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Abstract

In this paper three complexity measures are studied: (i) internal information, (ii) external
information, and (iii) a measure called here “output information”. Internal information (i)
measures the counter-party privacy-loss inherent in a communication protocol. Similarly, the
output information (iii) measures the reduction in input-privacy that is inherent when the output
of the computation is published. External information (ii) measures the privacy-loss inherent
when the communication between parties is leaked.

The main result here is that for public-output protocols, i.e., protocols that require publicly
posting the result of the computation, external information can be exponentially larger than the
sum of internal and output information. This result can be informally summarized as saying
that “viewing a process from the sidelines (external information) can be vastly more informative
than either participating in it (internal information) and/or viewing only its outcome (output
information)”.

The specific problem for which this exponential separation is shown, and the upper bounds on
internal and output information follow closely the recent breakthrough separation of information
and communication due to [Ganor, Kol, Raz; FOCS 2014]. The main technical contribution is
the lower bound on external information for public-output protocols.
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1 Introduction

An interesting problem in complexity theory is that of understanding the interplay between commu-
nication and privacy in a distributed setting. Following [KN97, Bral2] we measure “privacy-loss”
by information complexity, i.e., as the amount of information that a party learns about inputs of
other parties when participating in a communication protocol aimed at solving a fixed computa-
tional problem.

The study of such privacy questions goes back to Kushilevitz [Kus92] who gave a complete charac-
terization of the functions which can be computed with perfect internal privacy; namely, functions
which can be calculated when the parties learn nothing except for the output itself. Later, in both
[BYCKO93] and [BW12] it is shown that for the 2-party setting, most boolean functions have linear
internal and external information complexities. This means that for calculating most functions,
the parties must reveal roughly all of their inputs to each other and to an external observer while
solving the task, even though the output, a single bit, reveals at most one bit of information about
the inputs. Pitassi et al. [ACCT14] analyzed the second price auction function, and showed a
tradeoff between the privacy and the communication complexity of calculating it. For more about
information complexity, see section 1.1.

In the most well-studied model of communication, a number m of parties, each holding some pri-
vate input z; from some domain X;, wish to jointly find a solution z that is compatible with their
inputs. In the functional version, a function f : X; x ..., xX,, — Z is fixed and the parties
wish to compute z = f(x1,...,2y). In the more general, relational version studied here, a relation
R C X1 x...X,,xZ is fixed and the parties wish to solve the search problem defined by R, meaning
they wish to find some z such that (z1,...,2m,2) € R.

We are interested in a special case of the relational version, in which two parties, Alice and Bob,
need to solve a search problem and then publish the solution to a third party, Charlie; we describe
such protocols as public output protocols. When Alice and Bob participate in a public output
protocol, we assume Alice wishes to reveal as little information to Bob as possible and vice versa,
and both parties jointly wish to reveal as little information as possible to Charlie, beyond what can
be learned from the public output (the solution).

As in [Kus92, BW12, ACC"14], we study this privacy-loss problem in the information theoretic
setting, one that does not involve cryptographic assumptions, and refer the reader to the introduc-
tion of [ACC™14] for a comprehensive discussion and justification for the non-cryptographic study
of privacy via information theory.

As a concrete motivating example for studying privacy loss in the public output model, consider
the following natural scenario. A government office (Charlie) puts a project out to tender. Two
companies (Alice and Bob) wish to cooperate in order to make their joint proposal, which will
eventually be visible to the office (this is the public output). Naturally, each company wishes to
disclose as little information as possible to the other company about its internal data, and both
companies have a shared interest in jointly minimizing the amount of information disclosed to the
government, beyond what can be deduced from their final proposal (the public output).

Our main result can be summarized as saying:

Viewing a process from the sidelines may reveal vastly more information than either
participating in it, or viewing only its outcome.

In more detail, our main result is (see Theorem 2 for the formal statement):



Theorem 1 (Main Theorem — Informal). There ezists a search problem with input size parame-
terized by k (and a distribution on inputs) such that:

e There exists a 2-party communication protocol involving Alice and Bob that solves the search
problem (with probability 0.99 ), while revealing to Bob at most O(k) bits of information about
Alice’s input, and vice versa.

o There exists a 2-party communication protocol between Alice and Bob that solves the search
problem whose output reveals to Charlie at most O(k) bits of information about the inputs.

e The transcript of any public output communication protocol between Alice and Bob that solves
the problem (with probability 0.99) must reveal to Charlie 29UK) bits of information about the
nputs.

This is the first example of a task for which the internal and external information complexities
are exponentially apart, when the mere output of the task doesn’t provide significant information
by itself. The internal information upper bound is due to Ganor, Kol and Raz [GKR14], as we use
a simplified version of their construction (see section 3.1 for details). Our main contribution is the
proof of the external information lower bound.

The study of privacy-loss in a communication setting involving three parties begs for a com-
parison to the seminal work of Goldwasser, Ben-Or and Wigderson [BOGWS88]; they showed that,
when 3 parties or more communicate via private channels, any problem can solved in a way that
reveals no information at all to any of the involved parties, beyond what can be deduced from
the output itself (and that party’s input). At first it may seem that our result contradicts that of
[BOGWSE] but a moments reflection shows that the two cases are somewhat different. In our set-
ting we assume Charlie listens to the communication between Alice and Bob, i.e., we do not assume
private channels; indeed, when Bob does not listen to the communication clearly the only thing he
sees is the public output. A better way of comparing the result of Ben-Or et al. to our case would
be to say that if Charlie is willing to help Alice and Bob, they can participate in a 3-party protocol
in which not only Charlie, but even Alice and Bob, learn nothing beyond the public output (and
whatever can be deduced from it). We stress that this would assume that Charlie has no access to
the communication channel of Alice and Bob, which is not the case in this paper.

Informally, in the search problem used to prove Theorem 1 each party receives as input a
(binary) labeling of a binary tree, and the distribution we use gives Alice and Bob nearly the same
labeling, but for one randomly selected “cross-section” (called also a “multi-layer”) of the tree in
which the labelings of Alice and Bob are independent (and uniformly distributed). The search
problem of interest here is that of finding a path in the tree that nearly-agrees with Alice’s labeling
on the even vertices in the “important” cross-section (in which Alice and Bob’s inputs diverge),
and with Bob’s labeling on the odd vertices in that cross-section (for complete details, see section
3.1). Our lower bound proof is rather intuitive, and relies on the fact that the parties have two
options: (i) either to find the location of the “important” cross section (where the two labelings
differ), and this option reveals to Alice a significant amount of information about Bob’s input (and
vice versa); or (ii) to use a “noisy” protocol that “hides” the important cross-section. The most
technically-challenging part of our lower bound is to show that such a protocol necessarily reveals
to Charlie (but not necessarily to the counter parties) a significant amount of information about
the common labelling both parties received on “non-important” cross-sections.



1.1 Previous work

The notion of information complexity arose first in [BYCK093], but gained much attention recently.
Bar-Yossef et Al. [BYJKS04] used it as a method of lower bounding communication complexity.
Barak et al. [BBCR13] showed several ways to compress communication protocols to a length de-
pendent on their information complexity. Braverman and Rao [BR14] showed that the amortized
communication complexity of a task is equal to its internal information complexity (cf. [Bral2] for
a thorough survey). For product distributions, Kol [[Kol15] recently showed that optimal commu-
nication complexity and information complexity are the same up to polynomial factors. Ganor,
Kol and Raz [GKR14] were the first to show an exponential separation of the internal information
and communication complexities, and later in [GKR15] of the external information and communi-
cation complexities. According to Braverman [Bral2| this is the largest gap possible between these
measures. We use some of their constructions in our results.

2 Public-output protocols and output information complexity —
definition and basic observations

In this section we define the new complexity measure of output information and state a few general
comparisons between it and the more well-studied measures of information complexity.

2.1 Definition of output information complexity

We assume familiarity with general communication complexity definitions (cf. [KN97]). Basic
definitions of entropy, mutual information and information complexity appear in Appendix A.
Before defining the main measures studied in this paper below, we fix notation.

Notation We will use uppercase II to denote a communication protocol, and lowercase m to
denote a specific transcript of this protocol. X, Y represent the random variables of the inputs for
I1. We denote by h(p) = plogp + (1 — p)log(1 — p) the binary entropy function.

Definition 1. (Public output protocols solving a search problem) Given a relation R(X,Y,0), an
input distribution p on (X,Y) and a constant € > 0, we say that a protocol 11 is a public-output
protocol solving R with respect to p, € if there exists a function Z (called the output of I1) satisfying
Pr(z,y, Z(I(x,y)) € R)] > 1 — €, where the probability is taken over the choice of x,y according
to p and the random coins of 11.

Definition 2. (Output information complexity of a protocol) Let Z(II) be the output of the 2-party
public-output protocol I1. The output information complexity of 11, where the inputs are picked from
a distribution y is defined as IC*"P*(IT) = I(X,Y; Z(11)).

The definitions of internal and external information of relations are different here from the
common ones, since we restrict our protocols to be public-output protocols, so that Charlie is able
to learn the output at the end (for common definitions of information complexities see [Bral2]).

Definition 3. (Public-output internal and external information complexities) The public-output
internal information complerity of a relation R, under input distribution p with error probability
€ is defined as ICEO’mt(R, €) = infy ICL"t(H), where the infimum is taken over all public-output



protocols solving R with error probability at most € with respect to p.
The public-output external information complexity ICﬁo’ext(R, €) is defined in a similar way.

Definition 4. (Output information complexity of a relation) The output information complexity
of a relation R with error probability ¢ and input distribution p is defined as IC’ﬁUtpm(R, €) =
infyy ICﬁutp“t(H), where the infimum is taken over all public-output protocols solving R with error

probability at most € with respect to p.

We omit the notation of 1 and € when they are clear from the context.

2.2 Public and private output protocols — discussion

When performing a communication task involving 2 parties, Alice and Bob, two essential things
should be required for the task to succeed:

1. Alice and Bob agree on the same output.
2. The output is correct with respect to the task.

As defined above, a public-output protocol is one that has a unique output when seeing the tran-
script. This might seem necessary even if no third party is involved, since it prevents failing in the
first requirement.

In the deterministic model (0-error, with full support on the input space), Bauer, Moran and Yehu-
dayoff [BMY14] proved that this is indeed the case: they proved that every deterministic protocol
has a public-output!. However, as we will show in last paragraph in Section 2.3, Alice and Bob
can still agree on the output with probability 1 even if a protocol doesn’t have a public-output,
possibly with no communication at all.

2.3 Basic observations regarding output information complexity

Since this work initiates the study of output information and its relation to external and internal
information, a few basic observations are needed; they appear in this section.

Since we required that at the end of the protocol we have an explicit output, then from the chain
rule for mutual information (fact 3 in appendix A) we get that IC;"""*"(R,€) < ICE*“"(R,¢). A
known result from [Bral?2] is that ICR*"™(R) < ICE>“**(R). We wish to understand the various
possibilities for differences between the measures, and present them below: internal information
can be arbitrarily large even for constant output information; output information can be arbitrarily
large even for zero internal information; and our main result, showing that both internal and output
information can be exponentially smaller than external information.

Small output information, large internal and external information For every boolean
function f, IC°uu(f) < 1, since one output bit cannot reveal more than one bit of information
about the inputs. A random function f has IC™(f) = Q(n) with high probability [BW12], as
does the inner product function [BGPW13], and hence the gap between internal information and
output complexity can be maximally large. Any protocol that computes such an extremal f, must
reveal to each party a significant amount of information about the input of the counter party, even
though the output reveals at most a single bit.

n their notations, a protocol can either compute a function internally or externally.



Small internal information, large output information Consider the following distribution
w: x is chosen uniformly at random, and y is picked to be equal to x. The function is f(z,y) = x.
According to p, when knowing her input, there is no more information for Alice to learn, and
likewise for Bob. Hence, [ Cﬁo’mt = 0, no matter what the task is. However, here the output
information is linear, since the output itself reveals the entire input.

Here, the public-output requirement is essential: if the only task was to compute the function in a
way that Alice and Bob know the output, they could have done it without communicating at all.

3 Exponential separation between external information and out-
put and internal information for public-output protocols

In this section we prove our main result, informally presented in Theorem 1. The search problem
and input distribution are defined in Section 3.1, followed by a formal statement of the main
theorem. Later sections contain the proof. The search problem and distribution, as well as the
upper bounds in the Main Theorem 2 are essentially due to [GIKR14]. The main contribution of
this paper is the lower bound on external information of public-output protocols. Its proof appears
in Section 4.

3.1 Definition of the “consistent leaf” search problem and distribution

Consistent leaf search problem The consistent leaf search problem with parameter k € N,
denoted Ry, is defined as follows: Let ¢ = 22° Consider the complete binary tree of depth ¢ - k,
and denote V' the set of vertices in this tree, and L C V the set of leaves. We treat the tree as
consisting of ¢ multi layers (MLs) of depth k: vertices of depth d in the range [k(j — 1) + 1, kj]
belong to the j** ML of the tree and are denoted V.

Each party gets a binary labeling of this tree: Alice gets z: V' — {0,1} and Bob gets y : V' — {0, 1}.
We can look at the labeling as separate functions according to the multi layers of the tree: Alice
gets ¢ functions z; : V; — {0,1}, and Bob gets ¢ functions y; : V; — {0,1}, where j € [c].

We define the function ¢ : (X,Y) — [c] in this way: t(x,y) is the first ML for which z; # y;. If
x =y and no such ML exists, then ¢(z,y) = 1.

We say that a leaf [ is consistent with respect to the inputs and j € [¢], if at least 0.8-fraction of
the odd layers in the path from the root to it on multi layer j follows the function z;, and likewise
in the even layers and y;.

The relation R = Ry(X,Y, L) is defined as follows:

R = {(x,y,l) : | is consistent with respect to z,y,t(x,y)}

Distribution on inputs The distribution g = uj used here is the one induced by the following
sampling algorithm:

—_

. pick x € {0,1}V uniformly at random.

2. pick i € [c] uniformly at random.

w

. for every j # i, set y; = ;. (Vv € Vj,y;(v) = z;(v))

W

. pick y; € {0,1}Vi uniformly at random.



At the end, we have two labeled trees, x and y, which are the same in all MLs but one, and in this
particular one, denoted ¢, they have independent and random labeling. We refer to ML ¢ as the
noisy ML. Note that for this distribution, ¢(x,y) would be i sampled in step 2 of the algorithm,
except for the rare cases when x = y (in which case t(x,y) = 1, regardless of 7).

Remark 1. In the distribution defined in [GKR14], after the noisy ML i is set, the subtrees below
it are chosen to be either equal or not in x,y according to the labeling on ML ¢. In our case, only
vertices in ML ¢ are not equal.

Statement of main theorem Following is the formal version of Theorem 1.

Theorem 2 (Main Theorem). The family of consistent leaf relations { Ry }ren+ and distributions
i, defined above satisfy

1. Small internal information: 1C%>""(Ry,) = O(k)

2. Small output information: IC{ """ (R,) = O(k)

3. Large external information: ICH>“""(Ry,) = 22(%)

We start in the next Section with the proof of the third bullet, as it is the main contribution
of this paper. The first two upper bounds in the theorem are proved in Section 5; the proofs there
are essentially due to [GKR14].

4 Lower bound on external information of public-output protocols
— proof of Theorem 2, part 3

Fix an arbitrary protocol II that solves R = Ry, with error probability e. (We use II to also denote
the random variable representing the transcript of the protocol.) Recall that the sampling algorithm
that induces p = py starts by sampling i € [c]. The proof of Part 3 of Theorem 2 is split into two
cases, based on the amount of information that II reveals about 7. The first, and simpler, case is
when II does reveal much information about i.

Lemma 1 (Case I — II is informative about 4). If I(IL;i) > %8¢ then IC"(IT) = 29K,

The idea for the first case is such: Let W = support(u) be the input space. Except for the rare
event in which = y, W can be partitioned to ¢ subsets W; (i € [c]) in which z and y differ only on
the " ML. These subspaces have equal probabilities according to . Thus, knowing a significant
amount of information about ¢ provides us almost the same amount of information about the inputs.

The second and harder case is when II is not very informative about i.

Lemma 2 (Case II — II is not informative about ¢). If I(Il;4) < 1°§C then ICe(TT) = 222"

To prove this case we use the problem construction, and claim that if not much information is
learned about ¢ and yet the protocol is correct with high probability, then the leaf output of the
protocol must be consistent with respect to many MLs (even though correctness requires only that
it will be consistent on ML ¢). Thus, the output z(7) must reveal at least a constant amount of
information about the labeling of each of those MLs.

The proof of part 3 of Theorem 2 follows immediately from Lemmata 1 and 2. We next provide
the proofs of both lemmas, starting with the second and more interesting one.



4.1 Proof of Lemma 2: The case of non-informative II

To prove large output information under the assumption on non-informative II, we shall analyze
the distribution of X,Y after seeing the protocol, and it is easier to do so looking at a specific
transcript 7. (To simplify notation we sometimes use 7 to describe the event IT = 7.) Since in this
section we assume I(I1;7) < IO§C7 define the set G of typical transcripts of the protocol — the ones

which reveal little information about ¢ and are also correct with high probability. Formally:

log ¢

G= {7r CH@II=m) > Pr [Z(n) is correct] > 1 — 106} (1)

" XY |lI=n

A “correct” output for input z,y is a value z(m) such that (x,y, z(7)) € Ry; when (x,y, z(7)) &
R;. we say the output is “incorrect”, or “wrong”. Our first claim is that G is “large” under the
distribution p (proof deferred to next section).

Claim 1 (Most transcripts are good). Pr[Il € G] > 2.

Denote by S; the set of indices j for which the leaf output of a transcript = is consistent
with respect to multi layer j with high probability. Intuitively, these are the MLs that are likely
candidates for being the noisy ML selected by u, conditioned on 7. Formally:

1
Sy = {j : Pr [Z(m) is consistent with respect to j,z,y| > } (2)
XY |mw 2

We shall prove in the next section that (i) a “typical” transcript contains (k) bits of information
about each j € Sy, and (ii) Sy is large for every “good” transcript m € G. Formally,

Lemma 3 (Typical protocols are informative for the candidate noisy multi-layers). (i) For every

J € S, H(X;) — H(X;|II = m) = Q(k); consequently, (ii) H(X)— H(X|II =) = Q(k - |Sx|).
Lemma 4 (S is large). For every m € G, |S,| = 2%og¢c),
We conclude with a proof of the output information lower bound for the non-informative case.
Proof of Lemma 2.
IC'(I) = I(X,Y;10) > I[(X;1) = (Chain rule)
= Er[H(X) — H(X[r)] =
= Prlll=7] (H(X) - H(X|r)) >

> Prll=n]- (H(X) - H(X|r))

> Z Pr[Il = 7]k - |S4]) > (Lemma 3.(ii))

> Z Pr[II = 7]2%og<) — (Lemma 4)
TelG

— 2% Pyl € @] =
= 20(2") (Claim 1)



4.1.1 Proofs of sub-lemmas

Here we give proofs of the three claims stated in the previous section and needed in the proof of
Lemma 2, in the same order as stated there.

Proof of Claim 1. Recalling the protocol succeeds with probability > 1 — €, apply Markov’s in-
equality to deduce that the second condition of (1) holds with probability at least 1%. We now
show that the first condition of (1) holds with probability p which is at least i. We first bound
ErH (i|r) from below,

. H(ilm) = H(lll) = H(i) — I(:) > 57, Q
and then from above,
E-H(ilr)= Y Prfa]-H(ilx)+ Y Pr[a] H(ilr) <
i H (i) > 1°8< miH (i]m) < 108
< ploge-+ (1-p) 5" @

Combining equations (1) and (2) we get that p > . We have seen that the second condition of (1)
holds with probability at least 1/4 and the second does not hold with probability at most 1/10.
Subtracting the two probabilities show that both conditions hold with probability at least 3/20, as
claimed. O

Proof of Lemma 3. We start with (i). H(X;) = |V}|, since every ML of X is picked uniformly at
random. With probability at least %, a 0.8-fraction of the g odd nodes in the unique path from the
root to the leaf Z(7) are correct with respect to . Hence we get that with probability at least %,
H(X;|II =) < |Vj| — k+ h(0.8)k, and in any case H(X;|II = w) < |V}|. Hence
1
H(X;)-HX;[II=m)> 1(1 — h(0.8)) - k = Q(k)
This proves (i).

To prove (ii), denote X = X1 X»...X., where X; denote the random variable of the labeling of
the j» ML of X. Similarly let Xej=X1X0...X; 1.

c

HX)-HXII=m)= Z[H(XﬂXq) - H(X;I=7X)] = (Chain rule)
j=1

= Z[H(X]) - H(X;I=7,X)] > (independence of multi-layers)
j=1

c

> ) H(X;) — H(X[IT = 7)] >

j=1
> ST [H(X) — HOGI = 7)) =
JESR
= Q(k - |S,]) (Lemma 3.(i))

O]



To prove Lemma 4 we require a two preliminary claims. The first shows that the probability
that ¢ (the multi-layer selected by ) belongs to S, with high probability.

Claim 2 (S, has large measure). Let i be the multi layer picked in step 2 of the sampling algorithm
of u (section 3.1). For every m € G, Pr[i ¢ Sz|m] < 20e.

Proof. From the definition of G:
10e > Pr[Z(n) is wrong|r]
x?y
From the definition of S;:

Pr[Z(n) is wrong|n| > Pr[Z(x) is wrong|w,i ¢ S| - Pr[i ¢ Sy|n] > %Pr [i ¢ Sx|m]
Y Y

The second claim is of a rather general nature.

Claim 3. Let J be a random wvariable taking values in [c|, and let S C [c] be a set such that
Pr[J € S] > 1~ 3. Then |S| > 2H(/)=0loge=h(d),

Proof. Let T be an indicator for the event j € S. By the chain rule we get that H(J,T) =
H(J)+ H(T|J) = H(J) and also H(J,T) = H(T) + H(J|T). Thus we have:
H(J)=H(T)+ H(J|T) <
<h()+6HJ|IT=0)+H(JT=1)<
< h(d) + dlogc +log|S|
]

Proof of Lemma 4. From the definition of G we get that H (i|7) > 1°§C, and from Claim 2 we know
that Pr[i ¢ Sz|m] < 20e.
Using Claim 3 (with J = i|m, S = Sz, § = 20e and € small enough) we get the desired property. [

4.2 Proof of Lemma 1 — I(II;7) > IO§C

First, we wish to show that ¢ from step 2 of the sampling algorithm almost induces a partition of
the input space; namely, when seeing x,y we know ¢ except for a very small probability.

Claim 4. H(i|X,Y) = o(1).

Proof. For x and y to be equal, they need to be equal on the entire ¥ multi layer. The first ML
has 2 vertices, so that the probability to be equal on all of them is 22" For every other layer
the probability is smaller, and thus Prjz = y] = 22" When x # 1, the noisy ML is decided
uniquely when knowing the inputs, and thus its entropy is zero. Together we get:

H(i|X,)Y)=E, ,H(i|X =2,Y =y) =

= > Pr@yHEX =2, Y =y)+ > Prlz,y)H(iX =2,Y =y) <
T,y Ty z,y =y

<0+29 oge=o(1)

10



Next, we wish to show that the information revealed about X,Y is at least as large as the
information revealed about the identity of the noisy ML.

Claim 5. I(IL X,Y) > I(II;4) — o(1)

Proof. By definition I(II; X,Y) = H(X,Y) — H(X,Y|II). Bounding the first term we get:

H(X,Y)=H(,X,Y) - H(i|X,Y) = (Chain rule)
= H(i)+ H(X,Y]i) — H(i|X,Y) = (Chain rule)
= H(i) + H(X,Y|i) — o(1) (Claim 4)

Bounding the second:

H(X,Y|II) < H(;, X,Y|II) = (Chain rule)
= H(|II)+ H(X,Y|i,1I) < (Chain rule)
< H(ilIl) + H(X, Y7)

Subtracting the two we get: I(II; X,Y) > H(i) —o(1) — H(i|II) = I(II;i) — o(1), and this completes
the proof. 0

proof of Lemma 1. By claim 5 we get: IC***(I1) = I(II; X,Y) > I(IL;i) — o(1), and by the assump-

tion I(IT;7) > 1°§c we get 1C°“(I1) = 10% —o(l) = 9Q(k) O

5 Upper bounds on internal information and output information

In this section we prove the first two parts of theorem 2. The first part follows essentially from the
work of Ganor, Kol and Raz [GKR14]; The second is rather simple, and follows from the multiple
possibilities for a correct answer for every input pair.

5.1 Upper bound on internal information of public-output protocols — proof
of Theorem 2, part 1

To prove that ICE>"(R) = O(k), we will show how Alice and Bob can communicate while revealing
little information to each other. This method was first shown in [GIKKXR14]. The idea of the protocol
is to travel from the root down the tree, following Alice’s labels on the odd depth vertices, and
Bob’s on the even depth vertices. However, Doing this deterministically would reveal the noisy
multi layer i, which reveals 2* bits of information about the other party’s input (i € [¢], and
logc = 2¥). Thus, we want to somehow disguise the noisy multi layer, by adding noise to the
communication. Formally, IT; is defined as follows: set the current vertex to be the root. At each
odd step, Alice transmits one bit to determine which child vertex of the current one we go to. This
bit is chosen to be the one according to her labeling with probability 0.9, and the wrong one with
probability 0.1. Bob does the same for the even layers. This is done until we reach a leaf. This
protocol has a public-output, since its transcript defines a unique leaf.

Claim 6. Pr[II; gives a wrong output] < 2Kk),

11



Proof. Note that the definition of a consistent leaf depends only on the layer i, so correctness is
independent of what the parties have communicated apart from it. Since we require 0.8-consistency
with the inputs along i, and the parties follow their labeling with probability 0.9 at each step, the
probability that they fail in achieving 0.8-consistency is exponentially small in k (the depth of the
multi layer), according to the Chernoff bound. O

For the proof of the low information of this protocol we will follow several steps from [GIKR14].
The intuition behind it is the following: Although the communication is double exponential in k, in
almost all multi layers (all but the noisy one), Bob can predict the distribution of Alice’s messages
by guessing that she has the same label as he has in the corresponding vertices. This prediction
would fail in only O(k) vertices along the path: the ones that are in the path along the i ML.
Formally, for every vertex v in the protocol tree, we define P, = (p,,1 — p,) as the probability
distribution of the next bit to be sent in the protocol, conditioned on reaching v and the input of
the player who owns v. This distribution is well defined from the protocol’s definition: if Alice owns
v and x, = 1, then P, = (0.1,0.9). If z, = 0 then P, = (0.9,0.1). We think of Q, = (qy, 1 — qy) as
an estimation of this distribution, which in general is every distribution on the space {0, 1} which
doesn’t depend on the input of v’s owner when given the other party’s input. Let T" be the protocol
tree, rooted by the vertex r, and denote T3 as the subtree of T' rooted by v.

Definition 5. (divergence cost of the protocol tree, [BR14]). Let Q be some estimation distribution
for T. The divergence of T according to Q) is defined as:

Dq(T) = D(F[|Qr) + Evep, Do(Ty)
Where D(T) = 0 if the tree is empty.

Since in II; every bit sent in the protocol depends on a specific labeled vertex in the input tree,
we can identify each vertex in the protocol tree with the corresponding vertex in the input tree.
We define @) to be the following: if the labeling of v in the tree of the party who doesn’t own v is
1, then @, = (0.1,0.9). Otherwise @, = (0.9,0.1). Note that this estimation is independent of the
owner’s input for all vertices, given the other party’s input.

Lemma 5. Do(T) = O(k).

Proof. The recursive definition of Dg(T') can be written as Dg(T) = >, [Dv - D(Py]|Qv)], where
Dy is the overall probability to reach the vertex v in the protocol.

Since for every vertex in any ML apart from i, P, = @Q,, from Fact 2 we know they contribute
nothing to this sum.

For every vertex v in ML i, D(P,||Q,) < 0.9log9 — 0.1log9 < 3. For each layer in this ML, the
total of P, in this layer is 1, since this sum is the probability to reach any vertex in this depth. The
number of layers in every ML is k, and hence Dg(T") < 3k. O

Let @Q* be the estimation of the party receiving the messages, defined as the expectation over
distributions according to the inputs of the speaking party, these being sampled conditioned on the
input of the other party. Intuitively, this should be the best estimation possible, as was proved by
Kol at al. in [GKR14]:

Lemma 6. For every estimation Q, Dg«(T) < Do(T).
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In [BR14], Braverman and Rao prove the relation between the divergence cost and the internal
information?:

Lemma 7. IC’ZZ”(H) =By y~uDo(T).
proof of part 1 of Theorem 2. Using Lemmas 7 and 6, 5 respectively:
ICZnt(H) = B¢y Do (T) < Eo o DQ(T) = Eay~nO(k) = O(F).

OJ

5.2 Upper bound on output information of public-output protocols — proof of
Theorem 2, part 2

To prove that IC5"""*(R) = O(k), Consider the following protocol Tly: Alice sends Bob her entire
input z. Bob now recognizes which multi layer is the noisy one, calculates the set of consistent
leaves, and outputs a uniformly chosen one of them. By definition, this protocol always succeeds.
For calculating the output information complexity, consider this: The probability of a leaf to be
consistent with the inputs is 2-©(*) since the consistency is determined only by the path in the
noisy multi layer. Before seeing the output, the random variable [ representing the output leaf is
uniform over L, and after seeing the input it is uniform on a subset of fraction 2= of it. We get:

= log |L| —log(27®®) . |L|) =
=log|L| — log |L| + ©(k) = O(k)

This proves part 2, and together with the proofs of the other two parts in previous sections, the
proof of Theorem 2 is complete.

6 Open problem — separating internal and external information
for general protocols

Open Question 1. Is there a family of relations {Ry}ren and distributions {ug}ren having
ICM(Ry) = I and ICS™(Ry,) = 2907

We conjecture that the answer to this question is yes, using the exact relation and distribution
defined in section 3.1. However, the techniques reported here do not prove this; in particular the
crucial variable Z(7) defined in section 4.1 would not be well defined if one drops the requirement
of reporting an explicit output. Notice that an affirmative answer to the question above generalized
and implies the main Theorem 2.

One example of a non public-output protocol for the consistent leaf relation is the following: Assume
that the noisy ML is not in the first d = 2 MLs (this happens with probability 1 — 227]; =1-o0(1),
and in that case the protocol below will likely err.). In this case, the parties have the same labels
on the first 20") vertices of the tree. These labels can be used as a one time pad for the rest of
the communication: Alice and Bob start at the left most vertex in layer d - k + 1, and proceed like

*For more details see [BR14, section 5.2].
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in protocol II; described in section 5.1, but XOR every bit with the next bit in this one time pad.
Charlie, when listening to the communication, gains no information about what the output is, but
Alice and Bob agree with high probability.

Even in this case, Charlie learns a double exponential amount of information: in every bit com-
municated, he learns (with high probability) the XOR of 2 input bits, which is roughly one bit
of information. However, it is still open to find a lower bound proof that will hold for any non
public-output protocol.

Acknowledgements

Our preliminary writeup contained a weaker version of Claim 3 (that was sufficient to prove our
main result). We thank Eldar Fischer for generalizing that version to the one appearing here. We
also thank Yadu Vasudev and Gregory Schwartzman for useful discussions.

The research leading to these results has received funding from: the European Community’s Seventh
Framework Programme (FP7/2007-2013) under grant agreement number 240258 and the Israeli
Science Foundation (grant 1501/14).

References

[ACCT14] Anil Ada, Arkadev Chattopadhyay, Stephen A. Cook, Lila Fontes, Michal Koucky,
and Toniann Pitassi. The hardness of being private. ACM Trans. Comput. Theory,
6(1):1:1-1:24, March 2014.

[BBCR13] Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. How to compress interactive
communication. STAM Journal on Computing, 42(3):1327-1363, 2013.

[BGPW13] Mark Braverman, Ankit Garg, Denis Pankratov, and Omri Weinstein. Information
lower bounds via self-reducibility. In Computer Science—Theory and Applications,
pages 183-194. Springer, 2013.

[BMY14] Balthazar Bauer, Shay Moran, and Amir Yehudayoff. Internal compression of pro-
tocols to entropy. In Electronic Colloguium on Computational Complezity (ECCC),
volume 21, page 101, 2014.

[BOGWS88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In Proceedings of the Twen-
tieth Annual ACM Symposium on Theory of Computing, STOC ’88, pages 1-10, New
York, NY, USA, 1988. ACM.

[BR14] Mark Braverman and Akhila Rao. Information equals amortized communication.
Information Theory, IEEE Transactions on, 60(10):6058-6069, 2014.

[Bral2] Mark Braverman. Interactive information complexity. In Proceedings of the forty-
fourth annual ACM symposium on Theory of computing, pages 505-524. ACM, 2012.

[BW12] Mark Braverman and Omri Weinstein. A discrepancy lower bound for information
complexity. In Approximation, Randomization, and Combinatorial Optimization. Al-
gorithms and Techniques, pages 459-470. Springer, 2012.

14



[BYCKO93] Reuven Bar-Yehuda, Benny Chor, Eyal Kushilevitz, and Alon Orlitsky. Privacy, addi-

[BYJKS04]

[GKR14]

[GKR15]

[KN97]

[Kol15]

[Kus92]

tional information and communication. Information Theory, IEEE Transactions on,
39(6):1930-1943, 1993.

Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statis-
tics approach to data stream and communication complexity. J. Comput. Syst. Sci.,
68(4):702-732, 2004.

Anat Ganor, Gillat Kol, and Ran Raz. Exponential separation of information and
communication. In Foundations of Computer Science (FOCS), 2014 IEEE 55th An-
nual Symposium on, pages 176-185. IEEE, 2014.

Anat Ganor, Gillat Kol, and Ran Raz. Exponential separation of communication and
external information. FElectronic Colloquium on Computational Complexity (ECCC),
22:88, 2015.

Eyal Kushilevitz and Noam Nisan. Communication Complezity. Cambridge University
Press, New York, NY, USA, 1997.

Gillat Kol. Interactive compression for product distributions. Electronic Colloquium
on Computational Complexity (ECCC), 2015.

Eyal Kushelvitz. Privacy and communication complexity. SIAM Journal on Discrete
Mathematics, 5(2):273-284, 1992.

15



A Information theory preliminaries

These definitions are included here for the paper to be self contained.

A.1 Information theory

Definition 6. (Entropy). Let X be a discrete random variable, and denote p, = Pr|[X = x|. The
entropy of X is H(X) =) p.log p%'
The conditional entropy of X given Y, denoted H(X|Y') is defined to be E,H(X|Y =y).

Fact 1. H(A|B) > H(A|BC).

Definition 7. (Kullback-Leibler divergence). The KL divergence between two distributions P, Q) is
D(P||Q) = ¥, P(x)log 5.

Fact 2. D(P||P)=0

Definition 8. (Mutual information). The mutual information of two random variables A, B is
I(A;B) =H(A)— H(A|B) = H(B) — H(B|A).

Fact 3. (Chain rules for entropy and mutual information).
H(A,B)=H(A)+ H(B|A).
I(A1, Ag; B) = I(A1; B) + I(Ag; Bl Ay).

A.2 Information and communication complexuty

Definition 9. The internal information complexity of a 2-party protocol 11, where the inputs are
picked from a distribution p is defined as ICL”t(H) =I(X;IY) + I(Y; 11| X).

Definition 10. The external information complexity of a 2-party protocol I1, where the inputs are
picked from a distribution p is defined as ICE”(H) =I(X,Y;1I).

Definition 11. The internal information complexity of a relation R, under input distribution p
with error probability € is defined as IC’ZL”t(R, €) = infyg IC’;”t(H), where the infimum is taken over
all protocols solving R with error probability at most € with respect to p.

The external information complexity IC’fft(R, €) is defined in a similar way.
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