT for this class.

Let R = {0, 1} ⊆ F. For any k > 0, define

W n
k (R) , {a ∈ Rn| a has at most k non-zero coordinates}.

In Theorem 7.4 of [SV10], it is shown that for a certain kind of formula F (k-sum of
degree-d 0-justified preprocessed ROP), and for any R ⊆ F containing 0 and of size at least
d+ 1, F ≡ 0 if and only if F |Wn

3k(R)≡ 0. The proof uses Proposition 1, see also Lemma 2.13
in [SV10].

Along similar lines, using Propositions 2,1, we show that

Lemma 3. Let C(n, s, d) be the class of all n-variate multilinear polynomials that have a
sum-powers representation of degree d and size s. Let c be the constant from Proposition 2.
For f ∈ C(n, s, d), R = {0, 1}, and k = (d log s)/c, f |Wn

k (R) ≡ 0 ⇐⇒ f ≡ 0.

Proof. The ⇐ direction in the claim is trivial. To prove the ⇒ direction, we proceed by
induction on n.
Base case: n ≤ k. Then W n

k (R) = Rn. Using Proposition 1 (since f is multilinear, R is
large enough), we conclude that f ≡ 0.
Induction Step: n > k. Suppose f 6≡ 0. Consider any i ∈ [n], and let f ′i = f |xi=0. Then
f ′i ∈ C(n−1, s, d). Since f |Wn

k (R) ≡ 0, we have f ′i |Wn−1
k (R) ≡ 0. So by the induction hypothesis,

f ′i ≡ 0. Hence xi|f . Since this holds for every i ∈ [n], the monomial x1 · · ·xn must divide f .
Since f is multilinear, it must be that f = x1 · · ·xn. But n > k = (d log s)/c, so s < 2cn/d.
This contradicts Proposition 2. Hence we conclude f ≡ 0. ut

This gives the required black-box PIT algorithm: just query the black-box for f at every
point in W n

k . For our choice of k in the above lemma, |W n
k ({0, 1})| ∈ nO(k) ⊆ 2O(d log s logn),

and this bounds the running time. Thus

Theorem 3. Let C(n, s, d) be the class of all n-variate multilinear polynomials that have
a sum-powers representation of degree d and size s. There is a deterministic black-box PIT
algorithm for C(n, s, d) running in time 2O(d logn log s).

Remark 1. Though f is multilinear in Lemma 3 (and hence Theorem 3), the polynomials fi
in the sum-powers representation of f need not be multilinear.

5 Hardness of representation for sum of powers of CF-ROPs

The hardness of representation result from [Kay12], stated in Proposition 2, and its precursor
from [SV08],[SV10], are both forMn, the former using low-degree polynomials and the latter
using a kind of ROPs called 0-justified-ROPs. Note that ROPs, even when 0-justified, can have

9

high degree, so these results are incomparable. In this section, we give two different hardness
results.

Our first hardness result is for elementary symmetric polynomials Symn,d, not just for
d = n. It works against another subclass of ROPs, CF-ROF; as is the case in [SV08,SV10],
this class too can have high-degree polynomials. Recall that this class consists of polynomials
computed by read-once formulas that have + and × gates, and labels ax at leaves (a 6= 0).
Hence for any f in this class, f(0) = 0. (However, it is not the case that every ROP p with
p(0) = 0 is computed by a CF-ROF. Consider for instance, p(x̂) =

∏n
i=1(xi + 1)− 1. Even to

write it as a sum of CF-ROFs would need many summands.) We show that powers of such
polynomials cannot add up to elementary symmetric polynomials of arbitrary degree d ≤ n
unless there are many such summands. First, we establish a useful property of this class.

Lemma 4. For every CF-ROP f ∈ F[x1, . . . , xn], there is a set S ⊆ [n] with |S| ≤ |var(f)|/2
such that deg(f |S→0) ≤ 1.

Proof. Consider a CF-ROF F computing f . If F has a single node, then f is already linear,
so S = ∅. Otherwise, F = G1 ◦ G2, where G1, G2 are variable-disjoint CF-ROFs computing
CF-ROPs g1, g2, respectively.
Case 1: ◦ = ×. Without loss of generality, assume |var(g1)| ≤ |var(f)|/2. For S = {i : xi ∈
var(g1)}, g1|S→0 ≡ f |S→0 ≡ 0.
Case 2: ◦ = +. Inductively, we can find sets Si of at most half the variables of each gi, such
that gi|Si→0 has degree at most 1. Define S = S1 ∪ S2. Since G1, G2 are variable-disjoint,
|S| ≤ |var(f)|/2, and f |S→0 has degree at most 1. ut

We use this to get our hardness-of-representation result for CF-ROPs, irrespective of degree.

Theorem 4. Fix any d ∈ [n]. Suppose there are CF-ROPs f1, . . . , fs, and positive integers
e1, . . . , es such that

s∑
i=1

f eii = Symn,d.

Then s ≥ min{log n
d
, 2Ω(d)}.

Proof. Let f = Symn,d.
We repeatedly apply Lemma 4 to restrictions of the fi’s to obtain a formula of degree

at most 1. Let Q0 = T0 = ∅, and let Qi+1 be the set obtained by applying the Lemma to
fi+1|Ti→0, where each Ti = Q1 ∪ . . . ∪ Qi. Define Q = Ts. Since at least half the variables
survive in f at each stage, we see that r , |var(f |Q→0)| ≥ |var(f)|/2s = n/2s.

– If r < d, then n/2s ≤ r < d. So s > log(n
d
).

– If r ≥ d, then f |Q→0 = Symr,d 6≡ 0. Add any r − d surviving variables to the set Q to
obtain the expression Symd,d = f |Q→0 =

∑s
i=1(fi|Q→0)ei where each fi is either linear

or identically 0. Let s′ be the number of non-zero polynomials fi|S→0. By Proposition 2,
s′ ∈ 2Ω(d), and s ≥ s′.

Thus if s ≤ log n
d
, then s ∈ 2Ω(d). ut

10

What this tells us is that there is a threshold r ∼ log log n such that any sum-powers
representation of Symn,d using CF-ROPs needs size 2Ω(d) for d ≤ r, and size ≥ log n

d
for d ≥ r.

Our second hardness result is forMn, but works against a different class of ROFs. These
ROFs may not be constant-free, but they have bounded alternation-depth, and are also
0-justified. Again, first we establish a useful property of the class.

Lemma 5. Let F be any field of size at least 3. Let f ∈ F[x1, . . . , xn] be computed by an
ROF of the form

∑
·
∏
·
∑

. For any degree bound 1 ≤ d ≤ n, there is an S ⊆ [n] of size
at most |var(f)|/d, and an assignment of values AS to the variables xi for i ∈ S, such that
deg(f |S→A) ≤ d. Moreover, if f is 0-justified, then we can find an AS with all non-zero
values.

Proof. Let f be computed by the
∑
·
∏
·
∑

ROF F , where no gate computes the 0 polyno-
mial.

Since the top gate in F is a +, we can write F =
∑r

i=1 fi, where each summand fi is of
the form

∏ti
j=1 `i,j and the factors `i,j’s are linear forms on disjoint variable sets. We find a

partial assignment that kills all summands of degree more than d. For each such summand
fi, identify the factor with fewest variables, and assign values to the variables in it to make
it 0. We assign values to at most |var(fi)|/d variables, so overall no more than |var(f)|/d
variables are set.

Further, if f is 0-justified and read-once, then each fi is also a 0-justified ROF. Hence no
factor of fi vanishes at 0; each factor `i,j is of the form

∑p
k=1 ai,j,kxi,j,k − ci,j where ci,j 6= 0.

We can kill such a factor with an assignment avoiding 0s. For instance, over rationals or reals
we can set xi,j,k = ci,j/pai,j,k. Over possibly smaller fields, the following claim suffices.

Claim. If F is a field of size at least 3, and a0, a1, . . . , ak are non-zero elements of F, then
there is an assignment b1, . . . , bk ∈ (F \ {0})k such that a0 + a1b1 + . . .+ akbk = 0.

Proof. Choose values bi sequentially. Let c0 = a0, and ci = ci−1 + aibi. Ensure that for all
1 ≤ i < k, the ci values are non-zero. This is true initially. Setting bi to any value other
than 0 or a−1

i (−ci−1) ensures that ci 6= 0. Now set bk = −(ck−1 · a−1
k). This gives ck = 0 as

required. ut
ut

Using this, we get a hardness of representation result for 0-justified
∑
·
∏
·
∑

ROFs.

Theorem 5. Let F be any infinite field. For every ε ∈ (0, 1
2
), there exists an nε ≥ 0 such that

for every n ≥ nε, if there are 0-justified
∑∏∑

ROPs f1, . . . , fs, and non-negative integers
e1, . . . , es such that

s∑
i=1

f eii = x1 · · ·xn

then s ≥ n
1
2
−ε.

11

Proof. Let d be a parameter to be chosen later. We identify a subset of variables S and
an assignment A avoiding zeroes to variables of S, such that under this partial assignment,
all the fi’s are reduced to degree at most d. We show that for any d ∈ [n], this is possible
with |S| = t ≤ s2n

d
. This gives a sum-powers representation of degree d and size s for∏

xi 6∈S xi = Mn−t. Invoking Kayal’s result from Proposition 2, we see that s ≥ 2c(n−t)/d, and

hence log s + cns2

d2
≥ cn

d
. Choose d = 4n1−2ε, then there exists an nε > 0 that depends only

on ε and c such that s ≥ n
1
2
−ε for n ≥ nε.

The construction of S proceeds in stages. At the kth stage, polynomials f1, . . . , fi−1 have
already been reduced to low-degree polynomials, and we consider fi. We want to use Lemma 5
at each stage. This requires that each polynomial fi, after all the substitutions from the
previous stages, is still a 0-justified

∑
·
∏
·
∑

ROF. The
∑
·
∏
·
∑

form is obvious; it is
only maintaining 0-justified that is a bit tricky. We describe the construction for stage 1; the
other stages are similar.

Applying Lemma 5 to f1 with d as the parameter, we obtain a set R1 of variables with
|R1| ≤ n/d and an assignment AR1 avoiding 0, such that deg(f1|R1→AR1

) ≤ d. It may be the
case that for some i > 1, the polynomial fi|R1→AR1

is no longer 0-justified. We fix this by
augmenting R1 as follows.

As discussed in the proof of Lemma 5, each fi has the form
∑∏

`j,k where each `j,k is a
linear form. If fi|R1→AR1

is not 0-justified, then some of the linear forms in it are homogeneous
linear (no constant term). We identify such linear forms in each fi, i ≥ 2. Call this set L1.
That is,

L1 =

{
` |
` is a linear form at level-2 of some
fi; `|R1→AR1

is homogeneous lin-
ear but not identically 0.

}
Since each fi is a ROF, it contributes at most |R1| linear forms to L1. Hence |L1| ≤ (s−1)|R1|.
Now pick a minimal set T1 of variables from X \ R1 that intersects each of the linear forms
in L1. By minimality, |T| ≤ |L1| ≤ (s − 1)|R1|. We want to assign non-zero values AT1 to
variables in T1 in such a way that for all i ≥ 2, the fi|R1→AR1

;T1→AT1
are 0-justified. We must

ensure that the linear forms in L1 become homogeneous (or vanish altogether), and we must
also ensure that previously non-homogeneous forms do not become homogeneous. To achieve
this, consider

L2 =

{
` |
` is a linear form at level-2 of some fi;
`|R1→AR1

6≡ 0; `|R1→AR1
contains a variable

from T1.

}

Clearly, L1 ⊆ L2. It suffices to find an assignment AT1 to variables in T1, avoiding zeroes, such
that under the partial assignment R1 → AR1 ;T1 → AT1 , every linear form in L2 becomes
either zero or non-homogeneous. That is,

∀` ∈ L2, either `|R1→AR1
;T1→AT1

≡ 0 or `|R1→AR1
;T1→AT1

(0) 6= 0 (1)

This can be done in a sequential greedy fashion as follows. Choose any variable x ∈ T1.
There is a finite number of values b for which setting x = b can potentially violate (1). As

12

F is infinite, there is a value a such that assigning x = a is safe and will not immediately
violate (1). Set x = a in AT1 . Continuing the process with the remaining variables in T1, we
get the required assignment AT1 that satisfies (1).

Now we set S1 = R1 ∪ T1, and A1 = AR1 ∪ AT1 . We have ensured the following:

1. deg(f1|S1→A1) ≤ d; and
2. for i ≥ 2, fi|S1→A1 is 0-justified.

Furthermore, |S1| = |R1|+ |T1| ≤ |R1|(1 + (s− 1)) ≤ sn/d.
Other stages are identical, working on the polynomials restricted by the already-chosen

assignments. Finally, S = S1 ∪ . . . ∪ Ss, and so |S| ≤ s2n/d, as required. ut

Our result may well be far from optimal. For instance, an old idea of Ben-Or (see [SV08]
for more details) yields depth-3 ROFs for Symn,d for any d ≤ n. We repeat the argument here
for completeness, and note that the summands are in fact 0-justified. However, Theorem 5
only says that we need at least n1/2−ε such summands.

Proposition 3. Over any infinite field F, for any d ≤ n, Symn,d can be represented as a
sum of n+ 1 ΠΣ 0-justified-ROPs.

Proof. View the polynomial
∏n

i=1(xi + t), where t is an indeterminate, as a univariate poly-
nomial p(t) with coefficients from F[X]. Then Symn,d(X) is the coefficient of tn−d in p(t), and
all coefficients can be computed by interpolation through n+ 1 distinct points. That is, for
any n + 1 distinct non-zero elements α0, . . . , αn in F, Symn,d(X) is an F-linear combination
of p(α0), . . . , p(αn). Each p(αj) =

∏n
i=1(xi + αj), 0 ≤ j ≤ n, is a ΠΣ ROP in the variables

X = {x1, . . . , xn}. Choosing αj values avoiding zero ensures that each p(αj) is 0-justified.

6 Characterizing monotone CF-ROPs

Every ROP is multilinear. But the converse is not true. So we can ask:

Question 1. When is a multilinear polynomial p(x1, . . . , xn) an ROP?

Volkovich gave an answer to this:

Proposition 4 ([Vol14]). For sufficiently large fields, p(x̄) is an ROP if and only if for
every assignment ā in the field, p is ā-three-locally read-once.

Without getting into the details of what the terms in this characterization mean, let
us examine a variant of this question. We consider monotone polynomials and monotone
formulas / circuits. To keep things simple, we fix the field F to be reals or rationals, so that
we can meaningfully talk about negative and positive values. Then a polynomial with real
coefficients is monotone if it has no negative coefficients, and a formula (or a circuit) is
monotone if it has no negative constants. (Note that a more general notion of monotonicity,
applicable to more fields, is defined in [Val79]. Over rationals and reals, it specialises to these
definitions, which are also quite standard. See for instance [RY11].)

13

A monotone read-once formula computes a polynomial that is multilinear, an ROP, and
monotone. But the converse is not true. For instance, p(x, y) = x + y + xy is a multilinear
monotone polynomial computed by the ROF (x+1)(y+1)−1. But we can show that it has no
monotone ROF. Suppose it does; let F be that formula, with root r, a leaf labeled x, another
leaf labeled y, and all other leaves labeled by positive constants. Let ` be the node that is
the least common ancestor of the leaves labeled x and y. Then ` computes a polynomial p`,
and the polynomial pr computed at the root is of the form Ap` + B. Further, p` is of the
form (Cx + D) ◦ (Ey + F). And the constants A,B,C,D,E, F are all non-negative. Since
pr = x+y+xy, ◦ must be × (to generate the monomial xy), so pr = A(Cx+D)(Ey+F)+B.
Equating the coefficients, we get B+ADF = 0. Since there are no negative values, we must
have B = ADF = 0. If A = 0, then pr = 0, a contradiction. So DF = 0. Say D = 0. Then
pr = ACx(Ey+F), and the monomial y is not generated. So there is no monotone ROF for
p.

So now we can ask:

Question 2. When is a multilinear monotone read-once polynomial p(x1, . . . , xn) computable
by a monotone ROF?

The above example x+ y + xy motivates studying the restriction of formulas with no addi-
tive constants. These are formulas where each leaf is labeled axi for some non-zero a ∈ F.
We have called such formulas constant-free, though technically they do use multiplicative
constants. A constant-free read-once formula (CF-ROF) with n leaves depends on n variables
and computes a multilinear polynomial p(x̄) satisfying p(0̄) = 0. A monotone CF-ROF com-
putes a polynomial p(x̄) that is monotone, multilinear, an ROP, and satisfies p(0̄) = 0. Is
the converse true? The polynomial x+ y + xy shows that it is not. So we can ask:

Question 3. When is a multilinear monotone read-once polynomial p(x1, . . . , xn) with p(0̄) =
0 computable by a monotone CF-ROF?

What if we relax monotonicity but insist on no additive constants? That is, we ask:

Question 4. When is a multilinear monotone read-once polynomial p(x1, . . . , xn) with p(0̄) =
0 computable by a CF-ROF?

That does not help; monotonocity is still forced, as shown below.

Lemma 6. If p(x̄) is monotone and is computed by a CF-ROF, then it is computed by a
monotone CF-ROF.

Proof. Induction on n, the number of variables that p depends on. Note that the CF-ROF F
computing p will have exactly n leaves.

Base case n = 1; p = a1x1 for some a1 > 0; trivially true.
Induction: Let F be of the form G ◦ H, for ◦ ∈ {+,×}. Then G,H are CF-ROFs on

disjoint sets of variables, computing polynomials g and h such that p ≡ g ◦ h. Since p is
monotone and g and h are variable-disjoint, either g and h are both monotone, or ◦ = ×
and both −g and −h are monotone. In the first case, by induction, G and H are monotone
CF-ROFs, and hence so is F . In the second case, note that (−1)×G is a ROF computing −g.

14

We can move the −1 down to the leaves to get a CF-ROF G′ computing −g. (If f = f1× f2,
then (−1)× f = [(−1)× f1]× [f2]. If f = f1 + f2, then (−1)× f = [(−1)× f1] + [(−1)× f2].)
Similarly, −h is computed by a CF-ROF H ′. By induction, −g and −h are computed by
monotone CF-ROFs G′′ and H ′′ respectively. Now the monotone CF-ROF F ′ = G′′ × H ′′

computes p. ut
Polynomials computed by CF-ROFs have another interesting property: their monomials

are incomparable with respect to divisibility. More precisely, for a multilinear polynomial p
in n variables, define

M(p) =

{
T ⊆ [n] | mT ,

∏
i∈T

xi is a monomial of p

}
.

Lemma 7. Let p(x1, . . . , xn) be computed by a CF-ROF. In the poset (P([n]),⊆), the sets in
M(p) form an antichain.

Proof. Suppose not. Then the poset (M(p),⊆) has at least one chain of length 2 or more.
Let S, T be the lowest two elements of this chain with S ⊆ T ; mS, mT are monomials of
p(.).

Let F be the CF-ROF computing p(.). Setting variables outside T to 0 in F and removing
subformulas evaluating to 0 should give a CF-ROF F ′ computing p′(x) = p(x) |T̄→0. Since
p′(.) has the monomials mT and mS, F ′ must compute both these monomials. To compute
mT , F ′ must have a leaf aixi for each i ∈ T (it has no other leaves anyway), and must
multiply all the leaves. So F ′ computes the single monomial mT and cannot compute mS, a
contradiction. ut

We now give a partial answer to Question 4 (or 3).
We approach one direction by associating with any monotone CF-ROF F a monotone

Boolean function f . Recall that a Boolean function f is monotone if and only if for all
ā, b̄ ∈ {0, 1}n, whenever ā � b̄ (in the pointwise ordering), then also f(ā) ≤ f(b̄). A minterm
(maxterm, respectively) of a monotone Boolean function is a minimal cardinality subset S of
variables such that assigning all variables in S to 1 (0, resp.) forces the function to evaluate
to 1 (0 resp.) irrespective of the assignment to the remaining variables. For a monotone
Boolean function f , let minterm(f) denote the set of all minterms of f and maxterm(f) the
set of all maxterms of f . It is easy to see that ∀S ∈ maxterm(f), ∀T ∈ minterm(f), S∩T 6= ∅.
The following result characterises monotone read-once Boolean functions with respect to its
minterms and maxterms:

Proposition 5 ([KLN+93]). A monotone Boolean function f is read-once if and only if

∀(S, T), S ∈ maxterm(f) and T ∈ minterm(f) =⇒ |S ∩ T | = 1.

In the above, note that when f is read-once, the read-once formula computing it is also
monotone.

Let p be a multilinear monotone polynomial computed by a CF-ROF. By Lemma 6, it
is computed by a monotone CF-ROF F . Construct the Boolean formula F ′ by doing the
following replacements

15

1. Change leaf label aixi (where ai > 0) to xi.
2. Change all × to ∧.
3. Change all + to ∨.

The formula F ′ is monotone and read-once, so the Boolean function f computed by it is
monotone and read-once. Hence by Proposition 5, if S is a maxterm of f and T is a minterm
of f , then |S ∩ T | = 1. However, by construction, the minterms of f are precisely the
monomials m of p. Similarly, the maxterms of f are precisely the multilinear monomials that
“hit” every monomial of p (they share a variable with every monomial of p). Call the minimal
such monomials the hitting monomials of p, and denote the collection of these monomials as
M∗(p).

Hitting(M(p)) = {S ⊆ [n] | ∀T ∈M(p), S ∩ T 6= ∅} .
M∗(p) = {S ∈ Hitting(M(p)) | ∀T ⊆ S, T 6= S ⇒ T 6∈ Hitting(M(p))} .

Remark 2. It should be noted that in the literature of combinatorial commutative algebra,
the square-free ideal generated by M∗(p) is known as the Alexander Dual ideal of the square-
free monomial ideal generated by M(p). See [MS05] for more details.

Lemma 8. Let p be a monotone polynomial computed by CF-ROF F . Let f denote the
Boolean function computed by the Boolean formula F ′ obtained from F as described above.
Then,

1. The monomials in M(p) are in bijective correspondence with the minterms of f .
2. The monomials in M∗(p) are in bijective correspondence with the maxterms of f .

Proof. We prove the first statement; the second one follows immediately since the maxterms
of a Boolean function are precisely the minimal hitting sets of the set of all minterms.

By Lemma 6, we can assume that the CF-ROF F computing p is monotone. We proceed
by induction on the number of leaves in F . The base case n = 1 is trivially true. For n > 1,
for some ◦ ∈ {+,×} (type of the root gate of F), F = F1 ◦ F2, and each Fi computes
polynomial pi. The variables of F1 and F2 are disjoint. By induction, M(pi) is in bijection
with minterm(fi), for associated Boolean function fi. Consider the two cases.

– ◦ = +; then p = p1 + p2, and f = f1 ∨ f2. So M(p) = M(p1) ∪M(p2). minterm(f) =
minterm(f1) ∪minterm(f2), and the statement follows.

– ◦ = ×; then p = p1 × p2, and f = f1 ∧ f2. Then

M(p) = {m1 ×m2 | m1 ∈M(p1),m2 ∈M(p2)}
minterm(f) = {m1 ∧m2 | m1 ∈ minterm(f1),m2 ∈ minterm(f2)}

Hence the statement follows.
ut

The above discussion (including Lemma 6, Lemma 7, Proposition 5, Lemma 8) amounts
to the following:

16

Lemma 9. Let p(x̄) be a multilinear monotone polynomial p(x̄) computable by a CF-ROF.
Then

1. (M(p),⊆) is an antichain, and
2. for every monomial m ∈ M(p), and every hitting monomial m∗ ∈ M∗(p), m and m∗

share exactly one variable. That is, |m ∩m∗| = 1.

If we could show that the converse is also true, then we would have a characterisation,
answering Question 4. Unfortunately, the converse is not true. For instance, consider the
polynomials p = x1y1 + 4x2y1 + 2x1y2 + 5x2y2 and q = x1y1 + x2y1 + x1y2 + x2y2 = (x1 +
x2)(y1+y2). Since q is computed by a monotone CF-ROF, its monomials satisfy the properties
in Lemma 9. Since q and p have the same set of monomials, the monomials of p also satisfy
these properties. But no CF-ROF, let alone monotone CF-ROF, can compute p; this follows
from Proposition 4 (consider the restriction y2 = 1). This is not surprising because the
coefficients play no role in the properties in Lemma 9 but are crucial for determining whether
a polyomial is an ROP.

However, we can establish a weaker version: for polynomials with 0-1 coefficients, the
converse is indeed true.

Lemma 10. Let p(x̄) be a multilinear monotone polynomial p(x̄) with 0-1 coefficients sat-
isfying

1. (M(p),⊆) is an antichain, and
2. for every monomial m ∈M(p), and every hitting monomial m∗ ∈M∗(p), |m ∩m∗| = 1.

Then p is computable by a CF-ROF.

Proof. Consider the monotone Boolean function f defined as

f(x) =
∨

T∈M(p)

∧i∈Txi.

Since M(p) is an antichain, every monomial in M(p) is a minterm of f . By construction,
f has no other minterms; minterm(f) = M(p). Hence maxterm(f) = M∗(p). Along with the
last property of p, we can hence invoke Proposition 5 to conclude that f is computed by a
monotone read-once Boolean formula F . Now construct arithmetic formula F ′ by replacing
all ∨ gates in F by + gates and ∧ gates by × gates. Then F ′ is the desired CF-ROF: the
read-once property of F ensures every minterm of f has exactly one parse tree4, and hence
F ′ correctly computes p. ut

Lemmas 9 and 10 give us the theorem:

Theorem 6. Let p(x̄) be any multilinear monotone polynomial with 0-1 coefficients. Then
p(x̄) is computable by a CF-ROF if and only if

1. (M(p),⊆) is an antichain, and
2. for every monomial m ∈M(p), and every hitting monomial m∗ ∈M∗(p), |m ∩m∗| = 1.

4 A parse tree is a sub-formula of F (i) containing the output gate, (ii) including, for every included ∨ gate, exactly
one child, and (iii) including, for every included ∧ gate, both its children.

17

7 Further Questions

– Can the results of [SV08] be extended to the case
∑k

i=1 f
ri
i , where f ′is are ROFs?

– Do the results of [AvMV11] extend to read-k-multilinear branching programs?
– Can a hardness of representation for Symn,d be transformed into a polynomial identity

test for a related model?
– Can the bound given by Theorem 5 be improved? As noted in Proposition 3, n + 1

0-justified depth-two ROPs are sufficient to represent any of the elementary symmetric
polynomials. We conjecture:

Conjecture 1. There is a constant ε > 0 such that if there are 0-justified depth-three
ROPs f1, . . . , fk, and integers e1, . . . ek ≥ 0 satisfying

k∑
i=1

f eii = Symn,n/2,

then k = Ω(nε).

– Similarly, how tight is the lower bound from Theorem 4? The question of obtaining even
a polynomial, let alone linear, upper bound on the number of CF-ROPs required to
represent the Symn,n/2 is wide open.

– Does the class of CF-ROPs have a deterministic polynomial-time blackbox PIT algorithm?
– Can we completely characterize polynomials computed by monotone CF-ROFs?

Acknowledgements

The authors gratefully acknowledge Amir Shpilka’s pointer regarding Theorem 2, when he
and the first author were at the Dagstuhl Seminar 14121 on Computational Complexity of
Discrete Problems. The authors are grateful to anonymous reviewers for their careful reading
of the manuscript, several comments to improve readability, and for pointing out why the
converse of Lemma 9 fails.

References

[Alo99] Noga Alon. Combinatorial nullstellensatz. Combinatorics, Probability and Computing, 8, 1999.
[AV08] Manindra Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In Foundations of Computer

Science (FOCS), pages 67–75, 2008.
[AvMV11] Matthew Anderson, Dieter van Melkebeek, and Ilya Volkovich. Derandomizing polynomial identity testing

for multilinear constant-read formulae. In CCC, pages 273–282, 2011.
[BE11] Markus Bläser and Christian Engels. Randomness efficient testing of sparse black box identities of un-

bounded degree over the reals. In Symposium on Theoretical Aspects of Computing (STACS), pages
555–566, 2011.

[BHS08] Markus Bläser, Moritz Hardt, and David Steurer. Asymptotically optimal hitting sets against polynomials.
In International Colloquium on Automata, Languages and Programming (ICALP) (1), pages 345–356,
2008.

[BOT88] Michael Ben-Or and Prasoon Tiwari. A deterministic algorithm for sparse multivariate polynominal
interpolation (extended abstract). In Symposium on Theory of Computing (STOC), pages 301–309, 1988.

18

[DL78] Richard A. Demillo and Richard J. Lipton. A probabilistic remark on algebraic program testing. Infor-
mation Processing Letters, 1978.

[DS07] Zeev Dvir and Amir Shpilka. Locally decodable codes with two queries and polynomial identity testing
for depth 3 circuits. SIAM Journal on Computing, 36(5):1404–1434, 2007.

[FMM12] Hervé Fournier, Guillaume Malod, and Stefan Mengel. Monomials in arithmetic circuits: Complete prob-
lems in the counting hierarchy. In Symposium on Theoretical Aspects of Computing (STACS), pages
362–373, 2012.

[GKKS13] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Arithmetic circuits: A chasm
at depth three. In Foundations of Computer Science (FOCS), pages 578–587, 2013.

[Kay12] Neeraj Kayal. An exponential lower bound for the sum of powers of bounded degree polynomials. ECCC,
19(TR12-081):81, 2012.

[KI04] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests means proving
circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004.

[KLN+93] Mauricio Karchmer, Nathan Linial, Ilan Newman, Michael E. Saks, and Avi Wigderson. Combinatorial
characterization of read-once formulae. Discrete Mathematics, 114(1-3):275–282, 1993.

[KS01] Adam Klivans and Daniel A. Spielman. Randomness efficient identity testing of multivariate polynomials.
In Symposium on Theory of Computing (STOC), pages 216–223, 2001.

[KS07] Neeraj Kayal and Nitin Saxena. Polynomial identity testing for depth 3 circuits. Computational Com-
plexity, 16(2):115–138, 2007.

[MRS14] Meena Mahajan, B. V. Raghavendra Rao, and Karteek Sreenivasaiah. Monomials, multilinearity and iden-
tity testing in simple read-restricted circuits. Theoretical Computer Science, 524:90–102, 2014. preliminary
version in MFCS 2012.

[MS05] Ezra Miller and Bernd Sturmfels. Combinatorial Commutative Algebra. Springer, 2005.
[RS11] B. V. Raghavendra Rao and Jayalal M. N. Sarma. Isomorphism testing of read-once functions and

polynomials. In Foundations of Software Technology and Theoretical Computer Science (FSTTCS), pages
115–126, 2011.

[RS13] B. V. Raghavendra Rao and Jayalal M. N. Sarma. Isomorphism testing of read-once functions and
polynomials. submitted manuscript, 2013.

[RY11] Ran Raz and Amir Yehudayoff. Multilinear formulas, maximal-partition discrepancy and mixed-sources
extractors. Journal of Computer and System Sciences, 77(1):167–190, 2011.

[Sax14] Nitin Saxena. Progress on polynomial identity testing - ii. CoRR, abs/1401.0976, 2014.
[Sch80] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. Journal of the ACM,

27(4):701–717, 1980.
[SV08] Amir Shpilka and Ilya Volkovich. Read-once polynomial identity testing. In Symposium on Theory of

Computing (STOC), pages 507–516, 2008. See also ECCC TR-2010-011.
[SV10] Amir Shpilka and Ilya Volkovich. Read-once polynomial identity testing. Technical Report 011, ECCC,

2010. Preliminary version in STOC 2008.
[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open questions.

Foundations and Trends in Theoretical Computer Science, 5(3):207–388, 2010.
[Val79] Leslie G. Valiant. Negation can be exponentially powerful. In Symposium on Theory of Computing

(STOC), pages 189–196, 1979.
[Vol14] Ilya Volkovich. Characterizing arithmetic read-once formulae. ArXiv, arXiv:1408.1995, 2014.
[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In EUROSAM, pages 216–226, 1979.

19

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

