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Abstract

Recently Beyersdorff, Bonacina, and Chew [7] introduced a natural class of Frege
systems for quantified Boolean formulas (QBF) and showed strong lower bounds for
restricted versions of these systems. Here we provide a comprehensive analysis of the
new extended Frege system from [7], denoted EF+ ∀red, which is a natural extension
of classical extended Frege EF.

Our main results are the following: Firstly, we prove that the standard Gentzen-
style system G∗1 p-simulates EF+∀red and that G∗1 is strictly stronger under standard
complexity-theoretic hardness assumptions.

Secondly, we show a correspondence of EF+∀red to bounded arithmetic: EF+∀red
can be seen as the non-uniform propositional version of intuitionistic S 1

2 . Specif-
ically, intuitionistic S 1

2 proofs of arbitrary statements in prenex form translate to
polynomial-size EF+ ∀red proofs, and EF+∀red is in a sense the weakest system with
this property.

Finally, we show that unconditional lower bounds for EF+ ∀red would imply either
a major breakthrough in circuit complexity or in classical proof complexity, and in
fact the converse implications hold as well. Therefore, the system EF+ ∀red naturally
unites the central problems from circuit and proof complexity.

Technically, our results rest on a formalised strategy extraction theorem for
EF+ ∀red akin to witnessing in intuitionistic S 1

2 and a normal form for EF+∀red
proofs.

1 Introduction

Proof complexity addresses the main question of how hard it is to prove theorems in a
given calculus, in particular: what is the length of the shortest proof of a given theorem
in a fixed formal system, typically comprised of axioms and rules. This research bears
tight and fruitful connections to computational complexity (separating complexity classes
in an approach known as Cook’s programme [20]), to first-order logic (theories of bounded
arithmetic [19, 31]), as well as to practical SAT- and QBF-solving [15].
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While the bulk of activity in proof complexity concerns propositional proofs, there
has been intense research during the last decade employing proof-complexity methods to
further logics, most notably non-classical logics (cf. [11]) and proof complexity of quantified
Boolean formulas (QBF).

Recent research in QBF proof complexity has been largely triggered by exciting advances
in QBF solving—powerful algorithms that solve large classes of formulas from industrial
applications. Compared to SAT solving, due to the PSPACE completeness of QBF the
success of QBF solvers even extends to further fields such as planning [36, 24] and formal
verification [5]. To model the strengths of modern QBF solvers, a number of resolution-
based proof systems have been recently suggested and analysed from a proof complexity
perspective (cf. [3, 8, 9, 10]).

While we have a relatively good understanding of these weak resolution-type systems,
much less is known for strong proof systems, and this judgement applies to both propo-
sitional and QBF proof complexity. There are two main approaches for designing strong
calculi: via sequent-style systems (Gentzen’s LK [25]) and axiom-rule based systems known
as Frege or Hilbert-type calculi [20]. In propositional logic, both Gentzen and Frege systems
are equivalent from a proof complexity point of view [20, 31].

The situation is more intricate for QBF; and indeed the main aim of the present paper
is to shed light on this topic.

Gentzen systems for QBF were already introduced in the late 80’s by Kraj́ıček and
Pudlák [32], of which we use slightly modified versions Gi and G∗i due to Cook and Morioka
[18]. These systems are known to be strictly more powerful than QBF resolution [23], but
lower bounds are out of reach with current techniques.

As for strong propositional systems, the main source of information on QBF Gentzen
systems stems from their correspondence to Buss’ theories of bounded arithmetic [13, 32,
18]. This correspondence allows to translate first-order formulas into sequences of QBFs,
and indeed first-order proofs in S i

2 or T i
2 to polynomial-size G∗i or Gi proofs, respectively

[32, 18], thus providing the main tool to construct short propositional proofs.
On the other hand, QBF Frege systems were only developed very recently [7]. Their

definition is very elegant, adding to classical Frege just one single ∀red rule for manag-
ing quantifiers, leading to the QBF system Frege +∀red. Alternatively, they can be seen
as substitution Frege systems with substitutions allowed just for universally quantified
variables.

As for classical Frege, the strength of Frege +∀red can be calibrated by allowing different
classes of formulas (or more directly Boolean circuits [28]) as their underlying objects.
With a technique [8, 7] uncovering a direct relation between circuit complexity and proof
complexity, very strong lower bounds have been obtained for QBF Frege, the strongest
of which yields an exponential lower bound for AC0[p]-Frege +∀red. In sharp contrast,
the strongest lower bound in the propositional world holds for AC0-Frege [1, 35, 33], while
lower bounds for the stronger AC0[p]-Frege constitute a major problem, open for more than
twenty years.

This striking development prompts us to target at a better understanding of the new
QBF Frege systems. What is their relation to the well-studied QBF Gentzen calculi? Does
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Figure 1: The simulation order of QBF Gentzen and Frege systems

QBF Frege also admit a correspondence to bounded arithmetic? Can we push lower bounds
even beyond the current state-of-the-art bound for AC0[p]-Frege +∀red from [7]?

In this paper we give answers to all of these three questions.

1.1 Our contributions

Below we summarise our main contributions of this paper, sketching the main results and
techniques.

A. Gentzen vs. Frege in QBF: simulations and separations.
In classical proof complexity Frege and Gentzen’s sequent system LK are p-equivalent, i.e.,
proofs can be efficiently translated between the systems [20]. In contrast, our findings show
a more complex picture for QBF. We concentrate on the most important standard Gentzen-
style systems G∗0 and G∗1 as well as the QBF Frege systems Frege +∀red and EF +∀red,
forming QBF analogues of the classical Frege and extended Frege system EF from [20].

For these four systems the following picture emerges (cf. Figure 1): We prove that
G∗1 p-simulates EF +∀red (Theorem 5.1) and likewise G∗0 p-simulates Frege +∀red (although
the latter under a slightly more relaxed notion of p-simulation, Theorem 5.2). On the
other hand, the converse simulations are unlikely to hold. Under standard complexity-
theoretic assumptions we show that EF +∀red is strictly weaker than G∗1 (Theorems 3.1,
3.3). Moreover, EF +∀red is incomparable to both G∗0 and G0 (Theorems 3.4, 3.5). Hence,
unlike in the propositional framework, Gentzen appears to be stronger than Frege in QBF.

While all these separations make use of complexity-theoretic assumptions, it will be very
hard to improve these results to unconditional lower bounds (see C. below). However, since
we use a number of different and indeed partly incomparable assumptions, our separations
seem very plausible.

B. QBF Frege corresponds to intuitionistic logic. The strongest tool for an un-
derstanding of classical Frege as well as propositional and QBF Gentzen systems comes
from their correspondence to bounded arithmetic [31, 19]. Here we show such a correspon-
dence between EF +∀red and first-order intuitionistic logic IS 1

2, introduced in [14, 22]. For
this first-order arithmetic formulas are translated into sequences of QBFs [32].
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Our main result on the correspondence states that translations of arbitrarily complex
prenex theorems in IS 1

2 admit polynomial-size EF +∀red proofs (Theorem 7.1). Informally,
this says that all IS 1

2 consequences can be efficiently derived in EF +∀red, and moreover,
EF +∀red is the weakest system with this property.

The second facet of the correspondence is that IS 1
2 can prove the correctness of EF +∀red

in a suitable encoding (Theorem 7.2), and in a certain sense EF +∀red is the strongest proof
system that is provably sound in the theory IS 1

2.
Technically, the correspondence as well as the simulation results mentioned under A.

above rest on a formalisation of the Strategy Extraction Theorem for QBF Frege systems
from [7]. This strategy extraction result states that for formulas provable in EF +∀red
one can compute witnesses for all existential quantifiers with Boolean circuits that can be
efficiently extracted from the EF +∀red proof.

We provide two formalisations for this result: one in first-order logic, where we for-
malise strategy extraction in S 1

2 (Theorem 4.1), and a second more direct one, where we
construct Frege proofs for the witnessing properties (Theorem 4.3). While the second for-
malisation applies to more systems and gives the simulation structure detailed in A., the
first formalisation is stronger and enables the correspondence to IS 1

2.
Although intuitionistic bounded arithmetic was already developed by Buss in the mid

80’s [14], no QBF counterpart of this theory was found so far—in sharp contrast to most
other arithmetic theories [19]. As we show here, the missing piece in the puzzle is the
recent QBF Frege system EF +∀red.

Indeed, the appealing link between IS 1
2 and EF +∀red comes via their witnessing prop-

erties: similarly as EF +∀red has strategy extraction for arbitrarily complex QBFs [7], the
theory IS 1

2 admits a witnessing theorem for arbitrary first-order formulas [22].

C. Characterising lower bounds for QBF Frege. The main question left open by
the recent advances in strong QBF lower bounds [7] is whether unconditional lower bounds
can be obtained for Frege +∀red or even EF +∀red. We show here that such a result would
imply either a major breakthrough in circuit complexity (a lower bound for non-uniform
NC1 or even P/poly) or a major breakthrough in propositional proof complexity (lower
bounds for classical Frege or even EF); and in fact the opposite implications hold as well
(Theorem 8.1).

This means that the problem of lower bounds for QBF Frege very naturally unites
the centeral problem in circuit complexity with the central problem in proof complexity.
Indeed, by our simulations shown in A. this also means that a lower bound for any of the
QBF Gentzen systems Gi or G∗i for i ≥ 1 would imply either a circuit lower bound or a
lower bound for propositional Frege.

This is conceptually very interesting as a direct connection between progress in circuit
complexity and proof complexity has been often postulated (cf. [4]). Our results show
that this connection directly manifests in Frege +∀red, thus highlighting that Frege +∀red
is indeed a natural and important system.

Technically, this result uses a normal form that we achieve for Frege +∀red proofs:
these can be decomposed into a classical Frege proof followed by a number of ∀red steps
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(Theorem 6.1). We further show that even ∀red steps suffice that only substitute constants
(Theorem 6.3).

Conceptually, our work draws on the close interplay of ideas and techniques from proof
complexity, computational complexity, and bounded arithmetic; and it is really the inter-
action of these areas and techniques that form the technical basis of our results (which
enforces us also to include rather extensive preliminaries).

1.2 Organization

In Section 2 we provide background on proof complexity, bounded arithmetic, and QBF
Gentzen and Frege systems. We prove the conditional separations and the simulations in
Sections 3 and 5, respectively. Section 4 formalizes strategy extraction in QBF Frege in
S 1

2 and Frege, and Section 6 derives from this a normalisation of EF +∀red proofs. This
enables us to show the correspondence between the theory IS 1

2 and EF +∀red in Section 7.
Finally, in Section 8 we give the characterization of Frege +∀red and EF +∀red lower bounds
in terms of lower bounds for Boolean circuits or propositional Frege.

2 Preliminaries

2.1 Notions from computational complexity

We use standard notation and concepts from computational complexity (cf. [2]). In par-
ticular, we use the circuit class P/poly of functions computed by polynomial-size Boolean
circuits and the class NC1 of functions computed by polynomial-size circuits of logarithmic
depth (cf. [37]). We say that a function is hard for P/poly if it is not computable by a
sequence of polynomial-size circuits.

By FPΣp
i [O(log n)] we denote the set of functions computed by a polynomial-time Turing

machine making at most O(log n) queries to a Σp
i -oracle. FPΣp

i is defined analogously but
without the restriction on the number of queries.

2.2 Notions from proof complexity

Proof systems. According to [20] a proof system for a language L is a polynomial-time
onto function P : {0, 1}∗ → L. Each string φ ∈ L is a theorem and if P (π) = φ, π is
a proof of φ in P . Given a polynomial-time function P : {0, 1}∗ → {0, 1}∗ the fact that
P ({0, 1}∗) ⊆ L is the soundness property for L and the fact that P ({0, 1}∗) ⊇ L is the
completeness property for L.

Proof systems for the language TAUT of propositional tautologies are called proposi-
tional proof systems and proof systems for the language TQBF of true QBF formulas are
called QBF proof systems. Equivalently, propositional proof systems and QBF proof sys-
tems can be defined respectively for the languages UNSAT of unsatisfiable propositional
formulas and FQBF of false QBF formulas, in this second case we call them refutational.
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Given two proof systems P and Q for the same language L, P p-simulates Q (denoted
Q ≤p P ) if there exists a polynomial-time function t such that for each π ∈ {0, 1}∗,
P (t(π)) = Q(π). Two systems are called p-equivalent if they p-simulate each other.

A proof system P for L is called polynomially bounded if there exists a polynomial p
such that every x ∈ L has a P -proof of size ≤ p(|x|).

Frege systems. Frege proof systems are the common ‘textbook’ proof systems for
propositional logic based on axioms and rules [20]. The lines in a Frege proof are proposi-
tional formulas built from propositional variables xi and Boolean connectives ¬, ∧, and ∨.
A Frege system comprises a finite set of axiom schemes and rules, e.g., φ∨¬φ is a possible
axiom scheme. A Frege proof is a sequence of formulas where each formula is either a
substitution instance of an axiom, or can be inferred from previous formulas by a valid
inference rule. Frege systems are required to be sound and implicationally complete. The
exact choice of the axiom schemes and rules does not matter as any two Frege systems are
p-equivalent, even when changing the basis of Boolean connectives [20] and [31, Theorem
4.4.13]. Therefore we can assume w.l.o.g. that modus ponens is the only rule of inference.

Usually Frege systems are defined as proof systems where the last formula is the proven
formula. Equivalently, we can view them as refutation Frege systems where we start with
the negation of the formula that we want to prove and derive a contradiction, and we
switch between the two different formulations when convenient.

A number of subsystems and extensions of Frege have been considered in the literature
(cf. [4]). An elegant framework for these systems was introduced by Jeřábek [28], where
C-Frege directly operates with circuits from the set C using a finite set of derivation Frege
rules. For example, if there are no restrictions on C then C-Frege is p-equivalent to the
extended Frege system EF, cf. [28]. If C is restricted to formulas, i.e., C = NC1, then
C-Frege is just Frege. Throughout the paper, whenever we speak of EF we indeed mean
P/poly-Frege and Frege stands for NC1-Frege.

Sequent calculus. Gentzen’s sequent calculus [25] is another classical proof system,
both for first-order and propositional logic (cf. [31]). Propositional sequent calculus LK
operates with sequents Γ −→ ∆ with the semantic meaning

∧
φ∈Γ φ |=

∨
ψ∈∆ ψ. An

important rule in LK is the cut rule

Γ −→ ∆, A A,Γ −→ ∆
(cut rule)

Γ −→ ∆

where A is called the cut formula.
LK is well known to be p-equivalent to Frege (cf. [31]).

2.3 Quantified Boolean formulas

Quantified Boolean formulas (QBF) extend propositional formulas by propositional quan-
tifiers ∀x. φ(x) with the semantic meaning φ(0) ∧ φ(1), and ∃x. φ(x) meaning φ(0) ∨ φ(1).
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The quantifier complexity of QBFs is captured by sets Σq
i and Πq

i , which are defined
inductively. Σq

0 = Πq
0 is the set of quantifier-free propositional formulas, Σq

i+1 is the clo-
sure of Πq

i under existential quantification, and Πq
i+1 is the closure of Σq

i under universal
quantifiers.

Often it is useful to think of a QBF Q1X1 . . .QkXk. φ as a game between the universal
and the existential player. In the i-th step of the game, the player Qi assigns values to
all the variables Xi. The existential player wins the game iff the matrix φ evaluates to 1
under the assignment constructed in the game. The universal player wins iff the matrix φ
evaluates to 0. Given a universal variable u with index i, a strategy for u is a function
from all variables of index < i to {0, 1}. A QBF is false iff there exists a winning strategy
for the universal player, i.e. if the universal player has a strategy for all universal variables
that wins any possible game [27], [2, Sec. 4.2.2].

2.4 Sequent calculi for QBF

Quantified propositional calculus G, as defined by Cook and Morioka [18], extends Gentzen’s
classical propositional sequent calculus LK, cf. [31, Chapter 4.3], by allowing quantified
propositional formulas in sequents and by adopting the following extra quantification rules
for ∀-introduction

φ(x/ψ),Γ−→ ∆
(∀-l)∀x. φ,Γ−→ ∆

Γ−→ ∆, φ(x/p)
(∀-r)

Γ−→ ∆,∀x. φ

and ∃-introduction

φ(x/p),Γ−→ ∆
(∃-l)∃x. φ,Γ−→ ∆

Γ−→ ∆, φ(x/ψ)
(∃-r).

Γ−→ ∆,∃x. φ

For the rules ∀-l and ∃-r, φ(x/ψ) is the result of substituting ψ for all free occurrences of x
in φ. The formula ψ may be any quantifier-free formula (i.e., without bounded variables)
that is free for substitution for x in φ (i.e., no free occurrence of x in φ is within the scope
of a quantifier Qy such that y occurs in ψ). The variable p in the rules ∀-r and ∃-l must
not occur free in the bottom sequent.

For i ≥ 0, Gi is a subsystem of G with cuts restricted to prenex Σq
i ∪ Πq

i -formulas. G∗i
denotes the subsystem of Gi allowing only tree-like proofs.

The systems G and Gi were originally introduced slightly differently, cf. [31, 32, 30], not
restricting the formulas ψ in ∀-l and ∃-r to be quantifier-free, and defining Gi as the system
G allowing only Σq

i -formulas in sequents. Hence, Gi’s could not prove all true QBFs. We
will, however, use the redefinition of these systems by Cook and Morioka [18].

Notably, (for Cook and Morioka’s definition) Jeřábek and Nguyen [29] showed that
the system Gi with cuts restricted to prenex Σq

i -formulas is p-equivalent to Gi with cuts
restricted to prenex Πq

i -formulas and p-equivalent to Gi with cuts restricted to (not neces-
sarily prenex) Σq

i ∪Πq
i -formulas. Moreover these equivalences hold as well for the tree-like

versions of these systems.
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Cook and Morioka [18] also proved that their definition of Gi is p-equivalent to Gi from
[32] for i ≥ 0 and prenex Σq

i ∪ Πq
i -formulas (so by [29] also for non-prenex ones).

On propositional formulas G0 is p-equivalent to Frege and G1 is p-equivalent to the
Extended Frege system EF, cf. [31].

Finally, the systems Gi and G∗i have quite constructive witnessing properties. When-
ever there are polynomial-size G∗1 proofs of formulas ∃y. An(x, y) for An(x, y) ∈ Σq

1, there
exist polynomial-size circuits Cn witnessing the existential quantifiers, i.e., the formula
An(x,Cn(x)) holds, cf. [18, Theorem 7]. In case of G0 the circuits witnessing Σq

1-formulas
are from NC1, cf. [18, Theorem 9]. The witnessing theorems can be generalized to systems
G∗i and Gi for i ≥ 1 w.r.t. Σq

i -formulas and witnessing functions corresponding to higher
levels of the polynomial hierarchy.

2.5 Frege systems for QBF

An alternative way how to define reasoning with QBFs was given in [7] by using systems
denoted as C-Frege +∀red. C-Frege +∀red is a refutational proof system augmenting the
classical C-Frege system by a ∀red rule. Formally, a C-Frege +∀red refutation of a QBF
Q. φ is a sequence of circuits L1, . . . , Ll ∈ C where L1 = φ, Ll = ∅, and each Li is derived
from previous Lj’s using the inference rules of C-Frege or using the following ∀red rule

Lj(u)
(∀red)

Lj(u/B)

where u is a universal variable that is the innermost (wrt. the quantifier prefix Q) among
the variables of Lj, and B ∈ C is a circuit that contains only variables left of u. In
particular, C-Frege +∀red does not manipulate the prefix of the given QBF, so it proves
only QBFs in prenex form.

In principle, variables not quantified in the prefix of a QBF might appear in its C-
Frege +∀red refutation as consequences of C-Frege rules. However, all such variables can
be substituted by arbitrary constants without changing the proven QBF. Therefore, we
assume that there are no such ‘redundant’ variables.

If there are no restrictions on C, we denote C-Frege +∀red as EF +∀red. If C is restricted
to formulas, we speak of Frege +∀red.

Note that C-Frege +∀red is essentially a refutational substitution Frege system SF, cf.
[31], with substitutions allowed only for rightmost universally quantified variables.

In Section 6.1 we will show that in fact restricting the substituting circuit B to constants
0, 1 results in a p-equivalent proof system denoted C-Frege +∀red0,1.

A characteristic property of the C-Frege +∀red systems is the so called Strategy Extrac-
tion Theorem. The theorem obtained in [7] says that whenever there is a C-Frege +∀red
refutation π of a QBF ∃x1∀y1, . . . ,∃xk∀yk. φ(x1, . . . , xk, y1, . . . , yk), then there are O(|π|)-
size witnessing circuits C1, . . . , Ck ∈ C satisfying

n∧
i=1

(y′i ↔ Ci(x1, . . . , xi, y
′
1, . . . , y

′
i−1, π))→ ¬φ(x1, . . . , xn, y

′
1, . . . , y

′
n).
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2.6 Bounded arithmetic

In first-order logic we will work with the language L = { 0, S,+, ·,≤,
⌊
x
2

⌋
, |x|,# } where

the function |x| is intended to mean ‘the length of the binary representation of x’ and
x#y = 2|x|·|y|.

A quantifier is bounded if it has the form ∃x. x ≤ t or ∀x. x ≤ t for x not occurring
in the term t. A bounded quantifier is sharply bounded if t has the form |s| for some
term s. By Σb

0 (=Πb
0 = ∆b

0) we denote the set of all formulas in the language L with all
quantifiers sharply bounded. For i ≥ 0, the sets Σb

i+1 and Πb
i+1 are defined inductively. Σb

i+1

is the closure of Πb
i under bounded existential and sharply bounded quantifiers, and Πb

i+1

is the closure of Σb
i under bounded universal and sharply bounded quantifiers. That is, the

complexity of bounded formulas in the language L (formulas with all quantifiers bounded)
is defined by counting the number of alternations of bounded quantifiers, ignoring the
sharply bounded ones. For i > 0, ∆b

i denotes Σb
i ∩ Πb

i .
Bounded formulas capture the polynomial hierarchy: for any i > 0 the i-th level Σp

i

of the polynomial hierarchy coincides with the sets of natural numbers definable by Σb
i -

formulas. Dually for Πp
i and Πb

i .
Buss [13] introduced theories of bounded arithmetic S i

2, T i
2 for i ≥ 1 in the language

L. The axioms of S i
2 consist of a set of basic axioms defining properties of symbols from

L, cf. [31], and length induction Σb
i -LIND, which is the following scheme for Σb

i -formulas
A (or equivalently, for A ∈ Πb

i , in which case we speak of Πb
i -LIND):

A(0) ∧ ∀x. (A(x)→ A(x+ 1))→ ∀x.A(|x|).

Theories T i
2 are defined similarly, but here the induction scheme is

A(0) ∧ ∀x. (A(x)→ A(x+ 1))→ ∀x.A(x)

for A ∈ Σb
i .

T i
2 proves the totality of FPΣp

i functions, cf. [31, Theorem 6.1.2]. More precisely, for

any f ∈ FPΣp
i there is a Σb

i+1-formula f(x) = y such that T i
2 ` ∀x∃y. f(x) = y. In the

same way, S i
2 proves the totality of functions in FPΣp

i [O(log n)], cf. [31, Theorem 6.2.2]. By
Parikh’s theorem, T i

2 ` ∃y. f(x) = y implies T i
2 ` ∃y. |y| ≤ p(|x|) ∧ f(x) = y for some

polynomial p, and the same is true for S i
2 (cf. [34, 13]).

S i
2 can be seen as a first-order non-uniform version of G∗i , i ≥ 1. Firstly, for j ≥ 1 any

Σb
j-formula φ(x) can be translated into a sequence ‖φ(x)‖n of Σq

j-formulas, where n denotes
the size of the input x in binary (cf. [31, Definition 9.2.1]). Then, for i, j ≥ 1 whenever
S i

2 ` A for A ∈ Σb
j, there is a polynomial p such that formulas ‖A‖n have G∗i -proofs of

size p(n). This also holds for T i
2 in place of S i

2 if G∗i is replaced by Gi. The ability to use
arbitrary j is due to Cook and Morioka [18, Theorem 3] who generalized a standard result,
cf. [31, Theorem 9.2.6], which worked for j = i.

If A ∈ Πb
1, we abuse notation and also denote by ‖A‖n the propositional formulas

obtained as in ‖A‖n, but leaving the universally quantified variables free. S 1
2 ` A for

A ∈ Πb
1 implies that S 1

2 proves the existence of polynomial-size G∗1-proofs of propositional
formulas ‖A‖n, cf. [31, Theorems 9.2.6 and 9.2.7].
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3 Separating Gentzen and Frege for QBF

We start with proving a number of conditional separations between Gentzen and Frege
systems for QBF. As we will show later in Section 8, improving these separations to un-
conditional results tightly corresponds to major open problems in circuit complexity and
proof complexity.

3.1 Formulas easy in Gentzen, but hard in Frege

We first provide three different properties that are easy for QBF Gentzen systems, but
hard for EF +∀red. Our first conditional result shows that there are Σq

2-formulas with
polynomial-size G∗1 proofs but no polynomial-size EF +∀red proofs, and this result gener-
alises to stronger systems.

Theorem 3.1. Let i ≥ 1. Assume f ∈ FPΣp
i is hard for P/poly. Then formulas ‖∃y. |y| ≤

p(|x|) ∧ f(x) = y‖n, where p is a polynomial and f(x) = y is expressed by a Σb
i+1-formula,

have polynomial-size Gi proofs and require super-polynomial-size EF +∀red proofs. If f ∈
FPΣp

i [O(log n)] then Gi can be replaced by G∗i .

Proof. As T i
2 proves the totality of FPΣp

i functions [13], it proves the totality of f and
the proof can be transformed into a sequence of polynomial-size Gi proofs [32, 18]. If the
totality of f can be shown by polynomial-size proofs in EF +∀red, then, by the Strategy
Extraction Theorem [7], f is in P/poly.

Similarly, S i
2 proves the totality of FPΣp

i [O(log n)] functions and such proofs translate
into sequences of polynomial-size G∗i proofs [13, 32, 18].

It seems that the separation above of G∗1 and EF +∀red by Σq
2-formulas cannot be im-

proved to Σq
1-formulas as it is tight in the following sense. If we had Σq

1-formulas ∃y. An(x, y)
with polynomial-size G∗1 proofs but without polynomial-size EF +∀red proofs, this would
imply that EF is not polynomially bounded: by the witnessing theorem for G∗1, cf. [18,
Theorem 7], there would be polynomial-size circuits Cn such that formulas An(x,Cn(x))
are true, and so ¬An(x,Cn(x)) would be hard to refute in EF.

G∗1 and EF +∀red can be conditionally separated also on the bounded collection scheme.

Definition 3.2. The bounded collection scheme BB(φ) is the formula

∃i < |a|,∃w < t(a), ∀u < a,∀j < |a|. (φ(i, u)→ φ(j, [w]j))

where φ(i, u) is a formula which can have other free variables, [w]j is the j-th element of
the sequence coded by w, and t(a) is a concrete L-term depending on the choice of the
encoding of sequences.

Roughly, BB(φ) says that u’s witnessing φ(i, u) can be collected in a sequence w:

∀i < |a|,∃u < a, φ(i, u)→ ∃w < t(a),∀j < |a|, φ(j, [w]j).

10



Theorem 3.3. G∗1 has polynomial-size proofs of ‖BB(φ)‖n for all φ ∈ Σb
1. In contrast, there

exists φ ∈ Σb
1 such that formulas ‖BB(φ)‖n are hard for EF +∀red unless each polynomial-

time permutation with n inputs can be inverted by polynomial-size circuits with probability
≥ 1− 1/n.

Proof. The upper bound follows from the S 1
2 -provability of BB(φ) for φ ∈ Σb

1, cf.[13,
Theorem 14], and its transformation to G∗1 proofs [32, 18].

For the lower bound we will use a result by Cook and Thapen [21] showing that Cook’s
theory PV does not prove BB(φ) for all φ ∈ Σb

0 unless factoring is in probabilistic polyno-
mial time.

Let a = 2n and φ(i, u) be the formula f(u) = [y]i for a polynomial-time permutation f
(defined by a Σb

1 formula), and y encoding a sequence of n strings of length n.
Assume that EF +∀red has polynomial-size proofs of ‖BB(φ)‖n. By the Strategy Ex-

traction Theorem [7] there are polynomial-size circuits B, C such that

∃u < 2n. f(u) = [y]C(y) → ∀j < n. f([B(y)]j) = [y]j.

To invert f we proceed as follows. Given z ∈ {0, 1}n, pick randomly n strings si ∈ {0, 1}n
and let i0 be a position such that Pry∈{0,1}d [C(y) = i0] ≤ 1/n where d is the number of
inputs in C. Define yz,s to be the sequence of elements z, f(s1), . . . , f(sn−1) ordered so that
[yz,s]i0 = z and let xz,s be the sequence of z, s1, . . . , sn−1 ordered so that f([xz,s]i) = [yz,s]i
for i 6= i0. Then Prz,s1,...,sn∈{0,1}d [C(yz,s) = i0] ≤ 1/n. Therefore, with probability≥ 1−1/n,
f([xz,s]C(yz,s)) = [yz,s]C(yz,s) and f([B(yz,s)]i0) = z.

While the previous two results exhibited formulas easy for G∗1 and hard for EF +∀red,
we now show that even G∗0 can prove Σq

2-formulas hard for EF +∀red (modulo hardness of
factoring).

For this we use a result by Bonet, Pitassi, and Raz [12], who showed that Frege systems
do not admit the so called feasible interpolation property unless factoring of Blum integers
is solvable by polynomial-size circuits. (A Blum integer is the product of two distinct
primes, which are both congruent 3 modulo 4.)

Theorem 3.4. There are Σq
2-formulas with polynomial-size G∗0 proofs. However, assuming

factoring of Blum integers is not computable by polynomial-size circuits, these formulas
require EF +∀red proofs of super-polynomial size.

Proof. In [12] it is shown that there are propositional formulas A0(x, y), A1(x, z) with
common variables x such that A0(x, y) ∨ A1(x, z) have polynomial-size Frege proofs but,
unless factoring of Blum integers is computable by polynomial-size circuits, there are no
polynomial-size circuits C(x) recognizing which of A0(x, y) or A1(x, z) holds for a given x.

Frege is p-equivalent to G∗0 on propositional formulas [31] and so it is possible to derive
in G∗0 the sequents in Figure 2.

Therefore, the Σq
2-formulas

∃b ∀y, u. ((A0(x, y) ∧ b) ∨ (A1(x, u) ∧ ¬b))
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−→ A0(x, y), A1(x, z)

−→ (A0(x, y) ∧ ¬0) ∨ (A1(x, u) ∧ 0), (A0(x, v) ∧ ¬1) ∨ (A1(x, z) ∧ 1)

−→ ∀y, u. ((A0(x, y) ∧ ¬0) ∨ (A1(x, u) ∧ 0)), (A0(x, v) ∧ ¬1) ∨ (A1(x, z) ∧ 1)

−→ ∀y, u. ((A0(x, y) ∧ ¬0) ∨ (A1(x, u) ∧ 0)),∀y, u. ((A0(x, y) ∧ ¬1) ∨ (A1(x, u) ∧ 1))

−→ ∃b∀y, u. ((A0(x, y) ∧ ¬b) ∨ (A1(x, u) ∧ b)),∃b∀y, u. ((A0(x, v) ∧ ¬b) ∨ (A1(x, z) ∧ b))
−→ ∃b∀y, u. ((A0(x, y) ∧ ¬b) ∨ (A1(x, u) ∧ b))

Figure 2: The G∗0 derivation in the proof of Theorem 3.4

have polynomial-size G∗0 proofs.
If these formulas had polynomial-size EF +∀red proofs, then, by the Strategy Extrac-

tion Theorem [7], there would be polynomial-size circuits computing b from x and thus
recognizing which of A0(x, y), A1(x, u) holds.

We remark that the assumptions of Theorems 3.3 and 3.4 are stronger than the as-
sumption of Theorem 3.1. However, while factoring forms a good candidate for a one-way
function, it is not known if the existence of one-way functions implies the existence of
one-way permutations.

3.2 Formulas hard in Gentzen, but easy in Frege

We now give the opposite separation, exhibiting formulas (conditionally) hard for G0, but
easy for EF +∀red. Thus G∗0 and G0 appear to be incomparable to EF +∀red.

Theorem 3.5. If P/poly 6= NC1 then there are Σq
1-formulas with polynomial-size EF +∀red

proofs but without polynomial-size G0 proofs.

Proof. Let f be a function in P/poly. Then EF +∀red has simple polynomial-size proofs
of Σq

1 formulas ∃y,∃z. f(x) = y expressing the totality of f with auxiliary variables z
representing nodes of a polynomial-size circuit computing f . The EF +∀red proof refutes
the propositional formula f(x) 6= y by gradually replacing each variable from z, y by the
circuit it represents.

If the totality of f had polynomial-size G0 proofs, by the Σq
1 witnessing property, cf.

[18, Theorem 9], f would be in NC1.

Notably, in Section 6 we show that Frege +∀red and EF +∀red are p-equivalent to their
tree-like versions. This is open for G0 and G1, thus providing some further evidence for the
incomparability of Gentzen and Frege in QBF.

4 Formalized strategy extraction

In order to prove that G∗1 p-simulates EF +∀red we first formalize the Strategy Extraction
Theorem from [7]. We provide two different formalizations, one in S 1

2 and another one
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directly in EF. Both are sufficient for the simulation result. These formalizations guarantee
that the extracted strategy is not just correct, but EF (resp. C-Frege) provably correct.

Theorem 4.1 (Formalized Strategy Extraction). There is a linear-time algorithm A such
that S 1

2 proves the following. Assume that π is an EF +∀red refutation of a QBF ψ of the
form

∃x1∀y2 . . . ∃xn∀yn. φ(x1, . . . , xn, y1, . . . , yn)

where φ ∈ Σq
0. Then A(π) outputs circuits C1(x1, π), . . . , Cn(x1, . . . , xn, y1, . . . , yn−1, π)

defining a winning strategy for the universal player on formula ψ; that is,

∀x1, . . . , xn, y1, . . . , yn.
[ n∧
i=1

(yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1, π))→ ¬φ(x1, . . . , xn, y1, . . . , yn)
]
.

Proof. We will inspect the original proof of the Strategy Extraction Theorem from [7], and
point out that it essentially uses a Πb

1-induction on the number of steps in the proof π, i.e.,
Πb

1-LIND available in S 1
2 .

Let π = (L1, . . . , Ls) be an EF +∀red refutation of the QBF Q. φ given as in Theorem 4.1
and put

πs := ∅, πi := (Li+1, . . . , Ls) for i < s

φ0 := φ, φi := φ ∧ L1 ∧ · · · ∧ Li for i > 0.

We will show by downward induction on i, that from πi it is possible to construct in
linear time a winning strategy

σi = {Ci
1(x1, πi), . . . , C

i
n(x1, . . . , xn, y1, . . . , yn−1, πi)}

for the universal player for the QBF Q. φi. The statement of the Formalized Strategy
Extraction Theorem corresponds to the case i = 0.

In the base case, φs contains a contradiction and the winning strategy can be defined
as the set of trivial circuits {0, . . . , 0}.

Assume now that σi is a winning strategy for Q. φi.
If Li is derived by an EF rule, then we set σi−1 := σi.
Assume now that Li = Lj[u/B] is the result of an application of a ∀red rule on Lj

where u is the rightmost variable in Lj. We define Ci−1
l := Ci

l if u 6= yl, otherwise we set

Ci−1
l (z) :=

{
B(z) if Lj[u/B](z) = 0

Ci
l (z) if Lj[u/B](z) = 1.

This constructs circuits Ci
l from πi by a standard O(|πi|)-time algorithm.

To show that the strategies σi are winning for any 0 ≤ i ≤ |π|, we need to analyze the
inductive step.

Assume that σi is the winning strategy for the universal player on Q. φi. If Li is derived
by an EF rule, the winning strategy for Q. φi works also for Q. φi−1 because a falsification
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of Li by a given assignment implies a falsification of one of its predecessors. If Li is the
result of an application of ∀red, Ci−1

l (z) is redefined only if Lj[u/B](z) = 0. For z such
that Lj[u/B](z) = 1, the strategy σi has to work also for Q. φi−1. Therefore, σi−1 is a
winning strategy for the universal player on Q. φi−1.

The statement that a strategy σ is winning for the universal player on Q.ψ is a coNP
predicate (given π) expressible as a well-behaved Πb

1-formula. The induction we used is on
the number of steps in π. Hence, the presented proof is an S 1

2 -proof.

The statement provable in S 1
2 in Theorem 4.1 is a coNP predicate expressible by a

Πb
1-formula. Consequently, translating the S 1

2 proof to EF, the extracted strategy is even
EF-provably correct:

Corollary 4.2. Given an EF +∀red refutation π of a QBF

∃x1∀y2 . . . ∃xn∀yn. φ(x1, . . . , xn, y1, . . . , yn)

where φ ∈ Σq
0, we can construct in time |π|O(1) an EF proof of

n∧
i=1

(yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1))→ ¬φ(x1, . . . , xn, y1, . . . , yn)

for some circuits Ci.

We will now show the same result as in the last corollary for Frege +∀red (and in fact
provide an alternative direct proof without making use of bounded arithmetic for EF +∀red
as well).

Theorem 4.3. Let C be the circuit class NC1 or P/poly.1 Given a C-Frege +∀red refutation
π of a QBF

∃x1∀y2 . . . ∃xn∀yn. φ(x1, . . . , xn, y1, . . . , yn)

where φ ∈ Σq
0, we can construct in time |π|O(1) a C-Frege proof of

n∧
i=1

(yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1))→ ¬φ(x1, . . . , xn, y1, . . . , yn)

for some circuits Ci ∈ C.

Proof. Again, we will inspect the original proof of the Strategy Extraction Theorem.
Let π = (L1, . . . , Ls) be a C-Frege +∀red refutation of a QBF Q. φ given as in Theo-

rem 4.3 and put

πs := ∅, πi := (Li+1, . . . , Ls) for i < s

φ0 := φ, φi := φ ∧ L1 ∧ · · · ∧ Li for i > 0.

1Indeed, the result should be easily generalisable to further ‘natural’ circuit classes C such as AC0 or
TC0, but we will focus here on the two most interesting cases NC1 and P/poly leading to Frege and EF
systems, respectively.
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We will show by downward induction on i, that from πi it is possible to construct in
linear time a winning strategy

σi = {Ci
1(x1, πi), . . . , C

i
n(x1, . . . , xn, y1, . . . , yn−1, πi)}

for the universal player for the QBF Q. φi. Moreover, formula

n∧
l=1

(yl ↔ Ci
l (x1, . . . , xl, y1, . . . , yl−1, πi))→ ¬φi(x1, . . . , xn, y1, . . . , yn)

denoted σi(φi) will have a C-Frege proof of size K|πi|K for a constant K depending only
on the choice of the C-Frege system. The statement of the theorem corresponds to the case
i = 0.

In the base case, φs contains a contradiction so the winning strategy can be defined as
the set of trivial circuits {0, . . . , 0} and it is trivially provably correct.

Assume now that σi(φi) has a C-Frege proof of size K(s+ 1− i)|πi|K .
If Li is derived by a C-Frege rule, then σi−1 := σi.
Let now Li = Lj[u/B] be the result of an application of a ∀red rule on Lj where u is

the rightmost variable in Lj. Then define Ci−1
l := Ci

l if u 6= yl, otherwise set

Ci−1
l (z) :=

{
B(z) if Lj[u/B](z) = 0

Ci
l (z) if Lj[u/B](z) = 1.

This constructs strategies σi from π by aD|πi|-time algorithm for a constantD. W.l.o.g.
D < K. In fact, circuits Ci

l are in C.
We want to show that σi−1(φi−1) has a C-Frege proof of size K(s+ 1− (i− 1))|πi−1|K .
If Li is derived by a C-Frege rule, then σi also witnesses ¬φi−1 because

¬Li → ¬(L′1 ∧ · · · ∧ L′t)

for some conjuncts L′1, . . . , L
′
t in φi−1. Note that Ci−1

l ’s are then Ci
l ’s. The implications

¬φi → ¬φi−1

σi(φi) ∧ (¬φi → ¬φi−1)→ σi−1(φi−1)
(1)

can be derived by a fixed sequence of C-Frege rules depending only on the choice of C-Frege.
Thus, the common size of C-Frege proofs of both these implications is ≤ K0|πi−1|K0 where
w.l.o.g. K0 < K. Therefore σi−1(φi−1) has a C-Frege proof of size ≤ K(s + 1 − i)|πi|K +
K1|πi−1|K1 ≤ K(s+ 1− (i− 1))|πi−1|K where K1 > K0 depends again on a fixed sequence
of C-Frege rules needed to derive σi−1(φi−1) from (1) and σi(φi), so w.l.o.g. K1 < K.

Assume Li = Lj[u/B] is the result of an application of ∀red where u = yl. Then there
is a fixed sequence of C-Frege rules deriving implications

σi(φi) ∧ ¬Lj[u/B]→ Ci−1
l = B ∧ σi−1(φi−1)

σi(φi) ∧ Lj[u/B]→ Ci−1
l = Ci

l ∧ σi−1(φi−1).
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The total size of both C-Frege derivations is K0|πi−1|K0 where K0 depends on the choice
of C-Frege and the size of Ci−1

l ’s. The size of all Ci−1
l ’s is bounded by K|πi−1|K . Hence

we can assume K0 < K. It follows that σi−1(φi−1) has a C-Frege proof of size ≤ K(s +
1 − i)|πi|K + K1|πi−1|K1 ≤ K(s + 1 − (i − 1))|πi−1|K where as before K1 depends on a
fixed sequence of C-Frege rules needed to simulate a fixed set of ‘cut’ rules, i.e., w.l.o.g.
K1 < K.

5 Gentzen simulates Frege for QBF

We now apply the formalised Strategy Extraction Theorem from the last section to show
that Gentzen systems simulate Frege systems in the QBF context. Frege and Gentzen are
well known to be equivalent in the classical propositional case [31]. However, in QBF the
opposite simulations (Gentzen by Frege) are very likely false as shown by the conditional
separations in Section 3.

Theorem 5.1. G∗1 p-simulates EF +∀red.

Proof. By Corollary 4.2, any EF +∀red refutation π of a QBF ψ (given as in Corollary 4.2)
can be transformed in time |π|O(1) into an EF proof of

n∧
i=1

(yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1))→ ¬φ(x1, . . . , xn, y1, . . . , yn)

for certain circuits Ci.

Claim 1. There is a |π|O(1)-size G∗1 proof of the following sequent

{yi = Ci(x1, . . . , xi, y1, . . . , yi−1)}ni=1 −→ ¬φ(x1, . . . , xn, y1, . . . , yn)

where the encoding of circuits Ci might use some auxiliary variables.

Proof of claim. To see that the claim holds note first that by p-equivalence of EF and G∗1
(cf. [31]), the EF proof obtained above can be turned into a |π|O(1)-size G∗1-proof of the
formula

¬

(
n∧
i=1

yi = Ci(x1, . . . , xi, y1, . . . , yi−1)

)
∨ ¬φ.

This proof can be easily modified so that the ∨ connective is not introduced, leading to a
|π|O(1)-size G∗1-proof of the sequent

−→ ¬

(
n∧
i=1

yi = Ci(x1, . . . , xi, y1, . . . , yi−1)

)
,¬φ.

Moving ¬ (
∧n
i=1 yi = Ci(x1, . . . , xi, y1, . . . , yi−1)) from the succedent to the antecedent we

obtain
n∧
i=1

(yi = Ci(x1, . . . , xi, y1, . . . , yi−1)) −→ ¬φ.
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Finally, G∗1 derives the sequent we want by ‘not introducing’ ∧ in the antecedent. This
proves the claim.

Applying ∃-r and ∃-l introductions, G∗1 then derives

Γ,∃yn. yn = Cn(x1, . . . , xn, y1, . . . , yn−1) −→ ∃yn.¬φ(x1, . . . , xn, y1, . . . , yn)

where Γ = {yi = Ci(x1, . . . , xi, y1, . . . , yi−1)}n−1
i=1 .

As G∗1 proves efficiently −→ ∃y. y = C(x) for any circuit C, we can cut ∃yn. yn =
Cn(x1, . . . , xn, y1, . . . , yn−1) out of the antecedent and derive

{yi = Ci(x1, . . . , xi, y1, . . . , yi−1)}n−1
i=1 −→ ∃yn.¬φ.

Now, we use ∀-r introduction to obtain

{yi = Ci(x1, . . . , xi, y1, . . . , yi−1)}n−1
i=1 −→ ∀xn∃yn.¬φ.

In this way we can gradually cut out all formulas from the antecedent, quantify all variables
and derive ¬ψ in G∗1 by a proof of size |π|O(1).

To introduce the quantifyer prefix of ψ in the previous proof we needed to cut Σq
1-

formulas. We would like to use a similar proof to simulate Frege +∀red by G∗0. However, G∗0
is allowed to cut only Σq

0-formulas. Therefore we obtain just a simulation of Frege +∀red
by G∗0 where the proven sequent in G∗0 contains a nonempty (easily derivable) antecedent.

Theorem 5.2. There is a polynomial-time function t such that given any Frege +∀red
refutation of a QBF ψ of the form

∃x1∀y2 . . . ∃xn∀yn. φ(x1, . . . , xn, y1, . . . , yn)

where φ ∈ Σq
0, t(π) is a G∗0 proof of the sequent

∀x1∃y2 . . . ∀xn∃yn.
n∧
i=1

yi = Ci(x1, . . . , xi, y1, . . . , yi−1) −→ ¬ψ

for some formulas Ci. Note that the antecedent has a G∗0 proof of size |π|O(1).

Proof. By Theorem 4.3, any Frege +∀red refutation π of a QBF ψ can be transformed in
time |π|O(1) into a Frege proof of

n∧
i=1

(yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1))→ ¬φ(x1, . . . , xn, y1, . . . , yn)

for certain formulas Ci.
Analogously as in the proof of Theorem 5.1, we efficiently obtain a |π|O(1)-size G∗0 proof

of
n∧
i=1

yi = Ci(x1, . . . , xi, y1, . . . , yi−1) −→ ¬φ.
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Applying rules ∃-r, ∃-l, ∀-l, ∀-r (in this order) we derive

∀xn∃yn.
n∧
i=1

yi = Ci(x1, . . . , xi, y1, . . . , yi−1) −→ ∀xn∃yn.¬φ.

In this way we efficiently introduce all quantifiers and derive the required sequent in
G∗0.

6 Normal forms for QBF Frege proofs

In this section we apply results from Section 4 to obtain two normal forms for Frege +∀red
and EF +∀red proofs. Firstly, we show that any EF +∀red refutation can be efficiently
rewritten as an EF derivation followed essentially just by ∀red rules, and the same normal-
isation applies to Frege +∀red. Secondly, we show that in the ∀red rule it is sufficient to
only substitute constants.

Theorem 6.1. Let C be the circuit class NC1 or P/poly. For any C-Frege +∀red refutation
π of a QBF ψ of the form

∃x1∀y2 . . . ∃xn∀yn. φ(x1, . . . , xn, y1, . . . , yn)

where φ ∈ Σq
0, there is a |π|O(1)-size C-Frege +∀red refutation of ψ starting with a C-Frege

derivation of
n∨
i=1

(yi 6= Ci(x1, . . . , xi, y1, . . . , yi−1)) (2)

for some circuits Ci, followed by n applications of the ∀red rule, gradually replacing the
rightmost yi by Ci(x1, . . . , xi, y1, . . . , yi−1) and cutting yi 6= Ci(x1, . . . , xi, y1, . . . , yi−1) out
of the disjunction (2).

Proof. Given a C-Frege +∀red refutation π of ψ, by Theorem 4.3, there is a |π|O(1)-size
C-Frege proof of

n∧
i=1

(yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1))→ ¬φ(x1, . . . , xn, y1, . . . , yn).

Having ψ freely available in the refutation, C-Frege can derive (2) by applying the cut rule
(derivable in C-Frege).

The refutation then continues by n applications of the ∀red rule, which one by one
replaces the rightmost variable yi by Ci(x1, . . . , xi, y1, . . . , yi−1) and eliminates

yi 6= Ci(x1, . . . , xi, y1, . . . , yi−1)

from the disjunction
∨
i yi 6= Ci(x1, . . . , xi, y1, . . . , yi−1).
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As the Frege (resp. EF) derivation can be efficiently replaced by a tree-like Frege (resp.
EF) proof, cf. [31], and the rest of the C-Frege +∀red refutation given above is tree-like we
obtain the following.

Corollary 6.2. Frege +∀red is p-equivalent to tree-like Frege +∀red. Likewise, EF +∀red is
p-equivalent to tree-like EF +∀red.

6.1 Substituting constants in ∀red is sufficient

Frege +∀red and EF +∀red proofs can be further simplified so that every ∀red rule substi-
tutes only constants instead of general circuits. This shows that the systems are indeed
very robustly defined.

Theorem 6.3. Frege +∀red is p-equivalent to Frege +∀red0,1. Likewise, EF +∀red is p-
equivalent to EF +∀red0,1.

Proof. Let C be either NC1 or P/poly. It is enough to show that any C-Frege +∀red refu-
tation can be transformed efficiently into a refutation where the ∀red rule substitutes only
constants. By Theorem 6.1, for any C-Frege +∀red refutation π of Q. φ there is a |π|O(1)-size
C-Frege derivation of

n∨
i=1

(yi 6= Ci(x1, . . . , xi, y1, . . . , yi−1))

from φ(x1, . . . , xn, y1, . . . , yn). Applying ∀red0,1 on yn we can then derive

Cn(x1, . . . , xn, y1, . . . , yn−1) 6= c ∨
n−1∨
i=1

(yi 6= Ci(x1, . . . , xi, y1, . . . , yi−1))

for both constants c = 0, 1. However, there is a polynomial-size C-Frege proof of

Cn(x1, . . . , xn, y1, . . . , yn−1) = 1 ∨ Cn(x1, . . . , xn, y1, . . . , yn−1) = 0,

so we can derive
∨
i<n (yi 6= Ci(x1, . . . , xi, y1, . . . , yi−1)). In this way we can efficiently cut

all disjuncts and derive a contradiction in C-Frege +∀red0,1.

7 Intuitionistic logic corresponds to EF +∀red
The main information on strong propositional and QBF systems stems from their corre-
spondence to first-order theories of bounded arithmetic (cf. [31, 19, 6]). In this sense, G∗1
corresponds to S 1

2 and G1 to T 1
2 (cf. Section 2.6). Here we will establish such a correspon-

dence between first-order intuitionistic logic and EF +∀red.
In [14] Buss developed an intuitionistic version of S 1

2 , denoted IS 1
2, and showed that

for any formula A, IS 1
2 ` ∃y. A(x, y) implies the existence of a polynomial-time function

f such that A(x, f(x)) holds. This witnessing property resembles the Strategy Extraction
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Theorem for EF +∀red. Using the formalized Strategy Extraction Theorem we can make
the correspondence between these systems formal.2

First, we recall the definition of IS 1
2 by Cook and Urquhart [22]. It is equivalent to Buss’

original definition, cf. [14]. IS 1
2 is a theory in the language L (like S 1

2 ), with underlying
intuitionistic predicate logic, cf. [22], a set of basic axioms defining properties of symbols
from L, cf. [22], and a polynomial induction scheme for Σb+

1 -formulas A:

A(0) ∧ ∀x.
(
A(
⌊x

2

⌋
)→ A(x)

)
→ ∀x.A(x).

Here, Σb+
1 -formulas are Σb

1-formulas without negation and implication signs.
S 1

2 is Σb
0-conservative over IS 1

2, cf. [22, Corollary 1.7].
We will also use Cook and Urquhart’s conservative extension of IS 1

2 denoted IPV , cf.
[22, Chapter 4 and Theorem 4.12]. IPV is defined by adding intuitionistic predicate logic
to Cook’s theory PV , cf. [17]. The language of IPV consist of symbols for all polynomial-
time functions. The hierarchy of formulas Πb

i(PV ) is defined analogously as Πb
i but in the

language of IPV . Also, propositional translations ‖A‖n for Πb
1(PV )-formulas A are defined

analogously as in the case of A ∈ Πb
1. Consequently, IPV ` A for A ∈ Πb

1(PV ) implies
that propositional formulas ‖A‖n have polynomial-size EF proofs, cf. [31, Theorem 9.2.7].

Cook and Urquhart [22, Corollary 8.18] generalized Buss’ witnessing theorem: whenever
IPV ` ∀x∃y. A(x, y) for an arbitrarily complex formula A, then there is a polynomial-time
function f (with an IPV function symbol f) such that IPV ` ∀x.A(x, f(x)).

We are now ready to derive the correspondence between IS 1
2 and EF +∀red. The corre-

spondence consists of two parts (cf. [6]). For the first part we translate first-order formulas
φ into sequences of QBFs [32] and show that translations of provable IS 1

2 formulas have
short EF +∀red proofs.

Theorem 7.1. If IS 1
2 proves a statement T in prenex form, then there exist polynomial-size

EF +∀red refutations of ‖¬T‖n.

Proof. By Cook and Urquhart’s improvements of Buss’ witnessing theorem, if IS 1
2 proves

T of the form
∀x1∃y1 . . . ∀xn∃yn. T ′(x1, . . . , xn, y1, . . . , yn)

for T ′ ∈ Σb
0, there is an IPV -function f1(x1) such that

IPV ` ∀x1, x2,∃y2, . . . ,∀xn∃yn. T ′(x1, . . . , xn, f1(x1), y2, . . . , yn).

2It could be tempting to expect that an adequate counterpart to IS 1
2 would be intuitionistic propositional

logic. However, intuitionistic propositional logic admits the feasible interpolation property, cf. [16], while
IS 1

2 can (constructively) prove ∀x, z. [A(x, y) ∨ B(x, z)], in principle, without the existence of an efficient
interpolant. It is also known, cf. [26], that IS 1

2 ` ∀y.A(x, y)∨∀z.B(x, z) implies the existence of an efficient
interpolating circuit, but moving the universal quantifiers inside the disjunction is a priori not allowed in
intuitionistic logic.
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Iterating this argument all existential quantifiers of T can be witnessed provably in IPV
by polynomial-time functions f1, . . . , fn. Therefore, IPV proves the Πb

1(PV ) formula

n∧
i=1

(yi ↔ fi(x1, . . . , xi, y1, . . . , yi−1))→ T ′(x1, . . . , xn, y1, . . . , yn) (3)

and the formulas ‖(3)‖n have polynomial-size EF proofs. EF +∀red can now refute ‖¬T‖n
in polynomial size by deriving

∨
i (yi 6= fi(x1, . . . , xi, y1, . . . , yi−1)) and cutting all the

disjuncts as in the proof of Theorem 6.1.

The second part of the correspondence consists in proving the soundness of the proof
systems in the first-order theory. For this we need to express the correctness of EF +∀red
by QBFs. This is typically done by the reflection principle of a proof system P , stating
that whenever φ has a P -proof (resp. a P -refutation), then φ is true (resp. false).

Here, the Formalized Strategy Extraction Theorem allows us to express the reflec-
tion principle of EF +∀red by a Πb

1-formula Ref(EF +∀red). More precisely, we define
Ref(EF +∀red) as the Πb

1-formula expressing that if π is a proof of a QBF, then circuits
Ci(x1, . . . , xi, y1, . . . , yi−1, π) obtained as in the Strategy Extraction Theorem witness the
existential quantifiers in the QBF as in the statement of Theorem 4.1.

Theorem 7.2. IS 1
2 proves Ref(EF +∀red).

Proof. The claim follows from Theorem 4.1 together with the Σb
0-conservativity of S 1

2 over
IS 1

2 [22].

Theorem 7.2 implies that EF +∀red is the weakest proof system that allows short proofs
of all IS 1

2 theorems, i.e., whenever Theorem 7.1 holds for a ‘decent’ proof system P in
place of EF +∀red, then P p-simulates EF +∀red on QBFs: If Theorem 7.1 holds for a proof
system P , then by Theorem 7.2, there are polynomial-size P -proofs of ‖Ref(EF +∀red)‖n.
Hence, if π is an EF +∀red proof of a QBF ψ, then P has |π|O(1)-size proofs of ψ with the
existential quantifiers witnessed by some circuits. By P being decent we mean that P can
introduce efficiently the existential quantifiers in place of the witnessing circuits and this
way prove ψ efficiently in the size of π.

On the other hand, EF +∀red is intuitively the strongest proof system for which IS 1
2

proves the reflection principle. Technically, this only holds for proof systems that admit the
Strategy Extraction Theorem as for other systems we would need to define the reflection
principle as a more complex statement.

8 Characterising QBF Frege lower bounds

We finally address the question of lower bounds for Frege +∀red or even EF +∀red. Our next
result states that achieving such lower bounds unconditionally will either imply a major
breakthrough in circuit complexity or a major breakthrough in classical proof complexity.
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Theorem 8.1.

1. EF +∀red is not polynomially bounded if and only if EF is not polynomially bounded
or PSPACE 6⊆ P/poly.

2. Frege +∀red is not polynomially bounded if and only if Frege is not polynomially
bounded or PSPACE 6⊆ NC1.3

Proof. If PSPACE 6⊆ P/poly then EF +∀red is not polynomially bounded by [7, Theorem
5.13]. Clearly, also if EF is not polynomially bounded then EF +∀red is not polynomially
bounded.

In the opposite direction, assume that EF +∀red is not polynomially bounded. Then
there is a sequence of true QBFs Q.ψn such that ¬Q.ψn do not have polynomial-size
refutations in EF +∀red. Let Q.ψn have the form

∀x1∃y1, . . . ,∀xn∃yn. ψn(x1, . . . , xn, y1, . . . , yn).

If PSPACE 6⊆ P/poly, we are done. Otherwise, there are polynomial-size circuits Ci wit-
nessing the existential quantifiers in Q.ψn. That is, for any x1, . . . , xn, y1, . . . , yn

n∧
i=1

(yi ↔ Ci(x1, . . . , xi, y1, . . . , yi−1))→ ψn(x1, . . . , xn, y1, . . . , yn). (4)

We claim that (4) is a sequence of tautologies without polynomial-size EF proofs. Oth-
erwise, having ¬ψn, EF can derive

∨
i yi 6= Ci(x1, . . . , xi, y1, . . . , yi−1) by a polynomial-size

proof, and so as in Theorem 6.1, EF +∀red can efficiently refute ¬Q.ψn.
The analogous argument works for item 2 of the theorem.

This result also essentially answers the main question left open in [7], whether a lower
bound for Frege +∀red can be shown by a different technique than the strategy extraction
technique established in that paper. By Theorem 8.1, any such technique for Frege +∀red
would immediately transfer to classical Frege, thus solving the main problem in proposi-
tional proof complexity.

9 Conclusion

In this paper we have undertaken a comprehensive analysis of QBF Frege systems, clarify-
ing their relationships to bounded arithmetic and to Gentzen systems. While the emerging
picture clearly shows that Gentzen systems are strictly stronger than Frege in QBF, one
question left open by our results is whether the simulation of Frege +∀red by G∗0 in Theo-
rem 5.2 can be made to work in the standard way, i.e., whether G∗0 p-simulates Frege +∀red.

3By NC1 we mean non-uniform NC1. Note that by the space hierarchy theorem it is known that
PSPACE 6⊆ uniformNC1, but this does not suffice for Frege+ ∀red lower bounds.
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[28] E. Jeřábek. Dual weak pigeonhole principle, Boolean complexity, and derandomiza-
tion. Annals of Pure and Applied Logic, 129:1–37, 2004.
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