
FURTHER EXTENSIONS OF CLIFFORD CIRCUITS AND THEIR CLASSICAL

SIMULATION COMPLEXITIES

DAX ENSHAN KOH

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139, USA

Abstract. Extended Clifford circuits straddle the boundary between classical and quantum compu-
tational power. Whether such circuits are efficiently classically simulable seems to depend delicately

on the ingredients of the circuits. While some combinations of ingredients lead to efficiently classi-

cally simulable circuits, other combinations that might just be slightly different, lead to circuits which
are likely not. We extend the results of [1] by studying two further extensions of Clifford circuits.

Firstly, we consider how the classical simulation complexity changes when we allow for more general

measurements. Secondly, we investigate different notions of what it means to ‘classically simulate’
a quantum circuit. These further extensions give us 24 new combinations of ingredients compared

to [1], and we give a complete classification of their classical simulation complexities. Our results

provide more examples where seemingly modest changes to the ingredients of Clifford circuits lead
to large changes in the classical simulation complexity under plausible complexity assumptions.

1. Introduction

Clifford circuits are an important class of circuits in quantum computation [2]. They have found
numerous applications in quantum error correction [3], measurement-based quantum computation
[4, 5] as well as quantum foundations [6, 7]. One of the central results about Clifford circuits is the
Gottesman-Knill Theorem [2], which states that such circuits can be efficiently simulated on a classical
computer, and hence do not provide a speedup over classical computation. But this is true only
in a restricted setting – whether or not we can efficiently classically simulate such circuits depends
delicately on the ‘ingredients’ of the circuit, for example, on the type of inputs we allow, whether or not
intermediate measurements are adaptive, the number of output lines, and even on the precise notion
of what it means to efficiently simulate a circuit. These cases were considered in [1], who showed
that many of these ‘extended’ Clifford circuits are in fact not classically simulable under plausible
complexity assumptions.

One of the main motivations for studying extended Clifford circuits is that they shed light on the
relationship between quantum and classical computational power. Are quantum computers more
powerful than their classical counterparts? If so, what is the precise boundary between their powers?
One approach to answering this question is to consider restricted models of quantum computation and
study their classical simulation complexities. For example, suppose that we start with a restricted
model A that is efficiently classically simulable. If adding ingredients P to A creates a new class that
is universal for quantum computation, then we could regard P as an essential ‘resource’ for quantum
computational power [1]. Extended Clifford circuits, as a restricted model of quantum computation, are
especially well-suited for this approach as they straddle the boundary between classical and quantum
computational power. One could give many examples where adding a seemingly modest ingredient to

E-mail address: daxkoh@mit.edu.

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 4 (2016)



2 FURTHER EXTENSIONS OF CLIFFORD CIRCUITS AND THEIR CLASSICAL SIMULATION COMPLEXITIES

an extended Clifford circuit changes it from being efficiently classically simulable to one that is likely
not.

Understanding how the classical simulation complexity of extended Clifford circuits changes when
various new ingredients are added is a central goal of this paper. In [1], the authors tabulate the
simulation complexities of Clifford circuits with 16 different combinations of ingredients. In particular,
they consider the different combinations of ingredients that arise from 4 binary choices: computational
basis inputs vs product state inputs, single-line outputs vs multiple-line outputs, nonadaptive mea-
surements vs adaptive measurements, and weak vs strong simulation. In this paper, we extend their
results in two ways. First, we study how the classical simulation complexity changes when we employ
a weaker notion of simulation than strong simulation, which we call STR(n) simulation (such a notion
seems incomparable with weak simulation). Second, we study how the classical simulation complexity
changes when we allow for general product measurements (called OUT(PROD)) instead of just the
computational basis measurements (called OUT(BITS)) that were considered in [1]. With these ad-
ditional ingredients, the number of different combinations of ingredients grows to 40. We summarize
the classical simulation complexities of each of these cases in Table 1.

2. Preliminary definitions and notations

We review the definitions introduced in [1]: the standard Pauli matrices are denoted by I,X, Y, Z,
and an n-qubit Pauli operator is defined to be any operator of the form P = ikP1 ⊗ . . . ⊗ Pn, where
k = 0, 1, 2, 3 and each Pi is a Pauli matrix. The set of n-qubit Pauli operators forms a group Pn, called
the Pauli group. The n-qubit Clifford group Cn is defined to be the normalizer of the Pauli group Pn
in the n-qubit unitary group Un, i.e. Cn = {U ∈ Un|UPnU† = Pn}. Any element of the Clifford group
is called a Clifford operation. Clifford operations have an alternative characterization [8]: an n-qubit
operator C is a Clifford operation if and only if it can be written as a circuit consisting of O(n2) gates

from the following list: the Hadamard gate H = 1/
√

2(X + Z), the phase gate S = diag(1, i), and
the CNOT gate CXab = |0〉〈0|a ⊗ Ib + |1〉〈1|a ⊗ Xb. Following the terminology in [1], we call these
gates the basic Clifford gates. A unitary Clifford circuit is one that comprises only the basic Clifford
gates. A Clifford circuit is one that consists of not just the basic Clifford gates but also single-qubit
intermediate measurement gates in the computational basis.

We consider Clifford computational tasks of the following form:

(1) Start with an n-qubit pure input state |ψin〉.
(2) Apply to |ψin〉 a Clifford circuit B, which may be expressed as:

B(x1, . . . , xK) = CK(x1, . . . , xK)MiK(x1,...,xk−1)(xK) . . .

C2(x1, x2)Mi2(x1)(x2)C1(x1)Mi1(x1)C0, (1)

where each Ci(x1, . . . , xi) is a Clifford unitary circuit and Mi(x) indicates a measurement on
qubit line i with measurement result x. In general, B is taken to be an adaptive circuit, i.e.
the ith unitary Clifford circuit Ci depends on previous measurement results x1, . . . , xi. Let N
denote the total number of gates in B. Assume that there are no extraneous qubits, so that
n = O(N).

(3) Measure all n qubit lines using a projection-valued measure {|βy1,...yn〉〈βy1,...yn |}y1,...,yn , with
measurement outcome y1y2 . . . yn ∈ {0, 1}n.

In this work, we restrict our attention to product state inputs and product state measurements, i.e.

(1) Inputs are |ψin〉 = |α1〉|α2〉 . . . |αn〉, where each |αi〉 ∈ C2.
(2) Measurements directions are |βy1,...yn〉 = |βy11 〉|β

y2
2 〉 . . . |βynn 〉, where each |βyii 〉 ∈ C2.

Note that for each i, by completeness,
∣∣β0
i

〉〈
β0
i

∣∣ +
∣∣β1
i

〉〈
β1
i

∣∣ = I. Hence, we need to just specify

{
∣∣β0
i

〉〈
β0
i

∣∣}i in order to completely specify the product state measurement. A description of the



FURTHER EXTENSIONS OF CLIFFORD CIRCUITS AND THEIR CLASSICAL SIMULATION COMPLEXITIES 3

|0〉 V1

B

U†1


|0〉 V2 U†2


...
...

|0〉 Vn U†n


Figure 1. Circuit diagram for the Clifford computational tasks considered in this paper.
The gates Vi and U†

i are arbitrary single qubit unitaries, B is a Clifford circuit, the input
state is the all-zero computational basis state, and the output measurement is performed in
the computational basis.

Clifford computational task is thus given by the three-tuple

T = (|α〉, B, |β〉), (2)

where |α〉 = |α1〉|α2〉 . . . |αn〉 is the initial state, B is the description of the Clifford circuit, and
|β〉 =

∣∣β0
1

〉∣∣β0
2

〉
. . .
∣∣β0
n

〉
are the measurement directions.

Now, each product state input can be seen as arising from applying a product unitary to the com-
putational basis states, i.e. there exist single-qubit unitary operators V1, . . . , Vn such that V1 ⊗ . . . ⊗
Vn|0 . . . 0〉 = |α〉. Likewise, every product state measurement operator can be seen as arising from
applying a unitary operator followed by measuring in the computational basis. More precisely, a
measurement in the direction |βy11 〉|β

y2
2 〉 . . . |βynn 〉 is equivalent to the application of a unitary opera-

tor U†1 ⊗ . . . ⊗ U†n followed by a measurement in the computational basis, where the yith (with zero
indexing) column of Ui is given by Ui|yi〉 = |βyii 〉.

Hence, the Clifford computational tasks we consider are of the structure shown in Figure. 1. They may
alternatively be represented by the 3-tuple

T = ({Vi}ni=1, B, {Ui}ni=1). (3)

We will use the above two descriptions in Eqs. (2) and (3) of Clifford tasks interchangeably, and even
allow for mixed descriptions, for example, T = (|α〉, B, {Ui}ni=1).

We’ll now write formal expressions for the probabilities of outcomes. For a computational task T =
(|α〉, B, |β〉) and subset I = {i1, . . . , is} ⊆ [n], let P IT (yi1 , . . . , yin) be the marginal probability that the

outputs yi1 , . . . , yis are obtained for the lines i1, . . . , is. Define PT (y1, . . . , yn) = P
[n]
T (y1, . . . , yn) to be

the probability of the outcome y1y2 . . . yn.

For the adaptive circuit described by Eq. (1), if the intermediate measurement results are x1 . . . xK ,
then the density operator of the final state is given by B(x1, . . . , xK)[ρα], where ρα = |α〉〈α|. We
use the notation C[ρ] to denote the state that results when we apply U to the density matrix ρ, i.e.
C[ρ] = CρC†. The probability that the result x1 . . . xK occurs is given by

p(x1, . . . , xK) = p(xK |x1, . . . , xK−1)p(xK−1|x1, . . . , xK−2) . . . p(x2|x1)p(x1),

where

p(xj |x1, . . . , xj−1) = tr{|xj〉〈xj |ijCj−1(x1, . . . , xj−1)Mij−1(x1,...,xj−2)(xj−1) . . .

×C1(x1)Mi1(x1)C0[ρα]}. (4)

The final output state is then given by

B[ρα] =
∑

x1...xK

p(x1, . . . , xK)B(x1, . . . , xK)[ρα].



4 FURTHER EXTENSIONS OF CLIFFORD CIRCUITS AND THEIR CLASSICAL SIMULATION COMPLEXITIES

Hence, the outcome probabilities are given by

pT (y1, . . . , yn) = 〈βy1,...yn |B[ρα]|βy1,...yn〉,

and the marginal probabilities are given by

pIT (yi1 , . . . , yin) =
∑

yk1 ...ykn−s

pT (y1, . . . , yn), (5)

where {k1, . . . , kn−s} = [n]− I.

We consider the following 3 binary choices of ingredients:

(1) Inputs: IN(BITS) vs IN(PROD)
(2) Intermediate measurements: NONADAPT vs ADAPT
(3) Outputs: OUT(BITS) vs OUT(PROD)

The first two cases have been considered in [1]: IN(BITS) and IN(PROD) refer to having computa-
tional basis inputs and product state inputs respectively, while NONADAPT and ADAPT refer to
nonadaptive and adaptive measurements respectively. Note that in [1], all the output measurements
are performed in the computational basis (call this case OUT(BITS)). A natural extension to [1] would
thus be to consider more general measurements. For the sake of symmetry with the inputs, we intro-
duce the new ingredient OUT(PROD), which refers to product output measurements, i.e. when the
Ui’s in Eq. (3) are unrestricted. Note that we allow product state measurements only at the output –
intermediate measurements are always single-qubit measurements in the computational basis.

These 3 binary choices lead to 23 = 8 different subsets of Clifford computational tasks. Let ν ∈
{(IN(BITS), NONADAPT, OUT(BITS)), (IN(BITS), NONADAPT, OUT(PROD)), . . . } be one of
these 8 subsets. We shall denote the subset of Clifford computational tasks corresponding to ν by
Cν . Note that unlike [1], we do not include OUT(1) and OUT(MANY) as ingredients in our circuit.
Instead, as stated above, we assume without loss of generality that all n qubit lines are measured. This
is justified by the principle of implicit measurement, which states that any unterminated quantum wires
at the end of the circuit can be assumed to be measured [8]. The number of output lines we simulate
will be specified by the notion of simulation instead. We discuss these notions in the next section.

3. Notions of classical simulation

In [1], Jozsa and Van den Nest consider two notions of classical simulation, namely weak (WEAK) and
strong (STR) simulation. A weak simulation involves providing a sample of the output distribution,
while a strong simulation involves a calculation of the probability values of not just the joint distribution
but also of all the marginal distributions. An immediate question that then arises is the following:
what if we are required to calculate just the probability values for the joint distribution, but not of
any of the marginals? Let’s call such a simulation STR(n). How does STR(n) compare with STR and
WEAK? How would the classical simulation complexity of Clifford circuits with various ingredients
change if we used STR(n) as our notion of simulation instead?

To formalize these notions, we make the following definitions. Let f(n) be either the constant function
f(n) = 1 or the linear function f(n) = n (in this paper, we restrict our attention to these cases, though
one might certainly consider other functions f , like f(n) = log(n)).

Definition 1. (STR(f(n))) A STR(f(n)) simulation of a subset of Clifford computational tasks Cν
is a deterministic classical algorithm that on input 〈T, I, y〉, where T ∈ Cν is a task on n qubits,
I = {i1, . . . , if(n)} ⊆ [n] and yI = {yi1 , . . . , yif(n)

}, outputs pIT (yi1 , . . . , yif(n)
).

Definition 2. (WEAK(f(n))) A WEAK(f(n)) simulation of a subset of Clifford computational tasks
Cν is a randomized classical algorithm that on input 〈T, I〉, where T ∈ Cν is a task on n qubits and
I = {i1, . . . , if(n)} ⊆ [n], outputs yi1 , . . . , yif(n)

, with probability pIT (yi1 , . . . , yif(n)
).



FURTHER EXTENSIONS OF CLIFFORD CIRCUITS AND THEIR CLASSICAL SIMULATION COMPLEXITIES 5

STR

STR(1)
WEAK =
WEAK(n)

STR(n)

WEAK(1)

Figure 2. Relationships between different notions of classical simulation of Clifford
computational tasks.

STR and WEAK simulation are defined in exactly the same way, except that we place no restrictions
on the size of the subset of output lines |I| we simulate.

Let S ∈ {STR(n),STR(1),STR,WEAK(n),WEAK(1),WEAK} be one of these 6 notions of simulation.
We define an S-simulation of a subset of Clifford computational tasks Cν to be efficient if the simulation
runs in poly(N)-time, where N is the number of gates in the Cν-circuit. Let PS be the set of all Cν
that have an efficient S-simulation.

An immediate observation is that PWEAK = PWEAK(n). The backward inclusion holds by definition,
and the forward inclusion holds because we could sample from any subset I by just ignoring the
qubit lines that are not in I. By definition, we also get the following inclusions: PSTR ⊆ PSTR(1),
PSTR ⊆ PSTR(n) and PWEAK ⊆ PWEAK(1). But how does weak simulation compare with strong
simulation? From Proposition 1 of [9], it follows that PSTR ⊆ PWEAK, PSTR(1) ⊆ PWEAK(1) and
PSTR(n) ⊆ PWEAK(1). It turns out that these are the only inclusions we know, unless plausible
complexity assumptions like P 6= P#P turn out to be false. One might wonder why, for example, we
did not include the inclusion PSTR(n) ⊆ PSTR(1) above. Well, we don’t know if it’s true! Computing
such a marginal distribution directly from the joint distribution would involve summing an exponential
number of terms, and unless P 6= P#P, there seems to be no way around that. We summarize the
relationships between the different notions in Figure 2.

4. Results and discussion

In Section 2, we introduced 3 binary choices of ingredients. In Section 3, we described 5 different
notions of classical simulation. This gives a total of 23 × 5 = 40 different cases, whose classical
simulation complexity we classify in Table 1. The entries of the table should be understood as follows:
for a subset of computational tasks Cν , and a notion of simulation S,

• P (classically efficiently simulable) means that Cν ∈ PS.
• #P (which stands for #P-hard) means that an efficient S-simulation of Cν would give rise to

an efficient algorithm for the #P-complete problems.
• QC (which stands for quantum-computing universal) means that Cν is universal for quantum

computation.
• PH means that an efficient S-simulation of Cν would imply a collapse of the polynomial hier-

archy. (see [1] for more details)



6 FURTHER EXTENSIONS OF CLIFFORD CIRCUITS AND THEIR CLASSICAL SIMULATION COMPLEXITIES

Weak Strong
WEAK(1) WEAK(n) STR(1) STR(n) STR

OUT

(BITS)

NON-
ADAPT

IN
(BITS)

P
(i)

P
(ii)

P
(iii)

P
(iv)

P
(JV4)

IN
(PROD)

P
(v)

PH
(JV7)

P
(JV1)

#P
(Thm 1)

#P
(JV6)

ADAPT

IN
(BITS)

P
(vi)

P
(JV5)

#P
(JV2)

#P
(Thm 2)

#P
(vii)

IN
(PROD)

QC
(JV3)

QC
(viii)

#P
(ix)

#P
(x)

#P
(xi)

OUT

(PROD)

NON-
ADAPT

IN
(BITS)

P
(xii)

PH
(Thm 3)

P
(xiii)

#P
(Thm 4)

#P
(xiv)

IN
(PROD)

P
(xv)

PH
(xvi)

P
(Thm 5)

#P
(xvii)

#P
(xviii)

ADAPT

IN
(BITS)

P
(Thm 6)

PH
(xix)

#P
(xx)

#P
(xxi)

#P
(xxii)

IN
(PROD)

QC
(xxiii)

QC
(xxiv)

#P
(xxv)

#P
(xxvi)

#P
(xxvii)

Table 1. Classification of the classical simulation complexities of classes of Clifford circuits
with different ingredients. P stands for efficiently classically simulable. #P stands for #P-
hard. QC stands for QC-hard and PH stands for “if efficiently classically simulable, then the
polynomial hierarchy collapses”. The proofs of JV 1–7 are given in [1]. Theorems 1–6 concern
cases not found in [1] and are our main results. (i)–(xxvii) are results that follow immediately
from these theorems by using the rules in Appendix A. The 11 cases with boxed symbols are
the core theorems, from which all other cases can be deduced using rules which we describe
in Appendix A. These include all the main theorems JV–7 and Theorems 1–6, except JV1
and JV6, which turn out to be special cases of Theorem 5 and Theorem 1 respectively, using
the rules in Appendix A.

Our main results are Theorems 1–6, whose proofs we present in Appendices B–G. Using the rules in
Appendix A, these theorems, together with the results1 JV 1–7 from [1], give a complete classification
of the classical simulation complexities of all the 40 cases.

A few remarks are in order. First, we note that the entries in the last two columns of Table 1 are
identical. This suggests that even though the notions STR(n) and STR(1) seem to be incomparable,
for Clifford computational tasks, STR(n)-simulation appears to be harder to perform than STR(1)-
simulation. We note that Theorem 1, which generalizes (JV6), implies that being able to compute only
the joint probabilities already suffices in enabling us to solve #P-hard problems; we do not require the
full power of strong simulation.

Second, we note the symmetry between the inputs states and output measurements: for example, the
2nd and the 5th rows are identical, i.e. the simulation complexity remains the same whether product
unitaries are applied at the beginning or at the end of the circuit. In (JV7), for example, the key to

collapsing the polynomial hierarchy was that the magic state |π/4〉 = 1/
√

2(|0〉 + eiπ/4|1〉) together
with postselection can simulate the T = diag(1, eiπ/4) gate. In the proof of Theorem 3, however, we
do not have magic state inputs at our disposal. Yet, it turns out that the T gate can also be simulated
by what might be termed “magic measurements with postselection”.

Third, Theorem 5 is a generalization of JV1. In fact, a stronger result can be similarly shown to
be true: for any constant b, STR(b)-simulation of OUT(PROD), NONADAPT, IN(PROD) can be

1JV = Jozsa and Van den Nest [1]



FURTHER EXTENSIONS OF CLIFFORD CIRCUITS AND THEIR CLASSICAL SIMULATION COMPLEXITIES 7

performed efficiently. In [10], Aaronson and Gottesman present algorithms for simulating two separate
cases: non-stabilizer initial states, and non-stabilizer gates. A consequence of their results is that it is
efficient to simulate (in the STR(b)-sense) nonadaptive tasks with either of the following ingredients:
1. product state inputs with computational basis measurements (which is the content of JV1). 2.
computational basis inputs with product state measurements (which is the content of case xiii) – since
this is equivalent to applying b single-qubit gates just before a computational basis measurement.
Theorem 5 is slightly more general than either of these cases. Essentially, it combines product state
inputs with product measurements and shows that the new task is still in PSTR(b).

5. Concluding remarks

We have shown how the classical simulation complexity of extended Clifford circuits changes when
the ingredients in the circuit are varied. The cases which are efficiently classically simulable can be
considered variants or extensions of the Gottesman-Knill Theorem. Various other ingredients besides
those considered here have been studied in the literature, for example, mixed input states [10], states
(as well as transformations and measurements) with positive Wigner representations [11, 12], and
even non-commutative extensions like XS-stabilizer states [13]. The Gottesman-Knill Theorem has
also been extended to continuous-variable quantum systems [14] as well as to normalizer circuits [15].
However, most of these extensions have been considered separately. It will be fruitful to study how the
different combinations of these other ingredients affect the simulation complexity of the computational
task.

Our discussion of extended Clifford circuits has been restricted to involve only exact simulation; it will
be interesting to see how the classical simulation complexities of the various subsets Cν would change if
we allowed for some error in the simulation. For example, we showed that an efficient exact WEAK(n)
simulation of several combinations of ingredients would lead to a collapse of the polynomial hierarchy.
Would the hierarchy still collapse if we allowed for error? If so, for what kinds of error would the result
hold? These questions have been asked of other restricted models of quantum computation, like IQP
circuits [16] and boson-sampling [17]. For the boson-sampling model, Aaronson and Arkhipov [17]
show that even if the classical simulation were approximate or noisy, the polynomial hierarchy would
still collapse, but only if certain unproven conjectures, like the Permanent-of-Gaussians Conjecture,
and the Permanent Anti-Concentration Conjecture are true. It will be interesting to consider different
notions of approximation or noise for Clifford computational tasks and ask what assumptions we will
need in order to prove a polynomial-hierarchy collapse, or other hardness results.

Acknowledgements

I thank Anand Natarajan for discussions on the proofs of Theorems 1 and 3, and Adam Bouland for
discussions on the proofs of Theorems 1 and 2. I also thank Scott Aaronson for useful insights and
for teaching the seminar class 6.S899 on Physics and Computation at MIT, which led to this research.
The author is supported by the National Science Scholarship from the Agency for Science, Technology
and Research (A*STAR).

References

[1] R. Jozsa and M. Van den Nest, “Classical simulation complexity of extended Clifford circuits,” Quantum Info.
Comput., vol. 14, pp. 633–648, 2014.

[2] D. Gottesman, “The Heisenberg representation of quantum computers,” Talk at International Conference on Group
Theoretic Methods in Physics, arXiv: quant-ph/9807006 1998.

[3] D. Gottesman, Stabilizer Codes and Quantum Error Correction. PhD thesis, California Institute of Technology,

1997.
[4] R. Raussendorf, D. E. Browne, and H. J. Briegel, “Measurement-based quantum computation on cluster states,”

Phys. Rev. A, vol. 68, p. 022312, Aug 2003.



8 FURTHER EXTENSIONS OF CLIFFORD CIRCUITS AND THEIR CLASSICAL SIMULATION COMPLEXITIES

[5] R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Phys. Rev. Lett., vol. 86, pp. 5188–5191, May

2001.
[6] M. Pusey, “Stabilizer notation for Spekkens’ toy theory,” Found Phys, vol. 42, no. 688-708, 2012.

[7] R. W. Spekkens, “Evidence for the epistemic view of quantum states: A toy theory,” Phys. Rev. A, vol. 75, p. 032110,

Mar 2007.
[8] M. Nielsen and I. Chuang, Quantum Computation and Quantum Information. Cambridge University Press, 2000.

[9] B. Terhal and D. DiVincenzo, “Adaptive quantum computation, constant depth quantum circuits and Arthur-Merlin

games,” Quant. Inf. Comp., vol. 4, no. 2, p. 134, 2004.
[10] S. Aaronson and D. Gottesman, “Improved simulation of stabilizer circuits,” Phys. Rev. A, vol. 70, p. 052328, Nov

2004.
[11] A. Mari and J. Eisert, “Positive Wigner functions render classical simulation of quantum computation efficient,”

Phys. Rev. Lett., vol. 109, p. 230503, Dec 2012.

[12] V. Veitch, N. Wiebe, C. Ferrie, and J. Emerson, “Efficient simulation scheme for a class of quantum optics experi-
ments with non-negative Wigner representation,” New Journal of Physics, vol. 15, no. 1, p. 013037, 2013.

[13] X. Ni, O. Buerschaper, and M. Van den Nest, “A non-commuting stabilizer formalism,” Journal of Mathematical

Physics, vol. 56, no. 5, 2015.
[14] S. D. Bartlett, B. C. Sanders, S. L. Braunstein, and K. Nemoto, “Efficient classical simulation of continuous variable

quantum information processes,” Phys. Rev. Lett., vol. 88, p. 097904, Feb 2002.

[15] J. Bermejo-Vega, C. Y. Lin, and M. Van den Nest, “The computational power of normalizer circuits over black-box
groups,” arXiv:1409.4800, 2014.

[16] M. J. Bremner, R. Jozsa, and D. J. Shepherd, “Classical simulation of commuting quantum computations implies

collapse of the polynomial hierarchy,” Proceedings of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences, vol. 467, no. 2126, pp. 459–472, 2010.

[17] S. Aaronson and A. Arkhipov, “The computational complexity of linear optics,” in Proceedings of the Forty-third

Annual ACM Symposium on Theory of Computing, STOC ’11, (New York, NY, USA), pp. 333–342, ACM, 2011.
[18] M. Sipser, Introduction to the Theory of Computation, 3rd Ed. Course Technology, 2012.

[19] S. Aaronson, “Quantum computing, postselection, and probabilistic polynomial-time,” Proceedings of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences, vol. 461, no. 2063, pp. 3473–3482, 2005.

[20] S. Toda, “PP is as hard as the polynomial-time hierarchy,” SIAM J. Comput.,, vol. 20, no. 5, pp. 865–877, 1991.



FURTHER EXTENSIONS OF CLIFFORD CIRCUITS AND THEIR CLASSICAL SIMULATION COMPLEXITIES 9

Appendix A. Rules for proving results in Table 1

We will show that in Table 1, the theorems labelled by boxed symbols (for example, PH ) imply results
for all the other cases, and hence for a complete proof of the results in the table, it will suffice to prove
just Theorems 1–6 as well as JV 1–6 (save JV1 and JV6). The proof of this is a straightforward
consequence of a couple of rules (cf [1]), which we state explicitly here:

• If classical simulation of a set of computational tasks A is efficient, then classical simulation
of any subset of A would also be efficient.
• If classical simulation of a set of computational tasks A is hard (#P-hard, QC-hard or PH-

collapsing in the sense described above), then classical simulation simulation of any superset
of A would also be similarly hard.
• The set of computational tasks with IN(BITS) is a subset of the same set of tasks with

IN(PROD). Write this as IN(BITS) ⊂ IN(PROD). Similarly, OUT(BITS) ⊂ OUT(PROD),
NONADAPT ⊂ ADAPT.
• If strong simulation of a set of tasks is efficient, then so is the STR(1), STR(n) and WEAK(n)

simulation of that set. If any of the latter three notions of simulation is efficient, then WEAK(1)-
simulation is efficient (as illustrated in Figure 2). The reverse is also true. For example, if
WEAK(1) simulation is #P-hard, then so is WEAK(n)-simulation. As explained in [1], note
that #P-hardness holds only for strong notions of simulation, and QC-hardness holds only for
weak notions of simulation.

Appendix B. Proof of Theorem 1

A 3-CNF formula f (i.e. a Boolean formula in conjuctive normal form [18]) with n variables and N
clauses is of the form

f(x1, . . . , xn) = (a11 ∨ a12 ∨ a13) ∧ (a21 ∨ a22 ∨ a23) ∧ . . . ∧ (aN1 ∨ aN2 ∨ aN3) (6)

where each aij ∈ {x1, . . . , xn, x1, . . . , xn}. We shall always assume that every variable x1, . . . , xn
appears in the formula for f , so that n ≤ 3N , i.e. n = O(N).

We define AbsSAT to be the following problem: Given a 3-CNF formula f : {0, 1}n → {0, 1}, compute

S(f) =

∣∣∣∣∣∣
∑

x∈{0,1}n
(−1)f(x)

∣∣∣∣∣∣ .
Note that if we let #i(f) = |{x|f(x) = i}|, then S(f) = |#0(f)−#1(f)|.

Lemma 1. AbsSAT is #P-hard.

Proof. We shall construct a reduction from the #P-complete problem #SAT to AbsSAT. Given a
#SAT-instance φ(x1, . . . , xn), introduce a new variable y and define the Boolean formula

φ̃(x1, . . . , xn, y) = φ(x1, . . . , xn) ∨ y.
Let A(ϕ) denote the set of satisfying assignments to a Boolean formula ϕ. Then

A(φ̃) = {(x1, . . . , xn, 0)|(x1, . . . , xn) ∈ A(φ)} ∪ {(x1, . . . , xn, 1)|(x1, . . . , xn) ∈ {0, 1}n}.

Hence, #1(φ̃) = #1(φ) + 2n, and #0(φ̃) = 2n+1 −#1(φ̃) = 2n −#1(φ). This gives

S(φ̃) = |#0(φ̃)−#1(φ̃)| = |2n −#1(φ)−#1(φ)− 2n| = 2#1(φ).

Hence, solving the AbsSAT instance φ̃(x1, . . . , xn, y) gives S(φ̃), from which #1(φ) can be found.
Therefore, AbsSAT is #P-hard.

�



10 FURTHER EXTENSIONS OF CLIFFORD CIRCUITS AND THEIR CLASSICAL SIMULATION COMPLEXITIES

Theorem 1. Let ν = (IN(PROD), NONADAPT, OUT(BITS)). Then the STR(n)-simulation of Cν is
#P-hard.

Proof. Assume that there exists an efficient STR(n)-simulation S of Cν . We’ll use S to construct an
efficient algorithm for AbsSAT: On input f : {0, 1}n → {0, 1}, given as a 3-CNF formula with N
clauses, where n = O(N), construct a quantum circuit Qf , consisting of only the basic Clifford gates
and T gates, that acts on the following computational basis states as follows: (See Lemma 8 for the
details of such a construction)

Qf |x1, . . . , xn, 0〉|~0〉A = |x1, . . . , xn, f(x1, . . . , xn)〉|~0〉A.

Let K be the number of T gates in Qf . For the jth T gate (acting on the ljth line), for j = 1, . . . ,K,
introduce an ancilla line aj , and replace the T gate with the CNOT gate CXlj ,aj . Call the resulting
circuit Af . It is straightforward to check that if each ancilla wire is initialized to the state |π/4〉,
and measured at the end of the computation, and if the measurement outcomes are 0 . . . 0, then the
non-ancilla registers of Af would implement Qf . Hence, ignoring the ancilla registers, for the above

measurement outcomes, we have Af : |x1, . . . , xn, y〉|~0〉A 7→ |x1, . . . , xn, y ⊕ f(x1, . . . , xn)〉|~0〉A.

Let Mf be the following circuit:

|π/4〉

Af

 ya1

...
...

|π/4〉  yaK

|0〉 H H  y1

...
...

|0〉 H H  yn

|0〉 X H H X  yn+1

|~0〉A  ~yA

If we postselect the outcomes ya1 . . . yaK = 0 . . . 0 for the ancilla registers, the nonancilla registers
evolve as follows:

|0 . . . 0, 0〉|~0〉A → |0 . . . 0, 1〉|~0〉A

→ 1√
2n+1

∑
x

|x〉(|0〉 − |1〉)|~0〉A

→ 1√
2n+1

∑
x

|x〉(|f(x)〉 − |1⊕ f(x)〉)|~0〉A

=
1√

2n+1

∑
x

(−1)f(x)|x〉(|0〉 − |1〉)|~0〉A

→ 1

2n

∑
xy

(−1)f(x)+x·y|y〉|1〉|~0〉A

→ 1

2n

∑
xy

(−1)f(x)+x·y|y〉|0〉|~0〉A.



FURTHER EXTENSIONS OF CLIFFORD CIRCUITS AND THEIR CLASSICAL SIMULATION COMPLEXITIES 11

Hence, the conditional probability of obtaining the all-zero string given that the ancilla measurements
also reveal the all-zero string is

Pr(01 . . . 0n+1,~0A|0a1 . . . 0aK ) =

∣∣∣∣∣ 1

2n

∑
x

(−1)f(x)

∣∣∣∣∣
2

.

But the LHS of the above expression is equal to

Pr(01 . . . 0n+1,~0A|0a1 . . . 0aK ) =
Pr(0a1 . . . 0aK , 01 . . . 0n+1,~0A)

Pr(0a1 . . . 0aK )
.

Now, Pr(0a1 . . . 0aK ) = 1/2K , since each ancilla bit has a probability of 1/2 of being measured zero.

Simplifying the above expressions, we get∣∣∣∣∣∑
x

(−1)f(x)

∣∣∣∣∣ = 2n+K/2
√

Pr(0a1 . . . 0aK , 01 . . . 0n+1,~0A).

But Pr(0a1 . . . 0aK , 01 . . . 0n+1,~0A) is a joint outcome probability, and hence can be obtained by running
S on 〈Mf , 00 . . . 0〉. (The input to S is valid since Mf is a non-adaptive Clifford circuit with product
state inputs.) Hence, the procedure given is an efficient algorithm for AbsSAT. Since AbsSAT is
#P-hard, this implies that Cν is #P-hard as well. �

Appendix C. Proof of Theorem 2

Theorem 2. Let ν = (IN(BITS), ADAPT, OUT(BITS)). Then the STR(n)-simulation of Cν is #P-
hard.

Proof. Assume that there exists an efficient STR(n)-simulation S of Cν . We’ll use S to construct an
efficient algorithm M for #SAT , i.e. given as input a 3-CNF formula f : {0, 1}n → {0, 1}, our goal is
to find #f =

∑
x f(x).

M = “On input f : {0, 1}n → {0, 1}, given as a 3-CNF formula,

1. Construct a classical circuit Cf consisting of only Toffoli gates that acts on the following
computational basis states as follows: (see Lemma 7 for the details of this construction)

Cf (x1, . . . , xn, 1,~1A) = (x1, . . . , xn, f(x1, . . . , xn),~1A).

2. Simulate Cf with a Clifford circuit fromA: replace each Toffoli gate Tabc(x, y, z) = (x, y, z⊕xy)
acting on lines a, b, c with (CXbc)

xMa(x). Call the resulting quantum circuit Af . The circuit
Af acts on computational basis states as follows:

Af |x1, . . . , xn, 1〉|~1〉A → |x1, . . . , xn, f(x1, . . . , xn)〉|~1〉A.

By applying X gates (expressed as X = HS2H) to the appropriate lines at the input and
output of Af , let A′f be the circuit that acts on computational basis states as follows:

A′f |x1, . . . , xn, 0〉|~0〉A → |x1, . . . , xn, f(x1, . . . , xn)〉|~0〉A.



12 FURTHER EXTENSIONS OF CLIFFORD CIRCUITS AND THEIR CLASSICAL SIMULATION COMPLEXITIES

3. Let Gf be the following circuit:

|0〉 H 

A′f

z1
Xz1 

|0〉 H 
z2

Xz2 
...

...

|0〉 H 
zn

Xzn 

|0〉 

|~0〉A 

4. Feed 〈Gf , 00 . . . 01~0A〉 into S to find p = p(00 . . . 01~0A), the probability that the output is

00 . . . 01~0A.
5. Output #f = 2np.”

A straightforward calculation shows that the output of Gf on input |00 . . . 0〉|~0〉A is |0, . . . , 0, f(z)〉|~0〉A
if the intermediate measurement results are z = z1 . . . zn Hence,

p = p(0 . . . 0, 1,~0A) =
∑
z

p(0 . . . 0, 1,~0A|z1 . . . zn)p(z1 . . . zn)

=
∑
z

|〈0 . . . 01,~0A|0 . . . 0, f(z),~0A〉|2
1

2n

=
1

2n

∑
x

f(x). (7)

Hence, the output of M is 2np = #f .

�

Appendix D. Proof of Theorem 3

We follow a proof similar to that given in [16] that shows that if IQP circuits can be efficiently classically
simuated in the weak sense, then the polynomial hierarchy collapses. Recall that the T gate is given
by T = diag(1, eiπ/4). We first consider the following gadget G:

•

_ _ _ _ _ _ _ _ _ _ _ _ _ _�
�
�
�
�

�
�
�
�
�

_ _ _ _ _ _ _ _ _ _ _ _ _ _

|0〉 T H 
x

(8)

Lemma 2.

G : |ψ〉 7→

{
T |ψ〉 if x = 0

ZT |ψ〉 if x = 1

Proof. Applying the unitary gates in the circuit to the state |ψ〉|0〉 gives 1√
2

[(T |ψ〉)|0〉+ (ZT |ψ〉)|1〉].
Hence, we get the desired states when the ancilla wire is measured. �

From the proof of Lemma 2, we note that the measurement outcomes x = 0, 1 occur with an equal
probability. Note that if x = 0, then G would have implemented the T gate.



FURTHER EXTENSIONS OF CLIFFORD CIRCUITS AND THEIR CLASSICAL SIMULATION COMPLEXITIES 13

Lemma 3. Let Q be an arbitrary quantum circuit comprising the basic Clifford gates and T gates.
Let ν = (IN(BITS), NONADAPT, OUT(PROD)). Then Q with postselection can be weakly simulated
by Cν with postselection.

Proof. We first show how we can simulate the circuit Q using circuits from Cν with postselection. For
each T gate in Q, we replace it by the gadget G defined above. If the number of T gates is s, then
this procedure produces a new circuit C with s new lines. Now, note that the new circuit C belongs
to the class Cν since the HT gates together with the computational basis measurements implement a
product measurement. Now, if we postselect on outcome 0 for all the measurements in the new lines,
then each gadget G would implement the T gate. Hence, Cν with postselection would weakly simulate
Q. Now, since we have the resource of postselection, it follows that Q with postselection can be weakly
simulated by Cν with postselection. �

We now make the following definition (recall notation in Eq. (5): we use similar notation for conditional
probabilities) to capture the power of subsets of Clifford computational tasks with postselection.

Definition 3. (postCνP) Let Cν be a subset of Clifford computational tasks. A language L ∈ postCνP
if there exists an error tolerance 0 < ε < 1

2 , and a uniform family {Cw}w of circuits in Cν with n+p(n)
lines (call these lines l1, . . . , ln, a1, . . . , ap, where p = p(n)), where n = |w| and p is some polynomial,
such that

p
{a1,...,aN}
Cw

(00 . . . 0) > 0,

w ∈ L =⇒ p
{l1}|{a1,...,aN}
Cw

(1|00 . . . 0) ≥ 1− ε,

w /∈ L =⇒ p
{l1}|{a1,...,aN}
Cw

(0|00 . . . 0) ≥ 1− ε. (9)

We will use the definition of postBQP given in [16], which allows for multiple postselected lines. Note
that this is equivalent to the definition given in [19] where postBQP was introduced, which allows for
only single lines. We now show that the class just defined is equal to postBQP.

Lemma 4. postCνP = postBQP.

Proof. The forward direction is immediate, since extended Clifford circuits are a special case of general
quantum circuits. To prove the backward direction, let L ∈ postBQP. Then there exists an error
tolerance 0 < ε < 1

2 , and a uniform family {Qw}w of quantum circuits consisting of the basic Clifford
gates and T gates with n + p(n) lines (call these lines l1, . . . , ln, b1, . . . , bN , where p = p(n)), where
n = |w| and p is some polynomial, such that

p
{b1,...,bN}
Qw

(00 . . . 0) > 0,

w ∈ L =⇒ p
{l1}|{b1,...,bp}
Qw

(1|00 . . . 0) ≥ 1− ε,

w /∈ L =⇒ p
{l1}|{b1,...,bN}
Qw

(0|00 . . . 0) ≥ 1− ε.
By Lemma 3, for each Qw, there exists an extended Clifford circuit Cw ∈ Cν that, with postselection,
simulates Qw with postselection. If s is the number of T gates in Qw, then Cw has n+ p(n) + s lines.
Postselecting on the last p(n) + s lines, it follows that the set of circuits {Cw} satisfies the definition
given for postCνP. Hence, L ∈ postCνP. �

Lemma 5. Let ν = (IN(BITS), NONADAPT, OUT(PROD)). If Cν ∈ PWEAK(n), then postCνP ⊆
postBPP.

Proof. Let L ∈ postCνP. Then there exists an error tolerance 0 < ε < 1
2 , and a uniform family {Cw}w

of circuits in Cν with n+p(n) lines (call these lines l1, . . . , ln, a1, . . . , ap, where p = p(n)), where n = |w|
and p is some polynomial, such that Eq. (9) holds.



14 FURTHER EXTENSIONS OF CLIFFORD CIRCUITS AND THEIR CLASSICAL SIMULATION COMPLEXITIES

But Cν ∈ PWEAK(n). Hence, for all circuits Qw ∈ Cν , there exists a classical randomized circuit Cw
with n+ p lines such that

p
{l1,...,ln,a1,...,ap}
Qw

(y) = p
{l1,...,ln,a1,...,ap}
Cw

(y).

For any subsets I, J ⊆ [n] of lines, similar relations hold for marginal probabilities and conditional

probabilities: pIQw(y) = pICw(y) and p
I|J
Qw

(y|z) = p
I|J
Cw

(y|z). This implies that

p
{l1}|{a1,...,ap}
Qw

(1|00 . . . 0) = p
{l1}|{a1,...,ap}
Cw

(1|00 . . . 0),

and hence Qw obey Eq. (9). This implies that L ∈ postBPP. Therefore, postCνP ⊆ postBPP. �

Theorem 3. Let ν = (IN(BITS), NONADAPT, OUT(PROD)). If Cν ∈ PWEAK(n), then PH collapses
to the third level.

Proof. By Lemmas 4 and 5, if Cν ∈ PWEAK(n), then Cν ∈ PWEAK(n), then postBPP ⊇ postCνP =
postBQP. By Aaronson’s Theorem, PP = postBQP [19], and by Toda’s Theorem PH ⊆ P#P [20].
Hence, we get the following string of inclusions:

PH ⊆ P#P = PPP = PpostBQP = PpostCνP ⊆ PpostBPP ⊆ PBPPNP

= BPPNP ⊆ Σp3,

which implies that PH collapses to the third level. �

Appendix E. Proof of Theorem 4

Consider the proof of Theorem 1. Note that the circuit Mf is unitary. Hence, an even stronger result
than Theorem 1 is true: if we replaced nonadaptive circuits with unitary ones (call this UNITARY),
the simulation complexity is still #P-hard. In other words,

Lemma 6. Let ν = (IN(PROD), UNITARY, OUT(BITS)). Then the STR(n)-simulation of Cν is
#P-hard.

The STR(n)-simulation of Cν is equivalent to the following problem:
Input: 〈T, y〉, where T = (|x〉, B, |α〉), B is a unitary circuit, x ∈ {0, 1}n, α = α1 . . . αn and each
|αi〉 ∈ C2.
Output: pT (y) = |〈αy11 . . . αynn |B|x〉|2.

Now, let µ = (IN(BITS), UNITARY, OUT(PROD)), then the STR(n)-simulation of Cµ is equivalent
to the following problem:
Input: 〈T ′, y〉, where T ′ = (|αy11 . . . αynn 〉, B†, {I}i) , B is a unitary circuit
Output: pT ′(x) = |〈x|B†|αy11 . . . αynn 〉|2 = |〈αy11 . . . αynn |B|x〉|2 = pT (y).

Since both problem instances can be transformed easily to each other, and since both problems involve
calculating the same quantity, we conclude that the STR(n)-simulation of Cµ is also #P-hard. If it
is #P-hard to simulate this class of unitary circuits, then it must be #P-hard to simulate the same
class but with unitary circuits replaced by nonadaptive circuits. Therefore, we obtain the following
theorem:

Theorem 4. Let ν = (IN(BITS), NONADAPT, OUT(PROD)). Then the STR(n)-simulation of Cν is
#P-hard.

Appendix F. Proof of Theorem 5

Theorem 5. Let ν = (IN(PROD), NONADAPT, OUT(PROD)). Then Cν ∈ PSTR(1).



FURTHER EXTENSIONS OF CLIFFORD CIRCUITS AND THEIR CLASSICAL SIMULATION COMPLEXITIES 15

Proof. We use the following notation: for any single-qubit operator O, let O1 = O⊗ I⊗ . . .⊗ I. Given
a Clifford computational task T = (|α1 . . . αn〉, B, {U, I, . . . , I}) ∈ Cν , and a bit i ∈ {0, 1}, we shall

describe an algorithm to compute pi := p
{1}
T (i). WLOG, B is a unitary circuit.

Since p0 + p1 = 1, it suffices to be able to calculate p0 − p1 efficiently. By Born’s rule, this is given by

p0 − p1 = 〈α|B†(UZU†)1B|α〉. (10)

Since the Pauli matrices {σi}i form a basis for the set of 2× 2 matrices , we can write

U =

3∑
i=0

aiσ
i,

for some ai ∈ C. Hence,

UZU† =
∑
ij

aiajσ
iZσj .

But σiZσj is a Pauli operator. Since the basic Clifford gates map Pauli operators to Pauli operators,

B†(σiZσj)1B = γijP
ij
1 ⊗ . . .⊗ P ijn .

Putting this into Eq. (10), we get an expression for p0 − p1.

p0 − p1 =

3∑
i,j=0

aiajγij〈α1 . . . αn|P ij1 ⊗ . . .⊗ P ijn |α1 . . . αn〉

=

3∑
i,j=0

aiajγij

n∏
k=1

〈αk|P ijk |αk〉. (11)

We now analyze the running time of our algorithm. Computing γijP
ij
1 ⊗. . .⊗P ijn takes O(n2)-time. The

formula given in Eq. (11) involves a sum of 9 terms. Each term involves computing n expectation values
of 2 × 2 matrices. Hence, this step takes O(n)-time. Overall, the algorithm runs in O(n2) = O(N2)-
time, where N is the number of gates in the circuit (which we assumed to contain no extraneous lines).
Hence, Cν ∈ PSTR(1).

�

Appendix G. Proof of Theorem 6

Theorem 6. Let ν = (IN(BITS), ADAPT, OUT(PROD)). Then Cν ∈ PWEAK(1).

Proof. This is a special case of the results in Section VIIC of [10], which showed that an IN(BITS),
NONADAPT, OUT(BITS) circuit containing d non-Clifford gates, where each gate acts on at most
b qubits, can be classically simulated in the WEAK(1) sense in O(42bdn + n2)-time. In our case, the
circuits in Cν can be thought of as containing exactly one non-Clifford gate on the first wire just before
the computational-basis measurement. Hence, d = b = 1, which implies that the algorithm runs in
O(n2)-time. This concludes the proof that Cν ∈ PWEAK(1).

�



16 FURTHER EXTENSIONS OF CLIFFORD CIRCUITS AND THEIR CLASSICAL SIMULATION COMPLEXITIES

Appendix H. Constructing circuits for 3-CNF formulas

In the proof of Theorem 1, we used the fact that given a 3-CNF formula f : {0, 1}n → {0, 1}, we can
efficiently construct a quantum circuit Af comprising only the basic Clifford operations and T gates,
which acts on the following computational basis states as follows:

Af |x〉|0〉|0〉A = |x〉|f(x)〉|0〉A, (12)

where x ∈ {0, 1}n, y ∈ {0, 1} and |·〉A is an ancilla register of size O(n).

A similar fact was used in the proof of Theorem 2, namely that given a 3-CNF formula f : {0, 1}n →
{0, 1}, we can efficiently construct a classical circuit Cf comprising only Toffoli gates, which acts on
the following computational basis states as follows:

Cf (x, 1, 1A) = (x, f(x), 1A), (13)

where x ∈ {0, 1}n, y ∈ {0, 1} and A is an ancilla register of size O(n).

Note that in both circuits Cf and Af , we do not allow for the addition of more ancilla lines or for the
discarding of any bit or qubits. This is because for the notion of STR(n) simulation, all bit or qubit
lines have to be accounted for. Hence, we make explicit the reference to the ancilla registers A. In this
section, we present the details of the above constructions.

Recall the definition of a 3-CNF formula given in Eq. (6). As above, we assume that every variable
x1, . . . , xn appears in the formula for f , so that n ≤ 3N , i.e. n = O(N).

H.1. Constructing Cf . We show that we can implement the function f using Toffoli gates alone.
We denote the action of the Toffoli gate on lines i, j, k with inputs a, b, c by

Tofijk(. . . , a, . . . , b, . . . , c, . . .) = (. . . , a, . . . , b, . . . , c⊕ a · b, . . .).
We use subscripts at the end to indicate a ‘marginalizing out’ of the values of all other wires, for
example,

Tof143(a, b, c, d, e)235 = (a, b, c⊕ a · d, d, e)235 = (b, c⊕ a · d, e).

Lemma 7. Let f be a 3-CNF formula of the form given by Eq. (6) with n variables and N clauses,
where n = O(N). Then there exists a classical circuit Cf consisting of O(N) Toffoli gates on n+1+s(N)
lines, for some s(N) = O(N) (where we do not allow for the addition of bit lines or the discarding of
any bits), such that

Cf (x1, . . . , xn, 1, 1, . . . , 1︸ ︷︷ ︸
s(N)

) = (x1, . . . , xn, f(x1, . . . , xn), 1, . . . , 1︸ ︷︷ ︸
s(N)

). (14)

Remark. The ancilla bits are initialized to 1 instead of 0. This is because the Toffoli gate is universal
only if we have the ability to prepare the state 1. In particular, if the inputs were always just 0’s, then
it would not be possible to create the state 1. On the other hand, we can prepare 0 from 1 since the
target bit of Tof(1, 1, 1) is 0.

Proof. We first show how to compute f using AND, OR, NOT, COPY and SWAP gates on the input
(x1, . . . , xn). Let ki and ki be the number of times xi and xi, respectively, appear as literals in the
formula for f , i.e.

∑
i(ki + ki) = 3N . By assumption, every variable x1, . . . , xn appears in the formula

for f , so ki + ki > 0 for all i.

For each i, if ki > 0, apply the COPY gate ki−1 times to xi and the COPY gate followed by the NOT
gate ki times to xi. Otherwise, if ki = 0 (i.e. ki > 0), apply the NOT gate followed by the COPY gate
ki times to xi. This creates the state

(x1, . . . , x1︸ ︷︷ ︸
k1

, . . . , xn, . . . , xn︸ ︷︷ ︸
kn

, x1, . . . , x1︸ ︷︷ ︸
k1

, . . . , xn, . . . , xn︸ ︷︷ ︸
kn

).



FURTHER EXTENSIONS OF CLIFFORD CIRCUITS AND THEIR CLASSICAL SIMULATION COMPLEXITIES 17

Note that the number of gates that the above procedure involves is
∑
ki>0

[
(ki − 1) + 2ki

]
+
∑
ki=0 2ki ≤

2
∑
i(ki + ki) = 6N .

Applying the SWAP gate up to 3N times to the above state, we get the state

(a11, a12, a13, a21, . . . , aN1, aN2, aN3). (15)

We now apply the OR and AND gates according to the formula in Eq. (6) to get (a11∨a12∨a13)∧(a21∨
a22∨a23)∧ . . .∧(aN1∨aN2∨aN3). This involves a total of 2N OR gates and N−1 AND gates. Hence,
the resulting circuit Bf , whose number of gates is bounded above by 6N + 3N + 2N +N − 1 = O(N),
computes:

Bf (x1, . . . , xn) = f(x1, . . . , xn).

Note that the maximum width of Bf , which occurs when the state is given by (15), is 3N .

We now use the fact that the Toffoli gate together with the ability to prepare the ancilla state 1 is
universal for classical computing. In particular, they simulate the above gates as follows:

¬x = Tof123(1, 1, x)3,

x ∧ y = [Tof123 ◦ Tof453(x, y, 1, 1, 1)]3,

COPY(x) = [Tof123 ◦ Tof243(x, 1, 1, 1)]13,

x ∨ y = [Tof453 ◦ Tof123 ◦ Tof453 ◦ Tof342 ◦ Tof341(x, y, 1, 1, 1)]3,

SWAP(x, y) = [Tof123 ◦ Tof321 ◦ Tof123(x, 1, y)]13. (16)

We append ancilla lines initialized to 1 to Bf , and replace all the gates in Bf by Toffoli gates according
to the rules in Eq. (16), and apply additional swap gates (implemented by Toffoli gates) so that the first
output of the circuit is f(x1, . . . , xn). Note that we do not discard any bits. Each of the replacements
increases the number of ancilla lines by at most 3 and the number of gates by at most 4. Hence, both
the total number of lines a(N) and the number of Toffoli gates in the new circuit B′f are still O(N).

The action of B′f on the computational basis states is given by:

B′f (x1, . . . , xn,~1) = (f(x1, . . . , xn), j2, . . . , ja(N)),

where (j2, . . . , ja(N)) are junk bits.

We now make use of the uncomputation trick to reset the junk bits to 1. Since the Toffoli gates are
their own inverse, the inverse of B′f is obtained by applying the gates in B′f in the reverse order.

Consider the circuit B′′f that is formed as follows: first apply B′f to (x1, . . . , xn,~1). Introduce a new

ancilla line, called a, initialized to 0. Next, apply the CNOT gate CX1a. Finally, apply B′−1f to the

first a(N) bits to reset them back to (x1, . . . , xn,~1). A circuit diagram for the above steps is shown in
Figure 3. This gives

B′′f (x1, . . . , xn,~1, 0) = (x1, . . . , xn,~1, f(x1, . . . , xn)).

To get the required circuit Cf , we need to perform three more simple steps. First, the ancilla bit
in the last register has to start from 1 instead of 0. This can be achieved by applying a NOT gate
(implemented by the Toffoli gate and ancillas initialized to 1) to 0. Second, the CNOT gate has to be
simulated by a Toffoli gate. This may be achieved by using the fact that

CX(a, b)12 = Tof123(a, 1, b)13.

Third, the output has to be of the form (14). This is obtained by applying swap gates at the end of
the circuit. These steps add at most a constant number of gates and a constant number of ancilla bits.
Hence, the resulting circuit Cf has O(N) gates acting on O(N) lines.

�



18 FURTHER EXTENSIONS OF CLIFFORD CIRCUITS AND THEIR CLASSICAL SIMULATION COMPLEXITIES

x1

B′f

•

B′−1f

x1
...

...
xn xn

1 1
...

...
1 1

0 f(x1, . . . , xn)

Figure 3. Uncomputation trick, in which the output bits, except for
those in the target register, are reset to their input values. The state
evolves as follows: (x1, . . . xn, 1, . . . , 1, 0) → (f(x1, . . . , xn), j2, . . . , ja(N), 0) →
(f(x1, . . . , xn), j2, . . . , ja(N), f(x1, . . . , xn))→ (x1, . . . xn, 1, . . . , 1, f(x1, . . . , xn)).

H.2. Constructing Qf . We now show how we can convert Cf to a circuit Qf that involves only the
basic Clifford gates and the T gate.

Lemma 8. Let f be a 3-CNF formula of the form given by Eq. (6) with n variables and N clauses,
where n = O(N). Then there exists a quantum circuit Qf consisting of O(N) basic Clifford gates and
T gates on n+ 1 + s(N) lines (where we do not allow for the addition of qubit lines or the discarding
of any qubits), such that

Qf

∣∣∣x1, . . . , xn, 0, 0s(N)
〉

=
∣∣∣x1, . . . , xn, f(x1, . . . , xn), 0s(N)

〉
, (17)

for some s(N) = O(N).

Proof. Using Lemma 7, we have a circuit Cf comprising O(N) Toffoli gates satisfying

Cf

(
x1, . . . , xn, 1, 1

s(N)
)

=
(
x1, . . . , xn, f(x1, . . . , xn), 1s(N)

)
.

Using the construction presented in [8], we express each Toffoli gate in terms of the basic Clifford
gates, T and T † gates, as follows:

• • • • • T

• = • • T † T † S

H T † T T † T H

Since T 8 = 1, we replace each T † gate above by T 7. These replacements increase the number of gates
by a constant factor, and hence the total number of gates in the new circuit is still O(N). Finally, we
insert X (expressed as X = HS2H) gates at the start and end of the circuit so that the ancilla lines
start and terminate in the state |0〉. This gives us a quantum circuit obeying Eq. (17) with O(N) wires
and O(N) gates.

�

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 


