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Abstract. An arithmetic read-once formula (ROF) is a formula (circuit
of fan-out 1) over +, X where each variable labels at most one leaf. Every
multilinear polynomial can be expressed as the sum of ROFs. In this
work, we prove, for certain multilinear polynomials, a tight lower bound
on the number of summands in such an expression.

1 Introduction

Read-once formulas (ROF) are formulas (circuits of fan-out 1) in which each
variable appears at most once. A formula computing a polynomial that depends
on all its variables must read each variable at least once. Therefore, ROFs com-
pute some of the simplest possible functions that depend on all of their variables.
The polynomials computed by such formulas are known as read-once polynomi-
als (ROPs). Since every variable is read at most once, ROPs are multilinear !.
But not every multilinear polynomial is a ROP. For example, z1xo+zox3+x123.

We investigate the following question: Given an n-variate multilinear polyno-
mial, can it be expressed as a sum of at most k¥ ROPs? It is easy to see that every
bivariate multilinear polynomial is a ROP. Any tri-variate multilinear polyno-
mial can be expressed as a sum of 2 ROPs. With a little thought, we can obtain
a sum-of-3-ROPs expression for any 4-variate multilinear polynomial. An easy
induction on n then shows that any n-variate multilinear polynomial, for n > 4,
can be written as a sum of at most 3 x 2°~4 ROPs. Also, the sum of two mul-
tilinear monomials is a ROP, so any n-variate multilinear polynomial with M
monomials can be written as the sum of [M/2] ROPs. We ask the following
question: Does there exist a strict hierarchy among k-sums of ROPs? Formally,

Problem 1. Consider the family of n-variate multilinear polynomials. For 1 <
k<3 x27 4 is 32" .ROP strictly more powerful than S2*~'-ROP? If so, what
explicit polynomials witness the separations?

We answer this affirmatively for & < [n/2]. In particular, for k = [n/2], there
exists an explicit n-variate multilinear polynomial which cannot be written as a
sum of less than & ROPs but it admits a sum-of-k-ROPs representation.

1 A polynomial is said to be multilinear if the individual degree of each variable is at
most one.
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Note that n-variate ROPs are computed by linear sized formulas. Thus if an
n-variate polynomial p is in Zk -ROP, then p is computed by a formula of size
O(kn) where every intermediate node computes a multilinear polynomial. Since
superpolynomial lower bounds are already known for the model of multilinear
formulas [8], we know that for those polynomials (including the determinant and
the permanent), a Zk -ROP expression must have k at least quasi-polynomial in
n. However the best upper bound on k for these polynomials is only exponential
in n, leaving a big gap between the lower and upper bound. On the other hand,
our lower bound is provably tight.

A counting argument shows that a random multilinear polynomial requires
exponentially many ROPs; there are multilinear polynomials requiring k =
2(2"/n?). Our general upper bound on k is O(2"), leaving a gap between the
lower and upper bound. One challenge is to close this gap. A perhaps more inter-
esting challenge is to find explicit polynomials that require exponentially large
k in any Zk -ROP expression.

A natural question to ask is whether stronger lower bounds than the above
result can be proven. In particular, to separate Zk_l -ROP from Zk -ROP, how
many variables are needed? The above hierarchy result says that 2k — 1 variables
suffice, but there may be simpler polynomials (with fewer variables) witnessing
this separation. We demonstrate another technique which improves upon the
previous result for £ = 3, showing that 4 variables suffice. In particular, we
show that over the field of reals, there exists an explicit multilinear 4-variate
multilinear polynomial which cannot be written as a sum of 2 ROPs. This lower
bound is again tight, as there is a sum of 3 ROPs representation for every 4-
variate multilinear polynomial.

Our results and techniques
We now formally state our results.

Theorem 1. For each n > 1, the n-variate degree n — 1 symmetric polynomial
Sn=1 cannot be written as a sum of less than [n/2] ROPs, but it can be written
as a sum of [n/2] ROPs.

The idea behind the lower bound is that if g can be expressed as a sum
of less than [n/2] ROFs, then one of the ROFs can be eliminated by taking
partial derivative with respect to one variable and substituting another by a field
constant. We then use the inductive hypothesis to arrive at a contradiction. This
approach necessitates a stronger hypothesis than the statement of the theorem,
and we prove this stronger statement in Lemma 3 as part of Theorem 7.

Theorem 2. There is an explicit 4-variate multilinear polynomial f which can-
not be written as the sum of 2 ROPs over R.

The proof of this theorem mainly relies on a structural lemma (Lemma 6)
for sum of 2 read-once formulas. In particular, we show that if f can be written
as a sum of 2 ROPs then one of the following must be true: 1. Some 2-variate



restriction is a linear polynomial. 2. There exist variables z;, z; € Var(f) such
that the polynomials ;,x;, 0z, (f), 0z, (f),1 are linearly dependent. 3. We can
represent f as f = l;-lo+l13-l4 where (I1,12) and (I3, l4) are variable-disjoint linear
forms. Checking the first two conditions is easy. For the third condition we use the
commutator of f, introduced in [9], to find one of the I;’s. The knowledge of one of
the [;’s suffices to determine all the linear forms. Finally, we construct a 4-variate
polynomial which does not satisfy any of the above mentioned conditions. This
construction does not work over algebraically closed fields. We do not yet know
how to construct an explicit 4-variate multilinear polynomial not expressible as
the sum of 2 ROPs over such fields, or even whether such polynomials exist.

Related work

Despite their simplicity, ROFs have received a lot of attention both in the arith-
metic as well as in the Boolean world [5,4,2,3,9,10]. The most fundamental
question that can be asked about polynomials is the polynomial identity test-
ing (PIT) problem: Given an arithmetic circuit C, is the polynomial computed
by C identically zero or not. PIT has a randomized polynomial time algorithm:
Evaluate the polynomial at random points. It is not known whether PIT has
a deterministic polynomial time algorithm. In 2004, Kabanets and Impagliazzo
established a connection between PIT algorithms and proving general circuit
lower bounds [6]. However, for restricted arithmetic circuits, no such result is
known. For instance, consider the case of multilinear formulas. Even though
strong lower bounds are known for this model, there is no efficient deterministic
PIT algorithm. For this reason, PIT was studied for the weaker model of sum of
read-once formulas. Notice that multilinear depth 3 circuits are a special case of
this model.

Shpilka and Volkovich gave a deterministic PIT algorithm for the sum of a
small number of ROPs [10]. Interestingly, their proof uses a lower bound for a
weaker model, that of 0-justified ROFs (setting some variables to zero does not
kill any other variables). In particular, they show that the polynomial M, =
T1%2 - - - Ty, consisting of just a single monomial, cannot be represented as a sum
of less than n/3 weakly justified ROPs. More recently, Kayal showed that if M,
is represented as a sum of powers of low degree (at most d) polynomials, then
the number of summands is at most exp(£2(n/d)) [7]. He used this lower bound
to give a PIT algorithm. Our lower bound from Theorem 1 is orthogonal to both
these results and is provably tight. An interesting question is whether it can be
used to give a PIT algorithm.

Similar to ROPs, one may also study read-restricted formulas. For any num-
ber k, RkFs are formulas that read every variable at most k times. For k > 1,
RkFs for £ > 2 need not be multilinear, and thus are strictly more powerful
than ROPs. However, even when restricted to multilinear polynomials, they are
more powerful; in [1], Anderson, Melkebeek and Volkovich show that there is a
multilinear n-variate polynomial in R2F requiring {2(n) summands when written
as a sum of ROPs.



1.1 Organization

The paper is organized as follows. In Section 2 we give the basic definitions and
notations. In Section 3, we establish Theorem 1. showing that the hierarchy of
k-sums of ROPs is proper. In Section 4 we establish Theorem 2, showing an
explicit 4-variate multilinear polynomial that is not expressible as the sum of
two ROPs. We conclude in Section 5 with some further questions that are still
open.

2 Preliminaries

For a positive integer n, we denote [n] = {1,2,...,n}. For a polynomial f, by
Var(f) we mean the set of variables occurring in f. For a polynomial f(z1,za,...,2n),
a variable z; and a field element «, we denote by f |z,=« the polynomial result-
ing from setting x; = a. Let f be an n-variate polynomial. We say that ¢ is a
k-variate restriction of f if g is obtained by setting some variables in f to field
constants and |Var(g)| < k. A set of polynomials fi, fa,..., fr over the field F

is said to be linearly dependent if there exist constants o, s, ..., ax such that
Z a; f; = 0.
i€[k]

The n-variate degree k elementary symmetric polynomial, denoted S¥. is
defined as follows:

SS(Il,...,xn) = Z sz

AC[n),|Al=k  i€A

A circuit is a directed acyclic graph with variables and field constants label-
ing the leaves, field operations +, x labeling internal nodes, and a designated
sink node. Each node naturally computes a polynomial; the polynomial at the
designated sink node is the polynomial computed by the circuit. If the underly-
ing undirected graph is a tree, then the circuit is called a formula. A formula is
said to be read-k if each variable appears as a leaf label at most k times.

For read-once formulas, it is more convenient to use the following “normal
form” from [10].

Definition 1 (Read-once formulas [10]). A read-once arithmetic formula
(ROF) over a field F in the variables {x1,x2,...,Tn} is a binary tree as follows.
The leaves are labeled by variables and internal nodes by {+, x}. In addition,
every node is labeled by a pair of field elements (o, B) € F2. Each input variable
labels at most once leaf. The computation is performed in the following way. A
leaf labeled by x; and (o, B) computes ax;+ 6. If a node v is labeled by x € {+, x}
and («, B) and its children compute the polynomials f1 and f2, then v computes

afi* fa) + 6.

We say that f is a read-once polynomial (ROP) if it can be computed by a ROF,
and is in Ek -ROP if it can be expressed as the sum of at most £ ROPs.



Proposition 1. For everyn, every n-variate multilinear polynomial can be writ-
ten as the sum of at most [3 x 2"~4] ROPs.

Proof. For n =1,2,3 this is easy to see.

For n = 4, let f(X) be given by the expression ZS§[4] asxg, where zg
denotes the monomial [ ], g ;. We want to express f as fi + fo + f3, where each
fi is an ROP. If there are no degree 2 terms, we use the following:

fi =ag +a171 + asw2 + asrs + asry
fa = z122(a12323 + a12424)

f3 = x3xa(a13421 + a234T2 + Q123421 T2)

Otherwise, assume without loss of generality that a;3 # 0. Then define

ZaSHmi + Z GSHJ%

SC[2] €S 0£SC{3,4} i€S

h

a14 @134
fo = (a1371 + a23x2 + a1232122) - | — x4 + 23 + —— 374

a13 a13
_ a14Q23 Q140123
fa=momy || G2a — —— | + 21 (124 — —
a13 a13
1134023 11340123
+ 23| a3y — — | + 123 | G1234 — ———
@13 a13

Since any bivariate multilinear polynomial is a ROP, each f; is indeed an ROP.
For n > 4, express f as x,9 + h where g = 0, f and h = f |, -0, and use
induction, along with the fact that g does not have variable z,,. a

Proposition 2. For every n, every n-variate multilinear polynomial with M
monomials can be written as the sum of at most f%l ROPs.

Proof. For S C [n], let x5 denote the multilinear monomial [], g 2;. For any
S, T C [n], the polynomial axs + brr equals xsnr(azs\r + brp\g) and hence is
M

an ROP. Pairing up monomials in any way gives the [%-] bound.

The partial derivative of a polynomial is defined naturally over continuous
domains. The definition can be extended in more than one way over finite fields.
However, for multilinear polynomials, these definitions coincide. We consider
only multilinear polynomials in this paper, and the following formulation is most
useful for us: The partial derivative of a polynomial p € F[zq, za,...,z,] with
respect to a variable x;, for i € [n], is given by 0.,(p) 2 p |z,=1 —P |z,=0. For
multilinear polynomials, the sum, product, and chain rules continue to hold.

Fact 3 (Useful Fact about ROPs [10]) The partial derivatives of ROPs are
also ROPs.

Proposition 3 (3-variate ROPs). Let f € Flx1, 22, 23] be a 3-variate ROP.
Then there exists i € [3] and a € F such that deg(f |4,=a) < 1.



Proof. Assume without loss of generality that f = fi(x1) * fo(22,z3) + ¢ where
* € {+,x} and c € F. If x = +, then for all a € F, deg(f |z,=a) < L. If x = X,
deg(f ‘leO) <1l O

We will also be dealing with a special case of ROFs called multiplicative
ROFs defined below:

Definition 2 (Multiplicative Read-once formulas). A ROF is said to be a
multiplicative ROF if it does not contain any addition gates. We say that f is a
multiplicative ROP if it can be computed by a multiplicative ROF.

Fact 4 ([10] (Lemma 3.10)) A ROP p is a multiplicative ROP if and only if
for any two variables x;,x; € Var(p), 05,04, (p) # 0.

Multiplicative ROPs have the following useful property, observed in [10]. (See
Lemma 3.13 in [10]. For completeness, and since we refer to the proof later, we
include a proof sketch here.)

Lemma 1 ([10]). Let g be a multiplicative ROP with [Var(g)| > 2. For every
x; € Var(g), there exists x; € Var(g) \ {z;} and v € F such that 9,,(g)

:l)i:FY: O,

Proof. Let ¢ be a multiplicative ROF computing g. Pick any z; € Var(g). As
|[Var(p)| = |Var(g)| > 2, ¢ has at least one gate. Let v be the unique neighbour
(parent) of the leaf labeled by x;, and let w be the other child of v. We denote
by P,(Z) and P, (%) the ROPs computed by v and w. Since v is a x gate and
we use the normal form from Defintion 1, P, is of the form (az; + 8) x P, for
some « # 0.

Replacing the output from v by a new variable y, we obtain from ¢ another
multiplicative ROF 1) in the variables {y} UVar(g) \ Var(P,). Let 1) compute the
polynomial @; then g = Q |y=p, -

Note that the sets Var(Q), {z;}, Var(P,) are non-empty and disjoint, and
form a partition of {y,z1,...,z,}.

By the chain rule, for every variable z; € Var(P,,) we have:

02;(9) = 0y(Q) - 0o, (Py) = 9y(Q) - (awi + ) - O ; (Pu)
It follows that for v = —f/a, 0z,(9) |2;== 0. O

Along with partial derivatives, another operator that we will find useful is the
commutator of a polynomial. The commutator of a polynomial has previously
been used for polynomial factorization and in reconstruction algorithms for read-
once formulas, see [9].

Definition 3 (Commutator [9]). Let P € Flzy,x2,...,2,] be a multilinear
polynomial and let i,j € [n]. The commutator between x; and x;, denoted A;; P,
is defined as follows.

AZJP = (P :Ei:O,E]’ZO) : (P Zizl,szl) - (P ZI},;:U,I}j:l) : (P Iizl,zj:[))



The following property of the commutator will be useful to us.

Lemma 2. Let f = l1(x1,22) - la(x3,24) + l3(x1,23) - la(x2, x4) where the 1;’s
are linear polynomials. Then ly divides Nq2(f).

Proof. First, we show that Aq2(l3-l4) = 0. Assume I3 = Cx1+m and Iy = Dza+n
where C, D € F and m,n are linear polynomials in z3, x4 respectively. By
definition, Ay2(l5 - l4) = mn(C +m)(D 4+ n) — m(D + n)(C + m)n = 0.

Now we write A1of explicitly. Let [y = axy + bxo + ¢. By definition,

Avaf = Daa(lily + U3ls)
= (cla+mn)((a+b+c)la + (C+m)(D+n))—
(b4 )la+m(D+n)) - ((a+ c)la +n(C +m))
=13(c(a+b+c)—(a+c)(b+c)
+l2(c(CH+m)(D+n)+mn(a+b+c) —nb+c)(C+m)—m(a+c)(D+n))

It follows that Iy divides Ao f. a

3 A proper hierarchy in Zk -ROP

This section is devoted to proving Theorem 1.

We prove the lower bound for S?~! by induction. This necessitates a stronger
induction hypothesis, so we will actually prove the lower bound for a larger class
of polynomials. For any a, 3 € F, we define the polynomial M8 = aS?+387 1.
We note the following recursive structure of M27:

(MzVB) ‘ﬂinz’Y = Mzz-i_ﬁ’ﬂw .
O, (M) = MPy

We show below that each M%7 is expressible as the sum of [n/2] ROPs
(Lemma 4); however, for any non-zero 8 # 0, M2 cannot be written as the
sum of fewer than [n/2] ROPs (Lemma 3). At a =0, 8 = 1, we get S"~1, the
simplest such polynomials, establishing Theorem 1.

Lemma 3. Let F be a field. For every a € F and 8 € F\ {0}, the polynomial
MP = aSn + BSPL cannot be written as a sum of k < n/2 ROPs.

Proof. The proof is by induction on n. The cases n = 1,2 are easy to see. We

now assume that k£ > 1 and n > 2k. Assume to the contrary that there are ROPs

fi, f2y -y fx over Flzy, @9, ..., 2,] such that f = Z fimn = M®P . The main
me|k]

steps in the proof are as follows:

1. Show using the inductive hypothesis that for all m € [k] and a,b € [n],
Oy O, (fm) # 0.



2. Conclude that for all m € [k], f, must be a multiplicative ROP. That is,
the ROF computing f,, does not contain any addition gate.

3. Use the multiplicative property of fi to show that fr can be eliminated
by taking partial derivative with respect to one variable and substituting
another by a field constant. If this constant is non-zero, we contradict the
inductive hypothesis.

4. Otherwise, use the sum of (multiplicative) ROPs representation of M2 to
show that the degree of f can be made at most (n — 2) by setting one of the
variables to zero. This contradicts our choice of f since 5 # 0.

We now proceed with the proof.

Claim 5 For all m € [k] and a,b € [n], Oy, Oy, (fm) # 0.

Proof. Suppose to the contrary that 0,04, (fm) = 0. Assume without loss of
generality that a =n, b=n—1, m =k, so 0,05, ,(fx) = 0. Then,

K
MOP = f = Z fim (by assumption)

m=0

n

k
O, Op,_, (MOF) = Z 0z, 0z, _,(fm) (by additivity of partial derivative)
m=0

k—1
Mﬁfz = Z Oz, Ou,,_,(fm) (by recursive structure of M.,
m=0

and since 9, 0, , (fr) =0)

Thus M'", can be written as the sum of k — 1 polynomials, each of which is a
ROP (by Fact 3). By the inductive hypothesis, 2(k — 1) > (n — 2). Therefore,
k > n/2 contradicting our assumption. a

From Claim 5 and Fact 4, we can conclude:

Observation 6 For all m € [k], fm is a multiplicative ROP.

Observation 6 and Lemma 1 together imply that for each m € [k] and a € [n],
there exist b # a € [n] and v € F such that 0, (fm) |2,=y= 0. There are two
cases to consider.

First, consider the case when for some m,a and the corresponding b,y, it
turns out that v % 0. Assume without loss of generality that m =k, a =n — 1,
b =n,sothat 0., (fi) |2,_,=v= 0. (For other indices the argument is symmetric.)



Then

MSF = Z fi (by assumption)

i€[k]

Oz, (Mﬁﬂ ) lop 1=y = Z Oz, (fi) lan_1=~ (by additivity of partial derivative)
i€[k]

2’?1 len 1=y = Z Oz, (fi) len_1=y (since 7 is chosen as per Lemma 1)
i€lk—1]
Miléﬂm = Z Oz, (fi) len_1=v (recursive structure of M,,)

i€[k—1]

Therefore, M275757 can be written as a sum of at most k — 1 polynomials,

each of which is a ROP (Fact 3). By the inductive hypothesis, 2(k — 1) > n — 2
implying that k£ > n/2 contradicting our assumption.

(Note: the term M%7 is what necessitates a stronger induction hypoth-
esis than working with just « = 0,8 = 1.)

It remains to handle the case when for all m € [k] and a € [n], the corre-
sponding value of 7 to some z; (as guaranteed by Lemma 1) is 0. Examining the
proof of Lemma 1, this implies that each leaf node in any of the ROFs can be
made zero only by setting the corresponding variable to zero. That is, the linear
forms at all leaves are of the form a;x;.

Since each ¢,, is a multiplicative ROP, setting z,, = 0 makes the variables
in the polynomial computed at the sibling of the leaf node a,x, redundant.
Hence setting x, = 0 reduces the degree of each f,, by at least 2. That is,
deg(f |o,—0) < n—2. But M®P |, _o equals M?° = 88"~} which has degree

n — 1, contradicting the asusmption that f = M. O
The following lemma shows that the above lower bound is indeed optimal.

Lemma 4. For any field F and o, 8 € F, the polynomial f = aS™ + 3S7~1 can
be written as a sum of at most [n/2] ROPs.

Proof. For n odd, this follows immediately from Proposition 2.
If n is even, say n = 2k, then define the following polynomials:

forick—1], fi= (w21 +mz2)-| [] =»
ken]
k#£2i,2i—1
fr = (Brar—1 + Brar + awop_172t) - H T,
me(n]
k#£2k,2k—1

Then we have f = 8(f1 + fo+ ...+ fe—1) + [



Note that each f; is an ROP; for ¢ < k this is immediate, and for ¢ = k, the
factor involving xo;_1 and xoy is bivariate multilinear and hence an ROP. Thus
we have a representation of f as a sum of k = [n/2] ROPs. O

Combining the results of Lemma 3 and Lemma 4, we obtain the following
theorem. At @ = 0,8 = 1, it yields Theorem 1.
Theorem 7. For eachn > 1, any « € F and any any 8 € F\{0}, the polynomial
aS™ + 8BS is in S -ROP but not in """ -ROP, where k = [n/2].

4 A 4-variate multilinear polynomial not in 22 -ROP

This section is devoted to proving Theorem 2. We want to find an explicit 4-
variate multilinear polynomial that is not expressible as the sum of 2 ROPs.

Note that the proof of Theorem 1 does not help here, since the polynomials
separating 22 -ROP from Z?’ -ROP have 5 or 6 variables. One obvious approach
is to consider other combinations of the symmetric polynomials. This fails too;
we can show that all such combinations are in 22 -ROP.

Proposition 4. For every choice of field constants a; for each i € {0,1,2,3,4},
the polynomial E?:o a;Si can be expressed as the sum of two ROPs.

Proof. Let g = >, a;S;. We obtain the expression for ¢ in different ways in 4
different cases.

Case Expression

as=a3 =0 g=a0—|—a15’i—|—a45ff

as = 0; g= <a1 + a3x1x2)(m3 + x4 + %Z’g(&;))

az # 0 + <(a1 + agzsxg)(x1 + T2 — %)) +c

as # 0; asg = (a1 + ag(x1 + x2) + azz1x2) (a1 + as(xs + x4) + azxszy)

azay = a3 + (a% —aja3)(z122 + 1739:4)) +c

az # 0; azg = (a1 + az(x1 + x2) + azz122) (a1 + az(ws + x4) + azrszy)
2_

azay # a3 + ($1$2 + ﬁ) ((a2a4 — a3)xsxy + a3 — a1a3) +c

In the above, c is an appropriate field constant, and can be added to any ROP.
Notice that the first expression is a sum of two ROPs since it is the sum of
a linear polynomial and a single monomial. All the other expressions have two
summands, each of which is a product of variable-disjoint bivariate polynomials
(ignoring constant terms). Since every bivariate polynomial is a ROP, these
representations are also sums of 2 ROPs. a

Instead, we define a polynomial that gives carefully chosen weights to the
monomials of S7. Let f*%7 denote the following polynomial:
FOPY = a - (z1m2 + 2324) + B (2123 + 224) + 7 - (2124 + 2273).

To keep notation simple, we will omit the superscript when it is clear from the
context. In the theorem below, we obtain necessary and sufficient conditions on
«, B,y under which f can be expressed as a sum of two ROPs.



Theorem 8 (Hardness of representation for sum of 2 ROPs). Let f be
the polynomial %7 = a - (x129 + x324) + B - (T125 + Toxy) + 7 - (2124 + 2o23).
The following are equivalent:

1. f is not expressible as the sum of two ROPs.
2. «, B, satisfy all the three conditions C1, C2, C8 listed below.

C1: apy #0.
C2: (o® = B%)(B* —7*)(v* — a?) #0.
C3: None of the equations X* —d; =0, i € [3], has a root in F, where

di = (+a2 — B2 — ~?)? — (2B7)?
dy = (—a? + % — )% — (2a)?
d3 = (—a?® — % +192)? — (2a8)?

Remark 1. 1. Tt follows, for instance, that 2(z1x2 + x324) + 4(z123 + T24) +
5(x124 + xox3) cannot be written as a sum of 2 ROPs over reals, yielding
Theorem 2.

2. If F is an algebraically closed field, then for every «, 3,7, condition C3 fails,
and so every f®#7 can be written as a sum of 2 ROPs. However we do
not know if there are other examples, or whether all multilinear 4-variate
polynomials are expressible as the sum of two ROPs.

3. Even if F is not algebraically closed, condition C3 fails if for each a € F, the
equation X? = ¢ has a root.

Our strategy for proving Theorem 8 is a generalization of an idea used in [11].
While Volkovich showed that 3-variate ROPs have a nice structural property in
terms of their partial derivatives and commutators, we show that the sums of
two 4-variate ROPs have at least one nice structural property in terms of their
bivariate restrictions, partial derivatives, and commutators. Then we show that
provided a, 3,7 are chosen carefully, the polynomial f*#7 will not satisfy any
of these properties and hence cannot be a sum of two ROPs.

To prove Theorem 8, we first consider the easier direction, 1 = 2, and prove
the contrapositive.

Lemma 5. If a, 8,7 do not satisfy all of C1,C2,C3, then the polynomial f can
be written as a sum of 2 ROPs.

Proof. C1 false: If any of «, 8, is zero, then by definition f is the the sum of
at most two ROPs.

C2 false: Without loss of generality, assume o? = 82, so @ = +4. Then f is
computed by f = - (1 £ z4)(x2 £ x3) + 7 (174 + T273).

C1 true; C3 false: Without loss of generality, the equation X2 —d; = 0 has a
root 7. We try to express f as

a(ry — axs)(xe — bxg) + By — cxo) (w3 — dxy).



The coefficients for x3x4 and zox4 force ab =1, c¢d = 1, giving the form

a(zy — axg)(vy — ém) + B(x1 — cxa) (a3 — %m).

Comparing the coefficients for xyx4 and xox3, we obtain the constraints

—g—éz% —aa—fe=vy
a Cc

: —¥—Bc
Expressing a as —

the equation

, we get a quadratic constraint on ¢; it must be a root of

A2 2 2
el S SRR
By
Using the fact that 72 = d; = (—a? + 82 + v%)% — (287)?, we see that indeed
this equation does have roots. The left-hand size splits into linear factors, giving

Z% +

1 252 .2
(Z—5)(Z_5):0 where § = & 52ﬁ77 T
It is easy to verify that § # 0 and § # —% (since a # 0). Further, define
W= w. Then p is well-defined (because « # 0) and is also non-zero. Now

setting ¢ = § and a = u, we have satisfied all the constraints and so we can write
f as the sum of 2 ROPs as follows:

f=alxy — pxs)(z2 — im) + B(z1 — dxa) (x5 — %m).
O

Now we consider the harder direction: 2 = 1. Again, we consider the con-
trapositive. We first show (Lemma 6) a structural property satisfied by every
polynomial in ZZ -ROP: it must satisfy at least one of the three properties
C1',C2',C3 described in the lemma. We then show (Lemma 7) that under the
conditions C1,C2,C3 from the theorem statement, f does not satisfy any of
C1',C2',C3; it follows that f is not expressible as the sum of 2 ROPs.

Lemma 6. Let g be a 4-variate multilinear polynomial over the field F which can
be expressed as a sum of 2 ROPs. Then at least one of the following conditions
18 true:

C1’: There exist i,j € [4] and a,b € F such that g |z;=q,c;=b is linear.

C2’: There exist i,j € [4] such that x;,7;,0,,(9),0x,;(g),1 are linearly depen-
dent.

C3’: g=11-la+13-14 wherel;s are linear forms, 1 and ly are variable-disjoint,
and lz and ly are variable-disjoint.



Proof. Let ¢ be a sum of 2 ROFs computing g. Let v; and vy be the children of
the topmost + gate. The proof is in two steps. First, we reduce to the case when
|Var(v1)| = |Var(ve)| = 4. Then we use a case analysis to show that at least one
of the aforementioned conditions hold true. In both steps, we will repeatedly
use Proposition 3, which showed that any 3-variate ROP can be reduced to a
linear polynomial by substituting a single variable with a field constant. We now
proceed with the proof.

Suppose |Var(vy)| < 3. Applying Proposition 3 first to v; and then to the
resulting restriction of vo, one can see that there exist ¢,j € [4] and a,b € F such
that g |z,=q,2;=b is a linear polynomial. So condition C1’ is satisfied.

Now assume that |Var(vy)| = |Var(ve)| = 4. Depending on the type of gates
of v1 and vy, we consider 3 cases.

Case 1: Both v; and vy are x gates. Then g can be represented as M7 - My +
Ms - My where (My, Ms) and (Ms, My) are variable-disjoint ROPs.

Suppose that for some i, [Var(M;)| = 1. Then, g |p,—0 is a 3-variate restric-
tion of f and is clearly an ROP. Applying Proposition 3 to this restriction, we
see that condition C'1’ holds.

Otherwise each M; has |Var(M;)| = 2.

Suppose (M7, M) and (M3, M) define distinct partitions of the variable set.
Assume without loss of generality that g = My (21, x2) - Ma(x3,x4) + M3(x1, x3) -
My (2o, 24). If all M;s are linear forms, it is clear that condition C3’ holds. If not,
assume that M; is of the form [y (z1) - m1(x2) + ¢1 where I;,m; are linear forms
and ¢; € F. Now g |, 0= c1 - Ma(23, 4) + M5(23) - My(z2,24). Either set z3 to
make M} zero, or, if that is not possible because M} is a non-zero field constant,
then set x4 — b where b € F. In both cases, by setting at most 2 variables, we
obtain a linear polynomial, so C'1’ holds.

Otherwise, (M7, M3) and (Ms, My) define the same partition of the vari-
able set. Assume without loss of generality that g = M (z1,z2) - Ma(xs,24) +
Ms(x1,29) - My(x3,z4). If one of the M;s is linear, say without loss of generality
that M; is a linear form, then ¢ |p,—0 is a 2-variate restriction which is also
a linear form, so C1’ holds. Otherwise, none of the M;s is a linear form. Then
each M; can be represented as [; - m; + ¢; where [;, m; are univariate linear forms
and ¢; € F. We consider a 2-variate restriction which sets l; and my4 to 0. (Note
that Var(ly) N Var(mg4) = 0.) Then the resulting polynomial is a linear form, so
C'1’ holds.

Case 2: Both v; and vy are + gates. Then g can be written as f = My + M> +
M3 + My where (My, Ms) and (Ms, M) are variable-disjoint ROPs.

Suppose (M;, Ms) and (M3, My) define distinct partitions of the variable set.

Suppose further that there exists M; such that |Var(M;)| = 1. Without loss
Of generality, Var(My) = {z1}, {z1,22} C Var(M3), and z3 € Var(My). Any
setting to x2 and x4 results in a linear polynomial, so C'1’ holds.

So assume without loss of generality that g = Mj(x1,z2) + Ma(x3,24) +
Ms(z1,x3) + My(z2,24). Then for a,b € F, g |3, =a,2,=b 1S a linear polynomial,
so C'1’ holds.



Otherwise, (M7, Ms) and (M3, My) define the same partition of the variable
set. Again, if say [Var(M;)| = 1, then setting two variables from My shows
that C'1" holds. So assume without loss of generality that g = M;(z1,22) +
Ms(zs, x4) + M3(x1,x2) + Ma(x3,24). Then for a,b € F, ¢ |4 =q,z5=p 1S a linear
polynomial, so again C'1’ holds.

Case 3: One of vy, vs is a 4+ gate and the other is a x gate. Then g can be written
as g = My + Ms + M3 - My where (M, M) and (M3, My) are variable-disjoint
ROPs. Suppose that [Var(Ms)| = 1. Then g |p,—0 is a 3-variate restriction
which is a ROP. Using Proposition 3, we get a 2-variate restriction of g which
is also linear, so C'1’ holds. The same argument works when |Var(M4)| = 1. So
assume that M3 and M, are bivariate polynomials.

Suppose that (M;, Mz) and (M35, My) define distinct partitions of the variable
set. Assume without loss of generality that g = M;+ Mo+ M;z(x1, x2) - My(x3,24),
and x3, x4 are separated by My, M. Then g |pz,—0 is a 2-variate restriction which
is also linear, so C1’ holds.

Otherwise (M;,Ms) and (Ms, My) define the same partition of the vari-
able set. Assume without loss of generality that g = M (21, z2) + Ma(x3,24) +
Ms(x1, 22) - My(x3,24). If My (or M) is a linear form, then consider a 2-variate
restriction of g which sets My (or M3) to 0. The resulting polynomial is a linear
form. Similarly if M3 (or My) is of the form [ - m + ¢ where I,m are univariate
linear forms, then we consider a 2-variate restriction which sets [ to 0 and some
x; € Var(My) to a field constant. The resulting polynomial again is a linear
form. In all these cases, C'1’ holds.

The only case that remains is that M3 and M, are linear forms while M; and
M2 are not. Assume that Ml = (0,11'1 +bl)(a2x2+b2)+c and Mg = asx1 +b3$2+
c3. Then 9;,(g) = a1(agwa + ba) + azMy and 0, (g) = (a121 + b1)ag + by My. Tt
follows that b3 - 0., (9) — a3 - 0z, (9) + a1a2a3x1 — ajasbszy = a1babs —biasaz € T,
and hence the polynomials 1, 2, 04, (9), Oz,(g) and 1 are linearly dependent.
Therefore, condition C2’ of the lemma is satisfied. a

Lemma 7. If o, 8,7 satisfy conditions C1,C2,C3 from the statement of Theo-
rem 8, then the polynomial f*P7 does not satisfy any of the properties C1',C2',C'3/
from Lemma 6.

Proof. C1 = —C1’: Since a8y # 0, f contains all possible degree 2 monomials.
Hence after setting z; = a and x; = b, the monomial zz; where k,1 € [4]\{4, 5}
still survives.

C2 = —C2': The proof is by contradiction. Assume to the contrary that for
some 1, j, without loss of generality say for ¢ = 1 and j = 2, the polynomials
X1, T2, 0z, (f), 0z, (f), 1 are linearly dependent. Note that 0., (f) = axs + Bzs +
~vx4 and O, (f) = axy + yas + Bxy. This implies that the vectors (1,0,0,0,0),
(0,1,0,0,0), (0,, 3,7,0), (a,0,7v,5,0) and (0,0,0,0,1) are linearly dependent.
This further implies that the vectors (3,7) and (v, 3) are linearly dependent.
Therefore, 5 = ++, contradicting C2.

C1 A C2AC3 = —C3’: Suppose, to the contrary, that C3’ holds. That is, f
can be written as f =1y - lo + 13- 14 where (I1,l2) and (I3, 14) are variable-disjoint



linear forms. By the preceding arguments, we know that f does not satisfy C'1’
or C2'.

First consider the case when (l1,ls) and (l5,l4) define the same partition
of the variable set. Assume without loss of generality that Var(l;) = Var(ls),
Var(ly) = Var(ly), and |Var(ly)| < 2. Setting the variables in I; to any field
constants yields a linear form, so f satisfies C1’, a contradiction.

Hence it must be the case that (I1,l2) and (I3,14) define different partitions
of the variable set. Since all degree-2 monomials are present in f, each pair z;,
x; must be separated by at least one of the two partitions. This implies that
both partitions have exactly 2 variables in each part. Assume without loss of
generality that f = Iy (21, z2) - la(x3, 24) + I3(21, 23) - la(22, 4).

At this point, we use properties of the commutator of f; recall Definition 3.
By Lemma 2, we know that [y divides A1 f. We compute Ajof explicitly for
our candidate polynomial:

A f = (axzzy)(a+ (B +7) (@3 + 24) + ax374)
— (Bza + yas + arszs)(Brs + Y24 + ax324)
= —By(a3 + 23) + (o — B2 — y?)zszs
Since Il divides Aqof, A1af is not irreducible but is the product of two linear
factors. Since A12f(0,0) = 0, at least one of the linear factors of Ajsf must
vanish at (0,0). Let x5 — dx4 be such a factor. Then Aq5(f) vanishes not only
at (0,0), but whenever zs = dx4. Substituting x3 = dx4 in A2 f, we get
0%y = By + (e =B =2 =0
Hence ¢ is of the form
5o (0= B2 —7%) £1/(a? — B2 —47)? — 452
—2py
Hence 2376 — (a? — 32 —~?) is a root of the equation X2 —d; = 0, contradicting

the assumption that C3 holds.
Hence it must be the case that C3’ does not hold. O

With this, the proof of Theorem 8 is complete.
The conditions imposed on «, 3,7 in Theorem 8 are tight and irredundant.
Below we give some explicit examples over the field of reals.

1. f=2(x120+x314) + 2(x123 + T224) + 3(2124 + T223) satisfies conditions C1
and C3 from the Theorem but not C2; a = 5. A 22 -ROP representation
for fis f =2(z1 + x4) (22 + 3) + 3(z124 + 2223).

2. f =2(z1x0 + x324) — 2(x123 + T2x4) + 3(x124 + x223) satisfies conditions
C1 and C3 but not C2; o = —f3. A ZQ ‘ROP representation for f is f =
2(1‘1 - 504)(1'2 — 1’3) + 3(’1,’1{E4 + 1321'3).

3. f=(z122 +x324) + 2(2123 + T2x4) + 3(z124 + x223) satisfies conditions C1
and C2 but not C3. A 3% -ROP representation for f is f = (x1 + x3)(z2 +
z4) + 2(x1 + x2) (23 + 24).



5 Conclusions

1. We have seen in Proposition 1 that every n-variate multilinear polynomial
(n > 4) can be written as the sum of 3 x 2"~% ROPs. A counting argu-
ment shows that there exist multilinear polynomials f requiring exponen-
tially many ROPs summands; if f € 52" -ROP then k = £2(2"/n?). Our
general upper bound on k is O(2"), leaving a small gap between the lower
and upper bound. What is the true tight bound? Can we find explicit poly-
nomials that require exponentially large k in any Ek -ROP expression?

2. We have shown in Theorem 1 that for each k, Zk -ROP can be separated
from Zk_l -ROP by a polynomial on 2k —1 variables. Can we separate these
classes with fewer variables? Note that any separating polynomial must have
2(log k) variables.

3. In particular, can 4-variate multilinear polynomials separate sums of 3 ROPs
from sums of 2 ROPs over every field? If not, what is an explicit example?

References

1. Matthew Anderson, Dieter van Melkebeek, and Ilya Volkovich. Deterministic poly-
nomial identity tests for multilinear bounded-read formulae. Computational Com-
plexity, 24(4):695-776, 2015.

2. Daoud Bshouty and Nader H. Bshouty. On interpolating arithmetic read-once
formulas with exponentiation. J. Comput. Syst. Sci., 56(1):112-124, 1998.

3. Nader H. Bshouty and Richard Cleve. Interpolating arithmetic read-once formulas
in parallel. SIAM J. Comput., 27(2):401-413, 1998.

4. Nader H. Bshouty, Thomas R. Hancock, and Lisa Hellerstein. Learning boolean
read-once formulas over generalized bases. J. Comput. Syst. Sci., 50(3):521-542,
1995.

5. Thomas R. Hancock and Lisa Hellerstein. Learning read-once formulas over fields
and extended bases. In Manfred K. Warmuth and Leslie G. Valiant, editors,
Proceedings of the Fourth Annual Workshop on Computational Learning Theory,
COLT 1991, Santa Cruz, California, USA, August 5-7, 1991, pages 326-336. Mor-
gan Kaufmann, 1991.

6. Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity
tests means proving circuit lower bounds. Computational Complezity, 13(1-2):1-46,
2004.

7. Neeraj Kayal, Pascal Koiran, Timothée Pecatte, and Chandan Saha. Lower bounds
for sums of powers of low degree univariates. In Magnis M. Halldérsson, Kazuo
Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Automata, Languages,
and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan,
July 6-10, 2015, Proceedings, Part I, volume 9134 of Lecture Notes in Computer
Science, pages 810-821. Springer, 2015.

8. Ran Raz. Multi-linear formulas for permanent and determinant are of super-
polynomial size. J. ACM, 56(2), 2009.

9. Amir Shpilka and Ilya Volkovich. On reconstruction and testing of read-once
formulas. Theory of Computing, 10:465-514, 2014.



10. Amir Shpilka and Ilya Volkovich. Read-once polynomial identity testing. Compu-
tational Complezity, 24(3):477-532, 2015. (combines results from papers in RAN-
DOM 2009 and STOC 2008).

11. Ilya Volkovich. Characterizing arithmetic read-once formulae. ACM Transactions
on Computation Theory, 8(1):2:1-2:19, February 2016.

ECCC ISSN 1433-8092

http://eccc.hpi-web.de




