
Finding Primitive Roots Pseudo-Deterministically

Ofer Grossman⇤

December 22, 2015

Abstract

Pseudo-deterministic algorithms are randomized search algorithms which output unique so-
lutions (i.e., with high probability they output the same solution on each execution). We present
a pseudo-deterministic algorithm that, given a prime p, finds a primitive root modulo p in time
exp(O(

p
log p log log p)). This improves upon the previous best known provable deterministic

(and pseudo-deterministic) algorithm which runs in exponential time p
1
4+o(1). Our algorithm

matches the problem’s best known running time for Las Vegas algorithms which may output
di↵erent primitive roots in di↵erent executions.

When the factorization of p � 1 is known, as may be the case when generating primes
with p � 1 in factored form for use in certain applications, we present a pseudo-deterministic
polynomial time algorithm for the case that each prime factor of p� 1 is either of size at most
logc(p) or at least p1/c for some constant c > 0. This is a significant improvement over a result
of Gat and Goldwasser [5], which described a polynomial time pseudo-deterministic algorithm
when the factorization of p� 1 was of the form kq for prime q and k = poly(log p).

We remark that the Generalized Riemann Hypothesis (GRH) implies that the smallest prim-
itive root g satisfies g  O(log6(p)). Therefore, assuming GRH, given the factorization of p� 1,
the smallest primitive root can be found and verified deterministically by brute force in polyno-
mial time.

1 Introduction

Pseudo-deterministic algorithms are randomized search algorithms which, with high probability,
output the same solution on each execution. Formally, A is a pseudo-deterministic algorithm for a
binary relation R if there exists some function s such that when executed on input x, the algorithm
A outputs s(x) with high probability, and (x, s(x)) 2 R. In other words, when we execute A on
input x, we get the same output s(x) for almost all random seeds. Standard randomized search
algorithms, on the other hand, may output a di↵erent y satisfying (x, y) 2 R on each execution
with input x.

In [5], Gat and Goldwasser ask whether there exists a pseudo-deterministic algorithm that finds
a primitive root mod p faster than the best known deterministic algorithm, which runs in time
p

1

4

+o(1). We answer this question in the a�rmative:

Theorem 1.1. There exists a pseudo-deterministic algorithm for Primitive-Root that runs in

expected time L
p

(1/2) = exp(O(
p
log p log log p)).

⇤
ogrossma@mit.edu. Department of Mathematics, MIT.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 207 (2015)

We note that this matches the time bound for the best known Las Vegas algorithms for
Primitive-Root.

This problem may have cryptographic applications, as protocols based on the Di�e-Hellman
problem [4] rely on primitive roots to establish keys. It may be desirable for two parties to inde-
pendently generate the same key, or primitive root, for F

p

. In this situation, pseudo-deterministic
algorithms are helpful while standard randomized algorithms will not su�ce.

A closely related problem to Primitive-Root is Primitive-Root-Given-Factorization.
This problem asks for a primitive root mod p, given both p and the factorization of p� 1.

Primitive-Root-Given-Factorization may be relevant to applications since the factoriza-
tion of p � 1 is often known. For example, protocols may require e�cient ways to verify that
an element is a primitive root, in which case the factorization of p � 1 will be known. For such
applications, it is possible to e�ciently generate primes p with p� 1 in factored form [1].

Assuming the generalized Riemann Hypothesis (GRH), Shoup proved in [7] that the smallest
non-residue mod p is of size O(log6(p)), which implies a brute force polynomial time algorithm for
Primitive-Root-Given-Factorization. Without the GRH assumption, the best deterministic
algorithm remains the p

1

4

+o(1) algorithm from [2].
In [5], polynomial time pseudo-deterministic algorithms are presented for Primitive-Root-

Given-Factorization when the input prime satisfies p�1 = kq, with q prime and k = poly(log p).
We improve upon this result by finding polynomial time pseudo-deterministic algorithms for primes
satisfying p�1 =

Q
k

i=1

qei
i

, where for some constant c each of the q
i

is either at most of size logc(p) or
at least of size p1/c (our dependence on c is exponential). It remains open to find a polynomial time
pseudo-deterministic algorithm for Primitive-Root-Given-Factorization for general primes.

2 Preliminaries

In this section we establish some lemmas we will later use. All lemmas in this section assume p is
a prime, a, b 6⌘ 0 mod p, and ord refers to the order in F⇥

p

(the multiplicative group of F
p

).

Lemma 2.1. Suppose a, b 2 F⇥
p

. If ord(a) and ord(b) are relatively prime, then ord(ab) = ord(a)ord(b).

Proof. First, we note that (ab)ord(a)ord(b) = 1. Therefore, ord(ab)|ord(a)ord(b).
Suppose ord(ab) < ord(a)ord(b). Let q be a prime dividing ord(a)ord(b)

ord(ab)

.

We know that (ab)ord(a)ord(b)/q = 1. However, q divides either ord(a) or ord(b). Suppose without
loss of generality that q|ord(a). Then

1 = aord(a)ord(b)/q
⇣
bord(b)

⌘
(ord(a)/q)

= aord(a)ord(b)/q.

Therefore, ord(a)|(ord(a)/q)ord(b). However, because ord(a) and ord(b) are relatively prime,
this implies ord(a)|(ord(a)/q), which is impossible.

Definition 2.2 (qth residue). Let q|p� 1 be a prime. We call an element a which is a qth power
(i.e., there exists some b such that a = bq) a qth residue. Otherwise, we call a a qth non-residue.

Lemma 2.3. Suppose qe is the largest power of q dividing p� 1. Then a qth non-residue has order

divisible by qe.

2

Proof. Suppose g is a primitive root mod p. An element a = gk satisfies

ord(a) =
p� 1

gcd(p� 1, k)
.

If a is a qth non-residue, then we know k is not divisible by q. Therefore, q - gcd(p�1, k). It follows
that ord(a) is divisible by qe, where qe is the largest power of q dividing p� 1.

The following lemma will show that to find a primitive root modulo p, it is enough if for each
prime q

i

dividing p� 1 we find a q
i

th non-residue.

Lemma 2.4. Let p � 1 =
Q

m

i=1

qei
i

. Suppose that for each i, the element a
i

is a q
i

th non-residue.

Then the product

mY

i=1

a
(p�1)/q

ei
i

i

is a primitive root.

Proof. We can write a
i

= gki for some primitive root g, and k
i

not divisible by q
i

. Then a
(p�1)/q

ei
i

i

=

gki(p�1)/q

ei
i must have order exactly qei

i

, since qei
i

is the smallest number N such that Nk
i

(p�1)/qei
i

is divisible by p� 1, which is the order of g.

Therefore, the element a
(p�1)/q

ei
i

i

has order exactly qei
i

. It follows that the orders of each of the

a
(p�1)/q

ei
i

i

are relatively prime, and so by Lemma 2.1,

ord

mY

i=1

a
(p�1)/q

ei
i

i

!
=

mY

i=1

ord

✓
a
(p�1)/q

ei
i

i

◆
.

The order of a
(p�1)/q

ei
i

i

is qei
i

, so the product of the orders is
Q

m

i=1

qei
i

= p�1.Hence
Q

m

i=1

a
(p�1)/q

ei
i

i

is a primitive root.

Lemma 2.5. Given p and q|p � 1, there exists a pseudo-deterministic algorithm that finds a qth
non-residue in time q · poly(log p).

Proof. See Theorem 3 in [5].

Lemma 2.6. Given the factorization p � 1 =
Q

m

i=1

qei
i

and an element a 2 F
p

, we can compute

ord(a) in poly(log p) time.

Proof. See page 329 in [8].

The following theorem from [3] gives a bound on smooth numbers (we say that n is m-smooth
if all prime factors of n are at most m).

Theorem 2.7 (Canfield-Erdös-Pomerance). Let (x, y) denote the number of y-smooth positive

integers bounded by x. Let u = log x

log y

. Suppose that u < (1� �) log x

log log x

for some � > 0. Then

1

x
 (x, y) = u�u+o(u)

holds uniformly as u and x approach 1.

3

3 Algorithm and Analysis

In this section, we present and analyze our algorithm.
The idea for the algorithm is as follows. First we factor p� 1. Now, for each prime factor q of

p� 1, we find a qth non-residue. We then use Lemma 2.4, to construct a primitive root.
To find a qth non-residue, we first check if q is large or small (compared to exp(

p
log p log log p)).

If q is small, we run the algorithm from Lemma 2.5. If q is large, we check the elements {1, 2, . . . , p�
1} (in order) until we find one which is a qth non-residue. Lemma 3.1 guarantees that for large q,
we will encounter a qth non-residue within the first exp(

p
log p log log p) elements:

Lemma 3.1. For all su�ciently large p, for all q � exp(
p
log p log log p) dividing p�1, there exists

a positive s  exp(
p
log p log log p) which is a qth non-residue.

Proof. Our strategy will be to assume Lemma 3.1 is false and then to write an inequality comparing
the number of exp(

p
log p log log p)-smooth numbers with the number of qth residues. We will then

reduce this inequality to a contradiction.
We first calculate (p, exp(

p
log p log log p)). We use the Canfield-Erdös-Pomerance theorem

(Theorem 2.7), and see that u = log pp
log p log log p

=
p
log pp

log log p

. Therefore,

1

p
 (p, exp(

p
log p log log p)) =

✓ p
log pp

log log p

◆�
⇣ p

log pp
log log p

⌘
+o

⇣ p
log pp

log log p

⌘

. (1)

For the sake of contradiction, assume that every element s  exp(
p
log p log log p) is a qth

residue. Since the product of two elements which are qth residues is also a qth residue, every
exp(

p
log p log log p)-smooth number is a qth residue. We therefore know that (p, exp(

p
log p log log p))

is bounded above by the number of qth residues, which is p/q  p/ exp(
p
log p log log p). Combining

this with (1) yields

1

p
(p/ exp(

p
log p log log p)) �

✓ p
log pp

log log p

◆�
⇣ p

log pp
log log p

⌘
+o

⇣ p
log pp

log log p

⌘

.

Taking the log of both sides gives

�
p
log p log log p � �

✓✓ p
log pp

log log p

◆
+ o

✓ p
log pp

log log p

◆◆
log

✓ p
log pp

log log p

◆
.

Multiplying both sides by �
p
log log pp
log p

results in

log log p 
✓
1 +

✓p
log log pp
log p

◆
o

✓ p
log pp

log log p

◆◆
log

✓ p
log pp

log log p

◆
.

And this implies

log log p  (1 + o(1))
1

2
log log p.

The above inequality is clearly false, completing the proof.

4

Now that we have proven Lemma 3.1, we are ready to analyze the algorithm (Figure 1).

Primitive-Root(p)

1 Factor p� 1 =
Q

m

i=1

qei
i

.
2 for each q

i

:
3 if q

i

> exp(
p
log p log log p)

4 Compute the order of 1, 2, . . . , until an element a
i

with qei
i

|ord(a
i

) is found.
5 if q

i

 exp(
p
log p log log p)

6 Find a q
i

th non-residue a
i

using Lemma 2.5.

7 return

Q
m

i=1

a
(p�1)/q

ei
i

i

.

Figure 1: A pseudo-deterministic algorithm finding a primitive root modulo a given prime p.

Correctness of the algorithm follows immediately from Lemma 2.4.
We will now analyze the time complexity of the algorithm:

Lemma 3.2. The algorithm in Figure 1 runs in time L
p

(1/2) = exp(O(
p
log p log log p)).

Proof. By Lenstra and Pomerance’s factoring algorithm [6], line 1 takes time L
p

(1/2).
For each q

i

> exp(
p
log p log log p), by Lemma 3.1, in line 4 we have to find the order of at most

L
p

(1/2) elements. By Lemma 2.6, finding the order each requires poly(log p) time, so line 4 takes
a total of L

p

(1/2) poly(log p) = L
p

(1/2) time.
For q

i

 exp(
p
log p log log p), line 6 takes at most exp(

p
log p log log p) poly(log p) = L

p

(1/2)
time by Lemma 2.5.

Since there are at most log p primes dividing p�1, the loop in line 2 takes a total of L
p

(1/2) log p =
L
p

(1/2) time.
Calculating the product in line 7 takes poly(log p) time. Therefore, the algorithm as a whole

terminates in expected time L
p

(1/2).

We now show that the algorithm is pseudo-deterministic. Note that the only randomized steps
of the algorithm are line 1 and line 6. In line 1, we use an algorithm that with high probability
outputs the factorization of p� 1, which is always the same. In line 6, we use an algorithm which
is pseudo-deterministic by Lemma 2.5.

This implies our main theorem:

Theorem 3.3. There exists a pseudo-deterministic algorithm for Primitive-Root that runs in

expected time L
p

(1/2).

4 Finding a Primitive Root Given Factorization

A related problem to Primitive-Root is Primitive-Root-Given-Factorization:

Definition 4.1. The Primitive-Root-Given-Factorization problem is the problem of finding
a primitive root mod p when both p and the factorization of p� 1 are given as input.

5

For Primitive-Root-Given-Factorization, the best known Las-Vegas algorithm runs in
polynomial time. The best previously known pseudo-deterministic algorithm runs in time p

1

4

+o(1).
The algorithm from section 3 improves this to L

p

(1/2).
In [5], Gat and Goldwasser pose as a problem to find a polynomial time pseudo-deterministic

algorithm for Primitive-Root-Given-Factorization. The authors present a polynomial time
algorithm for the case p�1 = kq, where q is prime and k is of size poly(log p). We improve upon this
result with a polynomial time algorithm for all p where each prime factor of p�1 is of size either at
most logc(p) or at least p1/c, for some constant c > 1. Our algorithm runs in time logc(p) poly(log p).
We describe our algorithm in Figure 2.

Primitive-Root-Given-Factorization(p, p� 1 =
Q

m

i=1

qei
i

)

1 for each q
i

:
2 if q

i

> exp(
p
log p log log p)

3 Compute the order of 1, 2, . . . , until an element a
i

with qei
i

|ord(a
i

) is found.
4 if q

i

 exp(
p
log p log log p)

5 Find a q
i

th non-residue a
i

using Lemma 2.5.

6 return

Q
m

i=1

a
(p�1)/q

ei
i

i

.

Figure 2: A pseudo-deterministic algorithm finding a primitive root modulo a prime p, given both
p and the factorization of p� 1.

Correctness of the algorithm follows immediately from Lemma 2.4.
We now prove that if there is some constant c such that all q

i

satisfy either q
i

< logc p or
q
i

> p1/c, then the algorithm terminates in time at most logc(p) poly(log p).
First, note that for large enough p, if q

i

< logc p then q
i

< exp(
p
log p log log p). Also, if q

i

> p1/c

then q
i

> exp(
p
log p log log p).

To prove that line 3 takes polynomial time, we argue that for all fixed " > 0, for large enough
p, if q

i

> p1/c then there exists an a < logc+"(p) that is a q
i

th non-residue. We do this with a
similar strategy to our proof of Lemma 3.1. We know that there are at most p�1

qi
elements which

are q
i

th residues. Suppose for the sake of contradiction that all a < logc+"(p) are q
i

th residues.
This implies that there are at least (p, logc+"(p)) elements which are q

i

th residues. Therefore, we
have the inequality

p

q
i

� (p, logc+"(p)).

By the Canfield-Erdös-Pomerance theorem (Theorem 2.7), (p, logc+"(p)) = pu�u+o(u), where
u = log p

log log

c+"
p

. Plugging this in and taking the log of both sides yields

log

✓
1

q
i

◆
� �

✓
log p

log logc+"(p)
+ o

✓
log p

log logc+"(p)

◆◆
log

✓
log p

log logc+"(p)

◆
.

Simplifying gives

log q
i


✓

log p

log logc+"(p)
+ o

✓
log p

log logc+"(p)

◆◆
log

✓
log p

log logc+"(p)

◆
.

6

But we know that q
i

� p1/c. Therefore, log q
i

� 1

c

log p. Plugging this in and simplifying yields

1

c

✓

1

log logc+"(p)
+

1

log p
o

✓
log p

log logc+"(p)

◆◆
log

✓
log p

log logc+"(p)

◆
.

Further simplifying now gives

1

c

✓

1

(c+ ") log log p
+

1

log p
o

✓
log p

log logc+"(p)

◆◆�
log log p� log log logc+"(p)

�
.

However, the right side approaches 1

c+"

, whereas the left side is 1

c

. Therefore, we have reached

a contradiction, and so within the first logc+"(p) elements that we test in line 3, we will encounter
a q

i

th non-residue.
Therefore, line 3 of the algorithm requires calculating the order of up to logc+"(p) elements,

each of which takes poly(log p) time by Lemma 2.6. Line 5 takes up to logc(p) poly(log p) time
by Lemma 2.5. Since there are at most log p primes dividing p, the loop in line 1 is of length up
to log p. It follows that our algorithm terminates and outputs a primitive root in expected time
logc(p) poly(log p).

Note that on every execution of the algorithm, we output the same primitive root, since the
only randomized step of the algorithm is line 5 which is pseudo-deterministic by Lemma 2.5.

This completes the proof of the following theorem:

Theorem 4.2. For any constant c > 1, there exists a pseudo-deterministic algorithm for Primitive-

Root-Given-Factorization that runs in polynomial time for all p where each prime factor q of

p� 1 satisfies either q < logc(p) or q > p1/c.

5 Discussion

It would be interesting to find a polynomial time pseudo-deterministic algorithm for Primitive-

Root-Given-Factorization for general primes.
The slowest step in Las Vegas algorithms for Primitive-Root is factoring p � 1. It would be

interesting to find an algorithm which can verify an element is a primitive root without using the
factorization of p� 1.

Acknowledgments

I would like to thank Shafi Goldwasser for introducing me to the primitive root problem, for helpful
discussions, and for advice and encouragement on the paper. I would also like to thank Andrew
Sutherland for helpful discussions.

References

[1] Eric Bach. How to generate factored random numbers. SIAM Journal on Computing, 17(2):179–
193, 1988.

[2] DA Burgess. On character sums and primitive roots. Proceedings of the London Mathematical

Society, 3(1):179–192, 1962.

7

[3] E Rodney Canfield, Paul Erdös, and Carl Pomerance. On a problem of oppenheim concerning
“factorisatio numerorum”. Journal of Number Theory, 17(1):1–28, 1983.

[4] Whitfield Di�e and Martin E Hellman. New directions in cryptography. Information Theory,

IEEE Transactions on, 22(6):644–654, 1976.

[5] Eran Gat and Shafi Goldwasser. Probabilistic search algorithms with unique answers and their
cryptographic applications. In Electronic Colloquium on Computational Complexity (ECCC),
volume 18, page 136, 2011.

[6] Hendrik W Lenstra and Carl Pomerance. A rigorous time bound for factoring integers. Journal
of the American Mathematical Society, 5(3):483–516, 1992.

[7] Victor Shoup. Searching for primitive roots in finite fields. Mathematics of Computation,
58(197):369–380, 1992.

[8] Victor Shoup. A computational introduction to number theory and algebra. Cambridge university
press, 2009.

8

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

