Finding Primitive Roots Pseudo-Deterministically

Ofer Grossman*

December 22, 2015

Abstract

Pseudo-deterministic algorithms are randomized search algorithms which output unique solutions (i.e., with high probability they output the same solution on each execution). We present a pseudo-deterministic algorithm that, given a prime p, finds a primitive root modulo p in time $\exp (O(\sqrt{\log p \log \log p}))$. This improves upon the previous best known provable deterministic (and pseudo-deterministic) algorithm which runs in exponential time $p^{\frac{1}{4}+o(1)}$. Our algorithm matches the problem's best known running time for Las Vegas algorithms which may output different primitive roots in different executions.

When the factorization of $p-1$ is known, as may be the case when generating primes with $p-1$ in factored form for use in certain applications, we present a pseudo-deterministic polynomial time algorithm for the case that each prime factor of $p-1$ is either of size at most $\log ^{c}(p)$ or at least $p^{1 / c}$ for some constant $c>0$. This is a significant improvement over a result of Gat and Goldwasser [5], which described a polynomial time pseudo-deterministic algorithm when the factorization of $p-1$ was of the form $k q$ for prime q and $k=\operatorname{poly}(\log p)$.

We remark that the Generalized Riemann Hypothesis (GRH) implies that the smallest primitive root g satisfies $g \leq O\left(\log ^{6}(p)\right)$. Therefore, assuming GRH, given the factorization of $p-1$, the smallest primitive root can be found and verified deterministically by brute force in polynomial time.

1 Introduction

Pseudo-deterministic algorithms are randomized search algorithms which, with high probability, output the same solution on each execution. Formally, A is a pseudo-deterministic algorithm for a binary relation R if there exists some function s such that when executed on input x, the algorithm A outputs $s(x)$ with high probability, and $(x, s(x)) \in R$. In other words, when we execute A on input x, we get the same output $s(x)$ for almost all random seeds. Standard randomized search algorithms, on the other hand, may output a different y satisfying $(x, y) \in R$ on each execution with input x.

In [5], Gat and Goldwasser ask whether there exists a pseudo-deterministic algorithm that finds a primitive root mod p faster than the best known deterministic algorithm, which runs in time $p^{\frac{1}{4}+o(1)}$. We answer this question in the affirmative:

Theorem 1.1. There exists a pseudo-deterministic algorithm for Primitive-Root that runs in expected time $L_{p}(1 / 2)=\exp (O(\sqrt{\log p \log \log p}))$.

[^0]We note that this matches the time bound for the best known Las Vegas algorithms for Primitive-Root.

This problem may have cryptographic applications, as protocols based on the Diffie-Hellman problem [4] rely on primitive roots to establish keys. It may be desirable for two parties to independently generate the same key, or primitive root, for \mathbb{F}_{p}. In this situation, pseudo-deterministic algorithms are helpful while standard randomized algorithms will not suffice.

A closely related problem to Primitive-Root is Primitive-Root-Given-Factorization. This problem asks for a primitive root $\bmod p$, given both p and the factorization of $p-1$.

Primitive-Root-Given-Factorization may be relevant to applications since the factorization of $p-1$ is often known. For example, protocols may require efficient ways to verify that an element is a primitive root, in which case the factorization of $p-1$ will be known. For such applications, it is possible to efficiently generate primes p with $p-1$ in factored form [1].

Assuming the generalized Riemann Hypothesis (GRH), Shoup proved in [7] that the smallest non-residue $\bmod p$ is of size $O\left(\log ^{6}(p)\right)$, which implies a brute force polynomial time algorithm for Primitive-Root-Given-Factorization. Without the GRH assumption, the best deterministic algorithm remains the $p^{\frac{1}{4}+o(1)}$ algorithm from [2].

In [5], polynomial time pseudo-deterministic algorithms are presented for Primitive-Root-Given-Factorization when the input prime satisfies $p-1=k q$, with q prime and $k=\operatorname{poly}(\log p)$. We improve upon this result by finding polynomial time pseudo-deterministic algorithms for primes satisfying $p-1=\prod_{i=1}^{k} q_{i}^{e_{i}}$, where for some constant c each of the q_{i} is either at most of size $\log ^{c}(p)$ or at least of size $p^{1 / c}$ (our dependence on c is exponential). It remains open to find a polynomial time pseudo-deterministic algorithm for Primitive-Root-Given-Factorization for general primes.

2 Preliminaries

In this section we establish some lemmas we will later use. All lemmas in this section assume p is a prime, $a, b \not \equiv 0 \bmod p$, and ord refers to the order in \mathbb{F}_{p}^{\times}(the multiplicative group of \mathbb{F}_{p}).

Lemma 2.1. Suppose $a, b \in \mathbb{F}_{p}^{\times}$. If $\operatorname{ord}(a)$ and $\operatorname{ord}(b)$ are relatively prime, then $\operatorname{ord}(a b)=\operatorname{ord}(a) \operatorname{ord}(b)$.
Proof. First, we note that $(a b)^{\operatorname{ord}(a) \operatorname{ord}(b)}=1$. Therefore, $\operatorname{ord}(a b) \mid \operatorname{ord}(a) \operatorname{ord}(b)$.
Suppose $\operatorname{ord}(a b)<\operatorname{ord}(a) \operatorname{ord}(b)$. Let q be a prime dividing $\frac{\operatorname{ord}(a) \operatorname{ord}(b)}{\operatorname{ord}(a b)}$.
We know that $(a b)^{\operatorname{ord}(a) \operatorname{ord}(b) / q}=1$. However, q divides either $\operatorname{ord}(a) \operatorname{or} \operatorname{ord}(b)$. Suppose without loss of generality that $q \mid \operatorname{ord}(a)$. Then

$$
1=a^{\operatorname{ord}(a) \operatorname{ord}(b) / q}\left(b^{\operatorname{ord}(b)}\right)^{(\operatorname{ord}(a) / q)}=a^{\operatorname{ord}(a) \operatorname{ord}(b) / q} .
$$

Therefore, $\operatorname{ord}(a) \mid(\operatorname{ord}(a) / q) \operatorname{ord}(b)$. However, because $\operatorname{ord}(a)$ and $\operatorname{ord}(b)$ are relatively prime, this implies ord $(a) \mid(\operatorname{ord}(a) / q)$, which is impossible.

Definition 2.2 (q th residue). Let $q \mid p-1$ be a prime. We call an element a which is a q th power (i.e., there exists some b such that $a=b^{q}$) a qth residue. Otherwise, we call a a q th non-residue.

Lemma 2.3. Suppose q^{e} is the largest power of q dividing $p-1$. Then a q th non-residue has order divisible by q^{e}.

Proof. Suppose g is a primitive root $\bmod p$. An element $a=g^{k}$ satisfies

$$
\operatorname{ord}(a)=\frac{p-1}{\operatorname{gcd}(p-1, k)} .
$$

If a is a q th non-residue, then we know k is not divisible by q. Therefore, $q \nmid \operatorname{gcd}(p-1, k)$. It follows that $\operatorname{ord}(a)$ is divisible by q^{e}, where q^{e} is the largest power of q dividing $p-1$.

The following lemma will show that to find a primitive root modulo p, it is enough if for each prime q_{i} dividing $p-1$ we find a q_{i} th non-residue.

Lemma 2.4. Let $p-1=\prod_{i=1}^{m} q_{i}^{e_{i}}$. Suppose that for each i, the element a_{i} is $a q_{i}$ th non-residue. Then the product

$$
\prod_{i=1}^{m} a_{i}^{(p-1) / q_{i}^{e_{i}}}
$$

is a primitive root.
Proof. We can write $a_{i}=g^{k_{i}}$ for some primitive root g, and k_{i} not divisible by q_{i}. Then $a_{i}^{(p-1) / q_{i}^{e_{i}}}=$ $g^{k_{i}(p-1) / q_{i}^{e_{i}}}$ must have order exactly $q_{i}^{e_{i}}$, since $q_{i}^{e_{i}}$ is the smallest number N such that $N k_{i}(p-1) / q_{i}^{e_{i}}$ is divisible by $p-1$, which is the order of g.

Therefore, the element $a_{i}^{(p-1) / q_{i}^{e_{i}}}$ has order exactly $q_{i}^{e_{i}}$. It follows that the orders of each of the $a_{i}^{(p-1) / q_{i}^{e}}$ are relatively prime, and so by Lemma 2.1,

$$
\operatorname{ord}\left(\prod_{i=1}^{m} a_{i}^{(p-1) / q_{i}^{e_{i}}}\right)=\prod_{i=1}^{m} \operatorname{ord}\left(a_{i}^{(p-1) / q_{i}^{e_{i}}}\right)
$$

The order of $a_{i}^{(p-1) / q_{i}^{e_{i}}}$ is $q_{i}^{e_{i}}$, so the product of the orders is $\prod_{i=1}^{m} q_{i}^{e_{i}}=p-1$. Hence $\prod_{i=1}^{m} a_{i}^{(p-1) / q_{i}^{e_{i}}}$ is a primitive root.

Lemma 2.5. Given p and $q \mid p-1$, there exists a pseudo-deterministic algorithm that finds a qth non-residue in time $q \cdot \operatorname{poly}(\log p)$.

Proof. See Theorem 3 in [5].
Lemma 2.6. Given the factorization $p-1=\prod_{i=1}^{m} q_{i}^{e_{i}}$ and an element $a \in \mathbb{F}_{p}$, we can compute ord (a) in poly $(\log p)$ time.

Proof. See page 329 in [8].
The following theorem from [3] gives a bound on smooth numbers (we say that n is m-smooth if all prime factors of n are at most m).

Theorem 2.7 (Canfield-Erdös-Pomerance). Let $\psi(x, y)$ denote the number of y-smooth positive integers bounded by x. Let $u=\frac{\log x}{\log y}$. Suppose that $u<(1-\delta) \frac{\log x}{\log \log x}$ for some $\delta>0$. Then

$$
\frac{1}{x} \psi(x, y)=u^{-u+o(u)}
$$

holds uniformly as u and x approach ∞.

3 Algorithm and Analysis

In this section, we present and analyze our algorithm.
The idea for the algorithm is as follows. First we factor $p-1$. Now, for each prime factor q of $p-1$, we find a q th non-residue. We then use Lemma 2.4, to construct a primitive root.

To find a q th non-residue, we first check if q is large or small (compared to $\exp (\sqrt{\log p \log \log p})$). If q is small, we run the algorithm from Lemma 2.5. If q is large, we check the elements $\{1,2, \ldots, p-$ 1\} (in order) until we find one which is a q th non-residue. Lemma 3.1 guarantees that for large q, we will encounter a q th non-residue within the first $\exp (\sqrt{\log p \log \log p})$ elements:

Lemma 3.1. For all sufficiently large p, for all $q \geq \exp (\sqrt{\log p \log \log p})$ dividing $p-1$, there exists a positive $s \leq \exp (\sqrt{\log p \log \log p})$ which is a qth non-residue.

Proof. Our strategy will be to assume Lemma 3.1 is false and then to write an inequality comparing the number of $\exp (\sqrt{\log p \log \log p})$-smooth numbers with the number of q th residues. We will then reduce this inequality to a contradiction.

We first calculate $\psi(p, \exp (\sqrt{\log p \log \log p}))$. We use the Canfield-Erdös-Pomerance theorem (Theorem 2.7), and see that $u=\frac{\log p}{\sqrt{\log p \log \log p}}=\frac{\sqrt{\log p}}{\sqrt{\log \log p}}$. Therefore,

$$
\begin{equation*}
\frac{1}{p} \psi(p, \exp (\sqrt{\log p \log \log p}))=\left(\frac{\sqrt{\log p}}{\sqrt{\log \log p}}\right)^{-\left(\frac{\sqrt{\log p}}{\sqrt{\log \log p}}\right)+o\left(\frac{\sqrt{\log p}}{\sqrt{\log \log p}}\right)} \tag{1}
\end{equation*}
$$

For the sake of contradiction, assume that every element $s \leq \exp (\sqrt{\log p \log \log p})$ is a q th residue. Since the product of two elements which are q th residues is also a q th residue, every $\exp (\sqrt{\log p \log \log p})$-smooth number is a q th residue. We therefore know that $\psi(p, \exp (\sqrt{\log p \log \log p}))$ is bounded above by the number of q th residues, which is $p / q \leq p / \exp (\sqrt{\log p \log \log p})$. Combining this with (1) yields

$$
\frac{1}{p}(p / \exp (\sqrt{\log p \log \log p})) \geq\left(\frac{\sqrt{\log p}}{\sqrt{\log \log p}}\right)^{-\left(\frac{\sqrt{\log p}}{\sqrt{\log \log p}}\right)+o\left(\frac{\sqrt{\log p}}{\sqrt{\log \log p}}\right)}
$$

Taking the \log of both sides gives

$$
-\sqrt{\log p \log \log p} \geq-\left(\left(\frac{\sqrt{\log p}}{\sqrt{\log \log p}}\right)+o\left(\frac{\sqrt{\log p}}{\sqrt{\log \log p}}\right)\right) \log \left(\frac{\sqrt{\log p}}{\sqrt{\log \log p}}\right) .
$$

Multiplying both sides by $\frac{-\sqrt{\log \log p}}{\sqrt{\log p}}$ results in

$$
\log \log p \leq\left(1+\left(\frac{\sqrt{\log \log p}}{\sqrt{\log p}}\right) o\left(\frac{\sqrt{\log p}}{\sqrt{\log \log p}}\right)\right) \log \left(\frac{\sqrt{\log p}}{\sqrt{\log \log p}}\right)
$$

And this implies

$$
\log \log p \leq(1+o(1)) \frac{1}{2} \log \log p
$$

The above inequality is clearly false, completing the proof.

Now that we have proven Lemma 3.1, we are ready to analyze the algorithm (Figure 1).

```
Primitive-Root \((p)\)
    Factor \(p-1=\prod_{i=1}^{m} q_{i}^{e_{i}}\).
    for each \(q_{i}\) :
        if \(q_{i}>\exp (\sqrt{\log p \log \log p})\)
            Compute the order of \(1,2, \ldots\), until an element \(a_{i}\) with \(q_{i}^{e_{i}} \mid \operatorname{ord}\left(a_{i}\right)\) is found.
        if \(q_{i} \leq \exp (\sqrt{\log p \log \log p})\)
            Find a \(q_{i}\) th non-residue \(a_{i}\) using Lemma 2.5.
    return \(\prod_{i=1}^{m} a_{i}^{(p-1) / q_{i}^{e_{i}}}\).
```

Figure 1: A pseudo-deterministic algorithm finding a primitive root modulo a given prime p.
Correctness of the algorithm follows immediately from Lemma 2.4.
We will now analyze the time complexity of the algorithm:
Lemma 3.2. The algorithm in Figure 1 runs in time $L_{p}(1 / 2)=\exp (O(\sqrt{\log p \log \log p}))$.
Proof. By Lenstra and Pomerance's factoring algorithm [6], line 1 takes time $L_{p}(1 / 2)$.
For each $q_{i}>\exp (\sqrt{\log p \log \log p})$, by Lemma 3.1, in line 4 we have to find the order of at most $L_{p}(1 / 2)$ elements. By Lemma 2.6, finding the order each requires poly $(\log p)$ time, so line 4 takes a total of $L_{p}(1 / 2) \operatorname{poly}(\log p)=L_{p}(1 / 2)$ time.

For $q_{i} \leq \exp (\sqrt{\log p \log \log p})$, line 6 takes at most $\exp (\sqrt{\log p \log \log p}) \operatorname{poly}(\log p)=L_{p}(1 / 2)$ time by Lemma 2.5.

Since there are at most $\log p$ primes dividing $p-1$, the loop in line 2 takes a total of $L_{p}(1 / 2) \log p=$ $L_{p}(1 / 2)$ time.

Calculating the product in line 7 takes poly $(\log p)$ time. Therefore, the algorithm as a whole terminates in expected time $L_{p}(1 / 2)$.

We now show that the algorithm is pseudo-deterministic. Note that the only randomized steps of the algorithm are line 1 and line 6 . In line 1 , we use an algorithm that with high probability outputs the factorization of $p-1$, which is always the same. In line 6 , we use an algorithm which is pseudo-deterministic by Lemma 2.5.

This implies our main theorem:
Theorem 3.3. There exists a pseudo-deterministic algorithm for Primitive-Root that runs in expected time $L_{p}(1 / 2)$.

4 Finding a Primitive Root Given Factorization

A related problem to Primitive-Root is Primitive-Root-Given-Factorization:
Definition 4.1. The Primitive-Root-Given-Factorization problem is the problem of finding a primitive root $\bmod p$ when both p and the factorization of $p-1$ are given as input.

For Primitive-Root-Given-Factorization, the best known Las-Vegas algorithm runs in polynomial time. The best previously known pseudo-deterministic algorithm runs in time $p^{\frac{1}{4}+o(1)}$. The algorithm from section 3 improves this to $L_{p}(1 / 2)$.

In [5], Gat and Goldwasser pose as a problem to find a polynomial time pseudo-deterministic algorithm for Primitive-Root-Given-Factorization. The authors present a polynomial time algorithm for the case $p-1=k q$, where q is prime and k is of size poly $(\log p)$. We improve upon this result with a polynomial time algorithm for all p where each prime factor of $p-1$ is of size either at $\operatorname{most} \log ^{c}(p)$ or at least $p^{1 / c}$, for some constant $c>1$. Our algorithm runs in time $\log ^{c}(p)$ poly $(\log p)$. We describe our algorithm in Figure 2.

```
Primitive-Root-Given-Factorization \(\left(p, p-1=\prod_{i=1}^{m} q_{i}^{e_{i}}\right)\)
    for each \(q_{i}\) :
        if \(q_{i}>\exp (\sqrt{\log p \log \log p})\)
            Compute the order of \(1,2, \ldots\), until an element \(a_{i}\) with \(q_{i}^{e_{i}} \mid \operatorname{ord}\left(a_{i}\right)\) is found.
        if \(q_{i} \leq \exp (\sqrt{\log p \log \log p})\)
        Find a \(q_{i}\) th non-residue \(a_{i}\) using Lemma 2.5.
    return \(\prod_{i=1}^{m} a_{i}^{(p-1) / q_{i}^{e_{i}}}\).
```

Figure 2: A pseudo-deterministic algorithm finding a primitive root modulo a prime p, given both p and the factorization of $p-1$.

Correctness of the algorithm follows immediately from Lemma 2.4.
We now prove that if there is some constant c such that all q_{i} satisfy either $q_{i}<\log ^{c} p$ or $q_{i}>p^{1 / c}$, then the algorithm terminates in time at most $\log ^{c}(p)$ poly $(\log p)$.

First, note that for large enough p, if $q_{i}<\log ^{c} p$ then $q_{i}<\exp (\sqrt{\log p \log \log p})$. Also, if $q_{i}>p^{1 / c}$ then $q_{i}>\exp (\sqrt{\log p \log \log p})$.

To prove that line 3 takes polynomial time, we argue that for all fixed $\varepsilon>0$, for large enough p, if $q_{i}>p^{1 / c}$ then there exists an $a<\log ^{c+\varepsilon}(p)$ that is a q_{i} th non-residue. We do this with a similar strategy to our proof of Lemma 3.1. We know that there are at most $\frac{p-1}{q_{i}}$ elements which are q_{i} th residues. Suppose for the sake of contradiction that all $a<\log ^{c+\varepsilon}(p)$ are q_{i} th residues. This implies that there are at least $\psi\left(p, \log ^{c+\varepsilon}(p)\right)$ elements which are q_{i} th residues. Therefore, we have the inequality

$$
\frac{p}{q_{i}} \geq \psi\left(p, \log ^{c+\varepsilon}(p)\right) .
$$

By the Canfield-Erdös-Pomerance theorem (Theorem 2.7), $\psi\left(p, \log ^{c+\varepsilon}(p)\right)=p u^{-u+o(u)}$, where $u=\frac{\log p}{\log _{\log g+\varepsilon}{ }^{c+\varepsilon}}$. Plugging this in and taking the \log of both sides yields

$$
\log \left(\frac{1}{q_{i}}\right) \geq-\left(\frac{\log p}{\log \log ^{c+\varepsilon}(p)}+o\left(\frac{\log p}{\log \log ^{c+\varepsilon}(p)}\right)\right) \log \left(\frac{\log p}{\log \log ^{c+\varepsilon}(p)}\right) .
$$

Simplifying gives

$$
\log q_{i} \leq\left(\frac{\log p}{\log \log ^{c+\varepsilon}(p)}+o\left(\frac{\log p}{\log \log ^{c+\varepsilon}(p)}\right)\right) \log \left(\frac{\log p}{\log \log ^{c+\varepsilon}(p)}\right) .
$$

But we know that $q_{i} \geq p^{1 / c}$. Therefore, $\log q_{i} \geq \frac{1}{c} \log p$. Plugging this in and simplifying yields

$$
\frac{1}{c} \leq\left(\frac{1}{\log \log ^{c+\varepsilon}(p)}+\frac{1}{\log p} o\left(\frac{\log p}{\log \log ^{c+\varepsilon}(p)}\right)\right) \log \left(\frac{\log p}{\log \log ^{c+\varepsilon}(p)}\right)
$$

Further simplifying now gives

$$
\frac{1}{c} \leq\left(\frac{1}{(c+\varepsilon) \log \log p}+\frac{1}{\log p} o\left(\frac{\log p}{\log \log ^{c+\varepsilon}(p)}\right)\right)\left(\log \log p-\log \log \log ^{c+\varepsilon}(p)\right) .
$$

However, the right side approaches $\frac{1}{c+\varepsilon}$, whereas the left side is $\frac{1}{c}$. Therefore, we have reached a contradiction, and so within the first $\log ^{c+\varepsilon}(p)$ elements that we test in line 3 , we will encounter a q_{i} th non-residue.

Therefore, line 3 of the algorithm requires calculating the order of up to $\log ^{c+\varepsilon}(p)$ elements, each of which takes poly $(\log p)$ time by Lemma 2.6. Line 5 takes up to $\log ^{c}(p)$ poly $(\log p)$ time by Lemma 2.5. Since there are at most $\log p$ primes dividing p, the loop in line 1 is of length up to $\log p$. It follows that our algorithm terminates and outputs a primitive root in expected time $\log ^{c}(p)$ poly $(\log p)$.

Note that on every execution of the algorithm, we output the same primitive root, since the only randomized step of the algorithm is line 5 which is pseudo-deterministic by Lemma 2.5.

This completes the proof of the following theorem:
Theorem 4.2. For any constant $c>1$, there exists a pseudo-deterministic algorithm for Primitive-Root-Given-Factorization that runs in polynomial time for all p where each prime factor q of $p-1$ satisfies either $q<\log ^{c}(p)$ or $q>p^{1 / c}$.

5 Discussion

It would be interesting to find a polynomial time pseudo-deterministic algorithm for Primitive-Root-Given-Factorization for general primes.

The slowest step in Las Vegas algorithms for Primitive-Root is factoring $p-1$. It would be interesting to find an algorithm which can verify an element is a primitive root without using the factorization of $p-1$.

Acknowledgments

I would like to thank Shafi Goldwasser for introducing me to the primitive root problem, for helpful discussions, and for advice and encouragement on the paper. I would also like to thank Andrew Sutherland for helpful discussions.

References

[1] Eric Bach. How to generate factored random numbers. SIAM Journal on Computing, 17(2):179193, 1988.
[2] DA Burgess. On character sums and primitive roots. Proceedings of the London Mathematical Society, 3(1):179-192, 1962.
[3] E Rodney Canfield, Paul Erdös, and Carl Pomerance. On a problem of oppenheim concerning "factorisatio numerorum". Journal of Number Theory, 17(1):1-28, 1983.
[4] Whitfield Diffie and Martin E Hellman. New directions in cryptography. Information Theory, IEEE Transactions on, 22(6):644-654, 1976.
[5] Eran Gat and Shafi Goldwasser. Probabilistic search algorithms with unique answers and their cryptographic applications. In Electronic Colloquium on Computational Complexity (ECCC), volume 18, page 136, 2011.
[6] Hendrik W Lenstra and Carl Pomerance. A rigorous time bound for factoring integers. Journal of the American Mathematical Society, 5(3):483-516, 1992.
[7] Victor Shoup. Searching for primitive roots in finite fields. Mathematics of Computation, 58(197):369-380, 1992.
[8] Victor Shoup. A computational introduction to number theory and algebra. Cambridge university press, 2009.

[^0]: *ogrossma@mit.edu. Department of Mathematics, MIT.

