

Finding Primitive Roots Pseudo-Deterministically

Ofer Grossman^{*}

December 22, 2015

Abstract

Pseudo-deterministic algorithms are randomized search algorithms which output unique solutions (i.e., with high probability they output the same solution on each execution). We present a pseudo-deterministic algorithm that, given a prime p, finds a primitive root modulo p in time $\exp(O(\sqrt{\log p \log \log p}))$. This improves upon the previous best known provable deterministic (and pseudo-deterministic) algorithm which runs in exponential time $p^{\frac{1}{4}+o(1)}$. Our algorithm matches the problem's best known running time for Las Vegas algorithms which may output different primitive roots in different executions.

When the factorization of p-1 is known, as may be the case when generating primes with p-1 in factored form for use in certain applications, we present a pseudo-deterministic *polynomial* time algorithm for the case that each prime factor of p-1 is either of size at most $\log^{c}(p)$ or at least $p^{1/c}$ for some constant c > 0. This is a significant improvement over a result of Gat and Goldwasser [5], which described a polynomial time pseudo-deterministic algorithm when the factorization of p-1 was of the form kq for prime q and $k = \text{poly}(\log p)$.

We remark that the Generalized Riemann Hypothesis (GRH) implies that the smallest primitive root g satisfies $g \leq O(\log^6(p))$. Therefore, assuming GRH, given the factorization of p-1, the smallest primitive root can be found and verified deterministically by brute force in polynomial time.

1 Introduction

Pseudo-deterministic algorithms are randomized search algorithms which, with high probability, output the same solution on each execution. Formally, A is a pseudo-deterministic algorithm for a binary relation R if there exists some function s such that when executed on input x, the algorithm A outputs s(x) with high probability, and $(x, s(x)) \in R$. In other words, when we execute A on input x, we get the same output s(x) for almost all random seeds. Standard randomized search algorithms, on the other hand, may output a different y satisfying $(x, y) \in R$ on each execution with input x.

In [5], Gat and Goldwasser ask whether there exists a pseudo-deterministic algorithm that finds a primitive root mod p faster than the best known deterministic algorithm, which runs in time $p^{\frac{1}{4}+o(1)}$. We answer this question in the affirmative:

Theorem 1.1. There exists a pseudo-deterministic algorithm for PRIMITIVE-ROOT that runs in expected time $L_p(1/2) = \exp(O(\sqrt{\log p \log \log p}))$.

^{*}ogrossma@mit.edu. Department of Mathematics, MIT.

We note that this matches the time bound for the best known Las Vegas algorithms for PRIMITIVE-ROOT.

This problem may have cryptographic applications, as protocols based on the Diffie-Hellman problem [4] rely on primitive roots to establish keys. It may be desirable for two parties to independently generate the same key, or primitive root, for \mathbb{F}_p . In this situation, pseudo-deterministic algorithms are helpful while standard randomized algorithms will not suffice.

A closely related problem to PRIMITIVE-ROOT is PRIMITIVE-ROOT-GIVEN-FACTORIZATION. This problem asks for a primitive root mod p, given both p and the factorization of p-1.

PRIMITIVE-ROOT-GIVEN-FACTORIZATION may be relevant to applications since the factorization of p-1 is often known. For example, protocols may require efficient ways to verify that an element is a primitive root, in which case the factorization of p-1 will be known. For such applications, it is possible to efficiently generate primes p with p-1 in factored form [1].

Assuming the generalized Riemann Hypothesis (GRH), Shoup proved in [7] that the smallest non-residue mod p is of size $O(\log^6(p))$, which implies a brute force polynomial time algorithm for PRIMITIVE-ROOT-GIVEN-FACTORIZATION. Without the GRH assumption, the best deterministic algorithm remains the $p^{\frac{1}{4}+o(1)}$ algorithm from [2].

In [5], polynomial time pseudo-deterministic algorithms are presented for PRIMITIVE-ROOT-GIVEN-FACTORIZATION when the input prime satisfies p-1 = kq, with q prime and $k = \text{poly}(\log p)$. We improve upon this result by finding polynomial time pseudo-deterministic algorithms for primes satisfying $p-1 = \prod_{i=1}^{k} q_i^{e_i}$, where for some constant c each of the q_i is either at most of size $\log^c(p)$ or at least of size $p^{1/c}$ (our dependence on c is exponential). It remains open to find a polynomial time pseudo-deterministic algorithm for PRIMITIVE-ROOT-GIVEN-FACTORIZATION for general primes.

2 Preliminaries

In this section we establish some lemmas we will later use. All lemmas in this section assume p is a prime, $a, b \neq 0 \mod p$, and ord refers to the order in \mathbb{F}_p^{\times} (the multiplicative group of \mathbb{F}_p).

Lemma 2.1. Suppose $a, b \in \mathbb{F}_p^{\times}$. If $\operatorname{ord}(a)$ and $\operatorname{ord}(b)$ are relatively prime, then $\operatorname{ord}(ab) = \operatorname{ord}(a)\operatorname{ord}(b)$.

Proof. First, we note that $(ab)^{\operatorname{ord}(a)\operatorname{ord}(b)} = 1$. Therefore, $\operatorname{ord}(ab)|\operatorname{ord}(a)\operatorname{ord}(b)$.

Suppose $\operatorname{ord}(ab) < \operatorname{ord}(a)\operatorname{ord}(b)$. Let q be a prime dividing $\frac{\operatorname{ord}(a)\operatorname{ord}(b)}{\operatorname{ord}(ab)}$.

We know that $(ab)^{\operatorname{ord}(a)\operatorname{ord}(b)/q} = 1$. However, q divides either $\operatorname{ord}(a)$ or $\operatorname{ord}(b)$. Suppose without loss of generality that $q|\operatorname{ord}(a)$. Then

$$1 = a^{\operatorname{ord}(a)\operatorname{ord}(b)/q} \left(b^{\operatorname{ord}(b)}\right)^{\left(\operatorname{ord}(a)/q\right)} = a^{\operatorname{ord}(a)\operatorname{ord}(b)/q}.$$

Therefore, $\operatorname{ord}(a)|(\operatorname{ord}(a)/q)\operatorname{ord}(b)$. However, because $\operatorname{ord}(a)$ and $\operatorname{ord}(b)$ are relatively prime, this implies $\operatorname{ord}(a)|(\operatorname{ord}(a)/q)$, which is impossible.

Definition 2.2 (*q*th residue). Let q|p-1 be a prime. We call an element *a* which is a *q*th power (i.e., there exists some *b* such that $a = b^q$) a *q*th residue. Otherwise, we call *a* a *q*th non-residue.

Lemma 2.3. Suppose q^e is the largest power of q dividing p-1. Then a qth non-residue has order divisible by q^e .

Proof. Suppose g is a primitive root mod p. An element $a = g^k$ satisfies

$$\operatorname{ord}(a) = \frac{p-1}{\gcd(p-1,k)}$$

If a is a qth non-residue, then we know k is not divisible by q. Therefore, $q \nmid \gcd(p-1,k)$. It follows that $\operatorname{ord}(a)$ is divisible by q^e , where q^e is the largest power of q dividing p-1.

The following lemma will show that to find a primitive root modulo p, it is enough if for each prime q_i dividing p-1 we find a q_i th non-residue.

Lemma 2.4. Let $p - 1 = \prod_{i=1}^{m} q_i^{e_i}$. Suppose that for each *i*, the element a_i is a q_i th non-residue. Then the product

$$\prod_{i=1}^{m} a_i^{(p-1)/q_i^{e_i}}$$

is a primitive root.

Proof. We can write $a_i = g^{k_i}$ for some primitive root g, and k_i not divisible by q_i . Then $a_i^{(p-1)/q_i^{e_i}} = g^{k_i(p-1)/q_i^{e_i}}$ must have order exactly $q_i^{e_i}$, since $q_i^{e_i}$ is the smallest number N such that $Nk_i(p-1)/q_i^{e_i}$ is divisible by p-1, which is the order of g.

Therefore, the element $a_i^{(p-1)/q_i^{e_i}}$ has order exactly $q_i^{e_i}$. It follows that the orders of each of the $a_i^{(p-1)/q_i^{e_i}}$ are relatively prime, and so by Lemma 2.1,

$$\operatorname{ord}\left(\prod_{i=1}^{m} a_i^{(p-1)/q_i^{e_i}}\right) = \prod_{i=1}^{m} \operatorname{ord}\left(a_i^{(p-1)/q_i^{e_i}}\right).$$

The order of $a_i^{(p-1)/q_i^{e_i}}$ is $q_i^{e_i}$, so the product of the orders is $\prod_{i=1}^m q_i^{e_i} = p-1$. Hence $\prod_{i=1}^m a_i^{(p-1)/q_i^{e_i}}$ is a primitive root.

Lemma 2.5. Given p and q|p-1, there exists a pseudo-deterministic algorithm that finds a qth non-residue in time $q \cdot poly(\log p)$.

Proof. See Theorem 3 in [5].

Lemma 2.6. Given the factorization $p - 1 = \prod_{i=1}^{m} q_i^{e_i}$ and an element $a \in \mathbb{F}_p$, we can compute $\operatorname{ord}(a)$ in $\operatorname{poly}(\log p)$ time.

Proof. See page 329 in [8].

The following theorem from [3] gives a bound on smooth numbers (we say that n is m-smooth if all prime factors of n are at most m).

Theorem 2.7 (Canfield-Erdös-Pomerance). Let $\psi(x, y)$ denote the number of y-smooth positive integers bounded by x. Let $u = \frac{\log x}{\log y}$. Suppose that $u < (1 - \delta) \frac{\log x}{\log \log x}$ for some $\delta > 0$. Then

$$\frac{1}{x}\psi(x,y) = u^{-u+o(u)}$$

holds uniformly as u and x approach ∞ .

3 Algorithm and Analysis

In this section, we present and analyze our algorithm.

The idea for the algorithm is as follows. First we factor p - 1. Now, for each prime factor q of p - 1, we find a qth non-residue. We then use Lemma 2.4, to construct a primitive root.

To find a *q*th non-residue, we first check if *q* is large or small (compared to $\exp(\sqrt{\log p \log \log p})$). If *q* is small, we run the algorithm from Lemma 2.5. If *q* is large, we check the elements $\{1, 2, \ldots, p-1\}$ (in order) until we find one which is a *q*th non-residue. Lemma 3.1 guarantees that for large *q*, we will encounter a *q*th non-residue within the first $\exp(\sqrt{\log p \log \log p})$ elements:

Lemma 3.1. For all sufficiently large p, for all $q \ge \exp(\sqrt{\log p \log \log p})$ dividing p-1, there exists a positive $s \le \exp(\sqrt{\log p \log \log p})$ which is a qth non-residue.

Proof. Our strategy will be to assume Lemma 3.1 is false and then to write an inequality comparing the number of $\exp(\sqrt{\log p \log \log p})$ -smooth numbers with the number of qth residues. We will then reduce this inequality to a contradiction.

We first calculate $\psi(p, \exp(\sqrt{\log p \log \log p}))$. We use the Canfield-Erdös-Pomerance theorem (Theorem 2.7), and see that $u = \frac{\log p}{\sqrt{\log p \log \log p}} = \frac{\sqrt{\log p}}{\sqrt{\log \log p}}$. Therefore,

$$\frac{1}{p}\psi(p,\exp(\sqrt{\log p\log\log p})) = \left(\frac{\sqrt{\log p}}{\sqrt{\log\log p}}\right)^{-\left(\frac{\sqrt{\log p}}{\sqrt{\log\log p}}\right) + o\left(\frac{\sqrt{\log p}}{\sqrt{\log\log p}}\right)}.$$
(1)

For the sake of contradiction, assume that every element $s \leq \exp(\sqrt{\log p \log \log p})$ is a *q*th residue. Since the product of two elements which are *q*th residues is also a *q*th residue, every $\exp(\sqrt{\log p \log \log p})$ -smooth number is a *q*th residue. We therefore know that $\psi(p, \exp(\sqrt{\log p \log \log p}))$ is bounded above by the number of *q*th residues, which is $p/q \leq p/\exp(\sqrt{\log p \log \log p})$. Combining this with (1) yields

$$\frac{1}{p}(p/\exp(\sqrt{\log p \log \log p})) \ge \left(\frac{\sqrt{\log p}}{\sqrt{\log \log p}}\right)^{-\left(\frac{\sqrt{\log p}}{\sqrt{\log \log p}}\right) + o\left(\frac{\sqrt{\log p}}{\sqrt{\log \log p}}\right)}.$$

Taking the log of both sides gives

$$-\sqrt{\log p \log \log p} \ge -\left(\left(\frac{\sqrt{\log p}}{\sqrt{\log \log p}}\right) + o\left(\frac{\sqrt{\log p}}{\sqrt{\log \log p}}\right)\right) \log\left(\frac{\sqrt{\log p}}{\sqrt{\log \log p}}\right)$$

Multiplying both sides by $\frac{-\sqrt{\log \log p}}{\sqrt{\log p}}$ results in

$$\log \log p \le \left(1 + \left(\frac{\sqrt{\log \log p}}{\sqrt{\log p}}\right) o\left(\frac{\sqrt{\log p}}{\sqrt{\log \log p}}\right)\right) \log\left(\frac{\sqrt{\log p}}{\sqrt{\log \log p}}\right).$$

And this implies

$$\log \log p \le (1+o(1))\frac{1}{2}\log \log p.$$

The above inequality is clearly false, completing the proof.

Now that we have proven Lemma 3.1, we are ready to analyze the algorithm (Figure 1).

PRIMITIVE-ROOT(p) 1 Factor $p - 1 = \prod_{i=1}^{m} q_i^{e_i}$. 2 for each q_i : 3 if $q_i > \exp(\sqrt{\log p \log \log p})$ 4 Compute the order of 1, 2, ..., until an element a_i with $q_i^{e_i} | \operatorname{ord}(a_i)$ is found. 5 if $q_i \le \exp(\sqrt{\log p \log \log p})$ 6 Find a q_i th non-residue a_i using Lemma 2.5. 7 return $\prod_{i=1}^{m} a_i^{(p-1)/q_i^{e_i}}$.

Figure 1: A pseudo-deterministic algorithm finding a primitive root modulo a given prime p.

Correctness of the algorithm follows immediately from Lemma 2.4. We will now analyze the time complexity of the algorithm:

Lemma 3.2. The algorithm in Figure 1 runs in time $L_p(1/2) = \exp(O(\sqrt{\log p \log \log p}))$.

Proof. By Lenstra and Pomerance's factoring algorithm [6], line 1 takes time $L_p(1/2)$.

For each $q_i > \exp(\sqrt{\log p \log \log p})$, by Lemma 3.1, in line 4 we have to find the order of at most $L_p(1/2)$ elements. By Lemma 2.6, finding the order each requires $poly(\log p)$ time, so line 4 takes a total of $L_p(1/2)$ $poly(\log p) = L_p(1/2)$ time.

For $q_i \leq \exp(\sqrt{\log p \log \log p})$, line 6 takes at most $\exp(\sqrt{\log p \log \log p}) \operatorname{poly}(\log p) = L_p(1/2)$ time by Lemma 2.5.

Since there are at most log p primes dividing p-1, the loop in line 2 takes a total of $L_p(1/2) \log p = L_p(1/2)$ time.

Calculating the product in line 7 takes $poly(\log p)$ time. Therefore, the algorithm as a whole terminates in expected time $L_p(1/2)$.

We now show that the algorithm is pseudo-deterministic. Note that the only randomized steps of the algorithm are line 1 and line 6. In line 1, we use an algorithm that with high probability outputs the factorization of p-1, which is always the same. In line 6, we use an algorithm which is pseudo-deterministic by Lemma 2.5.

This implies our main theorem:

Theorem 3.3. There exists a pseudo-deterministic algorithm for PRIMITIVE-ROOT that runs in expected time $L_p(1/2)$.

4 Finding a Primitive Root Given Factorization

A related problem to PRIMITIVE-ROOT is PRIMITIVE-ROOT-GIVEN-FACTORIZATION:

Definition 4.1. The PRIMITIVE-ROOT-GIVEN-FACTORIZATION problem is the problem of finding a primitive root mod p when both p and the factorization of p - 1 are given as input.

For PRIMITIVE-ROOT-GIVEN-FACTORIZATION, the best known Las-Vegas algorithm runs in polynomial time. The best previously known pseudo-deterministic algorithm runs in time $p^{\frac{1}{4}+o(1)}$. The algorithm from section 3 improves this to $L_p(1/2)$.

In [5], Gat and Goldwasser pose as a problem to find a polynomial time pseudo-deterministic algorithm for PRIMITIVE-ROOT-GIVEN-FACTORIZATION. The authors present a polynomial time algorithm for the case p-1 = kq, where q is prime and k is of size poly(log p). We improve upon this result with a polynomial time algorithm for all p where each prime factor of p-1 is of size either at most log^c(p) or at least $p^{1/c}$, for some constant c > 1. Our algorithm runs in time log^c(p) poly(log p). We describe our algorithm in Figure 2.

PRIMITIVE-ROOT-GIVEN-FACTORIZATION $(p, p-1 = \prod_{i=1}^{m} q_i^{e_i})$ 1 **for** each q_i : 2 **if** $q_i > \exp(\sqrt{\log p \log \log p})$ 3 Compute the order of 1, 2, ..., until an element a_i with $q_i^{e_i} | \operatorname{ord}(a_i)$ is found. 4 **if** $q_i \le \exp(\sqrt{\log p \log \log p})$ 5 Find a q_i th non-residue a_i using Lemma 2.5. 6 **return** $\prod_{i=1}^{m} a_i^{(p-1)/q_i^{e_i}}$.

Figure 2: A pseudo-deterministic algorithm finding a primitive root modulo a prime p, given both p and the factorization of p-1.

Correctness of the algorithm follows immediately from Lemma 2.4.

We now prove that if there is some constant c such that all q_i satisfy either $q_i < \log^c p$ or $q_i > p^{1/c}$, then the algorithm terminates in time at most $\log^c(p) \operatorname{poly}(\log p)$.

First, note that for large enough p, if $q_i < \log^c p$ then $q_i < \exp(\sqrt{\log p \log \log p})$. Also, if $q_i > p^{1/c}$ then $q_i > \exp(\sqrt{\log p \log \log p})$.

To prove that line 3 takes polynomial time, we argue that for all fixed $\varepsilon > 0$, for large enough p, if $q_i > p^{1/c}$ then there exists an $a < \log^{c+\varepsilon}(p)$ that is a q_i th non-residue. We do this with a similar strategy to our proof of Lemma 3.1. We know that there are at most $\frac{p-1}{q_i}$ elements which are q_i th residues. Suppose for the sake of contradiction that all $a < \log^{c+\varepsilon}(p)$ are q_i th residues. This implies that there are at least $\psi(p, \log^{c+\varepsilon}(p))$ elements which are q_i th residues. Therefore, we have the inequality

$$\frac{p}{q_i} \ge \psi(p, \log^{c+\varepsilon}(p)).$$

By the Canfield-Erdös-Pomerance theorem (Theorem 2.7), $\psi(p, \log^{c+\varepsilon}(p)) = pu^{-u+o(u)}$, where $u = \frac{\log p}{\log \log^{c+\varepsilon} p}$. Plugging this in and taking the log of both sides yields

$$\log\left(\frac{1}{q_i}\right) \ge -\left(\frac{\log p}{\log\log^{c+\varepsilon}(p)} + o\left(\frac{\log p}{\log\log^{c+\varepsilon}(p)}\right)\right)\log\left(\frac{\log p}{\log\log^{c+\varepsilon}(p)}\right).$$

Simplifying gives

$$\log q_i \le \left(\frac{\log p}{\log \log^{c+\varepsilon}(p)} + o\left(\frac{\log p}{\log \log^{c+\varepsilon}(p)}\right)\right) \log\left(\frac{\log p}{\log \log^{c+\varepsilon}(p)}\right).$$

But we know that $q_i \ge p^{1/c}$. Therefore, $\log q_i \ge \frac{1}{c} \log p$. Plugging this in and simplifying yields

$$\frac{1}{c} \le \left(\frac{1}{\log \log^{c+\varepsilon}(p)} + \frac{1}{\log p}o\left(\frac{\log p}{\log \log^{c+\varepsilon}(p)}\right)\right)\log\left(\frac{\log p}{\log \log^{c+\varepsilon}(p)}\right)$$

Further simplifying now gives

$$\frac{1}{c} \le \left(\frac{1}{(c+\varepsilon)\log\log p} + \frac{1}{\log p}o\left(\frac{\log p}{\log\log^{c+\varepsilon}(p)}\right)\right) \left(\log\log p - \log\log\log^{c+\varepsilon}(p)\right).$$

However, the right side approaches $\frac{1}{c+\varepsilon}$, whereas the left side is $\frac{1}{c}$. Therefore, we have reached a contradiction, and so within the first $\log^{c+\varepsilon}(p)$ elements that we test in line 3, we will encounter a q_i th non-residue.

Therefore, line 3 of the algorithm requires calculating the order of up to $\log^{c+\varepsilon}(p)$ elements, each of which takes $\operatorname{poly}(\log p)$ time by Lemma 2.6. Line 5 takes up to $\log^c(p) \operatorname{poly}(\log p)$ time by Lemma 2.5. Since there are at most $\log p$ primes dividing p, the loop in line 1 is of length up to $\log p$. It follows that our algorithm terminates and outputs a primitive root in expected time $\log^c(p) \operatorname{poly}(\log p)$.

Note that on every execution of the algorithm, we output the same primitive root, since the only randomized step of the algorithm is line 5 which is pseudo-deterministic by Lemma 2.5.

This completes the proof of the following theorem:

Theorem 4.2. For any constant c > 1, there exists a pseudo-deterministic algorithm for PRIMITIVE-ROOT-GIVEN-FACTORIZATION that runs in polynomial time for all p where each prime factor q of p-1 satisfies either $q < \log^{c}(p)$ or $q > p^{1/c}$.

5 Discussion

It would be interesting to find a polynomial time pseudo-deterministic algorithm for PRIMITIVE-ROOT-GIVEN-FACTORIZATION for general primes.

The slowest step in Las Vegas algorithms for PRIMITIVE-ROOT is factoring p-1. It would be interesting to find an algorithm which can verify an element is a primitive root without using the factorization of p-1.

Acknowledgments

I would like to thank Shafi Goldwasser for introducing me to the primitive root problem, for helpful discussions, and for advice and encouragement on the paper. I would also like to thank Andrew Sutherland for helpful discussions.

References

- Eric Bach. How to generate factored random numbers. SIAM Journal on Computing, 17(2):179– 193, 1988.
- [2] DA Burgess. On character sums and primitive roots. Proceedings of the London Mathematical Society, 3(1):179–192, 1962.

- [3] E Rodney Canfield, Paul Erdös, and Carl Pomerance. On a problem of oppenheim concerning "factorisatio numerorum". *Journal of Number Theory*, 17(1):1–28, 1983.
- [4] Whitfield Diffie and Martin E Hellman. New directions in cryptography. Information Theory, IEEE Transactions on, 22(6):644-654, 1976.
- [5] Eran Gat and Shafi Goldwasser. Probabilistic search algorithms with unique answers and their cryptographic applications. In *Electronic Colloquium on Computational Complexity (ECCC)*, volume 18, page 136, 2011.
- [6] Hendrik W Lenstra and Carl Pomerance. A rigorous time bound for factoring integers. *Journal* of the American Mathematical Society, 5(3):483–516, 1992.
- [7] Victor Shoup. Searching for primitive roots in finite fields. Mathematics of Computation, 58(197):369–380, 1992.
- [8] Victor Shoup. A computational introduction to number theory and algebra. Cambridge university press, 2009.

ECCC

ISSN 1433-8092

http://eccc.hpi-web.de