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Abstract

The seminal result that every language having an interactive proof also has a zero-knowledge interactive proof

assumes the existence of one-way functions. Ostrovsky and Wigderson (ISTCS 1993) proved that this assumption is

necessary: if one-way functions do not exist, then only languages in BPP have zero-knowledge interactive proofs.

Ben-Or et al. (STOC 1988) proved that, nevertheless, every language having a multi-prover interactive proof also

has a zero-knowledge multi-prover interactive proof, unconditionally. Their work led to, among many other things,

a line of work studying zero knowledge without intractability assumptions. In this line of work, Kilian, Petrank, and

Tardos (STOC 1997) defined and constructed zero-knowledge probabilistically checkable proofs (PCPs).

While PCPs with quasilinear-size proof length, but without zero knowledge, are known, no such result is known

for zero knowledge PCPs. In this work, we show how to construct “2-round” PCPs that are zero knowledge and of

length Õ(K) where K is the number of queries made by a malicious polynomial time verifier. Previous solutions

required PCPs of length at least K6 to maintain zero knowledge. In this model, which we call duplex PCP (DPCP),

the verifier first receives an oracle string from the prover, then replies with a message, and then receives another oracle

string from the prover; a malicious verifier can make up to K queries in total to both oracles.

Deviating from previous works, our constructions do not invoke the PCP Theorem as a blackbox but instead rely

on certain algebraic properties of a specific family of PCPs. We show that if the PCP has a certain linear algebraic

structure — which many central constructions can be shown to possess, including [BFLS91,ALMSS98,BS08] — we

can add the zero knowledge property at virtually no cost (up to additive lower order terms) while introducing only

minor modifications in the algorithms of the prover and verifier. We believe that our linear-algebraic characterization

of PCPs may be of independent interest, as it gives a simplified way to view previous well-studied PCP constructions.
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1 Introduction

We continue the study of proof systems that provide soundness and zero knowledge, simultaneously and uncondition-

ally (i.e., no intractability assumptions are needed to achieve the two), as we now explain.

Interactive proofs. An interactive proof [BM88, GMR85] for a language L is a pair of interactive algorithms

(P, V ), where P is known as the prover and V as the verifier, that satisfies the following: (i) (completeness) for every

instance x in L , P (x) can make V (x) accept with probability 1; (ii) (soundness) for every instance x not in L , every

prover P̃ can make V (x) accept with at most a small probability ǫ. Shamir [Sha92] showed the expressive power of

interactive proofs by proving that IP = PSPACE, i.e., all and only languages in PSPACE have interactive proofs.

Zero knowledge. An interactive proof is zero knowledge [GMR85] if the verifier, even if malicious, cannot learn any

information about an instance x in L , by interacting with the prover, besides the fact x is in L : for any efficient verifier

Ṽ there exists an efficient simulator S such that S(x) is “indistinguishable” from the view of Ṽ while interacting with

P (x). Depending on the choice of definition for indistinguishability, one gets different flavors of zero knowledge.

If indistinguishability is required to hold for efficient deciders only, then one gets computational zero knowledge;

CZK denotes the corresponding complexity class. A seminal result in cryptography says that if one-way functions

exist then CZK = IP, i.e., every language having an interactive proof also has a computational zero-knowledge

interactive proof [GMR85, IY87, BGG+88]. If indistinguishability is required to hold for all deciders, then one gets

statistical zero knowledge; if instead the simulator’s output and the verifier’s view are the same distribution (and not

merely close to each other), then one gets perfect zero knowledge. These stronger notions determine the corresponding

complexity classes SZK and PZK, both of which are contained in AM∩coAM; of course, PZK ⊆ SZK ⊆ CZK.

Unfortunately, zero knowledge cannot be achieved unconditionally for non-trivial languages: Ostrovsky and

Wigderson [OW93] proved that if one-way functions do not exist then CZK equals an average-case variant of BPP.

Other types of proof systems. Due to the limitations of interactive proofs with respect to zero knowledge that holds

unconditionally, researchers have explored other types of proof systems, as an alternative to interactive proofs.

• MIP. Ben-Or et al. [BOGKW88] first studied statistical zero knowledge, and proved that it can be achieved in a new

model, multi-prover interactive proof (MIPs), where the verifier interacts with multiple provers that are not allowed

to communicate while interacting with the verifier (though they may share a random string before such an interaction

begins). More precisely, Ben-Or et al. prove that every language having a multi-prover interactive proof also has a

perfect zero-knowledge multi-prover interactive proof (again, without relying on intractability assumptions). The

result of [BOGKW88] was subsequently improved in a number of papers [LS95, BFL91, DFK+92].

• PCP. Kilian et al. [KPT97] study statistical zero knowledge in the model of probabilistically checkable proofs

(PCPs) [BFLS91, AS98, ALM+98], where the verifier has oracle access to a string. Essentially, the oracle string

can be thought of as a stateless prover: the answer to a query depends only on the query itself, but not any other

queries that were previously made. Building on results implicit in [DFK+92], Kilian et al. showed two main

theorems. First, every language in NEXP has a PCP that is statistical zero knowledge against verifiers that make

at most any polynomial number of queries to the PCP. Second, every language in NP has, for every constant c > 0,

a PCP that is statistically zero knowledge against verifiers that make at most k(n) := nc queries to the PCP.

Subsequent works [IKOS09, IMS12, MX13, IMSX15] provided simplifications (giving alternative constructions or

simplifying that of [KPT97]) and limitations (showing that for languages in NP one cannot efficiently sample the

oracle if one seeks statistical zero knowledge against verifiers that make at most a polynomial number of queries).

• IPCP. Goyal et al. [GIMS10] study statistical zero knowledge in the model of interactive PCPs (IPCPs) [KR08],

where the verifier interacts with two provers of which one is restricted to be an oracle. Goyal et al. prove that

every language in NP has a constant-round interactive PCP that is statistical zero knowledge against verifiers that

make at most any polynomial number of queries to the PCP, and where both provers’ strategies can be implemented

efficiently as a function of the instance and the witness.

Researchers have also studied other proof systems in which various forms of zero knowledge hold unconditionally;

these include linear IPs [BCI+13], PCPs of proximity [IW14], and others.
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A limitation of prior work. PCPs with quasilinear-size proof length, but without zero knowledge, are known:

for every language L in NTIME(T (n)), there is a PCP with proof length Õ(T (n)) and query complexity O(1)
[Din07, BS08, BGH+06, Mie08]. On the other hand, no such result for statistical zero knowledge PCPs is known:

even when applied to PCPs of length Õ(T (n)), [KPT97]’s result and followup improvements yields a proof length

that is polynomial in T (n) · k(n), where k(n), known as the knowledge bound, is a bound on the number of queries

by any verifier (see Section 4.1 for further discussion). We thus ask the following question: are there statistical zero

knowledge PCPs with proof length quasilinear in T (n) + k(n)?

1.1 Our contributions

We do not answer the above question in the PCP model, but we give a positive answer in a closely related model that

can be thought of as a “2-round PCP”, which we call duplex PCP (DPCP). At a high level, a DPCP works as follows:

the prover first sends an oracle string π0 to the verifier, just as in a PCP; then, the verifier sends a message ρ to the

prover; finally, the prover answers with a second oracle string π1; the verifier may query both oracles, and then accept

or reject. In other words, a DPCP is merely a 2-round interactive proof in which the prover sends oracle strings rather

than messages. We prove the following theorem:

Theorem 1.1 (see Theorem 4.1 for formal statement). For every language L in NTIME(T )∩NP and polynomially-

bounded knowledge bound k there exists a DPCP system satisfying the following:

• the proof length (in fact, also the prover running time) is quasilinear in n+ T (n) + k(n);
• the query complexity is polynomial in log(T (n) + k(n));
• the verifier running time is polynomial in n+ log(T (n) + k(n));
• perfect zero knowledge holds against any verifier that makes at most k(n) adaptive queries (in total to both oracles);

• the soundness error is 1/2 (and can be reduced by repetition to 2−λ while preserving perfect zero knowledge,

provided that the number of queries does not exceed k(n)).

Moreover, similarly to the PCPs of [KPT97], the DPCP system that we construct is in fact not only sound but is

also a proof of knowledge [BG93]; however, in contrast to [KPT97], the DPCP verifier is non-adaptive, in the sense

that the query locations depend only on the verifier’s random tape.

Perhaps the main difference between our construction and prior work is the techniques that we use. While previous

works use the PCP Theorem as a black box, compiling a PCP into a zero knowledge PCP by using locking schemes

[KPT97], we use certain algebraic properties of a specific family of PCPs to guarantee zero knowledge. In comparison

to the generic approach, we are more specific, but the addition of zero knowledge essentially comes “for free” when

compared to the corresponding constructions without zero knowledge. (In contrast, [KPT97] achieves a proof length

of Ω(k(n)6 · l(n)c), for some large enough c, when starting from a PCP with proof length l(n).)

DPCP vs IPCP. Duplex PCPs are an alternative to interactive PCPs that combine PCPs and interaction. In a DPCP,

the verifier gets an oracle string from the prover, replies with a message, and then gets another oracle string from the

prover; in an IPCP, the verifier gets an oracle string from the prover, and then engages in an interactive proof with him.

Both [GIMS10] and our work are similar in that both address aspects that we do not not know how to address in

the PCP model, and resort to studying alternative models, i.e., IPCP and DPCP respectively. The two works however

give different flavors of results: [GIMS10] obtain IPCPs that are zero knowledge against verifiers that ask at most any

polynomial number of queries k(n) but their oracle is of polynomial size in k(n) (actually, of exponential size but with

a polynomial-size circuit describing it); on the other hand, our work obtains DPCPs that are zero knowledge against

verifiers that ask at most a fixed polynomial number of queries k(n) and our oracles are of quasilinear size in k(n).
Finally, we note that our construction can be also cast as an IPCP, because the knowledge bound k(n) holds only

for the first oracle, i.e., perfect zero knowledge is preserved even if the verifier reads the second oracle in full. This

provides a result on a 2-round IPCP incomparable to [GIMS10]’s 4-round IPCP.

On the minimal computational gap between prover and verifier needed for zero knowledge. IPs and MIPs

assume a computational gap between prover and verifier. The prover is allowed (and often assumed) to be compu-

tationally unbounded and the verifier is polynomially bounded. An intriguing corollary of our theorem is that the

computational gap between prover and verifier can be drastically reduced, to a mere polylogarithmic one. Namely,

suppose that we wish to create zero-knowledge proof systems in which the verifier runs in time tv(n); in the model
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above, as long as tp(n) > tv(n) · (log tv(n))c for an absolute constant c, then perfect zero knowledge with a small

soundness error can be obtained under no intractability assumptions. (See Corollary 4.2 for a formal statement.)

5



2 Preliminaries

Functions and distributions. We use f : D → R to denote a function with domain D and range R; given a subset

D̃ of D, we use f |D̃ to denote the restriction of f to D̃. Given a distribution D, we write x ← D to denote that x is

sampled according to D.

Distances. A distance measure is a function ∆: Σn × Σn → [0, 1] such that for all x, y, z ∈ Σn: (i) ∆(x, x) = 0,

(ii) ∆(x, y) = ∆(y, x), and (iii) ∆(x, y) ≤ ∆(x, z) + ∆(z, y). For example, the relative Hamming distance over

alphabet Σ is a distance measure: ∆Ham
Σ (x, y) := |{i |xi 6= yi}|/n. We extend ∆ to distances of strings to sets: given

x ∈ Σn and S ⊆ Σn, we define ∆(x, S) := miny∈S ∆(x, y) (or 1 if S is empty). We say that a string x is ǫ-close to

another string y if ∆(x, y) ≤ ǫ, and ǫ-far from y if ∆(x, y) > ǫ; similar terminology applies for a string x and a set S.

Fields and polynomials. We denote by F a finite field, by Fq the field of size q, and by F the set of all finite fields.

We denote by F[X1, . . . , Xm] the ring of polynomials in m variables over F; given a polynomial P in F[X1, . . . , Xm],
degXi

(P ) is the degree of P in the variable Xi; the total degree of P is the sum of all of these individual degrees. For

any set S ⊆ F let ZS(X) be the unique monic polynomial of degree |S| that vanishes on S: ZS(X) :=
∏

α∈S(X−α).

Linear spaces. Given n ∈ N, a subset S of Fn is an F-linear space if αx+ βy ∈ S for all α, β ∈ F and x, y ∈ S.

Languages and relations. We denote by R a relation consisting of pairs (x,w), where x is the instance and w is the

witness. We denote by Lan(R) the language corresponding to R, and by R|
x

the set of witnesses in R for x.

Complexity classes. We write complexity classes in bold capital letters: NP, PSPACE, NEXP, and so on.

We take a “relation-centric” point of view: we view NTIME as a class of relations rather than as the class of the

corresponding languages; we thus may write things like “let R be in NP”. If R is in NTIME(T ), we fix an arbitrary

machine MR that decides R in time T (n), i.e., MR(x,w) always halts after T (|x|) steps and MR(x,w) = 1 if and

only if (x,w) ∈ R; we then say that MR decides R (or Lan(R)). Throughout, we assume that T (n) ≥ n.

Codes. An error correcting code C is a set of functions w : H → Σ, where H,Σ are finite sets. The message

length of C is n := log|Σ| |C|, its block length is ℓ := |H|, its rate is ρ := n/ℓ, its (minimum) distance is d :=
min{∆(w, z) |w, z ∈ C , w 6= z} when ∆ is the (absolute) Hamming distance, and its (minimum) relative distance

is δ := d/ℓ. Given a code family C , we denote by Rel(C ) the relation that naturally corresponds to C , i.e., {(C,w) |
C ∈ C , w ∈ C}. A code C is linear if Σ is a finite field and C is a Σ-linear space in Σℓ; we denote by dim(C)
the dimension of C when viewed as a linear space. A code C is t-wise independent if, for every subset I of [ℓ] with

cardinality t, the distribution of w|I (viewed as a string) for a random w ∈ C equals the uniform distribution on Σt.

Random shifts. We later use the following folklore claim about distance preservation for random shifts in linear

spaces; for completeness, we include its short proof.

Claim 2.1. Let n be in N, F a finite field, S an F-linear space in F
n, and x, y ∈ F

n. If x is ǫ-far from S, then αx+ y
is ǫ/2-far from S, with probability 1− |F|−1 over a random α ∈ F. (Distances are relative Hamming distances.)

Proof. Suppose, by way of contradiction, that there exist α1, α2 ∈ F and y1, y2 ∈ S with α1 6= α2 such that, for every

i ∈ {1, 2}, αix+y is ǫ/2 close to yi. Then, by the triangle inequality, z := y1−y2 is ǫ-close to (α1x+y)−(α2x+y) =
(α1 − α2)x. We conclude that x is ǫ-close to 1

α1−α2
z ∈ S, a contradiction.

2.1 Probabilistically checkable proofs

A PCP system [BFLS91, AS98, ALM+98] for a relation R is a tuple PCP = (P, V ) that works as follows.

• The prover P is a probabilistic algorithm that, given as input an instance-witness pair (x,w) with n := |x|, outputs

a proof π : D(n)→ Σ(n), where both D(n) and Σ(n) are finite sets.

• The verifier V is a probabilistic oracle algorithm that, given as input an instance x with n := |x| and with oracle

access to a proof π : D(n)→ Σ(n), queries π at a few locations and then outputs a bit.

The system PCP has (perfect) completeness and soundness error e(n) if the following two conditions hold. (Below,

we explicitly denote the prover’s and verifier’s randomness as rP and rV .)
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Completeness: For every instance-witness pair (x,w) in the relation R, PrrP ,rV

[

V P (x,w;rP )(x; rV ) = 1
]

= 1 .

Soundness: For every instance x not in the language Lan(R) and proof π : D(n)→ Σ(n), PrrV [V π(x; rV ) = 1] ≤
e(n) .

A relation R belongs to the complexity class PCP[a, l, q, e, tp, tv] if there is a PCP system for R in which:

– the answer alphabet (i.e., Σ(n)) is a(n),
– the proof length over that alphabet (i.e., |D(n)|) is at most l(n),
– the verifier queries the proof in at most q(n) locations,

– the soundness error is e(n),
– the prover runs in time tp(n), and

– the verifier runs in time tv(n).
Finally, we write na = Yes in the square brackets if the queries to the oracles are non-adaptive (i.e., the queried

locations only depend on the verifier’s inputs); otherwise we write na = No.

2.2 Probabilistically checkable proofs of proximity

A PCPP system [BGH+04, DR04] for a relation R is a tuple PCPP = (P, V ) that works as follows.

• The prover P is a probabilistic algorithm that, given as input an instance-witness pair (x,w) with n := |x|, outputs

a proof π : D(n)→ Σ(n), where both D(n) and Σ(n) are finite sets.

• The verifier V is a probabilistic oracle algorithm that, given as input an instance x with n := |x| and with oracle

access to a witness w and proof π : D(n)→ Σ(n), queries w and π at a few locations and then outputs a bit.

The system PCPP has (perfect) completeness, soundness error e, distance measure ∆, and proximity parameter d if

the following two conditions hold. (Below, we explicitly denote the prover’s and verifier’s randomness as rP and rV .)

Completeness: For every instance-witness pair (x,w) in the relation R, PrrP ,rV

[

V (w,P (x,w;rP ))(x; rV ) = 1
]

= 1 .

Soundness: For every instance-witness pair (x,w), perhaps not in the language, such that ∆(w,R|
x

) ≥ d(n) and

proof π : D(n)→ Σ(n), PrrV
[

V (w,π)(x; rV ) = 1
]

≤ e(n) .

A relation R belongs to the complexity class PCPP[a, l, q,∆, d, e, tp, tv] if there is a PCPP system for R in which:

– the answer alphabet (i.e., Σ(n)) is a(n),
– the proof length over that alphabet (i.e., |D(n)|) is at most l(n),
– the verifier queries the two oracles (codeword and proof) in at most q(n) locations (in total),

– the distance measure is ∆,

– the proximity parameter is d(n),
– the soundness error is e(n),
– the prover runs in time tp(n), and

– the verifier runs in time tv(n).
Finally, we write na = Yes in the square brackets if the queries to the oracles are non-adaptive (i.e., the queried

locations only depend on the verifier’s inputs); otherwise we write na = No.

2.3 Zero knowledge PCPs

The notion of zero knowledge for PCPs was first considered in [DFK+92, KPT97]. A PCP system PCP = (P, V )
for a relation R has perfect zero knowledge with knowledge bound k if there exists an expected-polynomial-time

probabilistic algorithm S such that, for every k-query polynomial-time probabilistic oracle algorithm Ṽ , the following

two distribution families are identical:

{S(Ṽ , x)}(x,w)∈R and {PCPView(Ṽ , P, x,w)}(x,w)∈R ,
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where PCPView(Ṽ , π, x,w) is the view of Ṽ in its execution when given input x and oracle access to π := P (x,w).
The definition of statistical and computational zero knowledge (with knowledge bound k) are similar: rather than iden-

tical, the two distribution families are required to be statistically and computationally close (as |x| grows), respectively.

A relation R belongs to the complexity class PCPpzk[a, l, q, e, tp, tv, k] if there exists a PCP system for R that

(i) puts R in PCP[a, l, q, e, tp, tv], and (ii) has perfect zero knowledge with knowledge bound k; as for PCP, we add

the symbol na in the square brackets of PCPpzk to denote if the queries to the proof are non-adaptive. The complexity

classes PCPszk and PCPczk are similarly defined for statistical and computational zero knowledge.

The KPT result. Kilian, Petrank, and Tardos proved the following theorem:

Theorem 2.2 ([KPT97]). For every polynomial time function T : N → N, polynomial security function λ : N → N,

and polynomial knowledge bound function k : N→ N,

NTIME(T ) ⊆ PCPszk

























answer alphabet a = F2poly(λ)

proof length l = poly(T, k)
query complexity q = poly(λ)
soundness error e = 2−λ

prover time tp = poly(λ, T )
verifier time tv = poly(λ, T, k)
knowledge bound k

non-adaptive queries na = No

























.

Remark 2.3. We make two remarks: (i) na = No because [KPT97]’s construction relies on adaptively querying the

proof; (ii) inspection of [KPT97]’s construction reveals that l(n) ≥ poly(T (n)) · k(n)6.

2.4 Reed–Muller and Reed–Solomon codes

We define Reed–Muller and Reed–Solomon codes, as well as their “vanishing” variants [BS08]; all of these are linear

codes. We then state a theorem about PCPPs for certain families of RS codes.

RM codes. Let F be a finite field, H,V subsets of F, m a positive integer, and ̺ a constant in (0, 1]; ̺ is called

the fractional degree. The Reed–Muller code with parameters F, H,m, ̺ is RM[F, H,m, ̺] := {w : Hm → F |
maxi∈[m] degXi

(w) < ̺|H|}; its message length is n = (̺|H|)m, block length is ℓ = |H|m, rate is ρ = ̺m, and rela-

tive distance is δ = 1− ̺. The vanishing Reed–Muller code with parameters F, H,m, ̺, V is VRM[F, H,m, ̺, V ] :=
{w ∈ RM[F, H,m, ̺] | w(V m) = {0}}; it is a subcode of RM[F, H,m, ̺]. We use the following folklore claim,

whose correctness can be proved by induction on m:

Claim 2.4. Let F be a finite field, H,V subsets of F with H ∩V = ∅, m a positive integer, and t a positive integer not

exceeding |H| − |V |. Then VRM[F, H,m, |V |+t
|H| , V ] is t-wise independent.

RS codes. Let F be a finite field, H,V subsets of F, and ̺ a constant in (0, 1]. The Reed–Solomon code with

parameters F, H, ̺ is RS[F, H, ̺] := RM[F, H, 1, ̺]. The vanishing Reed–Solomon code with parameters F, H, ̺, V
is VRS[F, H, ̺, V ] := {w ∈ RS[F, H, ̺] | w(V ) = {0}}.

Two RS code families and their PCPPs. Given ℓ, χ : N→ N and ̺ : N→ (0, 1), we denote by:

• RS∗ℓ,̺,χ the set of Reed–Solomon codes RS[F, H, ̺] for which F has characteristic 2, H has cardinality at most ℓ,
and the vanishing polynomial ZH is computable by a χ-size F-arithmetic circuit; and

• VRS∗ℓ,̺,χ the set of vanishing Reed–Solomon codes VRS[F, H, ̺, V ] for which F has characteristic 2, H has car-

dinality at most ℓ, and the vanishing polynomials ZH and ZV are computable by χ-size F-arithmetic circuits.

The following theorem is from [BS08, BCGT13a] (the prover running time is shown in [BCGT13a] and the other

parameters in [BS08]).
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Theorem 2.5. For every λ, s, χ : N→ N, and ̺ : N→ (0, 1),

Rel(RS∗ℓ,̺,χ) , Rel(VRS
∗
ℓ,̺,χ) ∈ PCPP





























answer alphabet a = F2s+log ℓ

proof length l = Õ(ℓ)
query complexity q = λ · polylog(ℓ)
distance measure ∆ = ∆Ham

a

proximity parameter d = ̺/2
soundness error e = 2−λ

prover time tp = poly(s+ χ) · Õ(ℓ)
verifier time tv = λ · poly(s+ χ+ log ℓ)
non-adaptive queries na = Yes





























.
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3 Duplex PCPs

We define duplex PCPs, and then define notions of zero knowledge for this model. Our main theorem is the construc-

tion of a duplex PCP with certain parameters; see Section 4. The difference between a PCP and a duplex PCP is that

all provers (both honest and malicious) produce two proof oracles rather than one: the prover produces a proof π0;

then the verifier sends a message ρ to the prover; then the prover produces another proof π1; finally the verifier queries

both π0 and π1 and either accepts or rejects. (Thus, a PCP is a special case of a duplex PCP, but not vice versa.) More

precisely, a duplex PCP system for a relation R is a tuple DPCP = (P, V ) that works as follows.

• The prover P is a pair (P0, P1) of probabilistic algorithms, with shared randomness, where: (a) given as input an

instance-witness pair (x,w) with n := |x|, P0 outputs a proof π0 : D0(n) → Σ(n); (b) given as input (x,w) and

the verifier’s message ρ (see below), P1 outputs a proof π1 : D1(n) → Σ(n). Here D0(n), D1(n),Σ(n) are finite

sets.

• The verifier V is a pair (V0, V1) of probabilistic algorithms, with shared randomness, where: (a) given as input an

instance xwith n := |x|, V0 outputs a message ρ; (b) given as input x and with oracle access to proofs π0 : D0(n)→
Σ(n) and π1 : D1(n)→ Σ(n), V1 queries π0 and π1 at a few locations and then outputs a bit.

The system DPCP has (perfect) completeness and soundness error e(n) if the following two conditions hold. (Below,

we explicitly denote the prover’s and verifier’s randomness as rP and rV .)

Completeness: For every instance-witness pair (x,w) in the relation R,

Pr
rP ,rV



V π0,π1

1 (x; rV ) = 1

∣

∣

∣

∣

∣

∣

π0 ← P0(x,w; rP )
ρ← V0(x; rV )

π1 ← P1(x,w, ρ; rP )



 = 1 .

Soundness: For every instance x not in the language Lan(R) and pair of algorithms P̃ = (P̃0, P̃1),

Pr
rV



V π0,π1

1 (x; rV ) = 1

∣

∣

∣

∣

∣

∣

π0 ← P̃0

ρ← V0(x; rV )

π1 ← P̃1(ρ)



 ≤ e(n) .

A relation R belongs to the complexity class DPCP[a, l, q, e, tp, tv] if there is a DPCP system for R in which:

– the answer alphabet (i.e., Σ(n)) is a(n),
– the proof length over that alphabet (i.e., (|D0(n)|+ |D1(n)|)) is at most l(n),
– the verifier queries the two proofs in at most q(n) locations (in total),

– the soundness error is e(n),
– the prover runs in time tp(n), and

– the verifier runs in time tv(n).
Finally, we write na = Yes in the square brackets if the queries to the oracles are non-adaptive (i.e., the queried

locations only depend on the verifier’s inputs); otherwise we write na = No.

Zero knowledge. A DPCP system DPCP = (P, V ) for a relation R has perfect zero knowledge with knowledge

bound k if there exists an expected-polynomial-time probabilistic algorithm S such that for every pair of polynomial-

time probabilistic oracle algorithms Ṽ := (Ṽ0, Ṽ1) the following two distribution families are identical:

{S(Ṽ , x)}(x,w)∈R and {DPCPView(k, Ṽ , P, x,w)}(x,w)∈R ,

where DPCPView(k, Ṽ , P, x,w) is the view of Ṽ1 in its execution when given input x and when allowed to make

a total of k(n) adaptive queries to π0, π1, where π0 := P0(x,w) and π1 := P1(x,w, Ṽ
π0
0 (x)). (As above, P0, P1

share the same randomness rP ; ditto for Ṽ0, Ṽ1.) The definition of statistical and computational zero knowledge (with

knowledge bound k) are similar: rather than identical, the two distribution families are required to be statistically and

computationally close (as |x| grows), respectively.
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4 Main theorem

The main result of this paper is the following.

Theorem 4.1. For every polynomially-bounded time function T : N→ N and polynomially-bounded knowledge bound

function k : N→ N with k ≤ T ,

NTIME(T ) ⊆ DPCPpzk

























answer alphabet a = F2O(log(T+k))

proof length l = Õ(T + k)
query complexity q = polylog(T + k)
soundness error e = 1/2

prover time tp = poly(n) · Õ(T + k)
verifier time tv = poly(n+ log(T + k))
knowledge bound k

non-adaptive queries na = Yes

























.

The soundness error can be reduced from e = 1/2 to e = 2−λ via parallel repetition, with a corresponding λ-fold

increase in the query complexity q and verifier running time tv; perfect zero knowledge is preserved so long as the

query complexity does not exceed the knowledge bound k.

A corollary. The above theorem says that, fixing T , the prover running time is quasilinear in the knowledge bound k,

while the verifier running time is polylogarithmic in k. This yields an intriguing corollary: in the duplex PCP model,

we only need a polylogarithmic computational overhead of the prover over the verifier in order to guarantee perfect

zero knowledge. We state this formally next.

Corollary 4.2. For every polynomial time function T : N → N and relation R ∈ NTIME(T ), there is a constant c
such that, for every function tv : N→ N with tv(n) ≥ n · (log T (n))c, there is a DPCP system with:

• completeness 1 and soundness 2−tv(n)/polylog(T (n));

• perfect zero knowledge;

• the verifier running time is tv(n) and prover running time is tp(n) := max{T (n)·(log T (n))c, tv(n)·(log tv(n))c}.
The verifier has no limitations other than a bound on its running time (its query complexity can be as large as tv(n)).

4.1 Proof sketch

Let R be a relation in NP, and let (x,w) be an instance-witness pair in R. The prover and verifier both know x,

while the prover also knows w. The prover wishes to convince the verifier that he knows a witness w for x, in such a

way that the verifier does not learn anything about w (beyond what can be inferred from the prover’s claim).

The KPT approach. We introduce our ideas by contrasting them with those of [KPT97]. Suppose that the prover

wishes to convince the verifier by sending him a PCP proof π = π(w) such that any k values in π do not reveal

anything about w. Loosely speaking, [KPT97] (building on [DFK+92]) provide a probabilistic transformation that

maps the PCP proof π to a new proof π′, in which each bit of π is “hidden” amongst many bits of π′. The main

tool employed in the transformation is a locking scheme, and its use imposes certain limitations: (i) the new proof

π′ is poly(k) larger than the original one (k6 by inspection of [DFK+92, KPT97]); (ii) zero knowledge holds only

statistically, but not perfectly, because a malicious verifier can be “lucky” and obtain information on the bit of π being

locked with fewer queries to π′ than expected.

Our approach (ideally). We take a different approach: apply a “local” PCP to a “random” witness, as we now

explain. Suppose that π = π(w) is (t, k)-local, i.e., any k positions of the PCP proof π jointly depend on at most t
positions of the witness w. Note that, even if π is (t, k)-local, a single bit of π can still leak information about w. So

suppose further that the relation R is t-randomizable: given (x,w) ∈ R, one can efficiently sample a witnessw′ from

a t-wise independent subset of the set of witnesses for x. In such a case, the prover can produce a zero-knowledge

PCP as follows: (1) sample a witness w′ from the t-wise independent subset; then (2) send to the verifier the PCP

proof π = π(w′). Indeed, the locality of π ensures that seeing any k indices of π reveals nothing about w, because

these k indices are a function of t random bits. In sum, if we had a (t, k)-local PCP for a t-randomizable relation R,

then we could obtain a PCP for R that is zero knowledge against verifiers that ask at most k queries.
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Our approach (in reality). Unfortunately, we do not know how to obtain local PCPs for randomizable relations.

However, we are able to obtain “partially local” duplex PCPs for certain randomizable relations, and also show that

NTIME can be efficiently reduced to these randomizable relations, as we now explain.

Our starting point are algebraic PCPs: certain PCPs that prove satisfiability of algebraic problems (APs) [PS94].

Numerous known PCP constructions can be viewed as algebraic PCPs. Informally, in this work we make two basic

observations: (i) algebraic PCPs exist for certain randomizable relations; and (ii) an algebraic PCP proof can be split

in two parts, one part is local, while the other part is not local but enjoys convenient linear algebraic properties that,

nevertheless, enable us to hide information about the witness, in the duplex PCP model. (Recall that, in the duplex

PCP model, the prover produces a proof π0; then the verifier sends a message ρ to the prover; then the prover produces

another proof π1; finally the verifier queries both π0 and π1 and either accepts or rejects.)

In more detail, from a technical viewpoint, we proceed as follows. First, we introduce a family of constraint

satisfaction problems (CSPs) called linear algebraic CSPs, and show that NTIME is efficiently reducible to ran-

domizable linear algebraic CSPs. The reduction consists of two parts: we go through an intermediary that we call

group preserving algebraic problems (GAPs), a special case of APs that we believe to be of independent interest for

the study of algebraic PCPs. Second, we construct a duplex PCP system for randomizable linear algebraic CSPs that

is zero knowledge against verifiers that ask at most a certain number of queries.

A technical piece: zero-knowledge duplex PCPP for low-degreeness. Later sections address all of the above steps

(see Section 4.2 for a roadmap of these), and for now we only sketch one of these steps. Above we mention that an

algebraic PCP proof has two parts: a local part, and a non-local part. This latter part of the proof arises from a central

component of many PCP proofs: a PCP of proximity (PCPP) [BGH+05, DR04] that facilitates low-degree testing.

Informally, given a function f : H → F and an integer d, a PCPP for degree d is a proof π(f) that f is ǫ-close to an

evaluation of a polynomial degree at most degree d. We explain how to transform a PCPP for low-degreeness into a

duplex PCPP for low-degreeness that is zero knowledge against verifiers that make at most t queries.

The set C of functions f : H → F that are evaluations of a polynomial of degree at most d is a subspace of F|H|.

The basic idea is that, in order for the prover to convince the verifier that a function f is close to C, it suffices for the

prover to convince the verifier that a random offset of f is close to C: one can verify that, for any u : H → F, if f
is ǫ-far from C, then αf + u is ǫ/2-far from C, with probability 1 − |F|−1 over a random α ∈ F. Hence, we can let

the duplex PCP work as follows: (i) the prover samples a witness w′ from the t-wise independent subset, chooses a

random u ∈ C, and sends π0 := (w′, u) to the verifier; (ii) the verifier sends to the prover a random α ∈ F; (iii) the

prover sends π1 = (v, π(v)) to the verifier, where v := αw′ + u and π(v) is a PCPP for low-degreeness of v; (iv) the

verifier runs the PCPP verifier on (v, π) to check that v is close to C, and then checks that vi = αw′
i + ui for a few

random indices i in {1, . . . , |H|}.
Let us discuss the various properties of the duplex PCPP.

• COMPLETENESS: If w ∈ C, then αw′ + u ∈ C; therefore, the prover convinces the verifier.

• ZERO-KNOWLEDGE: If the verifier asks at most t queries, then he learns nothing about w because: π0 = (w′, u)
contains w′ sampled from a t-wise independent subset and u random in C; π1 = (v, π(v)) is running the PCPP on

a vector v that is random in C.

• SOUNDNESS: If v does equal α ·w+ u, then the verifier rejects with high probability because v is far from C (and

the PCPP verifier rejects π with high probability). If instead v does not equal α ·w+ u, then the fact that v is close

to C does not prove anything about whether w is also close. So, in this case, we need to reason about the success

probability of the verifier’s linearity tests: if these pass with enough probability, then with high probability v is close

to αw + u, which again suffices for our purpose. Overall, soundness holds.

Next, we discuss how the technical sections are organized, and how they come together to yield our main theorem.

4.2 Roadmap of the rest of the paper

The rest of the paper is dedicated to turn the above intuition into a more formal proof. To do so, we introduce various

intermediate steps, as follows.

• In Section 5, we introduce linear algebraic CSPs (a family of constraint satisfaction problems), and then describe

how to obtain a canonical PCP for any linear algebraic CSP.
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• In Section 6, we introduce randomizable linear algebraic CSPs, a subfamily of linear algebraic CSPs; then we show

that, for every randomizable linear algebraic CSP, we can convert the CSP’s canonical PCP into a corresponding

zero-knowledge duplex PCP, incurring only little overheads.

• In Section 7, we show an efficient reduction from NTIME to randomizable linear algebraic CSPs; along the

way, we introduce a family of algebraic problems, having special symmetry properties, that we believe to be of

independent interest (e.g., for studying other questions about PCPs).

Combining (i) the efficient reduction from NTIME to randomizable linear algebraic CSPs together with (ii) the

zero-knowledge duplex PCP for such problems yields Theorem 4.1. In Section 8 we provide details about how these

components are combined.

13



5 Linear algebraic CSPs and their canonical PCPs

We introduce linear algebraic CSPs, a family of constraint satisfaction problems; then we describe how to obtain a

canonical PCP for any linear algebraic CSP.

5.1 Linear algebraic constraint satisfaction problems

A constraint satisfaction problem asks whether, for a given “local” function g, there exists an input α such that g(α) is

an “accepting” output. For example, in the case of 3-SAT with n variables and m clauses, the function g maps {0, 1}n

to {0, 1}m, and g(α) indicates which clauses are satisfied by α ∈ {0, 1}n; hence α yields an accepting output if (and

only if) g(α) = 1m. Below we introduce a family of constraint satisfaction problems whose domain and range are

linear-algebraic objects, namely, linear error correcting codes.

We begin by providing the notion of locality that we use for g; we also provide two other notions, one for the

efficiency of computing a single coordinate of g’s output, and another for measuring g’s “pseudorandomness”.

Definition 5.1. Let g : Σn → Σm be a function. We say that g is:

– q-local if for every j ∈ [m] there exists Ij ⊆ [n] with |Ij | ≤ q such that g(α)[j] (the j-th coordinate of g(α))
depends only on α|Ij (the restriction of α to Ij);

– c-efficient if there is a time c algorithm that, given j and α|Ij , computes the set Ij and value g(α)[j];
– (γ, ǫ)-sampling if Pr[ Ij ∩ I 6= ∅ | j ← [m] ] ≤ γ for every I ⊆ [n] with |I|/n ≤ ǫ.

Next we introduce RLA, the relation of linear algebraic CSPs:

Definition 5.2 (RLA). Given functions f : N→ F , ℓ, q, c : N→ N, and ρ, δ, γ, ǫ : N→ (0, 1], the relation

RLA[f, ℓ, ρ, δ, q, c, γ, ǫ]

consists of instance-witness pairs (x,w) satisfying the following.

• The instance x is a tuple (1n, C◦, C•, g) where:

– C◦, C• are linear error correcting codes with block lengths ℓ◦(n), ℓ•(n) at most ℓ(n), each with rate at most

ρ(n) and relative distance at least δ(n) over the same field f(n);
– g : f(n)ℓ◦(n) → f(n)ℓ•(n) is a q(n)-local, c(n)-efficient, (γ(n), ǫ(n))-sampling function;

– C• ∪ g(C◦) has relative distance at least δ(n) (though may not be a linear space).

• The witness w is a tuple (α◦, α•) where α◦ ∈ f(n)ℓ◦(n) and α• ∈ f(n)ℓ•(n).

• The instance x and witness w jointly satisfy the following: α◦ ∈ C◦, α• ∈ C•, and g(α◦) = α•.

Finally we need notation for referring to codes appearing in instances of RLA:

Definition 5.3. Given R ⊆ RLA, we denote by

– CR,◦ the set of codes C for which there is an instance x = (1n, C◦, C•, g) in the relation R with C = C◦;

– CR,• the set of codes C for which there is an instance x = (1n, C◦, C•, g) in the relation R with C = C•.

5.2 A canonical PCP for linear algebraic CSPs

We show how to construct a “canonical” PCP system for instances in RLA (the relation of linear algebraic CSPs). At

a high level, a canonical PCP proof for a RLA-instance x consists of a witness w = (α◦, α•) concatenated with two

PCPP proofs π◦, π•, showing that α◦, α• are close to C◦, C• respectively. The canonical PCP verifier first checks the

two PCPP proofs and then checks that g(α◦)[j] = α•[j] for a uniformly random j ∈ [ℓ•].

Definition 5.4. Given (i) a relation R ⊆ RLA, (ii) a PCPP system PCPP◦ = (P◦, V◦) for Rel(CR,◦), and (iii) a

PCPP system PCPP• = (P•, V•) for Rel(CR,•), the canonical PCP system for the triple (R,PCPP◦,PCPP•) is the

PCP system PCP = (P, V ) constructed as follows.

14



• Prover. Given (x,w) ∈ RLA, the PCP prover P outputs π := (w, π◦, π•) where π◦ := P◦(C◦, α◦) and π• :=
P•(C•, α•). In other words, the PCP prover outputs a PCP proof that is the concatenation of the witness w =
(α◦, α•) and a pair of PCPP proofs, the first proving that α◦ ∈ C◦ and the second proving that α• ∈ C•.

• Verifier. Given x and oracle access to a PCP proof π = (w, π◦, π•), the PCP verifier V works as follows:

– (proximity) check that V
(α◦,π◦)
◦ (C◦) and V

(α•,π•)
• (C•) both accept;

– (consistency) check that g(α◦)[j] = α•[j] for a uniformly random j ∈ [ℓ•].

The next lemma says that the above construction is a PCP system when RLA’s parameters are sufficiently “good”.

Lemma 5.5 (RLA → PCP). Suppose that R is a relation that satisfies the following conditions:

(i) R ⊆ RLA[f1, ℓ1, ρ1, δ1, q1, c1, γ1, ǫ1] with ǫ1 < min{ δ12 , δ1 − γ1};
(ii) Rel(CR,◦),Rel(CR,•) ∈ PCPP[a2, l2, q2,∆

Ham
a2

, d2, e2, tp2, tv2, na2] with a2 = f1 and d2 ≤ ǫ1.

Then there is a canonical PCP system for a triple (R,PCPP◦,PCPP•) that yields

R ∈ PCP





















answer alphabet a = f1 (= a2)

proof length l = 2l2(ℓ1) + 2ℓ1
query complexity q = 2q2(ℓ1) + q1 + 1
soundness error e = max{1− δ1 + γ1 + ǫ1, e2}
prover time tp = 2tp2(ℓ1)
verifier time tv = 2tv2(ℓ1) + c1 + log ℓ1
non-adaptive queries na = na2





















.

Proof of Lemma 5.5. First, we show that the canonical PCP system satisfies completeness and soundness; afterwards,

we discuss the efficiency parameters achieved by it.

Completeness. Consider an instance-witness pair (x,w) in the relation R. Parse the instance x as (1n, C◦, C•, g)
and the witness w as (α◦, α•). Since (x,w) ∈ R, we have that α◦ ∈ C◦, α• ∈ C•, and g(α◦) = α•. Therefore,

the PCP proof (w, π◦, π•) generated by the PCP prover is accepted by the PCP verifier with probability 1: the PCPP

verifiers V
(α◦,π◦)
◦ (C◦) and V

(α•,π•)
• (C•) always accept and g(α◦)[j] = α•[j] for every j ∈ [ℓ•].

Soundness. Consider an instance x not in the language Lan(R) and a PCP proof π̃ = (w̃, π̃◦, π̃•). Parse the instance

x as (1n, C◦, C•, g) and the wintess w̃, inside π̃, as (α̃◦, α̃•). We prove that V accepts π̃ with probability at most

max{1− δ1 + γ + ǫ1, e2}, by considering the following three cases.

• Case 1: α̃◦ is ǫ1-far in relative Hamming distance from C◦. The canonical PCP verifier’s proximity test fails,

because ∆Ham
a (α̃◦, C◦) ≥ ǫ1 ≥ d2, and so the PCPP verifier V

(α◦,π̃◦)
◦ (C◦) accepts with probability at most e2.

• Case 2: α̃• is ǫ1-far in relative Hamming distance from C•. This case is analogous to the previous one.

• Case 3: there exist α◦ ∈ C◦ and α• ∈ C• with ∆Ham
a (α◦, α̃◦) ≤ ǫ1 and ∆Ham

a (α•, α̃•) ≤ ǫ1.

First, since ǫ1 is less than δ1/2 (the unique decoding radius of C◦ and C•), the codewords α◦ and α• are unique.

Next, we claim that α′
• := g(α◦) and g(α̃◦) are γ1-close. Indeed, since g is (γ1, ǫ1)-sampling, α◦ and α̃◦ differ in

at most ǫ1 · ℓ◦(n) positions, and so at most γ1 · ℓ•(n) positions of g(α̃◦) depend on an index where α◦ and α̃◦ differ.

Next, we claim that ∆Ham
a (α•, α

′
•) ≥ δ1. Indeed, we have that α• 6= α′

• because otherwise (α◦, α•) would be a

satisfying assignment for x (contradicting the assumption that x 6∈ Lan(R)); moreover, we also have that C•∪g(C◦)
has relative distance at least δ1.

We now use the triangle inequality, along with the above observations, to obtain that

δ1 ≤ ∆Ham
a (α•, α

′
•)

≤ ∆Ham
a (α•, α̃•) + ∆Ham

a (α̃•, g(α̃◦)) + ∆Ham
a (g(α̃◦), α

′
•)

≤ ǫ1 +∆Ham
a (α̃•, g(α̃◦)) + γ1 .

Thus, ∆Ham
a (α̃•, g(α̃◦)) ≥ δ1 − (γ1 + ǫ1), and so the canonical PCP verifier’s consistency check passes with

probability at most 1− δ1 + γ1 + ǫ1.
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We conclude that V accepts π̃ with probability at most max{1− δ1 + γ1 + ǫ1, e2}.

Other parameters. The remaining parameters are straightforward to establish. The canonical PCP does not change

the alphabet, so a = f1 (which also equals a2). The proof length, and the running times of the prover and verifier are

the sum of the same measures of the sub-components: the PCP proof has l = 2l2(ℓ1) + 2ℓ1 symbols, is produced in

time tp = 2tp2(ℓ1), and is verified in time tv = 2tv2(ℓ1)+c1+O(1). The canonical PCP verifier makes q1+1 queries

on top of those of the PCPP verifiers, so its query complexity is q = 2q2(ℓ1) + q1 + 1. The q1 + 1 additional queries

are non-adaptive; so if the PCPP verifiers are non-adaptive, so is the canonical PCP verifier (i.e., na = na2).
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6 Zero-knowledge duplex PCPs from randomizable linear algebraic CSPs

We introduce randomizable linear algebraic CSPs, a subfamily of linear algebraic CSPs. Then we show that, for every

randomizable linear algebraic CSP, we can convert the CSP’s canonical PCP into a corresponding zero-knowledge

duplex PCP, incurring only little overheads.

6.1 Randomizable linear algebraic CSPs

The definition below specifies the notion of randomizability for linear algebraic CSPs.

Definition 6.1 (RRLA). The relation RRLA[f, ℓ, ρ, δ, q, c, γ, ǫ, t, r] is the sub-relation of RLA[f, ℓ, ρ, δ, q, c, γ, ǫ] ob-

tained by restricting it to instances that are t-randomizable in time r. An instance x = (1n, C◦, C•, g) is t(n)-
randomizable in time r(n) if: (i) there exists a t(n)-wise independent subcode C ′ ⊆ C◦ such that if (w◦, g(w◦))
satisfies x, then, for every w′

◦ in C ′ + w◦ := {w′ + w◦ | w
′ ∈ C ′}, the witness (w′

◦, g(w
′
◦)) satisfies x; and (ii) one

can sample, in time r(n), three uniformly random elements in C ′, C◦ and C• respectively.

Remark 6.2. A linear code C ⊆ F
ℓ is t-wise independent if and only if its dual distance is at least t, i.e., its dual code

C⊥ := {w ∈ F
ℓ | ∀z ∈ C,

∑ℓ
i=1 wizi = 0} has distance at least t.

Remark 6.3. A random codeword in a linear code C ⊆ F
ℓ can be sampled with r := ℓ · dim(C) field operations in

F, by using a generating matrix for C. In certain cases, a random codeword can be sampled more efficiently; e.g., in

the case of Reed–Muller codes, ℓ · polylog(dim(C)) field operations are sufficient (via a suitable use of FFTs).

6.2 Construction of zero-knowledge duplex PCPs

We construct a zero-knowledge duplex PCP system for randomizable linear algebraic CSPs. The duplex PCP system

does little more than invoking, as a subroutine, the canonical PCP system for the linear algebraic CSP; hence, the

efficiency of the duplex PCP and of the canonical PCP system are closely related. The construction demonstrates that

“adding zero knowledge to an algebraic PCP” is cheap, provided that one moves from the PCP model to the (more

general) duplex PCP model. More precisely, we prove the following theorem.

Theorem 6.4 (RRLA → DPCPpzk). Suppose that R is a relation that satisfies the following conditions:

(i) R ⊆ RRLA[f1, ℓ1, ρ1, δ1, q1, c1, γ1, ǫ1, t1, r1] with ǫ1 < min{ δ12 , δ1− γ1} and ℓ1, c1, r1 polynomially bounded;

(ii) Rel(CR,◦),Rel(CR,•) ∈ PCPP[a2, l2, q2,∆
Ham
a2

, d2, e2, tp2, tv2, na2] with a2 = f1 and d2 ≤ ǫ1/4.

Then there is a duplex PCP system for R that yields

R ∈ DPCPpzk

























answer alphabet a = f1 (= a2)

proof length l = 2l2(ℓ1) + 6ℓ1
query complexity q = 2q2(ℓ1) + q1 + 7
soundness error e = max{1− δ1 + γ1 + ǫ1 , (1− |f1|

−1) ·max{e2, ǫ1/4}+ |f1|
−1}

prover time tp = 2tp2(ℓ1) + (c1 + 5)ℓ1 + r1
verifier time tv = 2tv2(ℓ1) + c1 + log ℓ1
knowledge bound k = t1/q1
non-adaptive queries na = na2

























.

Proof. We prove the claim by constructing a suitable duplex PCP system DPCP = (P, V ) for the relation R. Recall

that: the prover P is a pair of algorithms (P0, P1), and the verifier V is also a pair of algorithms (V0, V1); moreover, an

instance x of R is of the form (1n, C◦, C•, g), while a witness w of R is of the form (α◦, α•); finally, randomizability

implies that there is a t(n)-wise independent subcode C ′ ⊆ C◦ such that if (w◦, g(w◦)) satisfies x then so does the

witness (w′
◦, g(w

′
◦)), for every w′

◦ in C ′ + w◦.

We now describe the construction of the duplex PCP system DPCP = (P, V ):

• P0(x,w)→ π0

Sample uniformly random v◦ ∈ C◦, v• ∈ C•, u
′ ∈ C ′; compute w◦ := u′ + α◦, w• := g(w◦) and output

π0 := (w◦‖v◦‖w•‖v•).
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• V0(x)→ ρ

Sample uniformly random ρ◦, ρ• ∈ f1, and output ρ := (ρ◦, ρ•).

• P1(x,w, ρ)→ π1

Compute z◦ := ρ◦w◦ + v◦ and z• := ρ•w• + v•; compute π◦ := P◦(C◦, z◦) and π• = P•(C•, z•); and output

π1 := (z◦‖z•‖π◦‖π•). (Essentially, this step corresponds to running the canonical PCP prover with respect to a

uniformly random pair (z◦, z•) in (C◦, C•).)

• V π0,π1

1 (x)→ b

Conduct the following tests (and reject if any of them fails):

– (proximity) check that V
(z◦,π◦)
◦ (C◦) and V

(z•,π•)
• (C•) both accept;

– (consistency) check that g(w◦)[j] = w•[j] for a random j ∈ [ℓ•];
– (linearity) check that z◦[i] = ρ◦w◦[i]+v◦[i] and z•[k] = ρ•w•[k]+v•[k] for random i ∈ [ℓ◦(n)] and k ∈ [ℓ•(n)].

(Essentially the first two steps correspond to running the canonical PCP verifier on modified inputs, while the third

step consists of two linearity tests.)

Having described the duplex PCP system, we now show that it satisfies completeness, soundness and zero-knowledge;

afterwards, we discuss the efficiency parameters achieved by it.

Completeness. Consider an instance-witness pair (x,w) in the relation R. Since (x,w) ∈ R, we have that α◦ ∈ C◦,

α• ∈ C•, and g(α◦) = α•. Since w◦ ∈ C ′+α◦ and R is randomizable, we have that (w◦, w•) := (w◦, g(w◦)) satisfies

x; thus V1’s consistency check passes with probability 1. Since the codes C◦ and C• are linear and w◦, v◦ ∈ C◦,

w•, v• ∈ C•, we have that z◦ := ρ◦w◦ + v◦ ∈ C◦ and z• := ρ•w• + v• ∈ C•; thus the PCPP verifiers V
(z◦,π◦)
◦ (C◦)

and V
(z•,π•)
• (C•) accept with probability 1. Finally, by construction of z◦ and z•, V1’s linearity tests also accept with

probability 1. We conclude that the duplex PCP system described above has perfect completeness.

Soundness. Consider an instance x not in the language Lan(R). Fix an arbitrary proof string π̃0 = (w̃◦‖ṽ◦‖w̃•‖ṽ•),
and let the proof string π̃1 = (z̃◦‖z̃•‖π̃◦‖π̃•) depend arbitrarily on the verifier message ρ = (ρ◦, ρ•). We prove this

by distinguishing between the three cases below.

• Case 1: w̃◦ is ǫ1-far in relative Hamming distance from C◦.

Claim 2.1 implies that z′◦ := ρ◦w̃◦+ ṽ◦ is ǫ1/2-far from C◦, with probability 1−|f1|
−1 over a random choice of ρ◦.

Let θ := ∆Ham
a (z′◦, z̃◦) and η := ∆Ham

a (z̃◦, C◦). By the triangle inequality, θ+ η ≥ ∆Ham
a (z′◦, C◦) ≥ ǫ1/2; hence,

at least one of the inequalities θ ≥ ǫ1/4 and η ≥ ǫ1/4 holds. In the former case, V1’s first linearity test accepts with

probability at most 1 − ǫ1/4; in the latter case, the PCPP verifier V
(z̃◦,π̃◦)
◦ (C◦) for V1’s first proximity test accepts

with probability at most e2, as ∆Ham
a (z̃◦, C◦) ≥ ǫ1/4 ≥ d2.

• Case 2: w̃• is ǫ1-far in relative Hamming distance from C•.

This case is analogous to the previous one.

• Case 3: there exist w◦ ∈ C◦ and w• ∈ C• with ∆Ham
a (w◦, w̃◦) ≤ ǫ1 and ∆Ham

a (w•, w̃•) ≤ ǫ1.

In this case we follow the very end of the soundness analysis in Lemma 5.5’s proof, replacing α̃◦, α̃• there with

w̃◦, w̃•, and conclude that the verifier accepts with probability at most 1− δ1 + γ1 + ǫ1.

Summing up, in the first case the verifier’s acceptance probability is at most (1 − |f1|
−1) ·max{e2, ǫ1/4} + |f1|

−1;

similarly for the second case. In the third case the rejection probability is 1− δ1 + γ1 + ǫ1, that of the canonical PCP

consistency verifier. This completes the soundness analysis.

Zero knowledge. We construct a simulator S that yields perfect zero knowledge with knowledge bound k. Consider

an instance-witness pair (x,w) in the relation R, and a malicious verifier Ṽ = (Ṽ0, Ṽ1) making at most k adaptive

queries. The output of the simulator S when given as input Ṽ and x, denoted S(Ṽ , x), has to be identically distributed

to DPCPView(k, Ṽ , P, x,w), which is the view of Ṽ1 in its execution when given input x and when allowed to make

a total of k(n) adaptive queries to π0, π1, where π0 := P0(x,w) and π1 := P1(x,w, Ṽ
π0
0 (x)). In fact, we will prove a
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stronger statement: the output of the simulator continues to exactly match the view of the verifier, interacting with the

honest prover, even if the verifier is allowed unbounded access to π1, provided that Ṽ makes at most k queries to π0.

We now discuss how S works. At a high level, S treats Ṽ as a black box, running it once without rewinding; along

the way, S samples suitable answers for each query (as discussed below); when Ṽ halts, S outputs all the answers and

Ṽ ’s message (which together form the view of the verifier). The simulator S runs in strict polynomial time, without

ever aborting. We now describe how S answers each query.

The simulator S maintains a proof string πS = (πS
0 , π

S
1 ) where πS

0 = (wS
◦ , v

S
◦ , w

S
• , v

S
• ) and πS

1 = (zS◦ , z
S
• , π

S
◦ , π

S
• ).

Initially, πS is unspecified at all locations. The simulator maintains two sets, A◦ ⊆ [ℓ◦] and A• ⊆ [ℓ•], that are initially

empty. At any stage of the simulation, A◦ and A• contain the set of indices of wS
◦ , v

S
◦ and wS

• , v
S
• that are currently

specified, respectively.

We now discuss how S adaptively specifies locations in πS . We distinguish between two parts of the simulation:

before the point when Ṽ sends his message ρ, and only queries to π0 are possible; and afterwards, when queries to

both π0 and π1 are possible. When Ṽ requests an index j ∈ [ℓ◦] of w◦ or v◦ that is unspecified, the simulator will

update both wS
◦ and vS◦ at j. The value vS◦ [j] is set to a random field element, unless its value is already determined by

previously specified indices together with the linear constraint that vS◦ must be a projection of an element of C◦. This

implies that at any stage of the simulation, the specified part of vS◦ is a projection of a uniform element of C◦. During

the first part of the simulation, wS
◦ [j] is simply updated to a random field element. During the second part, it is updated

according to the linear relation ρ̃◦ · w
S
◦ + vS◦ = zS◦ . The strings wS

• and vS• are updated similarly. An important thing

to note is that to update wS
• [j] the simulator first queries all indices of wS

◦ on which wS
• [j] depends. In more detail, the

simulator works as follows.

• Simulating answers to π0 = (w◦‖v◦‖w•‖v•), before Ṽ outputs ρ̃ = (ρ̃◦, ρ̃•).

1. Initialize A◦ := ∅, A• := ∅.

2. For a query j ∈ [ℓ◦] to either w◦[j] or v◦[j] with j /∈ A◦:

– Check if vS◦ [j] is determined by a linear constraint of C◦ together with the values {vS◦ [j
′] | j′ ∈ A◦} and,

if so, update vS◦ [j] to that value. Otherwise, update vS◦ [j] to a random field element γ ∈ f1.

– Set wS
◦ [j] to a random field element β ∈ f1.

– Add j to A◦.

3. For a query j ∈ [ℓ•] to either w•[j] or v•[j] with j /∈ A•:

– Check if vS• [j] is determined by a linear constraint of C• together with the values {vS• [j
′] | j′ ∈ A•} and,

if so, update vS• [j] to that value. Otherwise, update vS• [j] to a random field element γ ∈ f1.

– Do the following: (i) compute the set Ij ⊆ [ℓ•] of locations on which g(wS
◦ )[j] depends (see Defini-

tion 5.2); (ii) deduce wS
◦ |Ij by querying each i ∈ Ij according to Step 2; and (iii) set wS

• [j] := g(wS
◦ |Ij ).

– Add j to A•.

• Simulating answers to π0 = (w◦‖v◦‖w•‖v•) and π1 = (z◦‖z•‖π◦‖π•), after Ṽ outputs ρ̃ = (ρ̃◦, ρ̃•).

4. After receiving ρ̃ = (ρ̃◦, ρ̃•), immediately do the following:

(a) sample a random zS◦ ∈ C◦ under the constraint “zS◦ [i] = ρ̃◦w
S
◦ [i] + vS◦ [i] for all i ∈ A◦”;

(b) sample a random zS• ∈ C• under the analogous constraint;

(c) compute πS
◦ := P◦(C◦, z

S
◦ );

(d) compute πS
• := P•(C•, z

S
• ).

5. All queries to z◦, z•, π◦, π• are answered according to the values specified in Step 4.

6. For a query j ∈ [ℓ◦] to either w◦[j] or v◦[j] with j /∈ A◦:

– Check if vS◦ [j] is determined by a linear constraint of C◦ together with the values {vS◦ [j
′] | j′ ∈ A◦} and,

if so, update vS◦ [j] to that value. Otherwise, update vS◦ [j] to a random field element γ ∈ f1.

– If ρ̃◦ = 0, set wS
◦ [j] uniformly at random, otherwise set wS

◦ [j] := (zS◦ [j]− vS◦ [j])/ρ̃◦.

– Add j to A◦.

7. For a query j ∈ [ℓ•] to either w•[j] or v•[j] with j /∈ A•:

– Do the following: (i) compute the set Ij ⊆ [ℓ•] of locations on which g(wS
◦ )[j] depends (see Defini-

tion 5.2); (ii) deduce wS
◦ |Ij by querying each i ∈ Ij according to Step 6; and (iii) set wS

• [j] := g(wS
◦ |Ij ).

– Set vS• [j] := zS• [j]− ρ̃• · wS
• [j].
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– Add j to A•.

We claim that the above simulation achieves perfect zero-knowledge, that is, S(Ṽ , x) is identically distributed to

DPCPView(k, Ṽ , P, x,w). We show that the distribution of answers provided by the simulation to Ṽ is the same as

the distribution of answers obtained by Ṽ from the oracles provided by the honest prover.

For i ∈ [k] we fix the following notation:

• Let A•(i) ⊆ [ℓ•] be the set of indices of either w• or v• that have been queried by Ṽ by step i of the interaction with

the honest prover. Similarly, let AS
• (i) ⊆ [ℓ•] be the set of indices of either w• or v• that have been queried by Ṽ by

step i of the interaction with the simulator.

• Let A◦(i) ⊆ [ℓ◦] be the set of indices of either w◦ or v◦ that have been queried by Ṽ by step i of the interaction with

the honest prover; together with elements of [ℓ◦] influencing an index j ∈ A•(i) by application of g, i.e., j′ ∈ [ℓ◦]

such that g(a)[j′] depends on aj for some j′ ∈ A•(i). Analogously, let AS
◦ (i) ⊆ [ℓ◦] be the set of indices of either

w◦ or v◦ that have been queried by Ṽ by step i of the interaction with the simulator; together with elements of

[ℓ◦] influencing an index j ∈ AS
• (i) by application of g, i.e., j′ ∈ [ℓ◦] such that g(a)[j′] depends on aj for some

j′ ∈ AS
• (i).

• Let π0(i) := (w◦(i), v◦(i), w•(i), v•(i)) be the projection of π0 where w◦ and v◦ are restricted to A◦(i) and w• and

v• are restricted to A•(i).

• Let πS
◦ (i) := (wS

◦ (i), v
S
◦ (i), w

S
• (i), v

S
• (i)) be the projection of πS

◦ where wS
◦ and vS◦ are restricted to AS

◦ (i) and wS
•

and vS• are restricted to AS
• (i). That is, πS

◦ (i) is the part of πS
◦ updated by the simulator up to step i.

Note that the random variables A•(i) and A◦(i) depend on the randomness rP of the honest prover, and the randomness

rṼ of Ṽ . The random variables AS
• (i) and AS

◦ (i) depend on the randomness rS of the simulator and rṼ . The core of

the proof is the following lemma:

Lemma 6.5. For every i ∈ [k], we have (rṼ , π
S
0 (i), π

S
1 ) ≡ (rṼ , π0(i), π1).

The lemma implies that S(Ṽ , x) ≡ DPCPView(k, Ṽ , P, x,w) because the view of Ṽ is a deterministic function

of rṼ and the parts of the proof seen by Ṽ are identically distributed (by the lemma). We now prove the lemma.

Proof. We prove a stronger claim by induction on i. We will have that for every i ∈ [k] the following equivalences

hold: (i) AS
◦ (i) ≡ A◦(i); (ii) AS

• (i) ≡ A•(i); and (iii) (rṼ , π
S
0 (i), π

S
1 ) ≡ (rṼ , π0(i), π1).

The claim holds for i = 0. For any i > 0 we assume the claim for i − 1 and prove it for i as follows. Note that

A◦(i) is a deterministic function f of the verifier randomness and the values of locations queried at previous steps.

That is,

AS
◦ (i) ≡ f(rṼ , π

S
0 (i−1), π

S
1 ) ≡ f(rṼ , π0(i−1), π1) ≡ A◦(i) .

Similarly, A•(i) is a deterministic function f ′ of the verifier randomness and the values of locations queried at previous

steps. That is,

AS
• (i) ≡ f ′(rṼ , π

S
0 (i−1), π

S
1 ) ≡ f ′(rṼ , π0(i−1), π1) ≡ A•(i) .

We are left to prove that (rṼ , π
S
0 (i), π

S
1 ) ≡ (rṼ , π0(i), π1). We do this by going over the sequence of corresponding

variables and show that they are identically distributed conditioned on fixing the previous corresponding variables to

the same values. Clearly, the first components are identically distributed: rṼ ≡ rṼ . We now show that the same holds

for the rest.

• (wS
◦ (i)|rṼ ) ≡ (w◦(i)|rṼ ). The variable wS

◦ (i)|rṼ is simply a uniform sequence of elements of size |A◦(i)|. Because

w◦ is t-wise independent and |A◦(i)| ≤ t, we have that w◦(i)|rṼ is also uniformly random.

• (vS◦ (i)|(rṼ , w
S
◦ (i))) ≡ (v◦(i)|(rṼ , w◦(i))). This holds because both random variables are a projection of uniformly

random element of C◦ to A◦(i).

• (wS
• (i)|(rṼ , w

S
◦ (i), v

S
◦ (i))) ≡ (w•(i)|(rṼ , w◦(i), v◦(i))). This holds because wS

• (i) is a deterministic function g′ of

wS
◦ (i): w•(i) = g′(w◦(i)) and we are conditioning on wS

◦ (i) and w◦(i) being fixed to identical values.
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• (vS• (i)|(rṼ , w
S
◦ (i), v

S
◦ (i), w

S
• (i))) ≡ (v•(i)|(rṼ , w◦(i), v◦(i), w•(i))). This holds because both random variables are

a projection of uniformly random element of C• to A•(i).

• (zS◦ |(rṼ , w
S
◦ (i), v

S
◦ (i), w

S
• (i), v

S
• (i))) ≡ (z◦|(rṼ , w◦(i), v◦(i), w•(i), v•(i))). This holds because both are a uniform

element a of C◦ conditioned on ρ0 · w◦[j] + v◦[j] = a[j] for every j ∈ A◦(i).

• (zS• |(rṼ , w
S
◦ (i), v

S
◦ (i), w

S
• (i), v

S
• (i), z

S
◦ )) ≡ (z•|(rṼ , w◦(i), v◦(i), w•(i), v•(i), z◦)). This holds because both are a

uniform element a of C• conditioned on ρ1 · w•[j] + v•[j] = a[j] for every j ∈ A•(i).

Recall that π0(i) = (w◦(i)‖v◦(i)‖w•(i)‖v•(i)) and π1 = (z◦‖z•‖π◦‖π•) and similarly for πS
0 (i) and πS

1 ; the above

then implies that: (i) rṼ ≡ rṼ ; (ii) (πS
0 (i)|rṼ ) ≡ (π0(i)|rṼ ); and (iii) (πS

1 |(rṼ , π
S
0 (i))) ≡ (π1|(rṼ , π0(i))), that is,

(rṼ , π
S
0 (i), π

S
1 ) ≡ (rṼ , π0(i), π1).

We conclude the discussion of the simulator by examining the time complexity of the simulation. Most steps of the

simulation require (a) sampling a random field element and, possibly, (b) solving a linear system with a polynomial

number of equations. The only expensive part of the simulation is Step 4, because it requires sampling random

codewords in C◦ and C•, as well as computing PCPP proofs for these two codewords. Provided that ℓ1, c1, r1 are

polynomially bounded, the entire simulation also runs in polynomial time in the instance size n. (The definition of

zero knowledge in Section 3 prescribes, as typically done, a simulator that runs in expected probabilistic polynomial

time; our simulator runs in strict probabilistic polynomial time.)

Other parameters. The remaining parameters are straightforward to establish. The duplex PCP construction does

not change the alphabet, so a = f1 (which also equals a2). The proof length, and the running times of the prover and

verifier are the sum of the same measures of the duplex PCP’s components: the PCP proofs have l = 2l2(ℓ1) + 6ℓ1
symbols in total, are produced in time tp = 2tp2(ℓ1) + (c1 + 5)ℓ1 + r1, and are verified in time tv = 2tv2(ℓ1) +
c1 + log ℓ1. The duplex PCP verifier makes q1 + 7 queries on top of those made by the two PCPP verifiers, so its

query complexity is q = 2q2(ℓ1) + q1 + 7. The q1 + 7 additional queries are non-adaptive; so if the PCPP verifiers

are non-adaptive, so is the duplex PCP verifier (i.e., na = na2).

Remark 6.6 (Necessity of duplex PCP). Claim 2.1 suggests a way to modify our duplex PCP construction so that the

prover sends the oracle proof strings in one message (as in a standard PCP) rather than over two rounds of interaction.

Namely, assuming w◦ is ǫ-far from C◦, there is at most one verifier message ρ◦ that makes z◦ be ǫ/2-close to C◦.

Hence the verifier can fix in advance r distinct ρ
(1)
◦ , . . . , ρ

(r)
◦ and have the prover send, in addition to π0, the oracle

strings π
(1)
◦ , . . . , π

(r)
◦ , where each π

(j)
◦ is a PCPP proof of proximity for z

(j)
◦ := ρ

(j)
◦ w◦ + v◦. The (honest) verifier

now samples j ∈ [r] and continues as before with π◦ := π
(j)
◦ . This modification yields perfect completeness; also it

yields small soundness error, because at most one of z
(1)
◦ , . . . , z

(r)
◦ is ǫ/2-close to C◦.

Unfortunately, such a modification does not achieve zero knowledge against malicious verifiers, as we now explain.

If the PCP proofs of proximity π
(j)
◦ are computed via a linear transformations applied to z

(j)
◦ (as is the case for the

PCPPs mentioned in Section 2.4), then a malicious verifier can use π
(1)
◦ and π

(2)
◦ to recover individual positions of

π′
◦ := P◦(C◦, w◦), as follows: π′

◦[i] := (ρ
(1)
◦ · π

(2)
◦ [i]− ρ

(2)
◦ · π

(1)
◦ [i])/(ρ

(1)
◦ − ρ

(2)
◦ ). Certain entries of π′

◦ can (and do,

for the aforementioned PCPPs) depend on more than t locations of w◦ := u′ + α◦. Thus a security proof that makes

black-box use of the PCPP cannot claim that the contribution from u′ is uniformly random: a linear combination of

more than t random variables from a t-wise independent ensemble is not necessarily random. Hence we cannot prove

that the original assignment α◦ is hidden by u′. In fact, the PCPPs considered in this paper reveal positive amount of

knowledge in this case.

However, the above modification is zero knowledge against honest verifiers: an honest execution of the modi-

fied verifier above involves querying only one of the proof strings π
(i)
◦ so that there is a corresponding duplex PCP

interaction that is zero knowledge (as established in the proof above).
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7 From NTIME to randomizable linear algebraic CSPs

We show an efficient reduction from NTIME to randomizable linear algebraic CSPs; we proceed as follows.

• RAP & RGAP. In Section 7.1, we define algebraic problems, implicit in several influential works on PCPs and IP

[BFL91, LFKN92, BFLS91, ALM+98] and explicitly defined in [PS94, Sze99, HS00]. Afterward, we define group-

preserving algebraic problems, a new “symmetric” variant of algebraic problems that not only are powerful enough

to efficiently capture NTIME but are also naturally “randomizable”, as discussed below.

• RAP → RLA. In Section 7.2 (see Lemma 7.3), we show that algebraic problems are a sublanguage of linear algebraic

CSPs. This observation shows that the techniques of this paper could potentially be applied to many PCP systems

(e.g., those in [BFL91, LFKN92, BFLS91, ALM+98, Sze99, HS00, BGH+05, BGH+06, BS08, BCGT13b, BV14]

to name a few) and also provides a “warm up” for the next item.

• RGAP → RRLA. In Section 7.3 (see Lemma 7.5), we show an efficient reduction from group-preserving algebraic

problems to randomizable linear algebraic CSPs. In other words, the property of group preservation allows the

corresponding linear algebraic CSPs to be randomizable.

• NTIME→ RGAP. In Section 7.4 (see Lemma 7.6), we show an efficient reduction from NTIME to group-

preserving algebraic problems.

• NTIME→ RRLA. In Section 7.5 (see Theorem 7.9), we explain how to combine the above to obtain the efficient

reduction from NTIME to randomizable linear algebraic CSPs.

7.1 Algebraic problems and group preservation

The definition below of algebraic problems is essentially due to [PS94] (though the term “algebraic problem” is from

[HS00]); variants of it appear in later works such as [Spi95, Sze99, HS00, BS08, BGH+06, BCGT13a, BV14].

Definition 7.1 (RAP). Given functions F : N→ F , and h,m, η, d, σ : N→ N, the relation

RAP[F, h,m, η, d, σ]

consists of instance-witness pairs (x,w) satisfying the following.

• The instance x is a tuple (1n, H,Q, ~N) where:

– H is a subset of F (n) with cardinality h(n);
– Q is a polynomial in F (n)[X1, . . . , Xm(n), Y1, . . . , Yη(n)] such that (i) it has degree less than h(n) in each

variable Xi, (ii) it has total degree at most d(n) when viewed as a polynomial in the variables Y1, . . . , Yη(n) with

coefficients in F (n)[X1, . . . , Xm(n)], (iii) it can be evaluated by an arithmetic circuit of size σ(n);

– ~N = (N1, . . . , Nη(n)) and each Ni : F (n)m(n) → F (n)m(n) is an invertible affine function.

• The witness w is a polynomial A in F (n)[X1, . . . , Xm(n)] with degree less than h(n) in each variable Xi.

• The instance x and witness w jointly satisfy the following:

for every α ∈ Hm(n), (Q ◦A ◦ ~N)(α) = 0 (1)

where

(Q ◦A ◦ ~N)(X) := Q(X1, . . . , Xm(n), A(N1(X1, . . . , Xm(n))), . . . , A(Nη(n)(X1, . . . , Xm(n)))) . (2)

Next, we define group-preserving algebraic problems, a family of algebraic problems in which the set H is a

subgroup of F (n) and the neighbor functions act on the product group Hm(n). The additional symmetry enables a

reduction to randomizable linear algebraic CSPs, which give rise to zero knowledge duplex PCPs. We believe that

group-preserving algebraic problems may find applications in the study of PCPs beyond their use in this paper.
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Definition 7.2 (RGAP). The relation RGAP[F, h,m, η, d, σ] is the sub-relation of RAP[F, h,m, η, d, σ] obtained via

restriction to instances that are group preserving. An instance x = (1n, H,Q, ~N) is group preserving if: (i) H is an

additive or a multiplicative subgroup of F (n); (ii) each Ni : F (n)m(n) → F (n)m(n) in ~N can be identified with an

element χi in Hm(n) such that Ni(x) = χi ⊙ x, where ⊙ denotes the group operation of the product group Hm(n).

We also write RGAP[F, h,m, η, d, σ,+] to denote the further restriction to instances that are additively group

preserving (i.e., H is an additive subgroup); similarly, we write RGAP[F, h,m, η, d, σ,×] to denote the the restriction

to instances that are multiplicatively group preserving.

7.2 Algebraic problems naturally reduce to linear algebraic CSPs

The next lemma says that algebraic problems naturally reduce to linear algebraic CSPs, i.e., there is an efficient

reduction from the relation RAP[F, h,m, η, d, σ] to the relation RLA[f, ℓ, ρ, δ, q, c, γ, ǫ], for suitable parameter choices.

Lemma 7.3 (RAP → RLA). For every F : N→ F , h,m, η, d, σ : N→ N, ǫ : N→ (0, 1), and R ⊆ RAP[F, h,m, η, d, σ]
there exist a relation R′ and algorithms inst,wit1,wit2 satisfying the following conditions:

• EFFICIENT REDUCTION. For every instance x, letting x′ := inst(x):

– for every witness w, if (x,w) ∈ R then (x′,wit1(x,w)) ∈ R′;

– for every witness w′, if (x′,w′) ∈ R′ then (x,wit2(x,w
′)) ∈ R.

Moreover, inst runs in time poly(|x|), wit1 in time poly(|x|) · Õ(|w| · η · σ), and wit2 in time poly(|x|) · Õ(|w′|).

• LINEAR ALGEBRAIC CSP. The relation R′ is a subset of

RLA

























field f = F
block length ℓ = |F |m

rate ρ = ( hd
|F | )

m

relative distance δ = 1− hd
|F |

map locality q = η
map efficiency c = σ + η
map sampling I γ = ηǫ
map sampling II ǫ

























.

• RM CODES. If x = (1n, H,Q, ~N) then inst(x) = (1n, C◦, C•, g) with

– C◦ = RM
[

F (n), F (n),m(n), h(n)
|F (n)|

]

and

– C• = VRM
[

F (n), F (n),m(n), h(n)d(n)
|F (n)| , H

]

.

Proof of Lemma 7.3. Let x = (1n, H,Q, ~N) be an instance of RAP[F, h,m, η, d, σ], and construct x′ := inst(x) =

(1n, C◦, C•, g) with C◦, C• as above and g being the function that maps F (n)[X1, . . . , Xm(n)] to F (n)F (n)m(n)

as

follows: given A in F (n)[X1, . . . , Xm(n)] and ω ∈ F (n)m(n), the ω-th coordinate of g(A) equals to (Q ◦A ◦ ~N)(ω).
We first argue that x′ is an instance of RLA[f, ℓ, ρ, δ, q, c, γ, ǫ].

First, C◦ and C• are linear error correcting codes with block length at most ℓ := |F |m, rate at most ρ :=
max{( h

|F | )
m, ( hd

|F | )
m}, and relative distance at least δ := min{1 − h

|F | , 1 −
hd
|F |} over the same field F . (See Sec-

tion 2.4.)

By construction, the function g is q-local with q := η and c-efficient with c := σ + η; moreover, g is (γ, ǫ)-
sampling with γ := ηǫ, as we now explain. (See Definition 5.1 for definitions of these properties.) For every ω ∈ Fm,

Iω denotes the set of indices in Fm that g(·)[ω] depends on; for the g above, Iω equals {N1(ω), . . . , Nη(ω)}. For

every ω′ ∈ Fm and ω ∈ Fm, if ω′ ∈ Iω then ω ∈ {N−1
1 (ω′), . . . , N−1

η (ω′)}. Hence, the number of ω’s with ω′ ∈ Iω
is at most η, because each Ni is invertible. We deduce that Pr[ Iω ∩ I 6= ∅ |ω ← Fm ] ≤ (η · |I|) /|F |m ≤ ηǫ.

Finally, C• ∪ g(C◦) has relative distance at least δ because it is a subset of RM[F, F,m, hd
|F | ]. This claim is

immediate for C•; for g(C◦), it follows from the fact that Q ◦ A ◦ ~N has, in each variable, a degree that is at most a

multiplicative factor of d larger than the degree of A.
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We conclude the proof by explaining how one obtains the two witness maps wit1,wit2. For wit1, suppose that

w = A ∈ F [X1, . . . , Xm] is a witness for x; then one can verify that w′ := (α◦, α•), where α◦ := A and α• :=

Q ◦ A ◦ ~N , is a witness for x′; α• can be efficiently obtained by first computing the evaluation of A on Fm (via an

FFT), then computing the evaluation of Q ◦ A ◦ ~N on Fm (via point-to-point computation), and finally interpolating

(via an inverse FFT). Conversely, for wit2, suppose that w′ = (α◦, α•) is a witness for x′; then one can verify that

w := α◦ is a witness for x.

Remark 7.4. By combining the reduction from algebraic problems to linear algebraic CSPs (Lemma 7.3) with the

canonical PCP for linear algebraic CSPs (Lemma 5.5), one can recover several known PCP results; these include PCPs

with polylogarithmic verification of [BFLS91, BGH+06], constant-query PCPs of [ALM+98], quasilinear-size PCPs

of [BS08] and, with some extra work, constant-rate PCPs based on algebraic geometry codes of [BKK+13]. Since the

focus of this paper is zero knowledge, we do not pursue this direction further here.

7.3 From group-preserving algebraic problems to randomizable linear algebraic CSPs

The following lemma gives an efficient reduction from group-preserving algebraic problems to randomizable linear

algebraic CSPs.

Lemma 7.5 (RGAP → RRLA). For every F : N→ F , h,m, η, d, σ, t : N→ N, δ, ǫ : N→ (0, 1) with |F | ≥ ĥ, where

ĥ denotes the smallest integral multiple of h that is greater than
(h+t)d
1−δ , and for any R ⊆ RGAP[F, h,m, η, d, σ] there

exist a relation R′ and algorithms inst,wit1,wit2 satisfying the following conditions:

• EFFICIENT REDUCTION. For every instance x, letting x′ := inst(x):

– for every witness w, if (x,w) ∈ R then (x′,wit1(x,w)) ∈ R′;

– for every witness w′, if (x′,w′) ∈ R′ then (x,wit2(x,w
′)) ∈ R.

Moreover, inst runs in time poly(|x|), wit1 in time poly(|x|) · Õ(|w| · η · σ), and wit2 in time poly(|x|) · Õ(|w′|).

• RANDOMIZABLE LINEAR ALGEBRAIC CSP. The relation R′ is a subset of

RRLA


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






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
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



field f = F

block length ℓ = ĥm

rate ρ = (1− δ)m

relative distance δ
map locality q = η
map efficiency c = σ + η
map sampling I γ = ηǫ
map sampling II ǫ
randomizability t

randomize time r = Õ(ĥm)
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




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
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.

• RM CODES WITH GROUP STRUCTURE. If x = (1n, H,Q, ~N) then inst(x) = (1n, C◦, C•, g) with

– C◦ := RM
[

F (n), Ĥ,m(n), h(n)+t(n)

ĥ(n)

]

and

– C• := VRM
[

F (n), Ĥ,m(n), (h(n)+t(n))d(n)

ĥ(n)
, H

]

,

where Ĥ is a union of cosets of the subgroup H with cardinality ĥ(n).

Proof of Lemma 7.5. Let x = (1n, H,Q, ~N) be an instance of RGAP[F, h,m, η, d, σ]. We construct an instance x′ :=
inst(x) = (1n, C◦, C•, g) of RRLA[f, ℓ, ρ, δ, q, c, γ, ǫ, t, r] as follows.

Let Ĥ be a subset of F that is a union of cosets of H with |Ĥ| = ĥ and Ĥ ∩H = ∅. (This can be done as follows:

let S be a subset of the quotient group F⊙/H with cardinality |S| = ĥ/h that does not include 1⊙, where F⊙ denotes

the additive or multiplicative group of F , depending on whether H is additive or multiplicative, and 1⊙ is the identity

in H; then set Ĥ := {x⊙ y |x ∈ S, y ∈ H}.) Analogously to the proof of Lemma 7.3, we define:
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• C◦ := RM
[

F (n), Ĥ,m(n), h(n)+t(n)

ĥ(n)

]

;

• C• := VRM
[

F (n), Ĥ,m(n), (h(n)+t(n))d(n)

ĥ(n)
, H

]

;

• g to be the function that maps F (n)[X1, . . . , Xm(n)] to F (n)Ĥ
m(n)

as follows: given A in F (n)[X1, . . . , Xm(n)]

and ω ∈ Ĥm(n), the ω-th coordinate of g(A) equals to (Q ◦ A ◦ ~N)(ω). Note that g is well-defined, i.e., g(A) is

a function from Ĥm(n) to F (n); this follows from the group preservation property of x (see Definition 7.2): for

every ω ∈ Ĥm and i ∈ [η], it holds that Ni(ω) ⊆ Ĥm because Ĥ is a union of cosets of H and Ni multiplies every

coordinate of ω by an element of H .

We first argue that x′ constructed above is an instance of RRLA[f, ℓ, ρ, δ, q, c, γ, ǫ, t, r].
First, analogously to the proof of Lemma 7.3, we note that C◦ and C• are linear error correcting codes with block

length at most ℓ := ĥm, rate at most max{(h+t

ĥ
)m, ( (h+t)d

ĥ
)m} = ρ, and relative distance at least min{1− h+t

ĥ
, 1 −

(h+t)d

ĥ
} = δ over the same field F ; also, we deduce that g is q-local with q := η, c-efficient with c := σ + η, and

(γ, ǫ)-sampling with γ := ηǫ.

Next, recalling notions from Definition 6.1, we note that x′ is t-randomizable in time r := Õ(ĥm) because:

(i) C ′ := VRM[F (n), Ĥ,m, h+t
ĥ

, H] is a subcode of C◦ and it is t-wise independent due to Claim 2.4 (C ′ satisfies the

hypotheses because H ∩ Ĥ = ∅ and ĥ − h ≥ (h+t)d
1−δ − h ≥ t); and (ii) one can sample random elements from C ′,

C◦ and C• in time Õ(ĥm) by using FFT algorithms for multipoint evaluation (sampling from C◦ involves selecting

random coefficients for the multi-variate polynomial and then evaluating it on Ĥm, while sampling from C ′ and C•

relies on Alon’s combinatorial Nullstellensatz [Alo99] to reduce this case to the previous case, as also done in [BS08]).

We conclude the proof by observing that necessary witness maps wit1,wit2 exist. Analogously to Lemma 7.3, if

w = A ∈ F (n)[X1, . . . , Xm(n)] is a witness for x then wit1(x,w) outputs w′ := (A,Q ◦ A ◦ ~N), which is a witness

for x′; conversely, if w′ = (α◦, α•) is a witness for x′ then wit2(x,w
′) outputs w := α◦, which is a witness for x.

7.4 An efficient reduction from NTIME to group-preserving algebraic problems

The following lemma gives an efficient reduction from NTIME to group-preserving algebraic problems in which

instances are over fields of characteristic 2 and preserve additive groups.

Lemma 7.6 (NTIME→ RGAP). For every h,m, T, s : N→ N with h(n)m(n) = Ω(T (n) log T (n)), s(n) ≥ 2, and

R ∈ NTIME(T ) there exist a relation R′ and algorithms inst,wit1,wit2 satisfying the following conditions:

• EFFICIENT REDUCTION. For every instance x, letting x′ := inst(x):

– for every witness w, if (x,w) ∈ R then (x′,wit1(x,w)) ∈ R′;

– for every witness w′, if (x′,w′) ∈ R′ then (x,wit2(x,w
′)) ∈ R.

Moreover, inst runs in time poly(n+ log h(n) +m(n)) and wit1,wit2 run in time Õ(T (n)).

• GROUP PRESERVING ALGEBRAIC PROBLEM. The relation R′ is a subset of

RGAP


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
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

field F = F2log T+O(log log T )+s

size of subset h
copies of subset m
number of neighbors η = polylog(T )
circuit total degree d = O(1)
circuit size σ = poly(n+ log T +m)
+












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





.

Proof. The proof follows the reduction of [BV14, Section 2], which we summarize via the following statement.
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Theorem 7.7 ([BV14]). For every T : N → N and s : N → N with T (n) ≥ n and s(n) ≥ 2, and every relation

R ∈ NTIME(T ) there exist a relation R
′ and algorithms inst,wit1,wit2 satisfying the following conditions:

(1) EFFICIENT REDUCTION. For every instance x, letting x′ := inst(x):

• for every witness w, if (x,w) ∈ R then (x′,wit1(x,w)) ∈ R
′;

• for every witness w′, if (x′,w′) ∈ R
′ then (x,wit2(x,w

′)) ∈ R.

Moreover, inst runs in time poly(n+ s+ log T ), wit1 in time T · poly(n+ log T ), and wit2 in time Õ(T ).

(2) ALGEBRAIC PROBLEM. The relation R
′ is a subset of

RAP




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field F = F2log T+O(log log T )+s

size of subset h = Õ(T )
copies of subset m = 1
number of neighbors η = poly(n+ log T )
circuit total degree d = O(1)
circuit size σ = poly(n+ log T )
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(3) STRUCTURE OF WITNESS EXTRACTOR. There exists a sequence of elements α1, . . . , αT ∈ F such that,

for every w′ = A ∈ F [X] that satisfies x′, we have A(αi) ∈ {0, 1} and the witness extractor wit2 outputs

wit2(x,w
′) := (A(α1), . . . , A(αT )). The vector (α1, . . . , αT ) can be computed from x in time Õ(T ).

(4) STRUCTURE OF NEIGHBOR FUNCTIONS. The neighborhood functions ~N = (N1, . . . , Nη) are such that:

• each Nj(X) is of the form Nj(X) := X + γj where γj ∈ H; and

• dim(span (γ1, . . . , γη)) ≤ log T +O(log log T + log n).

Remark 7.8. While not explicitly stated or stated differently, all four claims of Theorem 7.7 can be deduced by

inspecting [BV14, Theorem 4.2] and its proof and [BV14, Theorem 2.2] and its proof.

The statement of [BV14, Theorem 4.2] does not involve group-preserving algebraic problems, but inspection of

Theorem 4.2 and its proof reveals that one can achieve R
′ ∈ RGAP with H ⊆ F being a linear space over F2

and other parameters remaining the same; that is, one can establish the first two properties.

The third property follows by inspection of the proof of Theorem 2.2 there. The fourth property holds because

{γ1, . . . , γη} = {Si(β) | i ∈ {1, 2, 3}, β ∈ {0, 1}log T } where the boolean circuits Si are as stated in [BV14,

Theorem 2.2]. The image of Si is in {0, 1}log T+O(log log T+logn), which gives the bound above.

The above Theorem 7.7 is our Lemma 7.6 with m = 1 except for one difference: the neighborhood size η is

poly(n+ log T (n)) in Theorem 7.7 whereas it is polylog(T (n)) in our Lemma 7.6. In our proof below, we decrease

the neighborhood size from poly(n+ log T (n)) to polylog(T (n)), and generalize to arbitrary m > 1.

We first focus on reducing η for the case m = 1, via a padding argument; at the end of the proof we explain how

to handle the general case.

For z ∈ {0, 1}ℓ let z =
∑ℓ−1

i=0 zi2
i be the integer whose binary representation is z. Let Rpad := {(xpad, (x,w)) |

|x| = xpad, (x,w) ∈ R}. Consider the nondeterministic machine Mpad that on input xpad of length npad and witness

wpad = (x,w) accepts if and only if |x| = xpad and (x,w) ∈ R; Mpad decides Rpad in time Tpad(npad) = T (2npad) +
O(2npad). Applying Theorem 7.7 to Rpad proves the theorem (again, for m = 1) for the relation Rpad, because

Theorem 7.7 gives us a relation R′
pad ⊆ RGAP where all parameters are as required; for instance ηpad(npad) :=

poly(⌈log npad⌉ + log T (npad)) = polylog(T (npad)) because T (npad) ≥ npad. However, Lan(Rpad) does not equal

Lan(R). We now address this issue.

We use Rpad to obtain a relation Rfin with Lan(Rfin) = Lan(R) and the aforementioned efficiency parameters of

Rpad, as described next; the output of our reduction wis a relation R′
fin ⊆ RGAP capturing Rfin as a group-reserving

algebraic problem. The instance space of Rfin is the same as that of R and witnesses wfin are of the form (x,w) just

like for Rpad. We define:

Rfin := { (xfin,wfin) | ∃w : wfin = (xfin,w), (|xfin|, (xfin,w)) ∈ Rpad } .

The crux of the proof is reducing Rfin to a group-preserving algebraic problem so that it retains the efficiency properties

achieved by R′
pad. We now describe our construction, turning to its efficiency analysis afterwards.

We first apply Theorem 7.7 on Rpad obtaining a group-preserving algebraic problem R′
pad and the corresponding

instance, witness and extractor maps. Instances of R′
pad are of the form x

′
pad = (1npad , H,Q, ~N) and witnesses of
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R′
pad are of the form w

′
pad = (A), where A is an assignment polynomial. Property (3) of Theorem 7.7 implies that

for every A that satisfies x′pad := inst(x), the sequence wpad := (A(α1), . . . , A(αn+T )) belongs to {0, 1}n+T and

(xpad,wpad) ∈ Rpad. It follows that the sequence x′ := (A(α1), . . . , A(αn)) belongs to Lan(R). However, as

explained above Lan(R) 6= Lan(Rpad): while |x| = |x′|, the x′ does not necessarily equal x. We now explain how to

modoify Rpad so it encodes a concrete instance x, not just fixes its length |x|.

We define an auxiliary instance xaux of RGAP to be xaux := (1npad , Haux, Qaux, ~Naux), where we choose Haux, Qaux,
~Naux as follows:

• Haux := β +H , where β ∈ F \H (so Haux is a β-coset of H);

• ηaux := 1 and Naux,1(X) := X − β; and

• Qaux(X,Y1) :=
∑n

i=1 Zβ+(H\{αi})(X) · (Y1 − xi).
It can be verified that A satisfies xaux if and only if x′ defined above equals x: indeed, when evaluating (Qaux ◦

A ◦ ~Naux)(αi) all terms vanish except for Zβ+(H\{αi})(αi) · (xi− x
′
i). We now use the fact that if set S consists of all

points of an affine subspace, then the polynomial ZS(X) has at most dim(S) + 1 non-zero terms [Ore33]. Therefore,

each summand of Qaux can be computed by an arithmetic circuit of size O(dim(H)2) because each β + (H \ {αi})

can be partitioned in dim(H) affine subspaces as β + (H \ {αi}) =
⋃dim(H)−1

i=0 (βi +Hi), where the affine subspace

βi +Hi has dimension i.1

We combine xaux and x′pad to obtain x′fin := (1npad , Hfin, Qfin, ~Nfin) as follows:

• Hfin := H ∪ (β +H);

• ηfin := η + 1 and ~Nfin := ~N ∪ ~Naux = { ~N1, . . . , ~Nη, ~Nη+1 := (X − β)}; and

• Qfin(X,Y1, . . . , Yη+1) := Zβ+H(X) ·Q(X,Y1, . . . , Yη) + ZH(X) ·Qaux(X,Yη+1).
It can also be verified that A satisfies xaux if and only if A encodes instance x′ and witness w′ with (x′,w′) ∈ R and

x = x

′. We now verify that all parameters of R′
fin match those in the statement of Lemma 7.6.

All parameters are closely tied to those of R′
pad and are established as follows. F is inherited from R′

pad and is

F2log T+O(log log T )+s . The vanishing set has size hfin = Õ(T ), which matches the theorem statement as m = 1. Number

of neighborhood functions is polylog(T ) and total degree of Y in Qfin is d = O(1), both as required. Since β +H is

an affine space and H is a linear space we see that Qfin can be computed by a circuit of size σfin = σpad +polylog(T )
because dim(H) = O(log T (n)) (again, using the theorem of [Ore33]). Finally, Hfin is an additive group (it is union

of a linear space space and its shift and char(F ) = 2) and it can be verified that each ~Nfin,j satisfies ~Nfin,j(H) ⊆ H∗,

therefore x′fin ∈ R′
pad as claimed.

We now prove the case m = m(n) > 1. First, we invoke the reduction described above on R, next we modify

its output R′
fin to achieve the required parameters m and h, as follows. Suppose that R′

fin is defined over field Ffin

with |Ffin| = 2r and the vanishing set Hfin has size hfin. The theorem statement guarantees that hm = Ω(T log T )
and therefore r ≤ h ·m. We first discuss the case that r = h ·m. Notice that the additive group F

+
2r is isomorphic

to (F+
2h
)m, therefore H+

fin ⊆ F
+
2r is isomorphic to some Hm and we are done. If r < h ·m, then we just increase the

dimension of the field Ffin and modify Qfin to vanish whenever any variable Xi is set in the padded coordinates. No

other parameters are changed, except for the gain of an additive m term in σ to account for the additional constraints.

7.5 Combining the two reductions

By combining Lemma 7.6 and Lemma 7.5, we obtain the following theorem, which gives the reduction claimed at the

beginning of this section.

Theorem 7.9 (NTIME → RRLA). For every T, t, s : N → N, δ, ǫ : N → (0, 1) with 2s(n) ≥ Ω( t
(1−δ)Tpolylog(T ) ),

and R ∈ NTIME(T ) there exist a relation R′ and algorithms inst,wit1,wit2 satisfying the following conditions:

• EFFICIENT REDUCTION. For every instance x, letting x′ := inst(x):

– for every witness w, if (x,w) ∈ R then (x′,wit1(x,w)) ∈ R′;

1For example, one can express αi in the basis of H and define βi + Hdim(H)−k to be the affine subspace where first k − 1 basis vectors are

fixed with coefficients equal to that of αi, k-th basis vector is fixed with the opposite coefficient, and the last dim(H) − k basis vectors remain

unfixed.
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– for every witness w′, if (x′,w′) ∈ R′ then (x,wit2(x,w
′)) ∈ R.

Moreover, inst runs in time poly(n+ log(T (n)+t(n)
1−δ(n) )) and wit1,wit2 run in time poly(n) · Õ(T (n)+t(n)

1−δ(n) ).

• RANDOMIZABLE LINEAR ALGEBRAIC CSP. The relation R′ is a subset of

RRLA

































field f = F2log(T+t)+O(log log(T+t))+s

block length ℓ = Õ(T+t
1−δ )

rate ρ = 1− δ
relative distance δ
map locality q = polylog(T )
map efficiency c = poly(n+ log T )
map sampling I γ = polylog(T ) · ǫ
map sampling II ǫ
randomizability t

randomize time r = Õ(T+t
1−δ )

































.

• RS CODES OVER CHARACTERISTIC 2. CR′,◦ ⊆ RS
∗
ℓ,ρ,χ and CR′,• ⊆ VRS

∗
ℓ,ρ,χ with χ := 2s · polylog(T ) (see

Section 2.4).

Proof of Theorem 7.9. First, we invoke Lemma 7.6 with h,m, T, s such that m(n) = 1 and h(n) = O(T (n) log T (n));

this yields a relation R(1) and algorithms inst(1),wit
(1)
1 ,wit

(1)
2 such that: (i) inst(1),wit

(1)
1 ,wit

(1)
2 provide a reduction

from R ∈ NTIME(T ) to R(1), with inst(1)(x) running in time poly(n+log h(n)+m(n)) and wit
(1)
1 (x,w),wit

(1)
2 (x,w(1))

in time Õ(T (n)); and (ii) R(1) is a subset of

RGAP





















field F = F2log T+O(log log T )+s

size of subset h = O(T (n) log T (n))
copies of subset m = 1
number of neighbors η = polylog(T )
circuit total degree d = O(1)
circuit size σ = poly(n+ log T )
+





















.

Next, we invoke Lemma 7.5 on R(1), using δ, ǫ, t from the theorem statement. Note that the conditions of the the-

orem are satisfied as |F | ≥ (h+t)d
1−δ + h ≥ ĥ. Therefore this yields a relation R(2) and algorithms inst(2),wit

(2)
1 ,wit

(2)
2

such that: (i) inst(2),wit
(2)
1 ,wit

(2)
2 provide a reduction from R(1) to R(2), with inst(2)(x(1)) running in time poly(|x(1)|),

wit
(2)
1 (x(1),w(1)) in time poly(|x(1)|) · Õ(|w(1)| · η · σ) and wit

(2)
2 (x(1),w(2)) in time poly(|x(1)|) · Õ(|w(2)|); and

(ii) R(2) is a subset of

RRLA

































field f = F
block length ℓ = O(h+t

1−δ )

rate ρ = 1− δ
relative distance δ
map locality q = η
map efficiency c = σ + η
map sampling I γ = ηǫ
map sampling II ǫ
randomizability t

randomize time r = Õ(h+t
1−δ )

































.

One can check that R(2) achieves the parameters specified in the theorem statement.

The desired reduction from R to R(2) is given by the algorithms inst(x) := inst(2)(inst(1)(x)), wit1(x,w) :=

wit
(2)
1 (inst(1)(x),wit

(1)
1 (x,w)), and wit2(x,w

′) := wit
(1)
2 (x,wit

(2)
2 (inst(1)(x),w′)). One can verify that inst runs in

time poly(n+ log(T (n)+t(n)
1−δ(n) )) and wit1,wit2 run in time poly(n) · Õ(T (n)+t(n)

1−δ(n) ).
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Finally, Lemma 7.6 implies that x(1) = (1n, H,Q, ~N) where H is an additive subgroup of F (n), which has

characteristic 2. Hence, Lemma 7.5 implies that x(2) = (1n, C◦, C•, g) where C◦ = RS[F (n), Ĥ, h(n)+t(n)

ĥ(n)
] ⊆

RS[F (n), Ĥ, δ] and C• = VRS[F (n), Ĥ, (h(n)+t(n))d(n)

ĥ(n)
, H] ⊆ VRS[F (n), Ĥ, δ,H] where Ĥ is a union of cosets of

the subgroup H with cardinality ĥ(n). Thus, C◦ ∈ RS
∗
ℓ,ρ,χ and C• ∈ VRS

∗
ℓ,ρ,χ, as claimed.
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8 Proof of Theorem 4.1

Proof of Theorem 4.1. We combine Theorem 7.9 and Lemma 6.4 (and Theorem 2.5) so to obtain Theorem 4.1, as

follows. Let R be a relation in NTIME(T ); we construct a duplex PCP system for R with the claimed parameters.

We first reduce NTIME to randomizable linear algebraic CSPs: invoke Theorem 7.9 on R, with parameters

T, t1, s1, ǫ1, δ1 (where t1, s1, ǫ1, δ1 are specified below), to obtain a relation R′ and algorithms inst,wit1,wit2 such

that: (i) inst,wit1,wit2 provide a reduction from R to R′, with inst running in time poly(n + log(T+t1
1−δ1

)) and

wit1,wit2 in time Õ(T+t1
1−δ1

); and (ii) R′ is a subset of

RRLA

































field f1 = F2log(T+t1)+O(log log(T+t1))+s1

block length ℓ1 = Õ(T+t1
1−δ1

)

rate ρ1 = 1− δ1
relative distance δ1
map locality q1 = polylog(T )
map efficiency c1 = poly(n+ log T )
map sampling I γ1 = polylog(T ) · ǫ1
map sampling II ǫ1
randomizability t1
randomize time r1 = Õ(T+t1

1−δ1
)

































.

Above, we chose the parameters t1, s1, ǫ1, δ1 for Theorem 7.9 as follows: ǫ1 such that γ1 = polylog(T ) · ǫ1 ≤
2
9 , then

δ1 := 1− ǫ1/4, and t1 := k · q1 = k · polylog(T ); finally, s1 is set as explained below.

Next we obtain PCPP systems for the relations corresponding to codes appearing in instances of R′. Theorem 7.9

guarantees that CR′,◦ ⊆ RS
∗
ℓ1,ρ1,χ and CR′,• ⊆ VRS

∗
ℓ1,ρ1,χ with χ := 2s1 ·polylog(T ). We now invoke Theorem 2.5,

choosing λ := 2, χ = 2s1 · polylog(T ), ̺ := ρ1; as for s, we choose it simultaneously with s1 (which so far

was unspecified) so that the field f1 for R′ and the field a2 for the PCPPs are equal; it suffices for them to be

Õ(log log(T + t1)) (and, since k ≤ T by hypothesis, we know that t1 = Õ(T ) so that the condition on s1 from

Theorem 7.9 holds). Thus, the term χ in tp2 and tv2 drops off, and we get that:

Rel(CR′,◦) , Rel(CR′,•) ∈ PCPP





























answer alphabet a2 = F2s+log ℓ1

proof length l2 = Õ(ℓ1)
query complexity q2 = polylog(ℓ1)
distance measure ∆2 = ∆Ham

a

proximity parameter d2 = ρ1/2
soundness error e2 = 1/4

prover time tp2 = poly(s) · Õ(ℓ1)
verifier time tv2 = poly(s+ log ℓ1)
non-adaptive queries na2 = Yes





























.

Finally we invoke Theorem 6.4 for R′ to obtain a duplex PCP system for R′, supplying the PCPPs we just obtained

from Theorem 2.5. Note that our choices satisfy the hypothesis of Theorem 6.4 because the two fields match, ℓ1, c1, r1
are polynomially bounded, and δ1 ≥

17
18 , we also have ǫ1 < min{ δ12 , δ1 − γ1} and d2 ≤ ǫ1/4 (since we chose

γ1, ǫ1 ≤
2
9 ). This establishes our claim that:

R ∈ DPCPpzk























answer alphabet a = F2log(T+t1)+O(log log(T+t1))

proof length l = 2l2(ℓ1) + 6ℓ1 = Õ(T + t1)
query complexity q = 2q2(ℓ1) + q1 + 7 = polylog(T )
soundness error e = 1/2

prover time tp = inst+ wit1 + (2tp2(ℓ1) + (c1 + 5)ℓ1 + r1) = poly(n) · Õ(T + k)
verifier time tv = inst+ (2tv2(ℓ1) + c1 + log ℓ1) = poly(n+ log(T + k))
knowledge bound k

non-adaptive queries na = na2 = Yes























.
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The precise expression for soundness error is e := max{1− δ1 + γ1 + ǫ1 , (1− |f1|
−1) ·max{e2, ǫ1/4}+ |f1|

−1},
but it is upper bounded by 1

2 , because for us 1− δ1 + γ1 + ǫ1 ≤
1
2 , max{e2, ǫ1/4} =

1
4 and |f1| ≥ 4.
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