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Abstract
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sion algorithms. This is the first such implication outside of the derandomization setting. As
an application, we use known natural lower bounds for AC0[p] circuits (due to Razborov and
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1 Introduction

Circuit analysis problems, problems whose input or output is a Boolean circuit, seem to be a
crucial link between designing algorithms and proving lower bounds. For example, Williams [Wil13,
Wil14b, Wil14a] shows a way to convert non-trivial Circuit-SAT algorithms into circuit lower
bounds. In the other direction, there have been many circuit analysis algorithms inspired by circuit
lower bound techniques [LMN93, Bra10, San10, ST12, IMP12, IMZ12, BIS12, CKS14, CKK+15,
SW15, CK15, CS15, Tal15], but outside the setting of derandomization [NW94, BFNW93, IW97,
IKW02, Uma03, KI04], few formal implications giving generic improvements.

Here we make a step towards such generic connections. While we are not able to show that
an arbitrary way to prove circuit lower bounds yields circuit analysis algorithms, we show that
any circuit lower bound proved through the very general natural proofs paradigm of Razborov and
Rudich [RR97] does yield such algorithms.

Our main general result is

Theorem 1.1 (Learning Algorithms from Natural Lower Bounds: Informal version). Natural prop-
erties imply randomized learning algorithms and (lossy) compression algorithms.

We are able to apply our general result with known natural lower bounds [Raz87, Smo87, RR97]
to give quasi-polynomial time learning algorithms for the hypothesis class AC0[p], for any prime p
(polynomial-size constant-depth circuits with AND, OR, NOT, and MODp gates).

Theorem 1.2 (Learning for AC0[p]: Simplified version). For every prime p ≥ 2, there is a random-
ized algorithm that, given membership queries to an arbitrary n-variate Boolean function f ∈ AC0[p],
runs in quasipolynomial time npoly logn and finds a circuit that computes f on all but 1/poly(n) frac-
tion of inputs.

No such learning algorithms for AC0[p] were previously known. For AC0, such a learning algo-
rithm was given by Linial, Mansour, and Nisan [LMN93]1, based on H̊astad’s proof of strong circuit
lower bounds for AC0 [H̊as86].

1.1 Compression and learning algorithms from natural lower bounds

Informally, a natural lower bound for a circuit class Λ contains an efficient algorithm that dis-
tinguishes between the truth tables of “easy” functions (of low Λ-circuit complexity) and those of
random Boolean functions. This notion was introduced by Razborov and Rudich [RR97] to capture
a common feature of most circuit lower bound proofs: such proofs usually come with efficient al-
gorithms that say something nontrivial about the structure of easy functions in the corresponding
circuit class. In [RR97], this observation was used to argue that any circuit class with a natu-
ral lower bound is too weak to support cryptography: no strong pseudorandom generator can be
computed by a small circuit from the class.

We show that natural circuit lower bounds also imply algorithms for compression and learning
of Boolean functions from the same circuit class (provided the circuit class is not too weak).

Recall the compression task for Boolean functions: given the truth table of a Boolean function
f , print a circuit that computes f . If f is unrestricted, the best guarantee for the circuit size is

1Their algorithm works in a more general learning model without membership queries, but with access to labelled
examples (x, f(x)) for uniformly random x.
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2n/n [Lup58, Lup59], and such a circuit can be found in time poly(2n), polynomial in the truth
table size. We might however be able to do much better for restricted classes of functions. Let Λ be
the set of functions computed by some circuit class Λ. Recent work has shown that we can “mine”
specific lower bounds against Λ to compress functions g ∈ Λ better than the universal construction
[CKK+15]. This work suggests that there should be some generic connection between circuit lower
bounds and compression algorithms, but such a connection was not known.

We show that any circuit lower bound that is natural in the sense of Razborov and Rudich [RR97]
yields a generic compression algorithm for Boolean functions from the same circuit class, provided
the circuit class is sufficiently powerful (e.g., containing AC0[p] for some prime p ≥ 2).

A compression algorithm may be viewed as a special case of a natural property: if the compres-
sion fails, the function must have high complexity, and compression must fail for most functions.
Thus we get an equivalence between these two notions for the case of randomized compression algo-
rithms and BPP-computable natural properties. (As our compression algorithms are randomized,
we don’t get such an equivalence for the deterministic case.)

The first stage of our algorithm is a lossy compression of the function in the sense that we get a
small circuit that computes the function on most inputs. Because this first stage only examines the
truth table of the function in relatively few locations, we can view this stage as a learning algorithm.
This algorithm produces a circuit that approximately computes the given function f with respect
to the uniform distribution, and uses membership queries to f . So it fits the framework of PAC
learning for the uniform distribution, with membership queries.

Our main result also yields a certain “search-to-decision” reduction for the Minimum Circuit
Size Problem (MCSP). Recall that in MCSP, one is given the truth table of a Boolean function f ,
and a parameter s, and needs to decide if the minimum circuit size of f is less than s. Since an
efficient algorithm for MCSP would make it a natural property (with excellent parameters), our
main result implies the following. If MCSP is in BPP, then, given oracle access to any n-variate
Boolean function f of circuit complexity s, one can find (in randomized polynomial time) a circuit
of size poly(s) that computes f on all but 1/poly(n) fraction of inputs.

1.2 Our techniques

The main idea of our lossy compression (learning) algorithm is, given the truth table of a Boolean
function f to be compressed,

• use f as the basis for the Nisan-Wigderson (NW) generator [NW94],

• break the generator by applying the natural property algorithm as a distinguisher (between
the strings output by the NW generator and truly random strings),

• use an efficient reconstruction algorithm from the analysis of the NW generator to find a
small circuit that approximately computes the function f .

For the described approach to work, we need to ensure that (1) each output of the NW generator
(when viewed as the truth table of a Boolean function) is computable by a small circuit from the
circuit class for which we have a natural lower bound (and so the natural property algorithm can
be used as the distinguisher to break the generator), and (2) there is an efficient reconstruction
algorithm that takes a circuit breaking the NW generator based on the function f , and constructs
a small circuit for (approximately computing) f .
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For (1), we utilise the fact that each bit of output of the NW generator (on a fixed seed) is
basically the value of the function f applied to some substring of the seed (chosen via a certain
combinatorial structure, the NW design), and so the circuit complexity of the truth table output
by the NW generator is closely related to the circuit complexity of the original function f .

In particular, we show that if f is in AC0[p], and the NW generator has exponential stretch
(from poly(n) bits to 2n

γ
bits, for some γ > 0), then each string output by the NW generator is

also a function in AC0[p]. If, on the other hand, we take the NW generator with certain polynomial
stretch, we get that its output strings will be Boolean functions computable by AC0[p] circuits
of subexponential size. The tradeoff between the chosen stretch of the NW generator and the
circuit complexity of the string it outputs will be very important for the efficiency of our learning
algorithms.

For (2), we use the known efficient randomized algorithm that takes a distinguisher for the
NW generator based on a function f , and constructs a small circuit approximately computing f ,
provided the algorithm is given oracle access to f . The existence of such a uniform algorithm was
first observed by Impagliazzo and Wigderson [IW01] (based on [NW94, BFNW93]) in the context
of derandomizing BPP under uniform complexity assumptions. Simulating oracle access to f in the
framework of [IW01] was quite nontrivial (and required the downward self-reducibility of f). In
contrast, we are explicitly given the truth table of f , and so oracle access to f is not an issue!

Note that if we break the NW generator based on a function f , we only get a circuit that agrees
with f on slightly more than half of all inputs. To get a better approximation of f , we employ a
standard “hardness amplification” encoding of f , getting a new, amplified function h, and then use
h as the basis for the NW generator. The function h has the property that any circuit computing
h on better than 1/2 of the inputs can be efficiently massaged into a new circuit that computes the
original f on most inputs.

For this amplification to work in our context, we need to ensure that the amplified function h
is in the same circuit class as f , and is of related circuit complexity. We show that standard tools
such as the Direct Product and XOR constructions have the required properties for AC0[2]. For
AC0[p] where p is prime other than 2, we can’t use the XOR construction (as Parity cannot be
computed in AC0[p] for any prime p > 2 by Smolensky’s lower bound [Smo87]). We argue that the
MODp function can be used for the required amplification within AC0[p]2.

Thus, our actual lossy compression algorithm will be:

Given the truth table of a function f in some circuit class Λ, construct a small circuit
approximating f by running a uniform reconstruction algorithm that uses a natural
property for the class Λ as the distinguisher to break the NW generator based on the
amplified version of f .

To turn this algorithm into the exact compression algorithm, we just patch up the errors by
table lookup. Since there are relatively few errors, the size of the patched-up circuit will still be
less that the trivial size 2n/n.

2We stress that for our purposes it is important that the forward direction of the conditional PRG construction,
from a given function f to a generator based on that f , be computable in some low nonuniform circuit class (such as
AC0[p]). In contrast, in the setting of conditional derandomization, it is usually important that the reverse direction,
from a distinguisher to a small circuit (approximately) computing the original function f , be computable in some
low (nonuniform) circuit class (thereby contradicting the assumed hardness of f for that circuit class). One notable
exception is hardness amplification within NP [O’D04, HVV06, Tre05].
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More interestingly, we can get from our lossy compression algorithm described above a learning
algorithm! The idea is that the reconstruction algorithm for the NW generator runs in time
polynomial in the size of the output of the generator, and so only needs at most that many oracle
queries to the function f . Rather than being given the full truth table of f , such an algorithm can
be simulated with just membership queries to f . Thus we get a learning algorithm with membership
queries in the PAC model over the uniform distribution.

Since the runtime of this learning algorithm (and hence also the size of the circuit for f it
produces) will be polynomial in the output length of the NW generator that we use to learn f , we
would like to minimize the stretch of the NW generator3. However, as noted above, shorter stretch
of the generator means higher circuit complexity of the truth table it outputs. This in turn means
that we need a natural property that works for Boolean functions of higher circuit complexity. In
the extreme case, to learn a polysize Boolean function f , we need to use the NW generator with
polynomial stretch, and hence need a natural property useful against circuits of exponential size.
In general, there will be a tradeoff between the efficiency of our learning algorithm for the circuit
class Λ and the quality of a natural circuit lower bound for Λ: the better the circuit lower bound,
the more efficient the learning algorithm.

Razborov and Rudich [RR97] showed the AC0[p] circuit lower bounds due to Razborov [Raz87]
and Smolensky [Smo87] can be made into natural properties that are useful against circuits of
weakly exponential size 2n

γ
, for some γ > 0 (dependent on the depth of the circuit). Plugging

this natural property into our framework, we get our quasipolynomial-time learning algorithm for
AC0[p], for any prime p.

We remark that our approach is quite similar to the way Razborov and Rudich [RR97] used
natural properties to get new algorithms. They used natural properties to break the cryptographic
pseudorandom function generator of [GGM86], which by definition outputs functions of low circuit
complexity. Breaking such a generator based on an assumed one-way function F leads to an efficient
algorithm for inverting this function F well on average (contradicting the one-wayness of F ). We,
on the other hand, use the NW generator based on a given function f . The properties of the
NW generator construction can be used to show that it outputs (the truth tables of) functions
of low circuit complexity, relative to the circuit complexity of f . Thus a natural property for the
appropriate circuit complexity class (with an appropriate size parameter) can be used to break this
NW generator, yielding an efficient algorithm for producing a small circuit approximating f .

1.3 Related work

This work was prompted by results that circuit analysis algorithms imply circuit lower bounds. A
natural question is: given that these algorithms are sufficient for circuit lower bounds, to what
degree are they necessary? Apart from derandomization, no other equivalences between circuit
analysis algorithms and circuit lower bounds are known. Below we list a number of known circuit-
analytic algorithmic tasks that would imply some kind of circuit lower bounds:

• Derandomization [IKW02, KI04, AvM12, CIKK15]

• Deterministic (lossy) compression or MCSP [CKK+15, IKW02]

• Deterministic learning [FK09, KKO13]

3This is in sharp contrast to the setting of derandmomization where one wants to maximize the stretch of the
generator, as it leads to a more efficient derandomization algorithm.
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• Deterministic (QBF) SAT algorithms [Wil13, SW15]

Bracketing the hardness vs. randomness setting, special cases of using circuit lower bounds to
construct circuit analysis algorithms abound. Often, lower bounds are the only way that we know
to construct these algorithms. Each of the following results uses the proof of a lower bound to
construct an algorithm. The character and number of these results gives empirical evidence that
there should be generic algorithms for circuit analysis based on generic lower bounds.

• Parity 6∈ AC0  AC0-Learning [LMN93], AC0-SAT [IMP12], and AC0-Compression [CKK+15]

• MODq 6∈ AC0[p], p, q distinct primes,  AC0[p]-Compression [Sri15]

• Andreev’s function 6∈ deMorgan[n3−ε]  subcubic formula Compression [CKK+15]

All the lower bounds listed above belong to the natural proofs framework. Given these results,
the obvious conjecture was that natural proofs imply some kind of generic circuit analysis algo-
rithm. For instance, [CKK+15] suggested that every natural circuit lower bound should imply a
compression algorithm. We take a step towards proving such an implication by showing that any
natural circuit lower bound for a sufficiently powerful circuit class (AC0[p] or bigger) does indeed
lead to a randomized compression algorithm for the same circuit class.

The remainder of the paper. We give the necessary background in Section 2. We define and
show the constructions of a black-box generator and black-box amplification, the tools we need
to prove our main results, in Sections 3 and 4, respectively. In Section 5, we use these tools to
prove our main result that natural properties yield learning algorithms for circuit classes AC0[p]
and above. On the other hand, in Section 6, we argue that AC0 is not sufficiently powerful to carry
out the proof of our main result. Section 7 contains concluding remarks and open questions. Some
auxiliary results and additional technical details are given in the appendix.

2 Definitions and tools

2.1 Circuits and circuit construction tasks

For a circuit class Λ and a set of size functions S, we denote by Λ[S] the set of S-size n-input
circuits of type Λ. When no S is explicitly given, it is assumed to be poly(n).

Definition 2.1 (Circuits (Approximately) Computing f). Let f : {0, 1}n → {0, 1} be some Boolean
function, and let ε : N → [0, 1] be an approximation bound. Then CKTn(f) denotes the set of

circuits that compute the function f on all n-bit inputs, and C̃KTn(f, ε) the set of all circuits that
compute f on all but an ε fraction of inputs.

Definition 2.2 (Circuit Builder Declarations (adapted from [IW01])). Let A and B be indexed
sets of circuits. A T (n)-construction of B from A is a probabilistic machine M(n, α,An) which
outputs a member of Bn with probability at least 1 − α in time T (n), where the size of Bn is
poly(|An|). We declare that such a machine exists by writing:

Cons(A→ B; T (n)).

Read this notation as “from A we can construct B in time T (n).” To assert the existence of a
T (n)-construction of B from A, with oracle O, where the machine M is equipped with an oracle
for the language O but otherwise is as above, write: ConsO(A→ B; T (n)).
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2.2 Learning tasks

Let f ∈ Λ be some Boolean function. The learner is allowed membership queries to f . That is, the
learner may query an input x ∈ {0, 1}n to the oracle, getting back the value f(x).

Definition 2.3 (PAC learning over the uniform distribution with membership queries). Let Λ be
any class of Boolean functions. An algorithm A PAC-learns Λ if for any n-variate f ∈ Λ and for
any ε, δ > 0, given membership query access to f algorithm A prints with probability at least 1− δ
over its internal randomness a circuit C ∈ C̃KTn(f, ε). The runtime of A is measured as a function
T = T (n, 1/ε, 1/δ, size(f)).

Note that we do not require “proper learning”: the output is an unrestricted circuit.

2.3 Compression tasks

Definition 2.4 (Λ-Compression). Given the truth table of n-variate Boolean function f ∈ Λ, print
some Boolean circuit C ∈ CKTn(f) computing f such that |C| < 2n/n, the trivial bound.

Definition 2.5 (ε-Lossy Λ-Compression). Given the truth table of n-variate Boolean function

f ∈ Λ, print some Boolean circuit C ∈ C̃KTn(f, ε) such that |C| < 2n/n, the trivial bound.

The relevant parameters for compression are runtime and printed circuit size. We say that a
compression algorithm is efficient if it runs in time poly(2n), which is polynomial in the size of the
truth-table supplied to the algorithm. Though we count any output circuit of size less than 2n/n as
a successful compression, we will of course want to optimize this. In previous work, the size of the
resulting circuits approximately matches the size of circuits for which we have lower bounds. Note
that we do not require “proper compression” in either case: the output is an unrestricted circuit.

2.4 Natural properties

Let Fn be the collection of all Boolean functions on n variables. Λ and Γ denote complexity classes.
A combinatorial property is a sequence of subsets of Fn for each n.

Definition 2.6 (Natural Property [RR97]). A combinatorial property Rn is Γ-natural against Λ
with density δn if it satisfies the following three conditions:

Constructivity: The predicate fn
?
∈ Rn is computable in Γ

Largeness: |Rn| ≥ δn · |Fn|

Usefulness: For any sequence of functions fn, if fn ∈ Λ then fn 6∈ Rn, almost everywhere.

For each n, δn is a lower bound on the probability that g ∈ Fn has Rn. The original definition
in [RR97] sets δn ≥ 2−O(n). However, we show (see Lemma 2.7 below) that one may usually assume
that δn ≥ 1/2. Note that in the wild, nearly all natural properties have δn close to one and Γ ⊆ NC2.

Lemma 2.7 (Largeness for natural properties). Suppose P is a P-natural property of n-variate
Boolean functions that is useful against class Λ of size s(n), and has largeness δn ≥ 2−cn, for some
constant c ≥ 0. Then there is another P-natural property P ′ that is useful against the class Λ of
size s′(n) := s(n/(c+ 1)), and has largeness δ′n ≥ 1/2.
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Proof. Define P ′ as follows:

The truth table of a given f : {0, 1}n → {0, 1} is in P ′ iff for at least one string a ∈
{0, 1}k, for k = cn/(c+ 1), the restriction fa(y1, . . . , yn−k) := f(a1, . . . , ak, y1, . . . , yn−k)
is in P (as a function on n− k = n/(c+ 1) variables).

Observe that testing P ′ on a given n-variate Boolean function f can be done in time O(2k) ·
poly(2n−k) ≤ poly(2n); so we have constructivity for P ′. Next, if f : {0, 1}n → {0, 1} has a Λ circuit
of size less s′(n), then each restricted subfunction fa : {0, 1}n−k → {0, 1} has a Λ circuit of size less
than s(n−k) ≤ s′(n). Finally, a random function f : {0, 1}n → {0, 1} yields 2k independent random
subfunctions, on n− k variables each, and the probability that at least one of these (n− k)-variate
functions satisfies P is at least

1− (1− 2−c(n−k))2k = 1− (1− 2−k)2k

≥ 1− 1

e

≥ 1

2
.

Thus we have largeness at least 1/2 for P ′.

2.5 NW generator

Definition 2.8 (NW Design). For parameters n,m,L ∈ N, a sequence of sets S1, . . . , SL ⊆ [m] is
called an NW design if

• |Si| = n, for all 1 ≤ i ≤ L, and

• |Si ∩ Sj | ≤ logL, for all 1 ≤ i 6= j ≤ L.

It is well-known that NW designs exist and can be efficiently constructed for any n, m = O(n2),
and L < 2n [NW94]. In Section 2.5.1 below, we review the construction of NW designs from
[NW94], and show that it can be implemented in AC0[p] (Theorem 2.13). The efficiency of this
construction of designs is necessary for our transfer theorem.

Definition 2.9 (NW Generator). Let f : {0, 1}n → {0, 1}. For m = n2 and a stretch function
L(m) : N→ N, where L(m) < 2n, let S1, . . . , SL ⊆ [m] be an NW design. Define the NW generator
Gf : {0, 1}m → {0, 1}L(m) as:

Gf (z) = f(z|S1)f(z|S2) . . . f(z|SL(m)
), (1)

where z|S denotes the |S|-length bit-string obtained by restricting z to the bit positions indexed
by the set S.

Recall the notion of a distinguisher, a circuit that breaks a given generator.

Definition 2.10 (Distinguishers). Let L : N → N be a stretch function, let G = {gm : {0, 1}m →
{0, 1}L(m)} be a sequence of functions, and let 0 < ε < 1 be an error bound. Define the set DIS(G, ε)
as all circuits D with L(m) inputs satisfying:

Pr
z∈{0,1}m

[D(gm(z))]− Pr
y∈{0,1}L(m)

[D(y)] > ε.

Theorem 2.11 (NW Reconstruction [NW94, IW01]). We have

Consf (DIS(Gf , 1/5)→ C̃KT(f, 1/2− 1/L(m)); poly(L(m))).
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2.5.1 NW designs in AC0[p]

Here we show that the particular NW designs we need in our compression and learning algo-
rithms can be constructed by small AC0[p] circuits, for any fixed prime p. Consider an NW design
S1, . . . , SL ⊆ [m], for m = O(n2), where

• each set Si is of size n,

• the number of sets is L = 2` for ` ≤ n, and

• for any two distinct sets Si and Sj , i 6= j, we have |Si ∩ Sj | ≤ `.

We show a particular construction of such a design that has the following property: the index
set [m] is partitioned into n disjoint subsets U1, . . . , Un of equal size (m/n) ∈ O(n). For each
1 ≤ i ≤ L, the set Si contains exactly one element from each subset Uj , over all 1 ≤ j ≤ n. For
1 ≤ j ≤ n and 1 ≤ k ≤ O(n), we denote by (Uj)k the kth element in the subset Uj .

To describe such a design, we use the following characteristic function g: for 1 ≤ i ≤ L,
1 ≤ j ≤ n, and 1 ≤ k ≤ O(n),

g(i, j, k) =

{
1 if (Uj)k ∈ Si
0 otherwise.

We will prove the following.

Theorem 2.12. There exists a constant dNW ≥ 1 such that, for any prime p, there exists a family
of functions g : {0, 1}`+2 logn → {0, 1} that are the characteristic functions for some NW design
with the parameters as above, so that g ∈ AC0[p] of size O(n2 log n) and depth dNW .

Proof. Recall the standard construction of NW designs from [NW94]. Let F be a field of size O(n).
Consider an enumeration of L polynomials of degree at most ` over F , with all coefficients in {0, 1};
there are at least 2` = L such polynomials. We associate each such polynomial with a binary string
i = i1 . . . i` ∈ {0, 1}`, so that i corresponds to the polynomial

Ai(x) =
∑̀
j=1

ij · xj−1

over the field F . Let r1, . . . , r|F | be some canonical enumeration of the elements of F . For each

binary string i ∈ {0, 1}`, we define a set

Si = {(rj , Ai(rj)) | 1 ≤ j ≤ n}.

Note that |Si| = n, and Si defines a set of n pairs in the universe F × F of O(n2) pairs (hence the
universe size for this construction is O(n2)). Finally, any two distinct degree (` − 1) polynomials
Ai(x) and Aj(x) may agree on at most ` points r ∈ F , and so we have |Si ∩ Sj | ≤ ` for the sets Si
and Sj , corresponding to the polynomials Ai(x) and Aj(x).

Arrange the elements of the universe [m] on an n × (m/n) grid. The n rows of the grid are
indexed by the first n field elements r1, . . . , rn, and the columns by all fields elements r1, . . . , r|F |.
For each j, 1 ≤ j ≤ n, define Uj to be the elements of [m] that belong to the row j of the grid. We
get that every set Si = {(rj , Ai(rj)) | 1 ≤ j ≤ n} picks exactly one element from each of the n sets
U1, . . . , Un.
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We will argue that this particular design construction is computable in AC0[p] of size polynomial
in `, for each prime p. Let p be any fixed prime (which we think of as a constant). Let F be an
extension field over GF(p) of the least size so that |F | ≥ n; such a field is described by some
polynomial over GF(p) of degree O(logp n), and is of size at most pn = O(n). As before, let
r1, . . . , r|F | be some canonical enumeration of the field elements in F .

Define the following n× ` matrix M : for 1 ≤ j ≤ n and 1 ≤ k ≤ `, we have

Mj,k = (rj)
k,

where the power (rj)
k is computed within the field F . Then the values Ai(r1), . . . , Ai(rn) may

be read off from the column vector obtained by multiplying the matrix M by the column vector
i ∈ {0, 1}`, in the field F . For a particular 1 ≤ j ≤ n, we have

Ai(rj) =
∑̀
k=1

Mj,k · ik.

Since each ik ∈ {0, 1}, the latter reduces to the task of adding a subset of ` field elements. Each
field element of F is a polynomial over GF(p) of degree k ≤ O(log n), and so adding a collection
of elements from F reduces to the coordinate-wise summation modulo p of k-element vectors in
(GF(p))k. The latter task is easy to do in AC0[p]4.

For any 1 ≤ i ≤ L, 1 ≤ j ≤ n, and 1 ≤ k ≤ |F |, g(i, j, k) = 1 iff Ai(rj) = rk. To compute
g(i, j, k), we need to evaluate the polynomial Ai(x) at rj , and then check if the result is equal to
rk. To this end, we “hard-code” the matrix M into the circuit (which incurs the cost at most
O(n` log n) bits of advice). We compute Ai(rj) by computing the matrix-vector product M · i, and
restricting to the jth coordinate of the resulting column vector. This computation involves O(log n)
summations of ` field elements of GF(p) modulo p, over n rows of the matrix M . The resulting
field element is described an O(log n)-element vector of elements from the underlying field GF(p).
Using O(log n) operations over GF(p), we can check if this vector equals the vector corresponding
to rk.

It is easy to see that this computation can be done in some fixed constant depth dNW by an
AC0[p] circuit of size O(` · n log n), which can be bounded by O(n2 log n), as required.

As a corollary, we get

Theorem 2.13. Let p be any prime. There exists a constant dMX ≥ 1 such that, for any n and
L < 2n, there exists an NW design S1, . . . , SL ⊆ [m] with m = O(n2), each |Si| = n, and |Si∩Sj | ≤
` = logL for all 1 ≤ i 6= j ≤ L, such that the function MXNW : {0, 1}`×{0, 1}m → {0, 1}n, defined
by

MXNW (i, z) = z|Si ,

is computable by an AC0[p] circuit of size O(` · n3 log n) and depth dMX .

4We code elements of GF(p) by p-wire bundles, where wire i is on iff the bundle codes the ith element of GF(p). An
addition, multiplication, or inverse in the field GF(p) can be implemented in AC0. To add up a tuple of field elements,
we first convert each field element from the representation above to the unary representation (using constant-depth
selection circuits). Then we lead these unary encodings into a layer of p gates, ⊕jp, for 0 ≤ j ≤ p− 1, where ⊕jp is the
gate ⊕p with p − j extra inputs 1. Thus the gate ⊕jp on inputs x1, . . . , xn ∈ GF(p) outputs 1 iff x1 + · · · + xn = j
mod p. Note that exactly one of the gates ⊕jp will output 1, giving us the desired field element in our encoding.
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Proof. Let g(i, j, k) be the characteristic function for the NW design from Theorem 2.12, where
|i| = `, |j| = log n, and |k| = log n + log c, for some constant c ≥ 1. We have g ∈ AC0[p] of size
O(` · n log n) and depth dNW . Let U1, . . . , Un ⊆ [m] be the sets of size cn each that partition [m]
so that every Si contains exactly one element from every Uj , 1 ≤ j ≤ n.

Let i1, . . . , i` and z1, . . . , zm denote the input gates of MXNW , and let y1, . . . , yn denote its
output gates. Associate each gate yj with the set Uj of indices in [m], for 1 ≤ j ≤ n. For each
1 ≤ i ≤ L and each 1 ≤ j ≤ n, define

yj = ∨cnk=1 g(i, j, k) ∧ (z|Uj )k.

Clearly, the defined circuit computes MXNW . It has size O(` · n3 log n) and depth dMX ≤
dNW + 2, as required.

Let Gf be the NW generator based on a function f , using the NW design S1, . . . , SL from
Theorem 2.13. For each fixed seed z, define the function gz : {0, 1}` → {0, 1}, for ` = logL, as

gz(i) = (Gf (z))i

= f(z|Si),

where 1 ≤ i ≤ L. By Theorem 2.13, we get gz ∈ (AC0[p])f . See Figure 1 for the description of a
small circuit for gz that combines the AC0[p] circuit for MXNW with a circuit for f .

MXNW

f

z

i

z|Si

Figure 1: A circuit for gz(i) = f(z|Si).

3 Black-box generators

The main tool we need for our learning algorithms is a transformation, which we call black-box
generator, taking a given function f : {0, 1}n → {0, 1} to a family G = {gz}z∈I of new Boolean
functions gz : {0, 1}n′ → {0, 1} satisfying the following properties:

• [nonuniform efficiency] each function gz has “small” circuit complexity relative to the
circuit complexity of f , and
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• [reconstruction] any circuit distinguishing a random function gz (for a uniformly random
z ∈ I) from a random n′-variate Boolean function can be used (by an efficient randomized
algorithm with oracle access to f) to construct a good approximating circuit for f .

Once we have such a black-box generator, we get our learning algorithm as follows: To learn
a function f : {0, 1}n → {0, 1}, use the natural property as a distinguisher that rejects (the
truth tables of) all functions gz, z ∈ I, but accepts a constant fraction of truly random functions;
apply the efficient reconstruction procedure to learn a circuit approximating f . Intuitively, we use
[nonuniform efficiency] to argue that if f is an easy function in some circuit class Λ, then so
is each function gz, z ∈ I.

Next we give a more formal definition of a black-box generator.

Definition 3.1 (Black-Box (ε, L)-Generator Within Λ). For a given error parameter ε : N→ [0, 1]
and a stretch function L : N → N, a black-box (ε, L)-generator within Λ is a mapping Gen that
associates with a given function f : {0, 1}n → {0, 1} a family Gen(f) = {gz}z∈{0,1}m of Boolean

functions gz : {0, 1}` → {0, 1}, where ` = logL(n), satisfying the following conditions for every
f : {0, 1}n → {0, 1}:

Small Family Size: m ≤ poly(n, 1/ε),

Nonuniform Λ-Efficiency: for all z ∈ {0, 1}m, gz ∈ Λf [poly(m)], and

Reconstruction: Consf (DIS(Gen(f), 1/5) → C̃KT(f, ε); poly(n, 1/ε, L(n))), where we think of
Gen(f) as the distribution over the truth tables of functions gz ∈ Gen(f), for uniformly
random z ∈ {0, 1}m.

We will prove the following.

Theorem 3.2. Let p be any prime. For every ε : N → [0, 1] and L : N → N such that L(n) ≤ 2n,
there exists a black-box (ε, L)-generator within AC0[p].

For the proof, we shall need the following notion of black-box amplification. Let Λ be any
circuit class.

Definition 3.3 (Black-Box (ε, δ)-Amplification within Λ). For given ε, δ > 0, (ε, δ)-amplification
within Λ is a mapping that associates with a given function f : {0, 1}n → {0, 1} its amplified version,
Amp(f) : {0, 1}n′ → {0, 1}, satisfying the following conditions for every f : {0, 1}n → {0, 1}:

Short Input: n′ ≤ poly(n, 1/ε, log 1/δ),

Nonuniform Λ-Efficiency: Amp(f) ∈ Λf [poly(n′)],

Uniform P-Efficiency: Amp(f) ∈ Pf , and

Reconstruction: Consf (C̃KT(Amp(f), 1/2− δ)→ C̃KT(f, ε); poly(n, 1/ε, 1/δ)).

We prove the following in the next section (see Theorem 4.11).

Lemma 3.4. Let p be any fixed prime. For all 0 < ε, δ < 1, there is black-box (ε, δ)-amplification
within AC0[p].
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Now we are ready to prove Theorem 3.2.

Proof of Theorem 3.2. Let f be an n-variate Boolean function. Set f? = (ε(n), 1/L(n))-Amp(f),
for the black-box amplification within AC0[p] that exists by Lemma 3.4. We have that f? is a
function on n′ = poly(n, 1/ε, logL) = poly(n, 1/ε) variables (using the assumption that L(n) ≤ 2n).

Let Gf? : {0, 1}m → {0, 1}L(n) be the NW generator based on the function f?, with the seed
size m = (n′)2. Define

Gen(f) = {gz}z∈{0,1}m ,

where gz = Gf?(z). We claim that this Gen(f) is an (ε, L)-black-box generator within AC0[p]. We
verify each necessary property:

Small Family Size: m = (n′)2 ≤ poly(n, 1/ε).

Nonuniform AC0[p]-Efficiency: We know that f? = Amp(f) ∈ (AC0[p])f [poly(m)]. For each
fixed z ∈ {0, 1}m, we have gz(i) = (Gf?(z))i, for i ∈ {0, 1}`, where ` = logL(n). By the definition
of the NW generator, gz(i) = f?(z|Si). By Theorem 2.13, the restriction z|Si , as a function of z
and i, is computable in AC0[p] of size poly(n′) and some fixed depth dMX . It follows that each gz
is computable in (AC0[p])f [poly(m)].

Reconstruction: The input to reconstruction is D ∈ DIS(GAmp(f), 1/5). Let MNW be the
reconstruction machine from the NW construction, and let MAmp be the reconstruction ma-

chine from (ε, 1/L)-amplification. We first run MAmp(f)
NW (D) to get, in time poly(L), a circuit

C ∈ C̃KT(Amp(f), 1/2−1/L(n)); note that we can provide this reconstruction algorithm oracle ac-
cess to Amp(f), since Amp(f) ∈ Pf by the uniform P-efficiency property of black-box amplification.

Next we run Mf
Amp on C to get C ′ ∈ C̃KT(f, ε), in time poly(n, 1/ε, L(n)).

4 Black-box amplification

We will show that black-box amplification is possible within Λ = AC0[p], to prove the results of the
previous section. This section can be skipped at a first reading.

Let Λ be any circuit class (e.g., AC0[p] for some prime p ≥ 2). For a function f , we denote by
Λf the class of oracle circuits in Λ that have f -oracle gates. Also recall that Λ[s] denotes the class
of Λ-circuits of size at most s.

Definition 4.1 (Black-Box (ε, δ)-Amplification within Λ). For given ε, δ > 0, (ε, δ)-amplification
within Λ is a mapping that associates with a given function f : {0, 1}n → {0, 1} its amplified
version, Amp(f) : {0, 1}m → {0, 1}, satisfying the following conditions:

Short Input: m ≤ poly(n, 1/ε, log 1/δ),

Nonuniform Λ-Efficiency: Amp(f) ∈ Λf [poly(m)],

Uniform P-Efficiency: Amp(f) ∈ Pf , and

Reconstruction: Consf (C̃KT(Amp(f), 1/2− δ)→ C̃KT(f, ε); poly(n, 1/ε, 1/δ)).
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We will show that black-box amplification is possible within Λ = AC0[p], for any prime p ≥ 2.

Remark 4.2. In our construction, we actually get a better bound on the parameter m: we have
m ≤ O(n ·1/ε · log2(1/δ)), and Amp(f) ∈ Λf [O(m)]. Moreover, we get that there is a fixed constant
dAmp ≥ 1 such that (for any prime p ≥ 2) the depth of the AC0[p] circuit for Amp(f) is at most
dAmp plus the depth of the AC0[p] circuit for f .

For AC0[2], we shall use standard hardness amplification tools from pseudorandomness: Direct
Product and XOR construction. For AC0[p], p 6= 2, we will need to use something else in place
of XOR, as small AC0[p] circuits can’t compute Parity [Smo87]. We will replace XOR with a
MODp function, also using an efficient conversion from {0, 1, . . . , p−1}-valued functions to Boolean
functions, which preserves the required amplification parameters.

First we discuss the Direct Product amplification. For a Boolean function f : {0, 1}n → {0, 1}
and a parameter k ∈ N, the k-wise direct product of f is fk : {0, 1}nk → {0, 1}k where

fk(x1, . . . , xk) = (f(x1), . . . , f(xk))

for xi ∈ {0, 1}n, 1 ≤ i ≤ k.
It is well-known that the Direct Product construction amplifies hardness of a given function f

in the sense that a circuit somewhat nontrivially approximating the function fk may be used to
get a new circuit that approximates the original function f quite well [GNW11], and, moreover,
this new circuit for f can be constructed efficiently uniformly [IW01]. We shall use the following
algorithm due to [IJKW10] that has optimal parameters (up to constant factors).

Theorem 4.3 (Amplification via Direct Product [IJKW10]). There is a constant c and a prob-
abilistic algorithm A with the following property. Let k ∈ N, and let 0 < ε, δ < 1 be such that
δ > e−εk/c. For a Boolean function f : {0, 1}n → {0, 1}, let C ′ be any circuit in C̃KT(fk, 1 − δ).
Given such a circuit C ′, algorithm A outputs with probability Ω(δ) a circuit C ∈ C̃KT(f, ε).

The algorithm A is a uniform randomized NC0 algorithm (with one C ′-oracle gate), and the
produced circuit C is an AC0 circuit of size poly(n, k, log 1/ε, 1/δ) (with O((log 1/ε)/δ) of C ′-oracle
gates).

Next, we need to convert a non-Boolean function fk : {0, 1}kn → {0, 1}k into a Boolean func-
tion h such that a circuit approximately computing h would uniformly efficiently yield a circuit
approximately computing fk, where the quality of approximation is essentially preserved.

4.1 XOR construction

For the case of AC0[2] circuits, we will use the XOR construction due to Goldreich and Levin [GL89]:
Given a g : {0, 1}m → {0, 1}k, define gGL : {0, 1}m+k → {0, 1} by

gGL(x1, . . . , xm, r1, . . . , rk) =

k∑
i=1

ri · g(x1, . . . , xm)i mod 2.

For strings x, y ∈ {0, 1}k, let 〈x, y〉 denote the inner product
∑k

i=1 xi · yi mod 2. We need the
following algorithm of Goldreich and Levin.
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Theorem 4.4 ([GL89]). There is a probabilistic algorithm A with the following property. Let
h ∈ {0, 1}k be any string, and let B : {0, 1}k → {0, 1} be any predicate such that

|Prr∈{0,1}n [B(r) = 〈h, r〉]− 1/2| ≥ γ

for some γ > 0. Then, given oracle access to B and given γ, the algorithm A runs in time
poly(k, 1/γ) and outputs a list of size O(1/γ2) such that, with probability at least 1/2, the string h
is on this list.

Theorems 4.3 and 4.4 imply the following.

Theorem 4.5 (Black-Box Amplification within AC0[2]). For any 0 < ε, γ < 1, there is black-box
(ε, γ)-amplification within AC0[2].

Proof. Given f : {0, 1}n → {0, 1} in AC0[2] of size s, and given 0 < ε, δ < 1, define Amp(f) as
follows:

1. Set k = d(3c) · 1/ε · ln 1/γe+ 1, where c is the constant in Theorem 4.3.

2. Define g to be the direct product fk : {0, 1}nk → {0, 1}k.

3. Define Amp(f) to be gGL : {0, 1}nk+k → {0, 1}.

Claim 4.6. For any γ > 0, we have Consf (C̃KT(gGL, 1/2−γ)→ C̃KT(g, 1−Ω(γ3)); poly(n, k, 1/γ)).

Proof. Suppose we are given a circuit C ′ ∈ C̃KT(gGL, 1/2 − γ). Let AGL be the Goldreich-Levin
algorithm of Theorem 4.4. Consider the following algorithm A1 that attempts to compute g:

For a given input x ∈ {0, 1}nk, define a circuit Bx(r) := C ′(x, r), for r ∈ {0, 1}k. Run
AGL on Bx, with parameter γ/2, getting a list L of k-bit strings. Output a uniformly
random k-bit string from the list L.

Correctness Analysis of A1: By averaging, we get that for each of at least γ/2 fraction
of strings x ∈ {0, 1}nk, the circuit Bx(r) := C ′(x, r) agrees with gGL(x, r) = 〈g(x), r〉 on at least
1/2 + γ/2 fraction of strings r ∈ {0, 1}k. For each such x, the circuit Bx satisfies the condition of
Theorem 4.4, and so the Goldreich-Levin algorithm will find, with probability at least 1/2, a list L
of O(1/γ2) strings in {0, 1}k that contains the string g(x). Conditioned on the list containing the
string g(x), if we output a random string on that list, we get the string g(x) with probability at
least 1/|L| ≥ Ω(γ2). Over, the fraction of inputs x where A1 correctly computes g(x) is at least

γ

2
· 1

2
· Ω(γ2) ≥ Ω(γ3).

The runtime of A1 is poly(|C ′|, k, n, 1/γ).

By Theorem 4.3, we have

Consf (C̃KT(fk, 1− µ)→ C̃KT(f, ε); poly(n, k, log 1/ε, 1/µ)),

as long as µ > e−εk/c, for some fixed constant c > 0. Combining this with Claim 4.6 yields

Consf (C̃KT(Amp(f), 1/2− γ)→ C̃KT(f, ε); poly(n, 1/ε, 1/γ)),

as long as γ3 > e−εk/c, which is equivalent to γ > e−εk/c
′
, for c′ = 3c. Our choice of k satisfies this

condition.
Finally, we check the remaining conditions that black-box amplification Amp(f) must satisfy:
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• (fk)GL is defined on inputs of size kn+ k ≤ O(n · 1/ε · log 1/γ).

• If f ∈ AC0[2] of size s, then fk is in AC0[2] of size

O(s · k) = O(s · 1/ε · log 1/γ),

and (fk)GL is of size at most the additive term O(k) larger.

• (fk)GL is in Pf .

Thus, Amp(f) defined above is black-box (ε, γ)-amplification of f , as required.

4.2 MODp construction for prime p > 2

For AC0[p] circuits, with p > 2, we can’t use the XOR construction above, as Parity is not
computable by small AC0[p] circuits [Smo87]. However, we can use MODp instead of XOR in the
Goldreich-Levin construction.

The Goldreich-Levin algorithm was generalized to the case of all prime finite fields GF(p) by
Goldreich, Rubinfeld, and Sudan [GRS00]. Let F = GF(p) be a prime field. For tuples x, y ∈ F k,
let 〈x, y〉 denote the inner product modulo p, i.e.,

〈x, y〉 =

k∑
i=1

xi · yi mod p.

Theorem 4.7 ([GRS00]). There is a probabilistic algorithm A with the following property. Let
h ∈ F k be any tuple, and let B : F k → F be any function such that

Prr∈Fk [B(r) = 〈h, r〉] ≥ 1/p+ γ

for some γ > 0. Then, given oracle access to B and parameters γ, the algorithm A runs in time
poly(k, 1/γ) and outputs a list of size O(1/γ2) such that, with probability at least 1/2, the tuple h
is on the list.

Now the idea is to amplify a given function f by first defining its direct product fk, for appro-
priate k, and then apply the analogue of the Goldreich-Levin construction over F = GF(p): For
g : {0, 1}m → {0, 1}k, define gGL : {0, 1}m × F k → F to be

gGL(x1, . . . , xm, r1, . . . , rk) =

k∑
i=1

ri · g(x1, . . . , xm)i,

where all arithmetic is over the field F .
Theorem 4.7 guarantees that if we have a circuit that computes gGL on more than 1/p + γ

fraction of inputs, then we can efficiently construct a circuit that computes g on Ω(γ3) fraction of
inputs; the proof is identical to that of Claim 4.6 inside the proof of Theorem 4.5 for the case of
AC0[2] above.

The only problem is that the function gGL defined here is not Boolean-valued, but we need a
Boolean function to plug into the NW generator in order to complete our construction of a black-
box generator within AC0[p]. We need to convert gGL into a Boolean function h in such a way
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that if h can be computed by some circuit on at least 1/2 + µ fraction of inputs, then gGL can be
computed by a related circuit on at least 1/p + µ′ fraction of inputs, where µ and µ′ are close to
each other.

We use von Neumann’s idea for converting a coin of unknown bias into a perfectly unbiased
coin [vN51]. Given a coin that is “heads” with some (unknown) probability 0 < p < 1, flip the coin
twice in a row, independently, and output{

0 if the trials were (“heads”, “tails”),

1 if the trials were (“tails”, “heads”).

In case both trials came up the same (i.e., both “heads”, or both “tails”), flip the coins again.
Observe that, conditioned on producing an answer b ∈ {0, 1}, the value b is uniform over {0, 1}

(as both conditional probabilities are equal to p(1− p)/(1− p2 − (1− p)2). The probability of not
producing an answer in one attempt is p2 + (1 − p)2, the collision probability of the distribution
(p, 1 − p). If p is far away from 0 and 1, the probability that we need to repeat the flipping for
more than t trials diminishes exponentially fast in t.

In our case, we can think of the value of gGL on a uniformly random input as a distribution
over F . Assuming that this distribution is close to uniform over F , we will define a new Boolean
function h based on gGL so that the output of h on a uniformly random input is close to uniform over
{0, 1}. Our analysis of h will be constructive in the following sense. If we are given a circuit that
distinguishes the distribution of the outputs of h from uniform, then we can efficiently construct
a circuit that distinguishes the distribution of the outputs of gGL from uniform over F . Finally,
using the standard tools from pseudorandomness (converting distinguishers into predictors), we will
efficiently construct from this distinguisher circuit a new circuit that computes gGL on noticeably
more than 1/p fraction of inputs.

The construction of this function h follows the von Neumann trick above. First, for a parameter
t, define the following function:

Definition 4.8 (von Neumann trick function).

EvN : (F 2)t → {0, 1}

as follows: For pairs (a1, b1), . . . , (at, bt) ∈ F × F , set

EvN ((a1, b1), . . . , (at, bt)) =


1 if, for each 1 ≤ i ≤ t, ai = bi

1 if (ai, bi) is the first unequal pair and ai > bi

0 if (ai, bi) is the first unequal pair and ai < bi

It is not hard to see that EvN is computable in AC0 (see Lemma C.1 in Section C). Moreover,
for independent uniformly distributed inputs, the output of EvN is a random coin flip, with bias
at most (1/p)t.

Claim 4.9. Let F be the uniform distribution over the field F = GF(p), and let G = (F2)t be the
uniform distribution over sequences of t pairs of elements from F . Then∣∣Prr∈(G [EvN (r) = 1]−Prr∈G [EvN (r) = 0]

∣∣ ≤ p−t.
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Proof. Conditioned on having some unequal pair in the sample from G, the bias of the random
variable EvN (G) is 0. Conditioned on having no such unequal pair, the bias is at most 1.

Note that the collision probability of the uniform distribution over GF(p) is
∑p

i=1 p
−2 = p−1.

So the probability of having collisions in all t independent samples from F2 is p−t. Thus, the overall
bias is at most p−t.

Next, given gGL : D → F , for the domain D = {0, 1}m × F k, define hvN : (D2)t → {0, 1} as
follows:

hvN ((a1, b1), . . . , (at, bt)) = EvN ((gGL(a1), gGL(b1)), . . . , (gGL(at), g
GL(bt))).

Theorem 4.10. For any 0 < µ < 1 and 1 > γ > Ω(µ/(log 1/µ)), we have

Consf (C̃KT(hvN , 1/2− µ)→ C̃KT(gGL, 1− 1/p− γ); poly(k,m, poly(1/µ))).

Proof. Recall some basic definition from pseudorandomness theory. We say that distributions X

and Y are computationally (η, s)-indistinguishable, denoted by X
η,s
≈ Y if, for any circuit T of

size s, the probability that T accepts a sample from X is the same as the probability T accepts a
sample from Y , to within ±η.

We want to show that if hvN is predictable with probability better than 1/2, then gGL is
predictable with probability better than 1/p. We will argue the contrapositive: suppose gGL is
unpredictable, and show that hvN is unpredictable. This will take a sequence of steps.

Let D denote the uniform distribution over D, F the uniform distribution over F , and U the
uniform distribution over {0, 1}. Assume gGL is unpredictable by circuits of size s with probability
better than 1/p+ γ, for some γ > 0. This implies the following sequence of statements:

1. (D, gGL(D))
2γ,Ω(s)
≈ (D,F) (unpredictable ⇒ indistinguishable (Lemma B.1))

2. (D, gGL(D))2t 4tγ,Ω(s/t)
≈ (D,F)2t (hybrid argument)

3. (D2t, gGL(D)2t)
4tγ,Ω(s/t)
≈ (D2t, F 2t) (re-arranging)

4. (D2t, EvN (gGL(D)2t))
4tγ,Ω((s/t)−poly(t))
≈ (D2t, EvN (F 2t)) (applying hvN )

5. (D2t, hvN (D2t))
4tγ+p−t,Ω((s/t)−poly(t))
≈ (D2t,U) (by Claim 4.9)

Finally, the last statement implies (via the “indistinguishable to unpredictable” direction) that
hvN cannot be computed on more than 1/2 + µ fraction of inputs by any circuit of size Ω((s/t)−
poly(t)), where µ = Ω(tγ + p−t). For t = O(log 1/µ), we get γ ≥ Ω(µ/(log 1/µ)).

In the standard way, the sequence of implications above yields an efficient randomized algo-
rithm, with the runtime poly(k,m, log 1/µ), for going in the reverse direction: from a predictor
circuit for hvN to a predictor circuit for gGL. To be able to carry out the hybrid argument with
uniform algorithms, we need efficient sampleability of the distribution (D, gGL(D)). Such sampling
is possible when we have membership queries to f (as gGL ∈ Pf ); in fact, here it would suffice
to have access to uniformly random labelled examples (x, f(x)). Another issue is that we need
to sample uniformly from Zp, while we only have access to uniformly random bits. However, it
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is easy to devise an efficient sampling algorithm for Zp, with the distribution statistically almost
indistinguishable from uniform over Zp.5

As for the case of AC0[2], we get black-box amplification within AC0[p], by following the same
proof template as before, with an extra step given by Theorem 4.10.

Theorem 4.11 (Black-Box Amplification within AC0[p]). For any 0 < ε, γ < 1, there is black-box
(ε, γ)-amplification within AC0[p].

Proof. Use the proof of Theorem 4.5 as a template, replacing the XOR construction step by the
combination of the MODp construction of Theorem 4.7 and the von Neumann trick of Theorem 4.10.
The only change in the parameters is the slightly worse dependence on the parameter 1/γ: from
1/γ to (1/γ) · log 1/γ, which is at most 1/γ2, and so can be easily tolerated.

5 Natural properties imply randomized learning

In this section, we prove the general implication from natural properties to learning algorithms.
The “approximate learning” section contains the core idea for all our algorithms. Every other
generic algorithm is easily derived from this one.

5.1 Approximate learning

Theorem 5.1 (Learning from a natural property). Let Λ be any circuit class containing AC0[p]
for some prime p. Let R be a P-natural property, with largeness at least 1/5, that is useful against
Λ[u], for some size function u : N → N. Then there is a randomized algorithm that, given oracle

access to any function f : {0, 1}n → {0, 1} from Λ[sf ], produces a circuit C ∈ C̃KT(f, ε) in time

poly(n, 1/ε, 2u
−1(poly(n,1/ε,sf ))).

Proof. Let Gen(f) = {gz} be an (ε, L)-black-box generator based on f , for L(n) such that

logL(n) > u−1(poly(n, 1/ε(n), sf )).

Using the nonuniform Λ-efficiency of black-box generators, we have that gz ∈ Λf [poly(n, 1/ε)], for
every z. Hence, we get, by replacing the f -oracle with the Λ-circuit for f , that gz ∈ Λ[sg], for some
sg ≤ poly(n, 1/ε, sf ). We want sg < u(logL(n)). This is equivalent to u−1(sg) < logL(n).

Let D be the circuit obtained from the natural property R restricted to truth tables of size
L(n). By usefulness, we have

Pr
z

[¬D(gz) = 1] = 1,

and by largeness,
Pr

y∈{0,1}L(n)
[¬D(y) = 1] ≤ 1− 1/5.

So ¬D is a 1/5-distinguisher for Gen(f). By the reconstruction property of black-box generators,

we have a randomized algorithm that constructs a circuit C ∈ C̃KT(f, ε) in time

poly(n, 1/ε(n), L(n)) = poly(n, 1/ε, 2u
−1(poly(n,1/ε,sf ))),

5We divide an interval [0, 2k−1] into p almost equal pieces (all but the last piece are equal to b2k/pc), and check in
AC0 which piece we fall into. The statistical difference between the uniform distribution over Zp and this distribution
is at most p/2k. So we can make it negligible by choosing k to be a large enough polynomial in the relevant parameters.
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as required.

For different usefulness bounds u, we get different runtimes for our learning algorithm:

• polynomial poly(nsf/ε), for u(n) = 2Ω(n),

• quasipolynomial quasi-poly(nsf/ε), for u(n) = 2n
α

where α < 1, and

• subsexponential poly(n, 1/ε, 2(nsf/ε)
o(1))), for u(n) = nω(1).

Corollary 5.2. Under the same assumptions as in Theorem 5.1, we also get randomized com-
pression for Λ[poly] to the circuit size at most O(ε(n) · 2n · n), for any 0 < ε(n) < 1 such that
log(ε(n) · 2n · n) ≥ u−1(poly(n, 1/ε)).

Proof. We use Theorem 5.1 to learn a small circuit that computes f on all but at most ε · 2n
inputs, and then patch up this circuit by hardwiring all the error inputs, using extra circuitry of
size at most O(ε · 2n · n). This size will dominate the overall size of the patched-up circuit for the
ε satisfying the stated condition.

5.2 Application: Learning and compression algorithms for AC0[p]

We have the following; see Section A in the appendix for proofs.

Theorem 5.3 ([RR97]). For every prime p, there is an NC2-natural property of n-variate Boolean
functions, with largeness at least 1/2, that is useful against AC0[p] circuits of depth d of size up to

2Ω(n1/(2d)).

This theorem, in conjunction with Theorem 5.1, immediately yields our main application.

Corollary 5.4 (Learning AC0[p] in quasipolytime). For every prime p, there is a randomized
algorithm that, using membership queries, learns a given n-variate Boolean function f ∈ AC0[p] of
size sf to within error ε over the uniform distribution, in time quasi-poly(nsf/ε).

Using Corollary 5.2, we also immediately get the following compression result, first proved (with
somewhat stronger parameters) by Srinivasan [Sri15].

Corollary 5.5. There is a randomized compression algorithm for depth-d AC0[p] functions that
compresses an n-variate function to the circuit size at most 2n−n

µ
, for µ ≥ Ω(1/d).

6 NW designs cannot be computed in AC0

In Section 2.5.1 we showed that NW designs (with parameters of interest to us) are computable by
small AC0[p] circuits, for any prime p. It is natural to ask if one can compute such NW designs by
small AC0 circuits, without modular gates. Here we show that this is not possible.

Consider an NW design S1, . . . , SL ⊆ [n2], where

• each set Si is of size n,

• the number of sets is L = 2` for ` = nε (for some ε > 0), and

• for any two distinct sets Si and Sj , i 6= j, we have |Si ∩ Sj | ≤ `.
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To describe such a design, we use the following characteristic function g: for 1 ≤ i ≤ L, and for
1 ≤ k ≤ n2,

g(i, k) =

{
1 if k ∈ Si
0 otherwise.

We will prove the following.

Theorem 6.1. Let g : {0, 1}`+2 logn → {0, 1} be the characteristic function for any NW design
with the parameters as above. Then g requires depth d AC0 circuits of size at least exp(`1/d).

To prove this result, we shall define a family of functions fT , parameterized by sets T ⊆ [n2]:
for 1 ≤ i ≤ L,

fT (i) =

{
1 if T ∩ Si 6= ∅
0 otherwise.

Observe that if g(i, k) is computable by AC0 circuits of depth d and size s, then, for every set T ,
the function

fT (i) = ∨k∈T g(i, k)

is computable by AC0 circuits of depth at most d + 1 and size O(s · |T |). Therefore, to prove
Theorem 6.1, it will suffice to prove the following.

Lemma 6.2. There exists a set T ⊆ [n2] such that fT : {0, 1}` → {0, 1} requires depth d + 1 AC0

circuits of size at least exp(`1/d).

The idea of the proof of Lemma 6.2 is to show that for a random set T (of expected size O(n)),
the function fT has high average sensitivity (i.e., is likely to flip its value for many Hamming
neighbors of a randomly chosen input). By averaging, we get the existence of a particular function
fT of high average sensitivity. On the other hand, it is well-known that AC0 functions have low
average sensitivity. This will imply that fT must require large AC0 circuits. We provide the details
in the next subsection.

6.1 Proof of Lemma 6.2

Recall that the sensitivity of a Boolean function f : {0, 1}n → {0, 1} at input x ∈ {0, 1}n is
defined as the number of Hamming neighbors y ∈ {0, 1}n of x (where y and x differ in exactly one
coordinate i, 1 ≤ i ≤ n) such that f(x) 6= f(y). The average sensitivity of a function f , denoted
AS(f), is the expected sensitivity of f at x, over uniformly random inputs x ∈ {0, 1}n.

We use the following result by Boppana [Bop97].

Theorem 6.3 ([Bop97]). The average sensitivity of a size s AC0 circuit of depth d is at most
O((log s)d−1).

We shall prove the following simple claims that will imply that fT has high average sensitivity,
for a random T ⊆ [n2] of expected size t = O(n). Below we shall choose a set T ⊆ [n2] by placing
each index k, 1 ≤ k ≤ n2, into T with probability t/n2, independently, for t = n/2. Clearly, the
expected size of T is t.

Claim 6.4. For every 1 ≤ i ≤ L, PrT [fT (i) = 1] ≈ 1/2.
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Proof. The probability a random set T misses all n positions of Si is(
1− t

n2

)n
≈ 1− tn

n2

= 1− t

n
,

which is approximately 1/2 by our choice of t.

Claim 6.5. For every 1 ≤ i 6= j ≤ L, PrT [fT (i) = 1 ∧ fT (j) = 1] ≤ 1/4 + o(1).

Proof. We have PrT [fT (i) = 1 ∧ fT (j) = 1] is equal to

PrT [T ∩ (Si ∩ Sj) 6= ∅] + PrT [fT (i) = fT (j) = 1 | T ∩ (Si ∩ Sj) = ∅] ·PrT [T ∩ (Si ∩ Sj) = ∅] .

Using the fact that |Si ∩ Sj | ≤ ` = nε and arguing as in the proof of Claim 6.4, we get

PrT [T ∩ (Si ∩ Sj) 6= ∅] ≤ (t`)/n2

= `/(2n)

= o(1).

Next we have PrT [fT (i) = fT (j) = 1 | T ∩ (Si ∩ Sj) = ∅] equals

PrT [fT (i) = 1 | T ∩ (Si ∩ Sj) = ∅] ·PrT [fT (j) = 1 | fT (i) = 1 ∧ T ∩ (Si ∩ Sj) = ∅] .

Conditioned on T missing the intersection Si ∩ Sj , the conditional probability that T intersects Si
is

1−
(

1− t

n2

)n−|Si∩Sj |
≈ n− |Si ∩ Sj |

2n

≤ 1

2
.

Similarly, conditioned on T missing the intersection Si ∩ Sj but intersecting Si, the conditional
probability of T intersecting Sj is also approximately at most 1/2 (following the same calculations
as for the case of Si above).

Putting everything together, we get that PrT [fT (i) = 1 ∧ fT (j) = 1] ≤ 1/4 + o(1).

Claim 6.6. For every 1 ≤ i 6= j ≤ L, PrT [fT (i) 6= fT (j)] ≥ 1
5 .

Proof. For every fixed i 6= j, we have

PrT [fT (i) 6= fT (j)] ≥ PrT [fT (i) = 1 ∧ fT (j) = 0]

= PrT [fT (i) = 1]−PrT [fT (i) = 1 ∧ fT (j) = 1],

which, by Claims 6.4 and 6.5, is at least 1/2− 1/4− o(1) = 1/4− o(1) > 1/5.

Claim 6.7. There exists a set T such that AS(fT ) ≥ `/5.
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Proof. For a string x ∈ {0, 1}n, we denote by N(x) the set of all strings y ∈ {0, 1}n that differ from
x in exactly one coordinate; that is, N(x) is the set of all Hamming neighbors of x in the Boolean
cube {0, 1}n. Also, for a condition A, we denote by {A} the indicator function of A, i.e., {A} = 1
if the condition A is true, and {A} = 0 otherwise.

We have

ExpT [AS(fT )] = ExpT⊆[n2],i∈{0,1}`

 ∑
j∈N(i)

{fT (i) 6= fT (j)}


= Expi

 ∑
j∈N(i)

ExpT [{fT (i) 6= fT (j)}]


= Expi

 ∑
j∈N(i)

PrT [fT (i) 6= fT (j)]


≥ Expi

 ∑
j∈N(i)

1

5

 (by Claim 6.6)

=
`

5
.

By averaging, there exists a set T , such that AS(fT ) ≥ `/5.

Now we finish the proof of Lemma 6.2. Suppose the function fT given by Claim 6.7 is computed
by an AC0 circuit of depth d+ 1 and size s. By Theorem 6.3, we get that AS(fT ) ≤ O((log s)d). It
follows that

`

5
≤ O((log s)d),

which implies that s ≥ exp(`1/d), as required.

7 Conclusions

For our applications, we need Λ strong enough to carry out a (version of) the construction, yet weak
enough to have a natural property useful against it. Here we show that Λ = AC0[p] for any prime p
satisfies both conditions. A logical next step would be ACC0: if one can get a natural property useful
against ACC0, for example by naturalizing Williams’s [Wil14b] proof, then a learning algorithm for
ACC0 would follow. (As MODp can be simulated with MODm, m = p · a gates by duplicating each
input to the Modm gate a times (without any penalty in the number of gates), our construction
for MODp can be applied directly by taking p to be any prime factor of m.)

Can we get an exact compression algorithm for AC0[p] (or even AC0) functions that would
produce circuits of subexponential size? Can our learning algorithm be derandomized? Finally, is
there a way to get nontrivial SAT algorithms from natural properties?
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A Natural properties useful against AC0[p]

Here we present the natural properties useful against the class of AC0 circuits with mod p gates,
for any fixed prime p, as given in [RR97]. We follow the lower bound of Razborov [Raz87] (showing
that Majority is not in AC0[2]) to get a natural property useful against AC0[2], and the lower
bound of Smolensky [Smo87] (showing that Parity is not in AC0[p], for any prime p 6= 2) for the
case of AC0[p] for any prime p > 2. In both cases, the natural property is NC2-computable, and is

useful for circuit size up to 2Ω(n1/(2d)), where d is the circuit depth, and n is the input size.

A.1 The case of AC0[2]

Theorem A.1 ([RR97]). There is an NC2-natural property of n-variate Boolean functions, with

largeness at least 1/2, that is useful against AC0[2] circuits of depth d of size up to 2Ω(n1/(2d)).

Proof. For 0 ≤ a, b ≤ n, define a linear transformation Aa,b that maps a Boolean function f :
{0, 1}n → {0, 1} to a matrix M = Aa,b(f) of dimension

(
n
a

)
×
(
n
b

)
, whose rows are indexed by size

a subsets of [n], and rows by size b subsets of [n]. For every K ⊆ [n], define the set

Z(K) = {(x1, . . . , xn) ∈ {0, 1}n | ∀i ∈ K, xi = 0}.

For a size a subset I ⊆ [n] and size b subset J ⊆ [n], define

MI,J = ⊕x∈Z(I∪J)f(x).

Razborov [Raz87] showed that if rank(Aa,b(f)) ≥ Ω(2n/n2), for a = n/2−
√
n and some b ≤ a,

then f requires AC0[2] circuits of depth d of size at least 2Ω(n1/(2d)). He also showed the existence of
an n-variate Boolean (symmetric) function h such that, for some 0 ≤ b ≤ a, rank(Aa,b(h)) ≥ 2n

70n2 ,

and hence, h requires large AC0[2] circuits.
This yields the following natural property useful against large AC0[2] circuits:
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Given an n-variate Boolean function f , construct matrices Mb = Aa,b(f) for a = n/2−√
n and for every 0 ≤ b ≤ a. Accept f if, for at least one b, rank(Mb) ≥ 2n

140n2 .

First, observe that such a property of n-variate Boolean function f is computable in NC2: we
first construct O(n) matrices of size at most 2n × 2n, and then compute the rank (over GF(2)) of
each of them. Thus, this property is NC2-natural.

Secondly, by Razborov’s result mentioned above, any f accepted by the property must require
AC0[2] depth d circuits of size at least 2Ω(n1/(2d)). Thus we have usefulness against exponential-size
circuits.

Finally, to argue largeness, we use the function h mentioned above with rank(Aa,b(h)) ≥ 2n

70n2 ,
for some 0 ≤ b ≤ a. For each Boolean function f , we will show that either Aa,b(f) or Aa,b(f ⊕ h)
has rank at least 2n

140n2 , which implies that at least 1/2 of all Boolean functions are accepted by our
property.

Indeed, since Aa,b is an GF(2)-linear map, and using the subadditivity of rank, we get

rank(Aa,b(h)) = rank(Aa,b(h⊕ f ⊕ f))

≤ rank(Aa,b(h⊕ f)) + rank(Aa,b(f)).

Thus, at least one of Aa,b(f) or Aa,b(f ⊕ h) must have the rank at least 1/2 of the rank of Aa,b(h),
as required.

A.2 The case of AC0[p] for all primes p > 2

Theorem A.2 ([RR97]). For every prime p > 2, there is an NC2-natural property of n-variate
Boolean functions, with largeness at least 1/2, that is useful against AC0[p] circuits of depth d of

size up to 2Ω(n1/(2d)).

Proof. Let f be a given n-variate Boolen function. Without loss of generality, assume n is odd.
Denote by L the vector space of all multilinear polynomials of degree less than n/2 over GF(p).
Let f̄ be the unique multilinear polynomial over GF(p) that represents f on the Boolean cube
{−1, 1}n (after the linear transfofrmation mapping the Boolean 0 to 1 mod p, and the Boolean 1
to −1 mod p), i.e., f and f̄ agree over all points of {−1, 1}n.

The natural property given by [RR97] is the following:

Given an n-variate Boolean function f , construct its unique multilinear polynomial
extension f̄ over GF(p). Accept f if dim(f̄L+ L) ≥ 3

4 · 2
n (over GF(p)).

It is easy to see that this property is computable in NC2. It is also argued in [RR97] that this
property has largeness at least 1/2. Finally, it also follows from [RR97], based on Smolensky’s lower
bound proof [Smo87], that any n-variate function f accepted by this property must have AC0[p]

circuits of depth d of size at least 2Ω(n1/(2d)).
Indeed, Smolensky [Smo87] shows that, for every Boolean function f computed by an AC0[p]

circuit of depth d and size s, there exists a multilinear polynomial q over GF(p) of degree D =
O(logd(s/ε)) that agrees with f on all but at most w = ε2n points W of the Boolean cube, where
we think of ε as a small constant (e.g., ε = 0.2). For any such f that also satisfies the condition
dim(f̄L+L) ≥ 3

4 · 2
n, we will show that D ≥ Ω(

√
n). This would imply that any such f must have

d-depth AC0[p] circuits of size 2Ω(n1/(2d)), as required.
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Suppose some f can be approximated by a multilinear degree D polynomial on all Boolean
points except the set W of size w ≤ ε2n, for small constant ε (to be determined). Suppose that
f also satisfies the condition dim(f̄L + L) ≥ 3

4 · 2
n over GF(p). Using Smolensky’s arguments

from [Smo87], we get that at least p2n(3/4−ε) functions from {−1, 1}n \W to GF(p) are computable
by multilinear polynomials over GF(p) of degree at most (n− 1)/2 +D. For D = λ

√
n, with some

λ > 0, the number of distinct multilinear monomials of degree at most (n− 1)/2 +D is

(n−1)/2+D∑
i=0

(
n

i

)
=

(n−1)/2∑
i=0

(
n

i

)
+

(n−1)/2+D∑
i=(n−1)/2+1

(
n

i

)

≤ 1

2
· 2n +D ·

(
n
n−1

2

)
≤ 1

2
· 2n +D · 2n√

πn/2
·
(

1 +O

(
1√
n

))
(by Stirling’s approximation)

≤ 2n ·
(

1

2
+

2D√
πn

)
= 2n ·

(
1

2
+ λ · 2√

π

)
,

which can be made at most (0.51) · 2n, by taking λ a sufficiently small constant (e.g., λ =
√
π/20).

Thus, the number of distinct multilinear polynomials over GF(p) of degree at most (n−1)/2+D
is at most p0.51·2n . On the other hand, as mentioned above, there are at least p(3/4−ε)2n functions
from {−1, 1}n \W to GF(p) that are supposed to be computable by such low-degree multilinear
polynomials. For ε small enough so that 3/4 − ε > 0.51 (e.g., ε = 0.2), we get that there are too
many functions to be represented by low-degree polynomials. So it must be the case that the degree
D > λ

√
n, for some constant λ > 0.

B Yao’s “Distinguisher to Predictor” reduction

The following result is a simple generalization of Yao’s “distinguisher to predictor” reduction for
the case of non-binary alphabets. We give the proof as we could not find a reference in the literature
for this version of the result.

Lemma B.1 (Yao). Let f : {0, 1}n → Zp. Suppose there is a function T : {0, 1}n × Zp → {0, 1}
such that

Prx∈{0,1}n [T (x, f(x)) = 1]−Prx∈{0,1}n,g∈Zp [T (x, g) = 1] ≥ ε, (2)

then the following algorithm P computes f with probability at least 1/p+ ε/(p− 1) with respect to
the uniform distribution over {0, 1}n:

On input x ∈ {0, 1}n, pick a uniformly random g ∈ Zp. Compute b = T (x, g). If b = 1,
then output g; otherwise, output a uniformly random g′ ∈ Zp \ {g}.

Proof. Using Bayes’s formula, the probability that the algorithm P above is correct on a uniformly
random x ∈ {0, 1}n, Prx[P (x) = f(x)], can be written as the sum of the following two expressions:

Prx,g[T (x, g) = 1 | g = f(x)] ·Prx,g[g = f(x)], (3)
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and
Prx,g,g′ [T (x, g) = 0 & g′ = f(x) | g 6= f(x)] ·Prx,g[g 6= f(x)] (4)

where x is a uniformly random sample from {0, 1}n, g is a uniformly random sample from Zp, and
g′ is uniform over the set Zp \ {g}. Since g is independent of x, we have Prx,g[g = f(x)] = 1/p.
Thus we can replace the last factor in Eq. (3) by 1/p, and the last factor in Eq. (4) by (p− 1)/p.

Next, applying Bayes’s formula to the first factor of Eq. (4), we can re-write this factor as

Prx,g[T (x, g) = 0 | g 6= f(x)] ·Prx,g′ [g
′ = f(x) | g 6= f(x), T (x, g) = 0],

which equals

Prx,g[T (x, g) = 0 | g 6= f(x)] · 1

p− 1
(5)

(since f(x) 6= g and g′ ∈ Zp \ {g} is independent of x and g).
Putting Eqs. (3)–(5) together, we get

Prx[P (x) = g(x)] =
1

p
· (Prx[T (x, f(x)) = 1] + Prx,g[T (x, g) = 0 | g 6= f(x)])

=
1

p
· (Prx[T (x, f(x)) = 1] + (1−Prx,g[T (x, g) = 1 | g 6= f(x)])) .

So we have

Prx[P (x) = g(x)] =
1

p
+

1

p
· (Prx[T (x, f(x)) = 1]−Prx,g[T (x, g) = 1 | g 6= f(x)]) . (6)

On the other hand, we have

Prx,g[T (x, g) = 1] =
1

p
·Pr[T (x, f(x)) = 1] +

(
1− 1

p

)
·Pr[T (x, g) = 1 | g 6= f(x)].

Therefore, we get

Pr[T (x, f(x)) = 1]−Pr[T (x, g) = 1] =
p− 1

p
· (Pr[T (x, f(x)) = 1]−Pr[T (x, g) = 1 | g 6= f(x)]) ,

and so, using Eq. (2), we have

Pr[T (x, f(x)) = 1]−Pr[T (x, g) = 1 | g 6= f(x)] ≥ p

p− 1
· ε. (7)

Plugging in Eq. (7) into Eq. (6), we conclude

Pr[P (x) = f(x)] ≥ 1

p
+

ε

p− 1
,

as required.
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C The von Neumann function in AC0

It is straightforward to implement the von Neumann trick in AC0 by using the Descriptive Complex-
ity framework to write uniform AC0 circuits as formulas of first-order logic (FO) over finite models.
Specifically, DLOGTIME-uniform AC0 is captured by FO-formulas over finite models equipped
with the following relations: {=, <,+,×, BIT}. For details on how first-order logic corresponds to
circuit classes, see [BIS90].

To code a length-n string of coinflips s ∈ {H,T}n as a finite model, we think of the universe set
as representing positions or indices into s. Speficially, start with a size-n model equipped with the
“default” relations {=, <,+,×, BIT}, where the universe elements are interpreted as the n-initial
prefix of N for the purpose of these relations. Then add the following unary relations to represent
the character at each position of s:

H(i) =

{
true if s[i] = H

false otherwise

T (i) =

{
true if s[i] = T

false otherwise

See definition 4.8 for a complete description of EvN , the von Neumann trick function. Using
the above coding of strings into finite models, we prove the following:

Lemma C.1. EvN ∈ AC0

Proof. We write the von Neumann trick as a FO forumla by considering, for the t trials, 2t-size
finite models equipped with the heads and tails relations. Our objective is to detect if the first
mismatched pair of indicies is HT or TH, returning true if this pair is TH. We consider a trial to
have failed if both flips match. So our formula should say “the first trial that didn’t fail is TH ”.
For now, assume that the following predicates TRIAL and FAIL are FO-expressible:

TRIAL(i, j) =

{
true if (i, j) are a trial pair with i < j

false otherwise

FAIL(i, j) =

{
true if (i, j) are a failed TRIAL pair

false otherwise

We can use FO to detect the first useful trial by asserting that every previous trial failed:

∃i, j(TRIAL(i, j) ∧ T (i) ∧H(j) ∧ ∀k, ` (k < i ∧ ` < j =⇒ FAIL(k, `)))

This formula is true iff the first useful coinflip is TH. Otherwise, if the first useful trial is HT
or there are no useful trials, it is false. This is exactly the behavior we want to implement the
the von Neumann trick. All that remains is to give FO formulas for TRIAL and FAIL. These are
straightforward, because they involve only simple arithmetic on indices of the string and we have
built-in numeric predicates for this.
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