
From Private Simultaneous Messages

to Zero-Information Arthur-Merlin Protocols and Back∗

Benny Applebaum† Pavel Raykov†

Abstract

Göös, Pitassi and Watson (ITCS, 2015) have recently introduced the notion of Zero-Information
Arthur-Merlin Protocols (ZAM). In this model, which can be viewed as a private version of the
standard Arthur-Merlin communication complexity game, Alice and Bob are holding a pair of
inputs x and y respectively, and Merlin, the prover, attempts to convince them that some public
function f evaluates to 1 on (x, y). In addition to standard completeness and soundness, Göös et
al., require a “zero-knowledge” property which asserts that on each yes-input, the distribution
of Merlin’s proof leaks no information about the inputs (x, y) to an external observer.

In this paper, we relate this new notion to the well-studied model of Private Simultane-
ous Messages (PSM) that was originally suggested by Feige, Naor and Kilian (STOC, 1994).
Roughly speaking, we show that the randomness complexity of ZAM corresponds to the com-
munication complexity of PSM, and that the communication complexity of ZAM corresponds to
the randomness complexity of PSM. This relation works in both directions where different vari-
ants of PSM are being used. As a secondary contribution, we reveal new connections between
different variants of PSM protocols which we believe to be of independent interest.

Our results give rise to better ZAM protocols based on existing PSM protocols, and to better
protocols for conditional disclosure of secrets (a variant of PSM) from existing ZAMs.

1 Introduction

In this paper we reveal an intimate connection between two seemingly unrelated models for non-
interactive information-theoretic secure computation. We begin with some background.

1.1 Zero-Information Unambiguous Arthur-Merlin Communication Protocols

Consider a pair of computationally-unbounded (randomized) parties, Alice and Bob, each holding
an n-bit input, x and y respectively, to some public function f : {0, 1}n × {0, 1}n → {0, 1}. In our
first model, a third party, Merlin, wishes to convince Alice and Bob that their joint input is mapped
to 1 (i.e., (x, y) is in the language f−1(1)). Merlin gets to see the parties’ inputs (x, y) and their
private randomness rA and rB, and is allowed to send a single message (“proof”) p to both parties.

∗A preliminary version of this paper appears in TCC 2016-A [AR16].
†School of Electrical Engineering, Tel-Aviv University, {bennyap,pavelraykov}@post.tau.ac.il. Supported by

the European Union’s Horizon 2020 Programme (ERC-StG-2014-2020) under grant agreement no. 639813 ERC-CLC,
ISF grant 1155/11, GIF grant 1152/2011, and the Check Point Institute for Information Security. This work was
done in part while the first author was visiting the Simons Institute for the Theory of Computing, supported by the
Simons Foundation and by the DIMACS/Simons Collaboration in Cryptography through NSF grant CNS-1523467.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 206 (2015)

Then, each party decides whether to accept the proof based on its input and its private randomness.
We say that the protocol accepts p if both parties accept it. The protocol is required to satisfy
natural properties of (perfect) completeness and soundness. Namely, if (x, y) ∈ f−1(1) then there
is always a proof p = p(x, y, rA, rB) that is accepted by both parties, whereas if (x, y) ∈ f−1(0)
then, with probability 1 − δ (over the coins of Alice and Bob), no such proof exists. As usual
in communication-complexity games the goal is to minimize the communication complexity of the
protocol, namely the length of the proof p.

This model, which is well studied in the communication complexity literature [BFS86, Kla03,
Kla10], is viewed as the communication complexity analogue of AM protocols [BM88]. Recently,
Göös, Pitassi and Watson [GPW15] suggested a variant of this model which requires an additional
“zero-knowledge” property defined as follows: For any 1-input (x, y) ∈ f−1(1), the proof sent by
the honest prover provides no information on the inputs (x, y) to an external viewer. Formally,
the random variable px,y = p(x, y, rA, rB) induced by a random choice of rA and rB should be
distributed according to some universal distribution D which is independent of the specific 1-input
(x, y). Moreover, an additional Unambiguity property is required: any 1-input (x, y) ∈ f−1(1) and
any pair of strings (rA, rB) uniquely determine a single accepting proof p(x, y, rA, rB).

This modified version of AM protocols (denoted by ZAM) was originally presented in attempt
to explain the lack of explicit nontrivial lower bounds for the communication required by AM
protocols. Indeed, Göös et al., showed that any function f : {0, 1}n × {0, 1}n → {0, 1} admits a
ZAM protocol with at most exponential communication complexity of O(2n). Since the transcript
of a ZAM protocol carries no information on the inputs, the mere existence of such protocols forms
a “barrier” against “information complexity” based arguments. This suggests that, at least in their
standard form, such arguments cannot be used to prove lower bounds against AM protocols (even
with Unambiguous completeness).

Regardless of the original motivation, one may view the ZAM model as a simple and nat-
ural information-theoretic analogue of (non-interactive) zero-knowledge proofs where instead of
restricting the computational power of the verifier, we split it between two non-communicating
parties (just like AM communication games are derived from the computational-complexity notion
of AM protocols). As cryptographers, it is therefore natural to ask:

How does the ZAM model relate to other more standard models of information-theoretic
secure computation?

As we will later see, answering this question also allows us to make some (modest) progress in
understanding the communication complexity of ZAM protocols.

1.2 Private Simultaneous Message Protocols

Another, much older, notion of information-theoretically secure communication game was suggested
by Feige, Kilian and Naor [FKN94]. As in the previous model, there are three (computationally-
unbounded) parties: Alice, Bob and a Referee. Here too, an input (x, y) to a public function
f : {0, 1}n × {0, 1}n → {0, 1} is split between Alice and Bob, which, in addition, share a common
random string c. Alice (resp., Bob) should send to the referee a single message a (resp., b) such
that the transcript (a, b) reveals f(x, y) but nothing else. That is, we require two properties:
(Correctness) There exists a decoder algorithm Dec which recovers f(x, y) from (a, b) with high
probability; and (Privacy) There exists a simulator Sim which, given the value f(x, y), samples the

2

joint distribution of the transcript (a, b) up to some small deviation error. (See Section 4 for formal
definitions.)

Following [IK97], we refer to such a protocol as a private simultaneous messages (PSM) protocol.
A PSM protocol for f can be alternatively viewed as a special type of randomized encoding of f [IK00,
AIK06], where the output of f is encoded by the output of a randomized function F ((x, y), c) such
that F can be written as F ((x, y), c) = (F1(x, c), F2(y, c)). This is referred to as a “2-decomposable”
encoding in [Ish13]. (See Remark 4.5.)

1.3 ZAM vs. PSM

Our goal will be to relate ZAM protocols to PSM protocols. Since the latter object is well studied
and strongly “connected” to other information-theoretic notions (cf. [BIKK14]), such a connection
will allow us to place the new ZAM in our well-explored world of information-theoretic cryptography.

Observe that ZAM and PSM share some syntactic similarities (illustrated in Figure 1). In both
cases, the input is shared between Alice and Bob and the third party holds no input. Furthermore,
in both cases the communication pattern consists of a single message. On the other side, in ZAM
the third party (Merlin) attempts to convince Alice and Bob that the joint input is mapped to 1,
and so the communication goes from Merlin to Alice/Bob who generate the output (accept/reject).
In contrast, in a PSM protocol, the messages are sent in the other direction: from Alice and Bob
to the third party (the Referee) who ends up with the output. In addition, the privacy guarantee
looks somewhat different. For ZAM, privacy is defined with respect to an external observer and
only over 1-inputs, whereas soundness is defined with respect to the parties (Alice and Bob) who
hold the input (x, y). (Indeed, an external observer cannot even tell whether the joint input (x, y)
is a 0-input.) Accordingly, in the ZAM model, correctness and privacy are essentially two different
concerns that involve different parties. In contrast, for PSM protocols privacy should hold with
respect to the view of the receiver who should still be able to decode.

These differences seem to point to non-trivial gaps between these two notions. The picture
becomes even more confusing when looking at existing constructions. On one hand, the general
ZAM constructions presented by [GPW15, Theorem 6] (which use a reduction to Disjointness)
seem more elementary than the simplest PSM protocols of [FKN94]. On the other hand, there
are ZAM constructions which share common ingredients with existing PSM protocols. Concretely,
the branching-program (BP) representation of the underlying function have been used both in the
context of PSM [FKN94, IK97] and in the context of ZAM [GPW15, Theorem 1]. (It should be
mentioned that there is a quadratic gap between the complexity of the two constructions.) Finally,
both in ZAM and in PSM, it is known that any function f : {0, 1}n × {0, 1}n → {0, 1} admits a
protocol with exponential complexity, but the best known lower-bound is only linear in n. Overall,
it is not clear whether these relations are coincidental or point to a deeper connection.1

2 Our Results

We prove that ZAM protocols and PSM protocols are intimately related. Roughly speaking, we
will show that the inverse of ZAM is PSM and vice versa. Therefore, the randomness complexity

1The authors of [GPW15] seem to suggest that there is no formal connection between the two models. Indeed,
they explicitly mention PSM as “a different model of private two-party computation, [...] where the best upper and
lower bounds are also exponential and linear.”

3

Alice Bob

Merlin

x, rA y, rB

p = p(x, y, rA, rB)

p p

ZAM

Alice Bob

Referee

x, c y, c

Dec(a, b) = f(x, y)

a b

PSM

Figure 1: Flow of messages

of ZAM essentially corresponds to the communication complexity of PSM and the communication
complexity of ZAM essentially corresponds to the randomness complexity of PSM. This relation
works in both directions where different variants of PSM are being used. We exploit this relation
to obtain (modest) improvements in the complexity of ZAM and the complexity of some variants of
PSM (e.g., Conditional Disclosure of Secrets). We proceed with a formal statement of our results.
See Figure 2 for an overview of our transformations.

pPSM ZAM 1PSM

CDS

PSM

DP

Thm 2.1 Thm 2.3 Thm 2.4

Thm 2.5Thm 2.6

Thm 2.7

Figure 2: Overview of the constructions

2.1 From Perfect PSM to ZAM

We begin by showing that a special form of perfect PSM protocols (referred to pPSM) yields ZAM
protocols.

Theorem 2.1. Let f be a function with a pPSM protocol that has communication complexity t and
randomness complexity s. Then f has a 1/2-sound ZAM scheme with randomness complexity of t
and communication complexity of s+ 1.

A pPSM protocol is a PSM in which both correctness and privacy are required to be errorless
(perfect), and, in addition, the encoding should satisfy some regularity properties.2

2Essentially, the range of F = (F1, F2) can be partitioned into two equal sets S0 and S1 and for every input (x, y)
the function Fx,y(c) that maps the randomness c to the transcript (a, b) forms a bijection from the randomness space
to the set Sf(x). In the context of randomized encoding, this notion was originally referred to as perfect randomized
encoding [AIK06]. See Section 4 for formal definitions.

4

To prove the theorem, we use the combinatorial properties of the perfect encoding to define
a new function g(x, y, p) = (g1(x, p), g2(y, p)) which, when restricted to a 1-input (x, y), forms a
bijection from the randomness space to the output space, and when (x, y) is a 0-input the restricted
function g(x, y, ·) covers only half of the range. Given such a function, it is not hard to design a
ZAM: Alice (resp., Bob) samples a random point rA in the range of g1 (resp., rB in the range of
g2), and accepts a proof p = (p1, p2) if p1 is a preimage of rA under g1 (resp. p2 is a preimage
of rB under g2). It is not hard to verify that the protocol satisfies Unambiguous completeness,
1/2-soundness and zero-information. (See Section 5.)

Although the notion of pPSM looks strong, we note that all known general PSM protocols are
perfect. (See Appendices A and B.) By plugging in the best known protocol from [BIKK14], we
derive the following corollary.

Corollary 2.2. Every function f : {0, 1}n × {0, 1}n → {0, 1} has a ZAM with communication
complexity and randomness complexity of O(2n/2).

Previously, the best known upper-bound for the ZAM complexity of a general function f was
O(2n) [GPW15]. Using known constructions of BP-based pPSM, we can also re-prove the fact
that ZAM complexity is at most polynomial in the size of the BP that computes f . (Though, our
polynomial is worse than the one achieved by [GPW15].)

2.2 From ZAM to One-Sided PSM

We move on to study the converse relation. Namely, whether ZAM can be used to derive PSM.
For this, we consider a relexation of PSM in which privacy should hold only with respect to 1-
inputs. In the randomized encoding literature, this notion is referred to as semi-private randomized
encoding [AIK06, AIK15]. In the context of PSM protocols we refer to this variant as 1PSM.

Theorem 2.3. Let f : {0, 1}n × {0, 1}n → {0, 1} be a function with a δ-sound ZAM protocol that
has communication complexity ` and randomness complexity m. Then, for all k ∈ N, the following
hold:

1. f has (22nδk)-correct and 0-private 1PSM with communication complexity of km and 2km
bits of shared randomness.

2. f has (22nδk + 2−`k)-correct and (2−`k)-private 1PSM with communication complexity of km
and 2`k bits of shared randomness.

In particular, if the underlying ZAM protocol has a constant error (e.g., δ = 1/2), we can get
a 1PSM with an exponential small error of exp(−Ω(n)) at the expense of a linear overhead in
the complexity, i.e., communication complexity and randomness complexity of O(nm) and O(`n),
respectively.

Both parts of the theorem are proven by “inverting” the ZAM scheme. That is, as a common
randomness Alice and Bob will take a proof p sampled according to the ZAM’s accepting distribu-
tion. Since each proof forms a rectangle, Alice and Bob can locally sample a random point (rA, rB)
from p’s rectangle (Alice samples rA and Bob samples rB). The 1PSM’s encoding functions output
the sampled point (rA, rB). We show that if (x, y) is a 1-input then (rA, rB) is distributed uniformly,
while in the case of the 0-input the sampled point belongs to some specific set Z that covers only

5

a small fraction of the point space. Therefore, the 1PSM’s decoder outputs 0 if the sampled point
is in Z and 1, otherwise.

The difference between the two parts of Theorem 2.3 lies in the way that the common random-
ness is sampled. In the first part we sample p according to the exact ZAM’s accepting distribution,
whereas in the second part we compromise on imperfect sampling. This allows us to reduce the
length of the shared randomness in 1PSM at the expense of introducing the sampling error in
privacy and correctness. The proof of the theorem appears in Section 6.

2.3 From 1PSM to PSM

Theorem 2.3 shows that a ZAM protocol with low randomness complexity implies communication-
efficient 1PSM protocol. However, the latter object is not well-studied and one may suspect that,
for one-sided privacy, such low-communication 1PSM protocols may be easily achievable. The
following theorem shows that this is unlikely by relating the worst-case communication complexity
of 1PSM to the worst-case communication complexity of general PSM (here “worst case” ranges
over all functions of given input length.)

Theorem 2.4. Assume that for all n, each function f : {0, 1}n × {0, 1}n → {0, 1} has a δ(n)-
correct ε(n)-private 1PSM protocol with communication complexity t(n) and randomness complexity
s(n). Then, each f has a [δ(n) + δ(t(n))]-correct max(ε(n), δ(n) + ε(t(n)))-private PSM protocol
with communication complexity t(t(n)) and randomness complexity s(n) + s(t(n)). In particular, if
every such f has a 1PSM with polynomial communication and randomness, and negligible privacy
and correctness errors, then every f has a PSM with polynomial communication and randomness,
and negligible privacy and correctness errors.

The existence of a PSM for an arbitrary function f : {0, 1}n×{0, 1}n → {0, 1} with polynomial
communication and randomness and negligible privacy and correctness errors is considered to be
an important open question in information-theoretic cryptography, and so constructing 1PSM with
such parameters would be considered to be a major breakthrough. Together with Theorem 2.3,
we conclude that it will be highly non-trivial to discover randomness-efficient ZAM protocols for
general functions.

2.4 Constructing CDS

In the CDS model [GIKM00], Alice holds an input x and Bob holds an input y, and, in addition,
both parties hold a common secret bit b. The referee, Carol, holds both x and y, but it does not
know the secret b. Similarly to the PSM case, Alice and Bob use shared randomness to compute
the messages m1 and m2 that are sent to Carol. The CDS requires that Carol can recover b from
(m1,m2) iff f(x, y) = 1. Moving to the complement f = 1−f of f , one can view the CDS model as
a variant of 1PSM, in which the privacy leakage in case of 0-inputs is full, i.e., given the messages
sent by Alice and Bob, one can recover their secret b but on 1-input b remains secret. (Note that
x and y are assumed to be public in both cases.) Indeed, it is not hard to prove the following
observation.

Theorem 2.5. Assume that the function f has a δ-complete ε-private 1PSM with communication
complexity t and randomness complexity s. Then the function f = 1 − f has a δ-complete and
ε-private CDS scheme with communication complexity t and randomness complexity s.

6

Clearly, one can combine the above theorem with the ZAM to 1PSM transformation and get a
transformation from ZAM to CDS. However, one can do better by using a direct construction that
avoids the overhead in the ZAM to 1PSM transformation of Theorem 2.3.

Theorem 2.6. Assume that the function f : {0, 1}n×{0, 1}n → {0, 1} has a δ-sound ZAM protocol
with communication complexity ` and randomness complexity m. Then the following hold.

1. The function f = 1− f has a δ-complete and 0-private CDS with communication complexity
m and randomness complexity 2m.

2. For any t ∈ N, the function f has a (δ + 2−t)-complete and (2−t)-private CDS with commu-
nication complexity m and randomness complexity (`+ t).

The communication complexity of CDS protocols was studied in several previous works. Re-
cently, it was shown by Ishai and Wee [IW14] that the CDS complexity of f is linear in the size of
the arithmetic branching program (ABP) that computes f . (This improves the previous quadratic
upper-bound of [GIKM00].) We can reprove this result by combining Theorem 2.6 with the ZAM
construction of [GPW15] whose complexity is also linear in the ABP size of f . Interestingly, the
resulting CDS protocol is different from the construction of Ishai and Wee [IW14], and can be ex-
tended to work with dependency programs. The latter model was introduced in [PS98] and can be
viewed as a generalization of arithmetic branching program. (See Section 8 for a formal definition.)
By applying the ideas of [GPW15], we derive the following result.

Theorem 2.7. Assume that the function f has a dependency program of size m. Then, for every
t ∈ N, the function f has an 2−t-correct perfectly private CDS scheme with randomness complexity
and communication complexity of O(m · t).

The theorem generalizes to arbitrary finite fields (See Theorem 8.2). Dependency programs
are known to be at least as powerful as ABP and may be polynomially stronger. Specifically, it
is shown in [BG99] that DP(f) ≤ ABP(f) ≤ DP(f)c for some constant c > 1, where ABP(f) and
DP(f) denote the minimum size of a ABP and DP for f , respectively.3 Hence, the theorem can
potentially lead to polynomial improvement over the ABP-based schemes of Ishai and Wee [IW14].
On the other hand, the construction of [IW14] achieves perfect privacy and perfect correctness.4

Finally, we note that CDS protocols have recently found applications in Attribute-Based Encryption
(see [GKW15]). For this application, the CDS is required to satisfy some linearity properties which
hold for our CDS-based construction. (See Remark 8.3.)

3 Preliminaries

For an integer n ∈ N, let [n] = {1, . . . , n}. The complement of a bit b is denoted by b = 1 − b.
For a set S, we let Sk be the set of all possible k-tuples with entries in S, and for a distribution
D, we let Dk be the probability distribution over k-tuples such that each tuple’s element is drawn

according to D. We let s
R← S denote an element that is sampled uniformly at random from the

3Both ABP and DP are defined over some finite field, and the relation DP(f) ≤ ABP(f) ≤ DP(f)c holds for any
fixed field.

4Moreover, the construction of [IW14] applies not only to CDS, but also to a more general notion of partial garbling
schemes which can be viewed as an intermediate notion between CDS and PSM.

7

finite set S. The uniform distribution over n-bit strings is denoted by Un. For a boolean function
f : S → {0, 1}, we say that x ∈ S is 0-input if f(x) = 0, and is 1-input if f(x) = 1. A subset R of
a product set A×B is a rectangle if R = A′ ×B′ for some A′ ⊆ X and B′ ⊆ Y .

The statistical distance between two random variables, X and Y , denoted by ∆(X;Y) is defined
by ∆(X;Y) := 1

2

∑
z |Pr[X = z]− Pr[Y = z]|. We will also use statistical distance for probability

distributions, where for a probability distribution D the value Pr[D = z] is defined to be D(z).
We write ∆

x1
R←D1,...,xk

R←Dk
(F (x1, . . . , xk);G(x1, . . . , xk)) to denote the statistical distance be-

tween two distributions obtained as a result of sampling xi’s from Di’s and applying the func-
tions F and G to (x1, . . . , xk), respectively. We use the following facts about the statistical dis-
tance. For every distributions X and Y and a function F (possibly randomized), we have that

∆(F (X), F (Y)) ≤ ∆(X,Y). In particular, for a boolean function F this implies that Pr[F (X) =
1] ≤ Pr[F (Y) = 1] + ∆(X;Y).

For a sequence of probability distributions (D1, . . . , Dk) and a probability vectorW = (w1, . . . , wk)
we let Z =

∑
wiDi denote the “mixture distribution” obtained by sampling an index i ∈ [k] ac-

cording to W and then outputting an element z
R← Di.

Lemma 3.1. For any distribution Z =
∑
wiDi and probability distribution S, it holds that

∆(S;M) ≤
k∑

i=1

wi ∆(S;Di).

Proof. By the definition of statistical distance we can write ∆(S;Z) as

1

2

∑
z

∣∣∣∣∣S(z)−
k∑

i=1

wiDi(z)

∣∣∣∣∣ =
1

2

∑
z

∣∣∣∣∣
k∑

i=1

wi(S(z)−Di(z))

∣∣∣∣∣
≤ 1

2

∑
z

k∑
i=1

wi |S(z)−Di(z)|

=
1

2

k∑
i=1

wi

∑
z

|S(z)−Di(z)|

=

k∑
i=1

wi ∆(S;Di). �

4 Definitions

4.1 PSM-Based Models

Definition 4.1 (PSM). Let f : {0, 1}n × {0, 1}n → {0, 1} be a boolean function. We say that a
pair of (possibly randomized5) encoding algorithms F1, F2 : {0, 1}n × {0, 1}s → {0, 1}t are PSM for
f if the function F (x, y, c) = (F1(x, c), F2(y, c)) that corresponds to the joint computation of F1 and
F2 on a common c, satisfy the following properties:

5In the original paper [FKN94], the functions F1, F2 are deterministic. We extend this model by allowing Alice
and Bob to use local randomness that is assumed to be available freely.

8

δ-Correctness: There exists a deterministic algorithm Dec, called decoder, such that for every
input (x, y) we have that

Pr
c
R←{0,1}s

[Dec(F (x, y, c)) 6= f(x, y)] ≤ δ. (1)

ε-Privacy: There exists a randomized algorithm (simulator) Sim such that for any input (x, y) it
holds that

∆
c
R←{0,1}s

(Sim(f(x, y));F (x, y, c)) ≤ ε. (2)

The communication complexity of the PSM protocol is defined as the encoding length t, and the
randomness complexity of the protocol is defined as the length s of the common randomness.

One can also consider relaxations of this definition that are private only on a subset of inputs.
We study such a relaxation 1PSM [AIK06, AIK15] that is required to be private only on 1-inputs:

ε-Privacy on 1-inputs: There exists a simulator Sim such that for any 1-input (x, y) of f it holds
that

∆
c
R←{0,1}s

(Sim, (F1(x, c), F2(y, c))) ≤ ε. (3)

A stronger variant of PSM is captured by the notion of perfect PSM [AIK06].

Definition 4.2 (pPSM). Let f : {0, 1}n × {0, 1}n → {0, 1}. A pair of deterministic algorithms
F1, F2 : {0, 1}n × {0, 1}s → {0, 1}t is a pPSM of f if (F1, F2) is a 0-correct, 0-private PSM of f
such that:

Balance: There exists a 0-private (perfectly private) simulator Sim such that Sim(U1) ≡ U2t.

Stretch-Preservation: We have that 1 + s = 2t.

Remark 4.3 (pPSM – combinatorial view). One can also formulate the pPSM definition com-
binatorially [AIK06]: For f ’s b-input (x, y), let Fxy(c) denote the joint output of the encoding
(F1(x, c), F2(y, c)). Let Sb := {Fxy(c) | c ∈ {0, 1}s, (x, y) ∈ f−1(b)} and let R = {0, 1}t × {0, 1}t
denote the joint range of (F1, F2). Then, (F1, F2) is a pPSM of f if and only if (1) The 0-image
S0 and the 1-image S1 are disjoint; (2) The union of S0 and S1 equals to the range R; and (3) for
all (x, y) the function Fxy is a bijection on Sf(x,y). One can also consider a case when F1 and F2

have arbitrary ranges, i.e., Fi : {0, 1}n × {0, 1}s → {0, 1}ti. In this case we say that (F1, F2) is a
pPSM of f if the above conditions hold with respect to the joint range R = {0, 1}t1 × {0, 1}t2.

We consider a variant of CDS called conditional disclosure of the common secret [GIKM00]. As
in PSM, Alice and Bob hold the inputs x and y, respectively, and, in addition, both parties get a
secret b ∈ {0, 1}. The goal is to reveal the secret to an external referee Carol only if some predicate
f(x, y) evaluates to 1. Unlike the PSM model, we assume that Carol knows both x and y. Formally,
a CDS scheme is defined below.

Definition 4.4 (CDS). Let f : {0, 1}n × {0, 1}n → {0, 1} be a predicate. Let F1, F2 : {0, 1}n ×
{0, 1} × {0, 1}s → {0, 1}t be (possibly randomized) encoding algorithms. Then, the pair (F1, F2) is
a CDS scheme for f if if the function F (x, y, b, c) = (F1(x, b, c), F2(y, b, c)) that corresponds to the
joint computation of F1 and F2 on a common b and c, satisfies the following properties:

9

δ-Correctness: There exists a deterministic algorithm Dec, called a decoder, such that for every
1-input (x, y) of f and any secret b ∈ {0, 1} we have that

Pr
c
R←{0,1}s

[Dec(x, y, F (x, y, b, c)) 6= b] ≤ δ.

ε-Privacy: There exists a simulator Sim such that for every 0-input (x, y) of f and any secret
b ∈ {0, 1} it holds that

∆
c
R←{0,1}s

(Sim(x, y) ; F (x, y, b, c)) ≤ ε.

Similarly to PSM, the communication complexity of the CDS protocol is t and its randomness
complexity is s.

The above definition naturally extends to the case where the secret comes from some non-binary
domain B, and where the domain of the randomness and of the output of F1 and F2 is taken to
be some arbitrary finite set. (When the output domain Z1 of F1 and Z2 of F2 differ, we define the
communication complexity to be maxi log |Zi|.)

Remark 4.5 (CDS and PSM as Randomized Encoding). We can view PSM and CDS pro-
tocols under the framework of randomized encodings of functions (RE) [IK00, AIK06]. Formally,
a function F (x, y, c) is a δ-correct ε-private RE of f(x, y) if F (x, y) satisfies Eq. (1) and Eq. (2)
from Definition 4.1. Under this terminology, PSM is simply an encoding F (x, y, c) which can be
decomposed into two parts, F1 which depends on x and c but not on y and F2 which depends on
y and c but not on x. Similarly, the notion of pPSM and 1PSM can be derived by considering
2-decomposable perfect encodings and 2-decomposable encoding with 1-sided privacy. We further
mention that a CDS can be also viewed as a randomized encoding. Indeed, (F1, F2) is a CDS
of f if and only if F (x, y, b, c) = (x, y, F1(x, b, c), F2(y, b, c)) encodes the (non-boolean) function
g(x, y, b) = (x, y, f(x, y) ∧ b).

4.2 ZAM

Definition 4.6 (ZAM). Let f : {0, 1}n × {0, 1}n → {0, 1}. We say that a pair of deterministic
boolean functions A,B : {0, 1}n × {0, 1}m × {0, 1}` → {0, 1} is a ZAM for f if the predicate
Accept(x, y, rA, rB, p) = A(x, rA, p) ∧B(y, rB, p) satisfies the following properties:

Unambiguous Completeness: For any 1-input (x, y) and any randomness (rA, rB) ∈ {0, 1}m ×
{0, 1}m there exists a unique p ∈ {0, 1}` such that Accept(x, y, rA, rB, p) = 1.

Zero Information: There exists a distribution D on the proof space {0, 1}` such that for any
1-input (x, y) we have that

∀p ∈ {0, 1}` D(p) = Pr
rA,rB

R←{0,1}m
[Accept(x, y, rA, rB, p) = 1].

The distribution D is called the accepting distribution.

δ-Soundness: For any 0-input (x, y) it holds that

Pr
rA,rB

R←{0,1}m
[∃p ∈ {0, 1}` : Accept(x, y, rA, rB, p) = 1] ≤ δ.

10

The communication complexity (resp., randomness complexity) of the ZAM protocol is defined as
the length ` of the proof (resp., the length m of the local randomness).

The Zero Information property asserts that for every accepting input (x, y) the distribution Dx,y,
obtained by sampling rA and rB and outputting the (unique) proof p which is accepted by Alice
and Bob, is identical to a single universal distribution D.

Following [GPW15], we sometimes refer to the proofs as “rectangles” because for each (x, y) a
proof p naturally corresponds to a set of points {(rA, rB) : Accept(x, y, rA, rB, p) = 1} which forms
a rectangle in {0, 1}m × {0, 1}m.

5 From pPSM to ZAM

In this section we construct a ZAM scheme from a pPSM protocol. By exploiting the combinatorial
structure of pPSM, for each input (x, y) we construct a function hxy that is a bijection if (x, y) is a
1-input and is two-to-one if (x, y) is a 0-input. In the constructed ZAM scheme Alice and Bob use
their local randomness to sample a uniform point in h’s range (Alice samples its x-coordinate rA
and Bob samples its y-coordinate rB). Merlin’s proof is the preimage p for the sampled point, i.e.,
a point p such that hxy(p) = (rA, rB). In order to accept the proof p, Alice and Bob verify that it
is a preimage for the sampled point (rA, rB).

First, the constructed ZAM is unambiguously complete because hxy is a bijection if (x, y) is
a 1-input of f . Second, the constructed ZAM satisfies the zero-information property because the
distribution of the accepted proofs is uniform. Third, the constructed ZAM is sound, because if
(x, y) is a 0-input, then hxy is two-to-one, implying that with probability at least 1/2 no preimage
can be found.

Theorem 2.1. Let f be a function with a pPSM protocol that has communication complexity t and
randomness complexity s. Then f has a 1/2-sound ZAM scheme with randomness complexity of t
and communication complexity of s+ 1.

Proof. Let f : {0, 1}n × {0, 1}n → {0, 1} be a function with a pPSM F1, F2 : {0, 1}n × {0, 1}s →
{0, 1}t. We show that there exists a 1/2-sound ZAM protocol for f with Alice’s and Bob’s local
randomness spaces {0, 1}m and proof space {0, 1}` , where m = t and ` = 2t.

First, we prove some auxiliary statement about pPSM. Let g(x, y, c) := (F1(x, c), F2(y, c)). For
any (x, y), we define a new function hxy : {0, 1}s × {0, 1} → {0, 1}t × {0, 1}t as follows.

hxy(c, b) :=

{
g(x, y, c), if b = 0;

g(x0, y0, c), if b = 1 (where (x0, y0) is a canonical 0-input for f).

The function h satisfies the following useful properties as follows from the combinatorial view
of pPSM (Remark 4.3).

Fact 5.1. If (x, y) is a 1-input for f , then the function hxy is a bijection. Otherwise, if (x, y) is a
0-input for f , then the image of the function hxy covers exactly half of the range {0, 1}t × {0, 1}t.

We now describe a ZAM protocol for f in which the local randomness of Alice and Bob is
sampled from {0, 1}t, and the proof space is {0, 1}s × {0, 1}. Recall that (F1, F2) is a pPSM and

11

therefore s+1 = 2t and {0, 1}s×{0, 1} = {0, 1}2t. The ZAM’s accepting functions A,B are defined
as follows:

A(x,m1, (c, b)) =

{
1, if (m1 = F1(x, c) and b = 0) or (m1 = F1(x0, c) and b = 1);

0, otherwise.

B(y,m2, (c, b)) =

{
1, if (m2 = F2(y, c) and b = 0) or (m2 = F2(y0, c) and b = 1);

0, otherwise.

Observe that the following equivalence holds.

Claim 5.2. ∀x, y, c, b,m1,m2

[
hxy(c, b) = (m1,m2)

]
⇔
[
A(x,m1, (c, b)) = 1 = B(y,m2, (c, b))

]
.

Now we verify that (A,B) is ZAM for f :

Unambiguous Completeness: Consider any f ’s 1-input (x, y) and take any (m1,m2) ∈ {0, 1}t×
{0, 1}t. Since (x, y) is a 1-input for f , we have that hxy is a bijection. This means that there exists
a unique (c, b) such that hxy(c, b) = (m1,m2). By Claim 5.2, this proof (c, b) is the only proof which
is accepted by both Alice and Bob when the randomness is set to m1,m2.

Zero Information: We show that the accepting distribution is uniform, i.e., for any 1-input
(x, y) and for any p ∈ {0, 1}s × {0, 1} it holds that

Pr
rA,rB

R←{0,1}t
[A(x, rA, p) = 1 = B(y, rB, p)] = 2−2t.

Take any 1-input (x, y). Since (x, y) is a 1-input for f , we have that hxy is a bijection. Hence,
there exists a unique (m∗1,m

∗
2) ∈ {0, 1}n × {0, 1}n such that hxy(c, b) = (m∗1,m

∗
2). By Claim 5.2,

this means that Alice and Bob accept only this (m∗1,m
∗
2). Hence, for all proofs p we have that

Pr
rA,rB

R←{0,1}t
[A(x, rA, p) = 1 = B(y, rB, p)] = Pr

rA,rB
R←{0,1}t

[rA = m∗1, rB = m∗2] = 2−2t.

1/2-Soundness: Fix some 0-input (x, y), and recall that the image H of hxy covers exactly half
of the range {0, 1}t × {0, 1}t, i.e., |H| =

∣∣{0, 1}t × {0, 1}t∣∣ /2. It follows that, with probability 1/2,

the randomness of Alice and Bob (m1,m2) chosen randomly from {0, 1}t×{0, 1}t lands outside H.
In this case, the set h−1

xy (m1,m2) is empty and so there is no proof (c, b) that will be accepted. �

6 From ZAM to 1PSM

In this section we construct 1PSM protocols from a ZAM scheme and prove Theorem 2.3 (restated
here for convenience).

Theorem 2.3. Let f : {0, 1}n × {0, 1}n → {0, 1} be a function with a δ-sound ZAM protocol that
has communication complexity ` and randomness complexity m. Then, for all k ∈ N, the following
hold:

12

1. f has (22nδk)-correct and 0-private 1PSM with communication complexity of km and 2km
bits of shared randomness.

2. f has (22nδk + 2−`k)-correct and (2−`k)-private 1PSM with communication complexity of km
and 2`k bits of shared randomness.

Proof. Let f : {0, 1}n × {0, 1}n → {0, 1} be a function with a δ-sound ZAM protocol (A,B) with
Alice’s and Bob’s local randomness spaces {0, 1}m and the proof space {0, 1}`. Fix some integer k.
We start by constructing the first 1PSM protocol.

We first define some additional notation and prove auxiliary claims. For a pair of inputs (x, y)
let

Exy := {(rA, rB) ∈ {0, 1}m × {0, 1}m | ∃p : A(x, rA, p) = 1 = B(y, rB, p)}

and Z :=
⋃

(x,y)∈f−1(0)E
k
xy.

Claim 6.1. |Z| ≤ 22n(δ22m)k.

Proof. By the soundness property of ZAM, we have that |Exy| ≤ δ22m for any 0-input (x, y). Hence,
each |Ek

xy| ≤ (δ22m)k. We conclude that

|Z| =

∣∣∣∣∣∣
⋃

(x,y)∈f−1(0)

Ek
xy

∣∣∣∣∣∣ ≤
∑

(x,y)∈f−1(0)

∣∣∣Ek
xy

∣∣∣ ≤ 22n(δ22m)k = δk22n+2mk.

�

Let Ax
p := {rA ∈ {0, 1}m | A(x, rA, p) = 1} and Byp := {rB ∈ {0, 1}m | B(y, rB, p) = 1}.

Claim 6.2. Let Dacc be the accepting distribution of ZAM. Then, for any 1-input (x, y) and
p ∈ {0, 1}` we have that Dacc(p) = 2−2m|Ax

p ||B
y
p |.

Proof. By definition

Dacc(p) =
|{(rA, rB) ∈ {0, 1}m × {0, 1}m | A(x, rA, p) = 1 = B(y, rB, p)}|

|{0, 1}m| · |{0, 1}m|
.

In order to derive the claim, it remains to notice that since every proof forms a “rectangle” [GPW15],
we have that

{(rA, rB) ∈ {0, 1}m × {0, 1}m | A(x, rA, p) = 1 = B(y, rB, p)} = Ax
p × Byp . �

We can now describe the encoding algorithms G1 and G2 and the decoder Dec. First, G1 and
G2 use the shared randomness to sample a proof p according to the accepting distribution. Then
G1 and G2 sample (private) randomness that can lead to the acceptance of p on their input (x, y),

i.e., G1 computes a
R← Ax

p and G2 computes b
R← Byp . We have that if f(x, y) = 1 then (a, b) is

distributed uniformly, while if f(x, y) = 0 then (a, b) is sampled from the set Z. The task of the
decoder is to verify whether it is likely that a point has been sampled from Z or uniformly. This
is achieved by repeating the protocol k times. Below is the formal description of the algorithms
G1, G2, and decoder.

13

– (Shared Randomness) The common randomness c ∈ {0, 1}k·2m is used for sampling k
independent samples (p1, . . . , pk) from Dacc. (Each such sample can be obtained by sampling

r = (rA, rB)
R← {0, 1}2m and outputting the unique proof p that corresponds to r and to some

fixed 1-input (x0, y0).)

– (Encoders) The encoder G1(x, c) outputs (a1, . . . , ak)
R← Ax

p1 × · · · × A
x
pk

and the encoder

G2 outputs (b1, . . . , bk)
R← Byp1 × · · · × Bxpk .

– (Decoder) Dec((a1, . . . , ak), (b1, . . . , bk)) outputs 0 if ((a1, b1), ..., (ak, bk)) ∈ Z; otherwise, it
outputs 1.

Let us verify that the proposed protocol is a 1PSM for f .

(22nδk)-Correctness. Since that the decoder never errs on 0-inputs, it suffices to analyze the
probability that some 1-input (x, y) is incorrectly decoded to 0. Fix some 1-input (x, y). Below
we will show that the message ~s = ((a1, b1), . . . , (ak, bk)) generated by the encoders G1 and G2 is
uniformly distributed over the set ({0, 1}m × {0, 1}m)k. Hence, the probability that ~s lands in Z

(and decoded incorrectly to 0) is exactly |Z|
|({0,1}m×{0,1}m)k| , which, by Claim 6.1, is upper-bounded

by 22nδk.
It is left to show that ~s is uniformly distributed. To see this, consider the marginalization of

(ai, bi)’s probability distribution: For a fixed (rA, rB) we have that

Pr[(ai, bi) = (rA, rB)] =
∑

p∈{0,1}`
Pr[(ai, bi) = (rA, rB) | pi = p] Pr[pi = p].

Because of the unambiguous completeness property of ZAM, we have that there exists a single p∗

such that (rA, rB) ∈ Ax
p∗ × B

y
p∗ . Hence, all probabilities Pr[(ai, bi) = (rA, rB) | pi = p] are zero, if

p 6= p∗. This implies that

Pr[(ai, bi) = (rA, rB)] = Pr[(ai, bi) = (rA, rB) | pi = p∗] Pr[pi = p∗].

We have that Pr[pi = p] = Dacc(p) = 2−2m|Ax
p ||B

y
p | (due to Claim 6.2), and Pr[(ai, bi) =

(rA, rB) | pi = p∗] is 1
|Ax

p |·|B
y
p |

by the construction of the encoding functions. Hence, Pr[(ai, bi) =

(rA, rB)] = 2−2m. Because all pairs (ai, bi) are sampled independently, we get that the combined
tuple ~s = ((a1, b1), . . . , (ak, bk)) is sampled uniformly from ({0, 1}m × {0, 1}m)k, as required.

Privacy for 1-inputs. As shown above, if (x, y) is a 1-input, then ~s is uniformly distributed
over ({0, 1}m × {0, 1}m)k. Hence, the simulator for proving the privacy property of PSM can be
defined as a uniform sampler from ({0, 1}m × {0, 1}m)k.

The second protocol. The second item of the theorem is proved by using the first protocol,
except that the point ~p = (p1, . . . , pk) is sampled from a different distribution D′. For a parameter
t, the distribution D′ is simply the distribution Dk

acc discretized into 2−(`k+t)-size intervals. Such
D′ can be sampled using only `k+t random bits. Moreover, for each point ~p, the difference between
Dk

acc(~p) and D′(~p) is at most 2−(`k+t). Since the support of Dk
acc is of size at most 2`k, it follows

that ∆(D′;Dk
acc) ≤ 2−(`k+t) ·2`k = 2−t. As a result, we introduce an additional error of 2−t in both

privacy and correctness. By setting t to `k, we derive the second 1PSM protocol. �

14

7 From 1PSM to PSM

In this section we show how to upgrade a 1PSM protocol into a PSM protocol. We assume that we
have a way of constructing 1PSM for all functions. Our main idea is to reduce a construction of
a PSM scheme for f to two 1PSM schemes. The first 1PSM scheme computes the function f , and
the second 1PSM scheme computes the function Decf , i.e., the complement of the decoder Decf of
the first scheme. We show how to combine the two schemes such that the first scheme protects the
privacy of 1-inputs and the second scheme protects the privacy of 0-inputs.

Theorem 2.4. Assume that for all n, each function f : {0, 1}n × {0, 1}n → {0, 1} has a δ(n)-
correct ε(n)-private 1PSM protocol with communication complexity t(n) and randomness complexity
s(n). Then, each f has a [δ(n) + δ(t(n))]-correct max(ε(n), δ(n) + ε(t(n)))-private PSM protocol
with communication complexity t(t(n)) and randomness complexity s(n) + s(t(n)). In particular, if
every such f has a 1PSM with polynomial communication and randomness, and negligible privacy
and correctness errors, then every f has a PSM with polynomial communication and randomness,
and negligible privacy and correctness errors.

Proof. Let f : {0, 1}n × {0, 1}n → {0, 1}. Let F1, F2 : {0, 1}n × {0, 1}s(n) → {0, 1}t(n) be a δ(n)-
correct and ε(n)-private on 1 inputs 1PSM for f with decoder Decf and simulator Simf . Define

a function g : {0, 1}t(n) × {0, 1}t(n) → {0, 1} to be 1 − Decf (m1,m2). Let G1, G2 : {0, 1}t(n) ×
{0, 1}s(t(n)) → {0, 1}t(t(n)) be a δ(t(n))-correct and ε(t(n))-private on 1 inputs 1PSM for g with
decoder Decg and simulator Simg.

We construct a (standard) PSM for f as follows. Let {0, 1}u = {0, 1}s(n) × {0, 1}s(t(n)) be the

space of shared randomness, let {0, 1}v = {0, 1}t(t(n)) be the output space and define the encoding
functions H1, H2 : {0, 1}n × {0, 1}u → {0, 1}v, by

H1(x, (c, r)) = G1(F1(x, c), r) and H2(y, (c, r)) = G2(F2(y, c), r).

We show that (H1, H2) is a PSM by verifying its security properties.

δ(n) + δ(t(n))-Correctness: On an input (e1, e2) define the decoding algorithm Dec to output
1−Decg(e1, e2). The decoding algorithm Dec works correctly whenever both Decg and Decf succeed.
Hence, the error probability for decoding can be bounded as follows:

Pr
(c,r)

R←{0,1}u
[Dec(H1(x, (c, r)), H2(y, (c, r))) 6= f(x, y)]

= Pr
(c,r)

R←{0,1}u
[1− Decg(G1(F1(x, c), r)), G2(F2(y, c), r))) 6= f(x, y)]

≤ Pr
c
R←{0,1}s(n)

[1− (1− (Decf (F1(x, c), F2(y, c)))) 6= f(x, y)] + δ(t(n))

= Pr
c
R←{0,1}s(n)

[Decf (F1(x, c), F2(y, c)) 6= f(x, y)] + δ(t(n))

≤ δ(n) + δ(t(n)).

ε-Privacy: We define the simulator Sim as follows: on 0-inputs it outputs Simg and on 1-inputs it

computes Simf = (m1,m2), randomly samples r from {0, 1}s(t(n)), and outputs (G1(m1, r), G2(m2, r)).

15

We verify that the simulator truthfully simulates the randomized encoding (H1, H2) with deviation
error of at most ε.

We begin with the case where (x, y) is a 0-input for f . For any c, let Lc denote the distribution

of the random variable (G1(F1(x, c), r), G2(F2(y, c), r)) where r
R← {0, 1}s(t(n)). Let M denote

the “mixture distribution” which is defined by first sampling c
R← {0, 1}s(n) and then outputting

a random sample from Lc, that is, the distribution M =
∑

c∈{0,1}s(n) Pr[Us(n) = c]Lc. Due to

Lemma 3.1, we have that

∆(Simg;M)≤
∑

c∈{0,1}s(n)

Pr[Us(n) = c] ∆(Simg;Lc).

Let C denote a subset of c ∈ {0, 1}s(n) such that (F1(x, c), F2(y, c)) is a 1-input for g. The set C
satisfies the following two properties: (1) ∀c ∈ C ∆(Simg;Lc) ≤ ε(t(n)) and (2) |C|/2s(n) ≥ 1−δ(n).
The property (1) holds because G1, G2 is private on 1-inputs of g. The property (2) holds because
Decf decodes correctly with the probability at least 1 − δ(n). After splitting the mixture sum in
two, we have that∑

c∈{0,1}s(n)

Pr[Us(n) = c] ∆(Simg;Lc) =
∑
c∈C

2−s(n)
∆(Simg;Lc) +

∑
c 6∈C

2−s(n)
∆(Simg;Lc).

Because of the properties of C, we have that the first sum is upperbounded by ε(t(n)) and the
second one is upperbounded by δ(n). This implies that ∆(Simg;M)≤δ(n) + ε(t(n)).

We move on to the case where (x, y) is a 1-input. Then

∆
c
R←{0,1}s(n)

(Simf ; (F1(x, c), F2(y, c))) ≤ ε(n).

Consider the randomized procedure G which, given (m1,m2), samples r
R← {0, 1}s(t(n)) and outputs

the pair (G1(m1, r), G2(m2, r)). Applying G to the above distributions we get:

∆
(c,r)

R←{0,1}u
(G(Simf ; r) ; G(F1(x, c), F2(y, c); r)) ≤ ε(n). (4)

Recall that, for a random r
R← {0, 1}s(t(n), it holds that G(Simf ; r) ≡ Sim(1), and for every r,

G(F1(x, c), F2(y, c); r) = (H1(x, (c, r)), H2(y, (c, r))). Hence, Eq. 4 can be written as

∆
(c,r)

R←{0,1}u
(Sim(1) ; (H1(x, (c, r)), H2(y, (c, r)))) ≤ ε(n).

Since ε(n) ≤ max(ε(n), δ(n) + ε(t(n))), the theorem follows. �

8 Constructing CDS Schemes

8.1 From 1PSM to CDS

In this section we construct a CDS scheme from a 1PSM protocol. Our construction is based on the
observation (due to [GIKM00]) that constructing a CDS scheme for a function f can be reduced to
constructing a PSM scheme for the sharing function f ′((x, s), (y, s)) = f(x, y) ∧ s. We show that
one can strengthen this statement by substituting PSM with a weaker security primitive 1PSM.

16

Theorem 2.5. Assume that the function f has a δ-complete ε-private 1PSM with communication
complexity t and randomness complexity s. Then the function f = 1 − f has a δ-complete and
ε-private CDS scheme with communication complexity t and randomness complexity s.

Proof. Let f : {0, 1}n × {0, 1}n → {0, 1}. Let F1, F2 : {0, 1}n × {0, 1}s → {0, 1}t be a δ-correct and
ε-private on 1-inputs 1PSM for f with decoder Decf and simulator Simf . Let g denote 1−f . Then,
(F1, F2) is δ-correct and ε-private on 0-inputs 1PSM for g with Decg = 1−Decf and Simg = Simf .

We construct a CDS scheme (H1, H2) for g as follows. Let (x0, y0) be some fixed 0-input of g.
We define H1(x, b, c) to output F1(x0, c) if b = 0, and F1(x, c) if b = 1. Similarly, H2(y, b, c) outputs
F2(y0, c) if b = 0 and F2(y, c) if b = 1. The decoder Dec simply applies the 1PSM decoder of g,
namely: given two messages m1 and m2, we reconstruct the secret b by outputting Decg(m1,m2).
We define the simulator Sim to run the simulator Simg.

We prove that the pair (H1, H2) is a CDS scheme for g.

δ-Correctness: Take any 1-input (x, y) of g:

– If b = 0 then m1 = F1(x0, c) and m2 = F2(y0, c). By the correctness property of 1PSM, we
have that Decg(m1,m2) = Decg(F1(x0, c), F2(y0, c)) = g(x0, y0) = 0 except with probability δ.

– If b = 1 then m1 = F1(x, c) and m2 = F2(y, c). By the correctness property of 1PSM, we have
that Decg(m1,m2) = Decg(F1(x, c), F2(y, c)) = g(x, y) = 1 except with probability δ.

ε-Privacy: Fix some 0-input (x, y) of g. Then, by the 1-sided privacy of the 1PSM, we have that,
for b = 0,

∆
c
R←{0,1}s

(Sim(x, y); (H1(x, 0, c), H2(y, 0, c))) = ∆
c
R←{0,1}s

(Simg; (F1(x0, c), F2(y0, c))) ≤ ε,

and, for b = 1,

∆
c
R←{0,1}s

(Sim(x, y); (H1(x, 1, c), H2(y, 1, c))) = ∆
c
R←{0,1}s

(Simg; (F1(x, c), F2(y, c))) ≤ ε.
�

8.2 From ZAM to CDS

We now describe a direct construction of CDS from ZAM that avoids the overhead in the transfor-
mation from ZAM to 1PSM (Theorem 2.3).

Theorem 2.6. Assume that the function f : {0, 1}n×{0, 1}n → {0, 1} has a δ-sound ZAM protocol
with communication complexity ` and randomness complexity m. Then the following hold.

1. The function f = 1− f has a δ-complete and 0-private CDS with communication complexity
m and randomness complexity 2m.

2. For any t ∈ N, the function f has a (δ + 2−t)-complete and (2−t)-private CDS with commu-
nication complexity m and randomness complexity (`+ t).

17

Proof. Let f : {0, 1}n × {0, 1}n → {0, 1} be a function with a δ-sound ZAM protocol (A,B) with
randomness complexity of m and communication complexity of `. Fix some integer k. We start by
recalling some notation from Theorem 2.3. For a pair of inputs (x, y) let

Exy := {(rA, rB) ∈ {0, 1}m × {0, 1}m | ∃p : A(x, rA, p) = 1 = B(y, rB, p)}.

Let Ax
p := {rA ∈ {0, 1}m | A(x, rA, p) = 1} and Byp := {rB ∈ {0, 1}m | B(y, rB, p) = 1}.

We construct a CDS scheme (F1, F2) for g as follows. As common randomness the scheme takes
p sampled from the accepting distribution Dacc of the ZAM scheme (as in Theorem 2.3, Dacc can
be perfectly simulated using 2m uniform bits). On an input (x, b, p) the function F1 computed

by Alice outputs r1
R← {0, 1}m if b = 1, and r1

R← Ax
p , otherwise. Similarly, on an input (y, b, p)

the function F2 computed by Bob outputs r2
R← {0, 1}m if b = 1, and r2

R← Byp , otherwise. The
decoding procedure works as follows: on input (x, y, r1, r2) the decoder outputs 0 if (r1, r2) ∈ Exy,
and 1 otherwise.

Now we prove that (F1, F2) is a CDS scheme for f by verifying its security properties:

δ-Correctness: Take any 1-input (x, y) of f , which is a 0-input of f .

– If the secret bit b = 0, then r1 and r2 are sampled uniformly from Ax
p and Byp , respectively. This

means that with probability 1 the pair (r1, r2) lands in Exy and hence decoding of (x, y, r1, r2)
never fails in this case.

– If the secret bit b = 1, then r1 and r2 are sampled uniformly from {0, 1}m. This implies that
the probability that (x, y, r1, r2) is decoded incorrectly to 0 is the probability of (r1, r2) landing
in Exy. Due to the soundness property of ZAM, the latter probability is at most δ.

Perfect Privacy: We define the simulator Sim to output a random point (r1, r2) ∈ {0, 1}m ×
{0, 1}m. Take any 0-input (x, y) of f , which is a 1-input of f . We verify that Sim perfectly simulates
the distribution of (F1, F2) for any b ∈ {0, 1}. For b = 0 we have that F1 and F2 each output Um

by construction. For b = 1 we use the observation from the proof of Theorem 2.3 that the joint

distribution of (r1, r2) sampled from Ax
p and Byp for p

R← Dacc is uniform over {0, 1}m × {0, 1}m.

The second protocol. Similarly to Theorem 2.3, the second protocol is identical to the first
protocol except it uses an approximation of Dacc. We know that for any t ∈ N the distribution
Dacc can be approximated using (`+t) bits at the cost of deviating by 2−t in terms of the statistical
distance from Dacc. This introduces an additional error of 2−t in both privacy and correctness of
the second protocol. �

8.3 CDS for Dependency Programs

A dependency program is a model of computation introduced in [PS98].

Definition 8.1 (DP). A dependency program over a field F is a pair (M,ρ), where M is a matrix
over F and ρ is a labeling of the rows of M by the literals from {x1, . . . , xn, x1, . . . , xn} (every
row is labeled with a single literal, and the same literal can be used in many rows). For an input
u ∈ {0, 1}n let Mu denote the matrix obtained from M by selecting only the rows assigned to the
literals satisfied by u, i.e., a row labeled with xi (resp. xi) is chosen if the ith bit of u is 1 (resp.,
0). A dependency program accepts an input u if and only if the rows of Mu are linearly dependent.

18

A dependency program computes a Boolean function f if it accepts only 1-inputs of f . The size of
the dependency program is the number of rows in M . We also write |M | to denote the number of
row the matrix M has.

The number of columns s in DP is not counted towards its size. Without loss of generality we
may assume that s is upper-bounded by the number of rows (the size) since the matrix M can be
restricted to a maximal set of linearly independent columns without changing the function that is
computed (cf. [BG99, Remark 2.4]). It will also be convenient to assume that the number of rows
labeled by xi is equal to the number of rows that are labeled by its complement x̄i. (If this is not the
case and Mxi contains less rows than Mx̄i then we can add new linearly independent rows labeled
by xi, possibly at the expense of increasing the number of columns. Overall, the size of the resulting
dependency program will be at most twice as large as the size of the original program.) Observe
that if the input is partitioned between Alice and Bob, then the above convention guarantees that
for every input x (resp., y) Alice (resp., Bob) will hold a matrix Mx (resp., My) with a fixed number
of rows which is independent of the input.

We construct CDS for dependency programs. The following theorem generalizes Theorem 2.7
from the introduction to arbitrary finite fields.

Theorem 8.2 (Theorem 2.7 generalized). Assume that the function f : {0, 1}n × {0, 1}n →
{0, 1} has a dependency program of size m over a finite field F. Then, for every t ∈ N, the function
f has an (1/|F|)t-correct perfectly-private CDS scheme where the secret is an element of F and the
protocol communicates O(m · t) field elements and consumes O(m · t) random field elements.

Note that for large fields, the scheme achieves low decoding error and so t can be taken to be 1
(repetition is not needed).

Proof. Let (M,ρ) be a dependency program for the function f : {0, 1}n × {0, 1}n → {0, 1} over
the finite field F. Let s denote the number of columns in M , and let m1 (resp., m2) denote the
number of rows of M held by Alice for an input x (resp., held by Bob for an input y). Recall that,
by convention, m1 and m2 are independent of x and y, and that m′ = m1 +m2 is at most m, the
size of M .

We present a basic CDS scheme (F1, F2) for f where the secret b can be an arbitrary field
element. The scheme communicates at most 2m field elements, and uses at most 2m random field
elements. It achieves perfect privacy and has a completeness error of 1/|F|. In fact, the decoder
will either output the right answer or will output, with probability 1/|F|, a special failure symbol.
Therefore, by repeating the protocol t times (with independent randomness), we can reduce the
error to |F|−t with a multiplicative overhead of t in communication and randomness, as stated in
the theorem.

The basic CDS scheme (F1, F2) is defined as follows. As common randomness the scheme takes
a pair of random vectors c ∈ Fs and d ∈ Fm′ . On an input (x, b, c, d), the function F1 computed
by Alice outputs the pair (d1, r1) where d1 ∈ Fm1 is the first m1 entries of the vector d, and
r1 = Mx · c+ b · d1. (Recall that b ∈ F is a scalar.) Similarly, on an input (y, b, c, d) the function F2

computed by Bob outputs the pair (d2, r2) where d2 ∈ Fm2 is the last m2 entries of the vector d and
r2 = My ·c+b·d2. For a 1-instance (x, y), the decoding procedure decodes (d = (d1, d2), r = (r1, r2))
as follows: (1) The decoder finds a non-zero vector v ∈ Fm′ for which vTMxy = 0 (such a vector
must exist since the rows of Mxy are linearly dependent); (2) If the dot product (vT · d) is non-zero
the decoder outputs the value b′ = (vT ·r)/(vT ·d), and otherwise it outputs a special failure symbol.

19

We prove that the pair (F1, F2) is a CDS for f .

Correctness: Fix some 1-input (x, y) of f . Since v is in the left nullspace of Mxy, it holds that

vT · r = vT (Mxy · c+ b · d) = b · (vT · d).

Therefore, decoding succeeds as long as (vT · d) 6= 0. The latter event happens with probability
1− 1/|F| since d ∈ Fm′ is uniformly distributed.

Perfect Privacy: Fix some 0-input (x, y) of f . We show that in this case the random variables
(d1, r1) = F1(x, y, b, c, d) and (d2, r2) = F2(x, y, b, c, d) induced by a random choice of c and d, are
just vectors of uniformly and independently chosen field elements. First note that, by construction,
d = (d1, d2) is uniformly chosen from Fm′ . Recall that r = Mxy · c + b · d, and therefore it suffices
to show that Mxy · c is uniform over Fm′ . The latter boils down to showing that the image of
Mxy is equal to Fm′ . Indeed, since (x, y) is 0-input of f , the rows of the matrix Mxy are linearly
independent (i.e., the left nullspace of Mxy has rank 0), and so, by the fundamental theorem of
linear algebra, the linear space spanned by the columns of Mxy equals to Fm′ . �

Remark 8.3 (Linearity). We say that a CDS (F1, F2) is linear [GKW15] if for any fixed 1-input
(x, y) the decoding function Decx,y which maps the messages of Alice and Bob (viewed together as a
vector over a field F) to the secret b ∈ F is linear over F. It is not hard to verify that Theorem 2.7
yields a linear CDS. In fact, our scheme satisfies a stronger notion of linearity: for any fixed input
(x, y) the functions F1 and F2 are degree 1 functions in the secret b and in the common randomness
randomness (c, d). These linearity properties are useful for some applications such as Attribute
Based Encryption schemes (cf. [IW14, GKW15]).

Acknowledgement

We thank Yuval Ishai for pointing out that our CDS construction for arithmetic branching programs
extends to dependency programs.

References

[AIK06] B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography in NC0. SIAM J. Comput.,
36(4):845–888, 2006.

[AIK14] B. Applebaum, Y. Ishai, and E. Kushilevitz. How to garble arithmetic circuits. SIAM
J. Comput., 43(2):905–929, 2014.

[AIK15] B. Applebaum, Y. Ishai, and E. Kushilevitz. Minimizing locality of one-way functions
via semi-private randomized encodings. Electronic Colloquium on Computational Com-
plexity (ECCC), 22:45, 2015.

[AR16] B. Applebaum and P. Raykov. From private simultaneous messages to zero-information
arthur-merlin protocols and back. To appear in TCC 2016A, 2016. Available as eprint
report 2015/1046 at http://eprint.iacr.org/2015/1046.

20

http://eprint.iacr.org/2015/1046

[BFS86] L. Babai, P. Frankl, and J. Simon. Complexity classes in communication complexity
theory (preliminary version). In 27th Annual Symposium on Foundations of Computer
Science, Toronto, Canada, 27-29 October 1986, pages 337–347. IEEE Computer Society,
1986.

[BG99] A. Beimel and A. Gál. On arithmetic branching programs. J. Comput. Syst. Sci.,
59(2):195–220, 1999.

[BIKK14] A. Beimel, Y. Ishai, R. Kumaresan, and E. Kushilevitz. On the cryptographic com-
plexity of the worst functions. In Y. Lindell, editor, Theory of Cryptography - 11th
Theory of Cryptography Conference, TCC 2014, San Diego, CA, USA, February 24-26,
2014. Proceedings, volume 8349 of Lecture Notes in Computer Science, pages 317–342.
Springer, 2014.

[BM88] L. Babai and S. Moran. Arthur-merlin games: A randomized proof system, and a
hierarchy of complexity classes. J. Comput. Syst. Sci., 36(2):254–276, 1988.

[CKGS98] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private information retrieval. J.
ACM, 45(6):965–981, 1998.

[FKN94] U. Feige, J. Kilian, and M. Naor. A minimal model for secure computation (extended
abstract). In F. T. Leighton and M. T. Goodrich, editors, Proceedings of the Twenty-
Sixth Annual ACM Symposium on Theory of Computing, 23-25 May 1994, Montréal,
Québec, Canada, pages 554–563. ACM, 1994.

[GIKM00] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting data privacy in private
information retrieval schemes. J. Comput. Syst. Sci., 60(3):592–629, 2000.

[GKW15] R. Gay, I. Kerenidis, and H. Wee. Communication complexity of conditional disclosure
of secrets and attribute-based encryption. In R. Gennaro and M. Robshaw, editors,
Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II, volume 9216 of Lecture
Notes in Computer Science, pages 485–502. Springer, 2015.

[GPW15] M. Göös, T. Pitassi, and T. Watson. Zero-information protocols and unambiguity in
arthur-merlin communication. In T. Roughgarden, editor, Proceedings of the 2015 Con-
ference on Innovations in Theoretical Computer Science, ITCS 2015, Rehovot, Israel,
January 11-13, 2015, pages 113–122. ACM, 2015.

[IK97] Y. Ishai and E. Kushilevitz. Private simultaneous messages protocols with applications.
In Proceedings of the 5th Israeli Symposium on Theory of Computing and Systems, pages
174–183, June 1997.

[IK00] Y. Ishai and E. Kushilevitz. Randomizing polynomials: A new representation with ap-
plications to round-efficient secure computation. In 41st Annual Symposium on Foun-
dations of Computer Science, FOCS 2000, 12-14 November 2000, Redondo Beach, Cal-
ifornia, USA, pages 294–304. IEEE Computer Society, 2000.

21

[IK02] Y. Ishai and E. Kushilevitz. Perfect constant-round secure computation via perfect
randomizing polynomials. In P. Widmayer, F. T. Ruiz, R. M. Bueno, M. Hennessy,
S. Eidenbenz, and R. Conejo, editors, Automata, Languages and Programming, 29th
International Colloquium, ICALP 2002, Malaga, Spain, July 8-13, 2002, Proceedings,
volume 2380 of Lecture Notes in Computer Science, pages 244–256. Springer, 2002.

[Ish13] Y. Ishai. Randomization techniques for secure computation. In M. Prabhakaran and
A. Sahai, editors, Secure Multi-Party Computation, volume 10 of Cryptology and Infor-
mation Security Series, pages 222–248. IOS Press, 2013.

[IW14] Y. Ishai and H. Wee. Partial garbling schemes and their applications. In J. Esparza,
P. Fraigniaud, T. Husfeldt, and E. Koutsoupias, editors, Automata, Languages, and
Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark,
July 8-11, 2014, Proceedings, Part I, volume 8572 of Lecture Notes in Computer Science,
pages 650–662. Springer, 2014.

[Kla03] H. Klauck. Rectangle size bounds and threshold covers in communication complexity. In
18th Annual IEEE Conference on Computational Complexity (Complexity 2003), 7-10
July 2003, Aarhus, Denmark, pages 118–134. IEEE Computer Society, 2003.

[Kla10] H. Klauck. A strong direct product theorem for disjointness. In L. J. Schulman, edi-
tor, Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010,
Cambridge, Massachusetts, USA, 5-8 June 2010, pages 77–86. ACM, 2010.

[PS98] P. Pudlák, , and J. Sgall. Algebraic models of computation and interpolation for alge-
braic proof systems. In Proof Complexity and Feasible Arithmetic, volume 39 of DIMACS
Series in Discrete Mathematics and Theor. Comput. Sci., pages 279–296. Am. Math.
Soc., Providence, RI, 1998.

A [FKN94] is pPSM

We show that the PSM construction given in [FKN94] is also perfect, i.e., is a pPSM construction.
We start by describing the [FKN94] scheme (F1, F2) for a boolean f : [N] × [N] → {0, 1}. (Our
description is based on [BIKK14].) The shared randomness of the scheme is N random bits r =
(r0, . . . , rN−1) and a random index s ∈ [N]. The algorithms F1 and F2 are defined as follows:

Algorithm F1(x, (r, s)):
1. For each i ∈ {0, . . . , N −1}, compute ci = f(x, i)+ri.
2. For each i ∈ {0, . . . , N −1}, compute di = ci+s mod N .
3. Output m1 = (d0, . . . , dN−1).

Algorithm F2(y, (r, s)):
1. Compute u = ry and v = y − s.
2. Output m2 = (u, v).

Decoding is performed by outputting the value u + dv. We have that F1’s output space is
R1 = {0, 1}N and the output space of F2 is R2 = {0, 1}× [N]. Define Fxy(r, s) : {0, 1}N−1× [N]→
R1 × R2 by (F1(x, (r, s)), F2(y, (r, s))). For b ∈ {0, 1}, let Sb := {Fxy(r, s) | (r, s) ∈ {0, 1}N ×
[N], (x, y) ∈ f−1(b)}. We prove that S0 and S1 satisfy the required combinatorial properties of
pPSM (Remark 4.3):

• S0 ∩ S1 = ∅, since each Sb consists of ((d0, . . . , dN−1), (u, v)) such that b = u+ dv.

22

• S0∪S1 = R1×R2, since Sb consists of all pairs ((d0, . . . , dN−1), (u, v)) satisfying the correctness
requirement b = u+ dv.

• For any fixed input (x, y), we show that Fxy is a bijection on Sf(x,y). First, we prove that it is
an injection. Indeed, say that Fxy(r, s) = Fxy(r′, s′) = (d, u, v) and let c = (c1, . . . , cN−1) and
c′ = (c′1, . . . , c

′
N−1) denote the intermediate values computed by F1(x, (r, s)) and F1(x, (r′, s′)),

respectively. Then, by correctness, it holds that y − s = y − s′. This means that s = s′,
which, in turn, implies that c = c′ and so r = r′. It follows that Fxy is injective. Second,
we claim that Fxy is a surjection on Sf(x,y). Towards this end, we show that any tuple
((d0, . . . , dN−1), (u, v)) from Sf(x,y) has a preimage (s, r) under Fxy. Indeed, let s := y − v,
and for each i ∈ {0, . . . , N − 1}, let ri := di−s mod N − f(x, i). By construction, we have that
(r, s) is a preimage of ((d0, . . . , dN−1), (u, v)), i.e., Fxy(r, s) equals to (d0, . . . , dN−1), (u, v).

B [BIKK14] is pPSM

In this Section we describe the PSM protocol of [BIKK14] and prove that it forms a pPSM. To sim-
plify the proof, our description slightly deviates from the original description though the resulting
protocol is identical.

Before constructing a pPSM for the function f : [N]× [N]→ {0, 1}, we introduce some auxiliary
definitions. Let us view f as a function of four arguments by splitting its first and second argument
in half, i.e., f(x, y) = f(v1, v2, v3, v4) where each vi ∈ [N1/2]. Following [BIKK14], we associate f
with a 4-dimensional cube as follows: each coordinate (v1, v2, v3, v4) of the cube is associated with
the value f(v1, v2, v3, v4). For any v ∈ [N1/2], let ev denote the N1/2-bit indicator vector which has
1 at location v, and 0 elsewhere. For any two N1/2-bit vectors u1, u2 let 〈u1, u2〉 denote their inner
product. For four N1/2-bit vectors u1, u2, u3, u4 we define the function G(u1, u2, u3, u4) to compute
the XOR of the subcube defined by the 1-coordinates in u1, u2, u3, u4, i.e.,

G(u1, u2, u3, u4) =
∑

v1,v2,v3,v4∈[N1/2]

〈ev1 , u1〉 · 〈ev2 , u2〉 · 〈ev3 , u3〉 · 〈ev4 , u4〉 · f(v1, v2, v3, v4),

where addition and multiplication are computed over the binary field. The following fact has been
observed in [CKGS98].

Fact B.1. Let v1, v2, v3, v4 ∈ [N1/2] be any four values and let u1, u2, u3, u4 be any four N1/2-bit
vectors. For each k ∈ [4], let u0

k = uk and let u1
k = uk⊕evk (where ⊕ is a bit-wise XOR of vectors).

Then, it holds that

f(v1, v2, v3, v4) =
∑

(b1,b2,b3,b4)∈{0,1}4
G(ub11 , u

b2
2 , u

b3
3 , u

b4
4).

We now describe how Alice and Bob each holding input x = (x1, x2) and y = (y1, y2), respec-
tively, compute an encoding of f(x1, x2, y1, y2). Let u1, u2, u3, u4 be four random N1/2-bit vectors
that Alice and Bob use as common randomness. For k ∈ [4] and b ∈ {0, 1}, define additional vectors
ubk as follows: for each k ∈ [4], let u0

k = uk; and let u1
1 = u1 ⊕ ex1 , u1

2 = u2 ⊕ ex2 , u1
3 = u3 ⊕ ey1 ,

u1
4 = u4 ⊕ ey2 . Alice and Bob compute the encoding of f(x1, x2, y1, y2) by computing an encod-

ing of the sum
∑

(b1,b2,b3,b4)∈{0,1}4 G(ub11 , u
b2
2 , u

b3
3 , u

b4
4). They do this by splitting the sum into two

23

summands:
G(u1

1, u
1
2, u

1
3, u

1
4) +

∑
(b1,b2,b3,b4)∈{0,1}4\{(1,1,1,1)}

G(ub11 , u
b2
2 , u

b3
3 , u

b4
4).

The first summand is encoded with the tuple (u1
1, u

1
2, u

1
3, u

1
4), i.e., the values u1

i are sent by Alice and
Bob in plain, so that the Referee can compute the term G(u1

1, u
1
2, u

1
3, u

1
4). As observed in [BIKK14],

the second summand can be computed by a multiplicative depth-1 circuit C(x, y, (u1, u2, u3, u4))
of size O(N1/2) and so it can be encoded via the following lemma whose proof is implicit in [IK02]
(see also [AIK14]).

Lemma B.2. Every multiplicative depth-1 circuit of size m has a pPSM with randomness and
communication complexity of size O(m).

Let H1 and H2 denote the pPSM of the circuit C. Then, the encoding of the second term is
computed by Alice and Bob by applying H1 and H2, respectively.

Formally, the resulting encoding F1, F2 for the function f is described below.

Parameters: Alice’s input x = (x1, x2), Bob’s input y = (y1, y2), four random N1/2-bit vectors
(u1, u2, u3, u4) = u and a common randomness c used by H1, H2.

Alice’s algorithm F1(x, (u, c)):
1. Compute m1 = H1((x, u), c).
2. Compute u1

1 = u1⊕ex1 and u1
2 = u2⊕ex2 .

3. Output M1 = (u1
1, u

1
2,m1).

Bob’s algorithm F2(y, (u, c)):
1. Compute m2 = H2((y, u), c).
2. Compute u1

3 = u3⊕ ey1 and u1
4 = u4⊕ ey2 .

3. Output M2 = (u1
3, u

1
4,m2).

The decoding algorithm works as follows: Given (u1
1, u

1
2,m1) and (u1

3, u
1
4,m2), the decoder first

uses a decoder of the pPSM (H1, H2) to recover the bit z = C(x, y, u), and then outputs z +
G(u1

1, u
1
2, u

1
3, u

1
4).

Lemma B.3. The encoding (F1, F2) is a pPSM for f with randomness and communication com-
plexity of O(N1/2).

Proof. We prove that (F1, F2) is a pPSM by viewing it as a composition of two perfect encodings
(see Remark 4.5). Consider the encoding J , which takes (x, y) as deterministic inputs and u =

(u1, u2, u3, u4) where ui ∈ {0, 1}N
1/2

as common randomness, and outputs the pair

(C(x, y, u), (u1
1, u

1
2, u

1
3, u

1
4)) ∈ {0, 1} × [N1/2]4,

where each u1
k are computed as in (F1, F2). We prove that J(x, y, u) is a pPSM of f by showing

that J satisfies the required combinatorial properties of pPSM as formulated in Remark 4.3. Let
Jxy(u) = J(x, y, u) and, for b ∈ {0, 1}, define Sb := {Jxy(u) | u ∈ [N1/2]4, (x, y) ∈ f−1(b)}. Then
the following hold:

• S0 ∩ S1 = ∅ since each Sb consists of (d, (w1, w2, w3, w4)) such that d+G(w1, w2, w3, w4) = b.

• We prove that S0∪S1 = {0, 1}× [N1/2]4. Take any (d, (w1, w2, w3, w4)) from {0, 1}× [N1/2]4.
Let z = d + G(w1, w2, w3, w4). Take any z-input (x, y) of f . Define u1 = w1 ⊕ ex1 , u2 =
w2⊕ex2 , u3 = w3⊕ey1 , and u4 = w4⊕ey2 . By construction we have that Jxy(u1, u2, u3, u4) =
(d, (w1, w2, w3, w4)).

24

• For any fixed input (x, y), we show that Jxy is a bijection on Sf(x,y). First, we prove that it
is an injection. Indeed, say that Jxy(u) = Jxy(u′) = (d, (w1, w2, w3, w4)). Then, we have that
u = (w1 ⊕ ex1 , w2 ⊕ ex2 , w3 ⊕ ey1 , w4 ⊕ ey2) = u′. It follows that Jxy is injective. Second,
we claim that Jxy is a surjection on Sf(x,y). Towards this end, we show that any tuple
(d, (w1, w2, w3, w4)) from Sf(x,y) has a preimage (u1, u2, u3, u4) under Jxy. Indeed, define
u1 = w1 ⊕ ex1 , u2 = w2 ⊕ ex2 , u3 = w3 ⊕ ey1 , and u4 = w4 ⊕ ey2 . By construction, we have
that u is a preimage of (d, (w1, w2, w3, w4)).

Finally, we observe that (F1, F2) can be viewed as an encoding of J since it encodes the C(x, y, u)
part by the pPSM (H1, H2) and outputs (u1

1, u
1
2, u

1
3, u

1
4) as is. It follows, by standard properties of

pPSM [AIK06, Lemmas 4.10 and 4.11], that the encoding (F1, F2) is also a pPSM of f . Let sF , sJ , sH
(resp., tF , tJ , tH) denote the randomness complexities (resp., communication complexities) of the
encodings (F1, F2), J , and (H1, H2). By construction, we have that sJ and tJ are in O(N1/2) and,
by Lemma B.2, we also have that sH and tH are in O(N1/2). Since sF = sJ + sH and tF = tJ + tH
we conclude that F has a communication and randomness complexity of O(N1/2). �

25

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

