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Abstract

The main contribution of this work is an explicit construction of extractors for
near logarithmic min-entropy. For any δ > 0 we construct an extractor for O(1/δ)
n-bit sources with min-entropy (log n)1+δ. This is most interesting when δ is set to a
small constant, though the result also yields an extractor for O(log log n) sources with
logarithmic min-entropy.

Prior to this work, the best explicit extractor in terms of supporting least-possible
min-entropy, due to Li (FOCS’15), requires min-entropy (log n)2+δ from its O(1/δ)
sources. Further, all current techniques for constructing multi-source extractors “break”
below min-entropy (log n)2. In fact, existing techniques do not provide even a disperser
for o(log n) sources each with min-entropy (log n)1.99.

Apart from being a natural problem, supporting logarithmic min-entropy has ap-
plications to combinatorics. A two-source disperser, let alone an extractor, for min-
entropy O(log n) induces a (polylog n)-Ramsey graph on n vertices. Thus, construct-
ing such dispersers would be a significant step towards constructively matching Erdős’
proof for the existence of (2 log n)-Ramsey graphs on n vertices.

Our construction does not rely on the sophisticated primitives that were key to the
substantial recent progress on multi-source extractors, such as non-malleable extrac-
tors, correlation breakers, the lightest-bin condenser, or extractors for non-oblivious
bit-fixing sources, although some of these primitives can be combined with our con-
struction so to improve the output length and the error guarantee. Instead, at the
heart of our construction is a new primitive called an independence-preserving merger.
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1 Introduction

A randomness extractor is a function that produces truly random bits given a sample from a
source that is “somewhat random”. The standard measure for the amount of randomness in
a source is its min-entropy which, up to a logarithmic scaling, is the probability to sample the
most likely element to be sampled by the source (see Preliminaries for the formal definition).

Ideally, one would have liked to define a randomness extractor as a function Ext : {0, 1}n →
{0, 1}m such that for any n-bit random variable X with min-entropy k, Ext(X) is a close to
uniform in statistical distance. Unfortunately, such a function does not exist even if one is
satisfied with outputting a single bit, that has a constant bias, given a sample from a source
with min-entropy as high as n− 1.

One approach [CG88] to circumvent this negative result is to feed the extractor with more
than one sample. A multi-source extractor is a function Ext : ({0, 1}n)s → {0, 1}m with the
guarantee that if X1, . . . , Xs are independent random variables, each having min-entropy k,
then Ext(X1, . . . , Xs) is close to uniform. A simple probabilistic argument can be used to
show that there exists a multi-source extractor already for s = 2 sources. The min-entropy k
that such a two-source extractor can support is k = log(n) +O(1). Further, one can output
m = k −O(1) bits, where in both instances, the O(1) term depends solely on the statistical
distance of the output to the uniform distribution.

Although this existential result is of interest, explicit constructions are far more desirable.
As it turns out, the most challenging aspect of constructing multi-source extractors is to
support low min-entropy. Indeed, even after an extensive research effort that spanned over
25 years, it was not until the recent work by Li [Li13a] that multi-source extractors with a
constant number of sources could support poly-logarithmic min-entropy. This held even if
one only wished to obtain a single output bit with a constant bias (see Appendix C for a
summary of constructions from the literature).

1.1 Applications to Ramsey theory

Apart from proving to be the most difficult aspect of constructing multi-source extractors, the
problem of supporting low min-entropy, even when considering one output bit with constant
bias, is of interest due to its applications to Ramsey theory. Recall that a graph on N vertices
is called K-Ramsey if it contains no clique or independent set of size K. Ramsey [Ram28]
proved that there does not exist a graph on N vertices that is 0.5 logN -Ramsey. This result
was later complemented by Erdős [Erd47], who proved that most graphs on N vertices are
(2 + o(1)) logN -Ramsey.

Unfortunately, Erdős’ argument is non-constructive, and one does not obtain from Erdős’
proof an example of a graph that is (2 + o(1)) logN -Ramsey. A central problem in combina-
torics is to match Erdős’ proof, up to any multiplicative constant factor, with a constructive
proof. That is, to come up with an explicit construction of an O(logN)-Ramsey graph on
N vertices.

Erdős’ challenge gained significant attention in the literature, and the current best known
constructions [Coh15c, CZ15] achieve K = 2poly log logN , which is quasi-polynomially close
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to meeting Erdős’ challenge. Both constructions, and also their predecessors [BKS+05,
BRSW12], rely on the equivalence between two-source dispersers and bipartite Ramsey
graph.

A two-source disperser for min-entropy k is a function Disp : ({0, 1}n)2 → {0, 1} with the
property that for any two independent random variables X1, X2, each having min-entropy k,
the output Disp(X1, X2) is non-constant. Note that a two-source extractor with a constant
bias is in particular a two-source disperser. In fact, a two-source disperser can be thought of
as a two-source extractor with any non-trivial guarantee on the bias. On the other hand, it
is straightforward to show that a two-source disperser such as Disp above yields a K = 2k-
bipartite Ramsey graph on N = 2n vertices on each side, where a K-bipartite Ramsey graph
is the natural analog of Ramsey graphs for bipartite graphs. Further, one can show that a
bipartite Ramsey graph yields a Ramsey graph with the same parameters.

By this connection between Ramsey graphs and dispersers, it is evident that a two-
source disperser (let alone a two-source extractor) for min-entropy c·log n would immediately
induce a (logN)c-Ramsey graph on N vertices, which is polynomially-close to optimal if c
is constant. We remark that in order to resolve Erdős’ challenge for bipartite graphs, one
would have to construct a two-source disperser for min-entropy log(n) + O(1) which seems
to be an extremely difficult task.

1.2 Where do existing techniques break?

Up until the recent work by Li [Li13a], all extractors for a constant number of sources could
only support min-entropy nΩ(1) [Rao09, Li13b]. In [Li13a], and in a subsequent work [Li15b],
Li significantly improved known results by constructing, for any constant δ > 0, an extractor
for d14/δe+ 2 sources with min-entropy (log n)2+δ. That is, by using Li’s extractor, one can
support min-entropy that approaches arbitrarily close to (log n)2 – quadratically close to
optimal, by consuming a large enough number of sources.

Based on ideas from [Li13a, Li15b], subsequent works considered the problem of opti-
mizing the number of sources while supporting min-entropy (log n)c, though possibly with a
large exponent c. This includes constructions of three-source extractors [Li15b], two-source
dispersers [Coh15c], and subsequently also two-source extractors [CZ15, Li15a, Mek15]. All
of these constructions require exponents c� 2 (see Appendix C).

By inspection, all of the exciting techniques that were used for the construction of multi-
source extractors seem to break below min-entropy (log n)2. When insisting on two sources,
the situation is even worse in term of supported min-entropy as current constructions resort
to structural results regarding the extent to which bounded independence fools certain types
of circuits [Bra10, Tal14, KLW10] making these results costly in terms of min-entropy. We
elaborate on this in Section 2.

When considering two-source dispersers, current techniques require min-entropy at least
(log n)3. Indeed, besides using a certain type of a three-source extractor [Li15b], for which
we currently need high min-entropy, the construction by [Coh15c] is based on locating a
nicely structured source with min-entropy k/(log n)3 inside each of the two min-entropy k
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sources on which the disperser operates. This approach only makes sense for k > (log n)3

even if one has access to an optimal three-source extractor.
This (log n)2 “barrier” has held also when considering a super-constant number of sources.

In fact, to the best of our knowledge, using existing methods, it was not known how to obtain
a disperser for o(log n) sources with min-entropy (log n)1.99, let alone an extractor with a
constant number of sources for such low min-entropy, which is what we are set to obtain.

1.3 Our contribution

The main contribution of this work is an explicit construction of multi-source extractors for
near logarithmic min-entropy. More precisely, we prove the following.

Theorem 1.1. There exists a universal constant c such that the following holds. For any
integer n and any δ > 0 (that may depend on n), there exists an efficiently-computable
extractor Ext : ({0, 1}n)b → {0, 1} for b = 2/δ + c sources, each with min-entropy (log n)1+δ,
having output with bias 0.01.

Theorem 1.1 is most interesting when one takes δ to be a small constant as this keeps
the number of sources constant while supporting close to optimal min-entropy. However, we
stress that the parameter δ in Theorem 1.1 can be an arbitrary function of n. In particular, by
setting δ = (log log n)−1, Theorem 1.1 yields an explicit multi-source extractor for 2 log log n+
O(1) sources with min-entropy O(log n). More generally, Theorem 1.1 gives an explicit multi-
source extractor for min-entropy (log n)1+o(1) with a corresponding ω(1) number of sources.

It is also worth noting that besides supporting lower min-entropy, the number of sources
required by our extractor is smaller than that required by [Li15b] in the most interesting
range of parameters, namely, as δ approaches to zero (see Appendix C).

Somewhat surprisingly, our extractor do not rely on any of the primitives that were de-
veloped and used by recent constructions of multi-source extractors, such as non-malleable
extractors [DW09, DLWZ14, CRS14, Li12a, Li12c, CGL15, Coh15b], correlation break-
ers [Coh15a, CGL15], the lightest-bin condenser [Li13a, Li15b], or extractors for non-oblivious
bit-fixing sources [AL93, Vio14, CZ15, Mek15]. We only make use of components that are
by now considered standard, and which were available for close to a decade. These includes
seeded extractors and condensers [GUV09], Raz’s seeded extractor with weak-seeds [Raz05],
Bourgain’s two-source extractor [Bou05], error correcting codes, and expander graphs.

Although our construction does not yield improved Ramsey graphs, as it requires more
than two sources, we believe it is a step towards such a construction. Our source of opti-
mism is based on inspecting the research path that led to the construction of two-source
extractors and dispersers for poly-logarithmic min-entropy. Indeed, it is evident that many
of the ideas and objects that were used in such constructs were gradually developed in the
context of multi-source extractors. More concretely, at the heart of our construction is a
new primitive called an independence-preserving merger, which we hope will be of value in
future constructions.
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1.3.1 Improving the output length and the error guarantee

Given that one aims to optimize the supported min-entropy, and especially when having
the application to Ramsey theory in mind, it is somewhat less pressing to output many
bits or to guarantee a sub-constant error. Nevertheless, outputting many bits with a better
error guarantee is a natural goal and, typically, extractors that have many output bits with
low error guarantee allow for compositions with other primitives. Further, in Section 1.3.2
we present an improved construction of extractors for zero-fixing sources that is based on
multi-source extractors. In that context, the number of output bits is of central concern.

By using the primitives developed for the proof of Theorem 1.1, together with several
results from the literature, such as the condenser of Li [Li13a] that is based on the lightest-
bin protocol [Fei99], and using mergers with weak-seeds [Coh15a], we can guarantee a low
error and output many bits.

Theorem 1.2. For any integer n and any constant δ > 0, there exists an efficiently-
computable extractor Ext : ({0, 1}n)b → {0, 1}m for b = 16/δ + O(1) sources, each with

min-entropy (log n)1+δ, having error guarantee 2−Ω((logn)δ/4) and m = Ω((log n)1+δ) output
bits.

1.3.2 Zero-fixing extractors for near double-logarithmic entropy

As mentioned, multi-source extractors is one of the approaches taken in the literature to
bypass the fact that one cannot extract randomness from a single source if the sole guarantee
is a lower bound on its min-entropy. A second approach that was considered in the literature
insists on extracting randomness from a single source, though with the guarantee that the
source belongs to a restricted class of sources. Put in other words, assuming that the source
has some structure.

A well-studied class of sources are bit-fixing sources [Vaz85, BBR85, CGH+85, KZ06,
GRS06, Rao09, RV13, CS15]. An (n, k)-bit-fixing source is a random variable X over {0, 1}n,
where some n − k of the bits of X are fixed, and the joint distribution of the remaining k
bits is uniform. Clearly, the class of (n, k)-bit-fixing sources is a very structured class of
sources within all sources with min-entropy k, and so one might hope that we would have
a complete understanding of this class. Unfortunately, however, this is not the case. There
are basic aspects that are not well-understood even when restricting to a subclass of bit-
fixing sources called zero-fixing sources [CS15, GVWZ15]. An (n, k)-zero-fixing source is an
(n, k)-bit-fixing source in which all the fixed bits are set to 0.

One aspect which is unclear even when restricting ourselves to zero-fixing sources concerns
the amount of “accessible entropy”. Considering the bit-fixing case first, Kamp and Zucker-
man [KZ06] observed that for any desired k, one can efficiently extract 0.5 log2(k)−O(1) bits
that are close to uniform from (n, k)-bit-fixing sources. That is, regardless of how low the
entropy is, one can still “access” a logarithmic amount of it. Furthermore, there exists some
constant c > 1 such that for any k > (log n)c, there are explicit constructions of extractors
for (n, k)-bit-fixing sources, having (1− o(1))k output bits [GRS06, Rao09]. These construc-
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tions come close to the threshold of a random function, which extracts k−O(1) bits for any
k > 2 log n, and which fails to output even a single non-constant bit for k < (1/2) log n.

Figure 1: Summary of results on the accessible entropy of zero-fixing and bit-fixing sources.
Theorem 1.3, which is obtained by the reduction of [CS15] together with Theorem 1.2, is
the contribution of this work to our understanding of zero-fixing sources.

Reshef and Vadhan [RV13] considered the problem of how much of the entropy of an
(n, k)-bit-fixing source is accessible in the low entropy regime k = o(log n). In [RV13] it
is shown that any extractor that is computable by a space-bounded streaming algorithm
– a computational model that captures the computational power of the extractor given
by [KZ06], can output only O(log k) bits in this regime. Cohen and Shinkar [CS15] proved
that regardless of computational aspects, most of the entropy is inaccessible for small values
of k, even when restricting to zero-fixing sources. More precisely, there exists some slowly
growing function τ(n) such that for k < τ(n), no function can extract 0.5 log2(k) +O(1) bits
that are close to uniform from (n, k)-zero-fixing sources. On the other hand, in [CS15] an
extractor for (n, k)-bit-fixing sources with k−O(1) output bits for any k = Ω(log log n) was
shown to exists. Although this extractor is not explicit, its existence demonstrates that one
can extract all the entropy of the source even in regime in which a random function fails.

Returning to zero-fixing sources, one can show that for k = Ω(log log n), a random
function with k − O(1) output bits is, with high probability, a zero-fixing extractor for
(n, k)-sources. By establishing a reduction to multi-source extractors, and with Li’s multi-
source extractor [Li13a, Li15b] in hand, it was shown [CS15] that for any constant δ > 0,
there exists a poly(n)-time computable (n, k)-zero-fixing extractor for k = (log log n)2+δ,
having Ω(k) output bits.

By plugging our extractor from Theorem 1.2 to the reduction from zero-fixing extrac-
tors to multi-source extractors [CS15], we obtain the following improved explicit zero-fixing
extractor.

Theorem 1.3. Let δ > 0 be any constant, and let n be an integer. Set k = (log log n)1+δ.
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Then, there exists an efficiently-computable function

ZeroBFExt : {0, 1}n → {0, 1}Ω(k),

with the following property. For any (n, k)-zero-fixing source X, it holds that ZeroBFExt(X)

is 2−k
Ω(1)

-close to uniform.

1.4 Organization

In Section 2 we give a detailed, yet informal, overview of our extractor and its analysis. The
reader may freely skip this section at any point as we make no use of the results that appear in
it. Section 3 contains some standard notations and results that we frequently use throughout
the paper. In Section 4 we design an efficient algorithm that transforms a constant number
of sources to a sequence of what we call somewhere-independent matrices. Section 5 contains
the construction of a single-source independence-preserving merger, though the min-entropy
requirement of this merger is too high so to be used directly for our extractor. Based on
this merger, in Section 6 we construct a multi-source independence-preserving merger that
works for lower min-entropy. Finally, in Section 7 and Section 8 we prove Theorem 1.1 and
Theorem 1.2, respectively. The proof of Theorem 1.3 is given in Section 9, though it can be
read independently of previous sections.

2 An Informal Proof Overview

In this section we describe our extractors from Theorem 1.1 and Theorem 1.2. We also give
a comprehensive and detailed overview of their analysis. Although informal, this overview
presents most of the ideas that fit into the actual proof while overlooking mainly what we
consider as distracting technicalities. Further, we allow ourselves to gradually develop the
ideas so to motivate the final construction. This makes for a longer reading but hopefully
for a more approachable presentation. At any rate, forward pointers to the formal proofs
are given. We start by considering the extractor from Theorem 1.1 and only in Section 2.6
briefly discuss the further ideas involved in proving Theorem 1.2. We do not cover the proof
of Theorem 1.3 in this section and the reader is referred to [CS15] for a proof overview that
is relevant here as well.

2.1 The general strategy and context

The main effort taken by our extractor is the efficient transformation of the sources it operates
upon into a sequence of {0, 1} random variables X1, . . . , Xr, with r = poly(n), such that
all but r1/2−α of the random variables in the sequence are “good”. By good, we mean that
for some parameter t to be chosen later on, the joint distribution of every t-tuple of good
variables is close to uniform. The parameter α is some small universal constant that is
strictly larger than zero.
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One can easily show that if all the good Xi’s were jointly uniform then the majority
function applied to the Xi’s would have bias O(r−α). However, one cannot obtain such
a strong independence, namely t = Ω(r), given few low min-entropy sources. Indeed, it is
known [AGM03] that a t-wise independent distribution over r-bits has min-entropy Ω(t log r),
and the min-entropy has to come from the sources. Luckily, a result by Diakonikolas et al.
[DGJ+10] regarding the extent to which t-wise independence fools threshold functions, can
be applied to show that as the good Xi’s are t-wise independent, the bias of Maj(X1, . . . , Xr)

is bounded by Õ(1/
√
t) + O(r−α). Hence, by setting t = Õ(1/ε2), one obtains an extractor

with bias ε as the second summand is negligible when ε is a small constant, or slightly
sub-constant in r.

This general scheme is influenced by the recent breakthrough construction of two-source
extractors by Chattopadhyay and Zuckerman [CZ15], and it is worth contrasting the two.
In [CZ15], the authors transformed two sources into a sequence of {0, 1} random variables
X1, . . . , Xr, with r = poly(n), such that all but r1−β of the random variables are good,
where β > 0 is some small constant. The notion of “good” is similar to ours, though with a
much larger t = (log n)c. Here c is some large enough constant. In particular, by using an
improvement of the original analysis of [CZ15] due to Meka [Mek15], one can set c = 2. At
any rate, the value of t in [CZ15, Mek15] is a function of n whereas our setting of t depends
solely on the bias of the output which, for the proof of Theorem 1.1, we think of as a small
constant.

At this point, a so-called non-oblivious bit-fixing extractor is applied by [CZ15] to the
Xi’s. The reader does not need to worry about what that is exactly. By some further proper-
ties of this extractor, it is possible to show that the output has bias 1/poly(n). Ingeniously,
the t-wise independence enables the use of Braverman’s result [Bra10, Tal14] in a critical
point of the analysis of [CZ15].

Unfortunately, as mentioned, generating a sequence of poly(n) bits that are (log n)c-
wise independent requires min-entropy (log n)c+1 [AGM03]. Moreover, by inspection, the
techniques that were used to generate the Xi’s require min-entropy (log n)2 even for obtaining
pairwise independence (namely, t = 2) across the good variables. Indeed, [CZ15] applies a
non-malleable extractor by [CGL15] that has seed length (log n)2 and can only support min-
entropy larger than (log n)2. The min-entropy requirement from the two sources on which
the extractor of [CZ15] operates is induced directly by the seed length and min-entropy
requirement of the non-malleable extractor. Even by using an improved construction of
non-malleable extractors [Coh15b], which has seed length O(log n · log log n) and supports
min-entropy O(log n), one of the sources is required to have min-entropy (log n)2 due to the
dependence of the seed in the error guarantee. Again, this already holds for t = 2, which is
anyhow insufficient for [CZ15, Li15a, Mek15].

Our choice of the majority function, as opposed to the explicit non-oblivious bit-fixing
extractors that were developed and used by [CZ15, Mek15], is natural as we only need to
produce a sequence of Xi’s where the good variables in the sequence are t-wise independent,
where t is decoupled from n, and is a function only of the desired bias of the output. We point
out that, computational aspects aside, with some work one can show that for a constant bias
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it is possible to generate such a sequence using only two sources with logarithmic min-entropy.
Unfortunately, as discussed above, all current techniques require min-entropy (log n)2 even
for obtaining pairwise independence across the good Xi’s.

Our strategy for generating a sequence of Xi’s with the above mentioned property can
be divided into three steps:

Step 1 – Ensuring that there are very few bad random variables. By consuming
a constant number of sources, we generate a sequence of `-bit random variables {Yi}ri=1 such
that all but r1/2−α of the variables are close to uniform, where α > 0 is some small universal
constant. Any g ∈ [r] for which Yg is close to uniform is said to be good. Note that there is
no guarantee on the correlations (or the lack there of) between the Yi’s. One should think
of ` = O(log n) and r = poly(n).

Step 2 – Obtaining somewhere-independent matrices. Using a constant number of
fresh sources, we transform each Yi to a random variable in the form of a (t log n)× ` binary
matrix Mi. The guarantee is that for any good g ∈ [r] and for any i1, . . . , it ∈ [r] \ {g},
there is some row in Mg that is close to uniform even conditioned on the joint distribution
of the corresponding row of the matrices Mi1 , . . . ,Mit . So, informally speaking, the matrix
Mg is somewhere independent of Mi1 , . . . ,Mit . In fact, this property holds for 0.9 fraction of
the rows of every good matrix. Further, all rows of Mg, for a good g, are close to uniform
(although possibly correlated amongst themselves and with rows of other matrices in the
sequence).

Step 3 – Merging while preserving independence. In the last step we consume 2/δ+
O(1) sources so to merge the rows of each Mi to a single bit, while preserving independence.
That is, we construct what we call an independence-preserving merger which, given a matrix,
outputs a bit with the property that when applied to somewhere-independent matrices, such
as Mg, Mi1 , . . . ,Mit above, the merged bit of Mg is close to uniform even conditioned on the
joint distribution of the other t merged bits. Of course, these merged bits will be our Xi’s,
to which we will eventually apply the majority function.

Most of the technical effort and novelty of this work is in implementing the third step,
namely, in the construction of independence-preserving mergers. Though, a fair amount of
work is also required for accomplishing the first two steps. In each of the following three
sections we describe the ideas that go into each step, respectively.

2.2 Step 1 – Ensuring that there are very few bad random vari-
ables

In order to apply the majority function to r random variables in the presence of bad variables
and obtain a low biased output bit, it is necessary that the number of bad variables is
sufficiently smaller than

√
r. As mentioned, by the work of [DGJ+10], such a bound on
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the number of bad variables is sufficient for the same argument to hold even if the good
variables are only guaranteed to be t-wise independent, where the larger one takes t, the
smaller the bias of the output bit will be (see Theorem 7.2). The goal of the first step of
our construction is to achieve this bound on the number of bad variables without worrying
at all about independence across the good random variables.

Initiated in [Rao09], by now the standard method for transforming a weak-source into a
sequence of random variables, most of which are uniform, is based on strong seeded extractors
(see Definition 3.7). Let Ext : {0, 1}n × {0, 1}d → {0, 1}` be a strong seeded extractor with
error guarantee ε. Let W be a weak-source with sufficient min-entropy as required by Ext.
Set r = 2d. We identify {0, 1}d with [r], and define for i ∈ [r] the i’th random variable in
the sequence by Xi = Ext(W, i). By the properties of strong seeded extractors, all but

√
ε

fraction of the Xi’s are
√
ε-close to uniform. Lets round things up and assume that all but

ε fraction of the variables are truly uniform. Namely, at most εr of the r variables are bad.
Unfortunately for us, the seed length of a seeded extractor is provably always larger than
2 log(1/ε) [RTS00], and so the number of bad variables εr >

√
r. That is, by using a strong

seeded extractor this way, the number of bad variables is always larger than
√
r. In previous

works this was never an issue. We, however, require that the number of bad variables would
be very small in comparison to the size of the sequence.

Our solution to this problem is simple – we make use of seeded condensers rather than
seeded extractors, as the former have a seed length with better dependence in the error guar-
antee. A seeded condenser is an efficiently-computable function Cond : {0, 1}n × {0, 1}d →
{0, 1}m with the following property. For any (n, k)-source X and an independent random
variable S that is uniform over {0, 1}d, it holds that Cond(X,S) is ε-close to having min-
entropy at least k′. Note that an extractor is a special case of a condenser obtained by
setting k′ = m. If k′ = k + d we say that Cond is a lossless condenser.

Computational aspects aside, for seeded condensers, the dependence of the seed length
in the desired error guarantee ε is only log(1/ε) as apposed to 2 log(1/ε). This makes all
the difference. Luckily, explicit constructions come very close to the existential result in this
respect. We use the lossless condenser by Guruswami et al. [GUV09] (see Theorem 4.7).
Roughly speaking, for any τ > 0 (which can also by taken to be larger than 1), Cond can be
set to have a seed of length d ≈ (1 + 1/τ) log(n/ε) and m ≈ (1 + τ)k output bits.

One can show that for any δ > 0, except with probability δ over s ∼ S it holds that
Cond(X, s) is (ε/δ)-close to a ((1 + τ)k, k)-source. A simple calculation then shows that if
one aims for δr < r1/2−α for some desired constant α, then one needs to take τ = 1 +O(α),
and by choosing ε, δ appropriately one get that all but r1/2−α of the variables are r−Ω(α)-close
to having min-entropy rate 1/2−O(α).

We, however, want the good variables to be close to uniform and not just close to having
min-entropy rate 1/2 − O(α). To this end, we make use of Bourgain’s two-source extrac-
tor [Bou05] that supports min-entropy rate 1/2− β for some small universal constant β > 0
(see Theorem 4.5). We set our α accordingly. Luckily, Bourgain’s extractor outputs a con-
stant fraction of the min-entropy with an exponentially low error guarantee, which is crucial
for us.
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With Bourgain’s extractor in hand, we take a second source Y and compute Cond(Y, i)
for all i ∈ [r]. We then define the random variable

Zi = Bour(Cond(X, i),Cond(Y, i)).

For any i that is a good seed for both X and Y , with respect to Cond, we have that Zi is
r−Ω(α)-close to uniform. Thus, a good variable in the sequence of the Zi’s is not only close to
having high min-entropy but is in fact close to uniform. Further, the number of bad variables
increases by a factor of at most two, which is negligible.

At this point all but O(r1/2−α) of the random variables in the sequence are r−Ω(α)-close
to uniform. For technical reasons, we need the good variables to be even closer to uniform.
For what comes next, r−2 will do. In order to reduce the statistical distance, we apply the
procedure above to c/α pairs of independent sources {(Xj, Y j)}c/αj=1, for some large enough
constant c, and take the bitwise XOR of the results. That is, the i’th random variable in
the generated sequence {Wi}ri=1 is given by

Wi =

c/α⊕
j=1

Bour(Cond(Xj, i),Cond(Y j, i)).

One can show that for any i ∈ [r] that is a good seed for all sources in {(Xj, Y j)}c/αj=1, the

random variable Wi is (r−Ω(α))c/α-close to uniform. So, by setting c accordingly we can get
the error guarantee below its desired bound.

For a formal treatment of the ideas that were covered in this section, we refer the reader
to Lemma 4.3 and its proof that appears in Section 4.1.

2.3 Step 2 – Obtaining somewhere-independent matrices

At this point we are given the sequence of r random variables computed in Step 1, where
all but r1/2−α of the variables are good. Our goal now is to produce a sequence of matrices
M1, . . . ,Mr such that for every good g, the matrix Mg is somewhere-independent of any t
other matrices Mi1 , . . . ,Mit in the sequence. As mentioned, we in fact need to guarantee that
0.9 fraction of the rows of Mg are close to uniform even conditioned on the corresponding
row of the matrices Mi1 , . . . ,Mit , and that all rows of Mg are close to uniform.

In the following section we describe a fairly simple algorithm for solving this task. The
downside of this solution is that it requires a number of sources that depends on ε – the
bound on the bias of the output bit. This suffices if one is interested in some constant
guarantee on the bias and is not too bothered with the number of sources consumed, as
long as it is a constant independent of n. Nevertheless, one can do better. In Section 2.3.3
we give a solution that consumes only a single source. This solution, however, relies on
correlation breakers with advice – a primitive that was introduced in the context of non-
malleable extractors [CGL15, Coh15b]. Unfortunately, current constructions of correlation
breakers with advice are fairly involved, and so it is beneficial to also have the simpler,
though source-wise more expensive solution, which we now present.
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2.3.1 A simple yet source-wise expensive solution

For both the simple and the more involved implementations of Step 2, we make use of error
correcting codes. The unfamiliar reader is referred to Definition 3.6. For parameters q,m
to be chosen later on, let ECC : Fkq → Fmq be an error correcting code, where we identify Fkq
with [r]. Here Fq stands for the finite field with q elements. Note that m ≈ log(r)/ρ with ρ
being the rate of the code. We set the relative distance of the code to δ = 1− 1/(10t).

We apply Step 1 not once but q times, each time with a fresh set of (a constant number
of) sources, so to obtain q independent sequences which we denote by {X1

i }ri=1, . . . , {X
q
i }ri=1.

For i ∈ [r] and j ∈ [m], we define the j’th row of the matrix Mi as

(Mi)j = X
ECC(i)j
i .

In words, we use the j’th entry of the codeword that corresponds to the message i so to
decide from which sequence to take the j’th row of Mi.

The analysis is straightforward and proceeds as follows. Fix g ∈ [r] that is good for
all q sequences, and consider any i1, . . . , it ∈ [r] \ {g}. By our choice of δ, for any fixed
c ∈ [t], the codewords ECC(g) and ECC(ic) agree on at most 1/(10t) fraction of their entries.
Thus, ECC(g)j 6∈ {ECC(ic)j}tc=1 for at least 0.9 fraction of j ∈ [m]. For any such j, by the
independence across the sequences generated in Step 1, (Mg)j is uniform and independent
of the joint distribution of {(Mic)j}tc=1, as desired. Note that the number of bad variables
increased by a multiplicative factor of q, though this loss is negligible.

2.3.2 What code should we use?

We briefly discuss the choice of the parameters m, q – the block-length and field size of ECC.
Note that the number of sources consumed by the solution described in the previous section,
grows linearly with q. Thus, it is important to work with a code that has a small alphabet
size. In particular, we cannot use, say, Reed-Solomon codes as this would require us to
consume Ω(log n) sources. Moreover, we also want a code with high rate as the latter affects
m – the number of rows of the generated matrices, which in turn puts restrictions on the
min-entropy required from the sources used in Step 3.

As it turns out, the family of algebraic-geometric codes (also known as Goppa codes) is
a suitable choice in our setting. These are codes that approach the Singleton bound using a
strikingly small alphabet size (see Theorem 4.13). More precisely, with such codes one can
obtain

ρ+ δ ≥ 1− 1
√
q − 1

.

Thus, with alphabet of size q = O(t2), the code can have the required relative distance

δ = 1− 1/(10t) and rate ρ = Ω(1/t). As we set t = Õ(ε−2), this translates to a solution that

consumes Õ(ε−4) sources. The number of rows of the generated matrices is then Õ(ε−2)·log n.
We stress that algebraic-geometric codes have an extremely good dependence on the field

size, from which we benefit. Indeed, even random codes, as used in the proof of the Gilbert-
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Varshamov bound, require alphabet size q = 2Ω(t) for our choice of δ. This in turn would
require us to consume 2Õ(ε−2) sources.

2.3.3 A solution that consumes a single source

In this section we describe a second implementation for Step 2 that has the advantage of
consuming only a single source. To this end, we make use of a t-correlation breaker with
advice. Roughly speaking, this is a function that breaks the correlations between random
variables given an “advice” and using a fresh weak-source of randomness. More formally, a
t-correlation breaker with advice is a function

AdvCB : {0, 1}` × {0, 1}n × {0, 1}a → {0, 1}`

with the following property. For any arbitrarily correlated `-bit random variables Y, Y1, . . . , Yt,
with Y uniform, any a-bit strings α, α1, . . . , αt, and for any weak-source W that is indepen-
dent of the joint distribution of Y, Y1, . . . , Yt, it holds that whenever α 6∈ {αi}ti=1, the random
variable AdvCB(Y,W, α) is close to uniform even conditioned on the joint distribution of
{AdvCB(Yi,W, αi)}ti=1 (see Definition 4.14 and Theorem 4.15).

With correlation breakers in hand, we are ready to define the sequence of Mi’s. Let
{Xi}ri=1 be the sequence generated in Step 1. Note that, unlike the first implementation,
we only generate a single sequence. Let W be a weak-source that is independent of this
sequence. For i ∈ [r] and j ∈ [m], we define the j’th row of Mi by

(Mi)j = AdvCB (Xi,W,ECC(i)j) .

That is, we use the j’th entry of the codeword corresponding to message i as the advice for
the correlation breaker.

The analysis proceeds as follows. Let Xg be a good variable and let i1, . . . , it ∈ [r] \ {g}.
As before, by our choice of δ, for any fixed c ∈ [t], the codewords ECC(g) and ECC(ic) agree
on at most 1/(10t) fraction of their entries. Thus, ECC(g)j 6∈ {ECC(ic)j}tc=1 for at least
0.9 fraction of j ∈ [m]. Therefore, and using the fact that Xg is uniform, the property of
AdvCB implies that (Mg)j is close to uniform even conditioned on the joint distribution of
{(Mic)j}ci=1 for 0.9 fraction of j ∈ [m], as desired.

To summarize, while in this solution we consumed a single source so to break the unde-
sired correlations, in the first solution we used more sources so not to introduce undesired
correlations to begin with.

Working with algebraic-geometric codes is beneficial also for this implementation of Step
2. Indeed, the larger the advice length a = log2 q is, the more min-entropy is required from
W for the operation of AdvCB, and the larger must be the length of the Xi’s, which in turn
puts restrictions on the min-entropy of the sources used in Step 1. Thus, we would like to
take a to be as small as possible. On the other hand, as before, the larger the number of
rows m of the Mi’s is, the larger the min-entropy that will be required from the sources used
in Step 3. Thus, we want to minimize m as well. Recall that for the above analysis to go
through, the relative distance was set to δ = 1−1/(10t). By using algebraic-geometric codes
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we can get away with an advice of length a = O(log t) and m = O(t log r) rows. Working
with Reed-Solomon codes or even with random codes will require more min-entropy from our
sources. In particular, working with Reed-Solomon codes would prevent us from supporting
min-entropy that is arbitrarily close to logarithmic.

2.4 Step 3 – Merging while preserving independence

As mentioned, most of the technical effort of this work is invested in the third step, in which
we merge the rows of each matrix Mi, computed in the previous step, while preserving the
independence across the sequence. In this section we show how to use 2/δ + O(1) sources,
each with min-entropy (log n)1+δ, so to accomplish this task.

The strategy that we employ is to reduce the problem of merging any number of vari-
ables (namely, the rows of a matrix) while preserving independence to the simplest case of
merging only two variables while preserving independence. As this atomic primitive is the
most delicate to analyze, in this section we only describe the reduction to the two variables
case, and defer the presentation of the independence-preserving merger for two variables to
Section 2.5.

Source

IPMerg

Source

IPMergX
Y

X
Y

Figure 2: An illustration of the two-variables independence-preserving merger. Each high-
lighted (darker) random variable represents a variable that is uniform conditioned on its
respective random variable (which does not appear in the picture). On the left side, X is
uniform even conditioned on X ′, whereas on the right side, Y is uniform even conditioned on
Y ′. Regardless of which random variable is uniform conditioned on its respective variable,
the output of the merger is uniform conditioned on the output obtained by applying the
merger to the other two random variables.

Let us start by giving a precise formulation for the problem of merging two random
variables while preserving independence. For simplicity, we consider only the case t = 1,
though what to be presented next can be easily generalized to any t. Indeed, only Step 2
required a non-trivial idea to support arbitrary large t without increasing the number of
sources.

We are given a pair of `-bit random variables X, Y , both of which are uniform, though
they may correlate arbitrarily. Let X ′, Y ′ be a second pair of `-bit random variables. We
are not guaranteed that these random variables are uniform. More perilously, X ′, Y ′ may
arbitrarily correlate amongst themselves and with X, Y . Assume, however, that we are
guaranteed that at least one of the following holds:

1. X is uniform even conditioned on X ′; or
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2. Y is uniform even conditioned on Y ′.

Our goal is to merge X, Y while preserving this independence. More precisely, we would
like to design an efficiently-computable function

IPMerg : {0, 1}` × {0, 1}` → {0, 1}`

such that IPMerg(X, Y ) is close to uniform even conditioned on IPMerg(X ′, Y ′). In Sec-
tion 2.5 we show how to accomplish this task. As a matter of fact, such a primitive does
not exist per se, and some fresh randomness, in the form of an independent weak-source, is
required for the purpose of independence-preserving merging.

2.4.1 Independence-preserving half condensers and mergers

In this section we show how to obtain an independence-preserving merger for an arbitrary
number of variables given the two-variables independence-preserving merger IPMerg, dis-
cussed in the previous section, as a black box. Due to its high min-entropy requirement,
this new merger will not be the actual merger that will be used to merge the rows of the
matrices obtained by Step 2. Nevertheless, the merger will be used as a building block for
the construction of the final merger that will be used by our extractor.

IPMerg

IPMerg

Source

IPHalfCond

IPMerg

1
2

ݎ

1
2

2/ݎ

݈

݈

3
4

ݎ − 1

3

Figure 3: An illustration of the independence-preserving half condenser IPHalfCond that is
based on the two-variables independence-preserving mergers IPMerg. The highlighted row of
the input (output) matrix represents a row that is uniform conditioned on the respective row
of the other input (output) matrix. The same sample from the source is fed to all instances
of IPMerg used by the construction.

14



With IPMerg in hand, one can easily implement what we call an independence-preserving
half-condenser. This is a function

IPHalfCond : {0, 1}r×` → {0, 1}(r/2)×`

such that if M,M ′ are random variables in the form of r × ` binary matrices with M being
somewhere-independent of M ′, and where each row of M is uniform, then IPHalfCond(M)
is somewhere-independent of IPHalfCond(M ′), and each row of IPHalfCond(M) is uniform.
Indeed, for any j ∈ [r/2], one can simply set

IPHalfCond(M)j = IPMerg(M2j−1,M2j).

It is easy to see that the independence is preserved. Indeed, if Mg is close to uniform even
conditioned on M ′

g for some g ∈ [r] then by the guarantee of IPMerg, and by construction,
IPHalfCond(M)dg/2e is close to uniform even conditioned on IPHalfCond(M ′)dg/2e. Further,
one can show that all rows of IPHalfCond(M) are close to uniform.

HalfCond

X Y

HalfCond

X

HalfCond

Two-source independence-preserving merger

Figure 4: An illustration of the two-source independence-preserving merger that is based on
IPHalfCond. Note that the sources X, Y are used in an alternating fashion. Each highlighted
row represents a row that is uniform conditioned on the respective row in the other matrix.

Of course, one can invoke IPHalfCond again, this time applied not to M,M ′, but rather to
IPHalfCond(M) and IPHalfCond(M ′), so to reduce the number of rows by a factor of 4 while
preserving independence, and so forth. By a careful analysis, one can show that the use of
a fresh weak-source per application of IPHalfCond is not required. Instead, one can “juggle”
between two sources – for even iterations use one source and for odd iterations use the other.
So, using only two sources, one can apply IPHalfCond for log r iterations and merge M to
a random variable in the form of a string which is independent of the string obtained by
merging M ′.

15



Unfortunately, for the first iteration alone, the min-entropy required by the source for
IPHalfCond is Θ(r log n). As the Mi’s obtained by Step 2 have r = Ω(log n) rows, this
requires Ω(log2 n) min-entropy from the sources, which is more than what we can afford. On
the other hand, we used only 2 sources for the entire merging process, and as the number
of rows decreases exponentially with the number of iterations, the min-entropy requirement
for the first iteration dominates the total min-entropy that is needed for the entire merging
process. That is, the merger described above works when given two independent sources
with min-entropy O(r log n).

The formal construction and analysis of IPHalfCond and the merger induced by it appear
in Section 5. In that section we actually show that one does not need two fresh sources for
the merging process, and one of the two sources can correlate with the matrices to which
we apply the merger. Therefore, in Section 5 we refer to the merger described above as a
single-source independence-preserving merger. For simplicity of presentation, in this proof
overview we do not take advantage of this fact, and consider this merger as a two-source
independence-preserving merger. In the next section we use the latter merger to construct
a multi-source independence-preserving merger that has a lower min-entropy requirement.

2.4.2 Multi-source independence-preserving condensers and mergers

As mentioned, the merger that was constructed in the previous section requires more min-
entropy than we can afford from its two auxiliary sources. We start this section by presenting
an independence-preserving condenser that is guaranteed to work even with much lower
min-entropy sources. This condenser, however, will require two auxiliary sources for its
operation as apposed to IPHalfCond that used a single source. The construction of this two-
source independence-preserving condenser relies on the two-source independence-preserving
merger that was constructed in Section 2.4.1. We then turn to construct the multi-source
independence-preserving merger that will be used by our extractor.

For the construction of our two-source independence-preserving condenser we make use
of expander graphs. More precisely, by using an appropriate explicit expander graph (see
Theorem 6.3), for any integer r and for any ε > 0, one can obtain a bipartite graph G =
(L,R,E), with |L| = |R| = r and right-degree d = O(1/ε), that has the following property.
For any set B ⊂ L of size |B| ≤ 0.1r, all but ε fraction of the vertices in R have a neighbor
outside of B. Therefore, by throwing away all but an arbitrary subset of 10εr vertices from
R, one obtains a bipartite graph G′ = (L′, R′, E ′) with L′ = L, |R′| = 10εr, and right-degree
d = O(1/ε), such that for any set B as above, all but 0.1 fraction of the vertices in R′ have
a neighbor outside of B. The important point here is that the size of R′ can be made much
smaller than the size of L′ at the expense of increasing the right-degree.

Set ε = (log n)−δ and let G′ = (L′, R′, E) be the graph described above with |L′| = r,
|R′| = r′ = O(r/(log n)δ), and right-degree d = O(1/ε) = O((log n)δ). We identify L′ with
[r], and for each v ∈ R′ consider the d × ` matrix Mv that is obtained by taking the rows
of M which correspond to the neighbors of v in G′. To summarize, we associate with M a
sequence of r′ matrices of order d× `.

Our two-source independence-preserving condenser is defined as follows. We apply the
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Two-source independence-preserving condenser
Figure 5: A two-source independence-preserving condenser. An expander graph is used
to generate a sequence of r/(log n)δ matrices, each having (log n)δ rows (ignoring constant
factors). The two-source independence-preserving merger from Section 2.4.1 is applied to
each matrix in the sequence, using the same two sources X, Y . The outputs are then stacked
as the rows of the output matrix. Each highlighted row represents a row that is uniform
conditioned on the respective row in the other matrix.

independence-preserving merger described in Section 2.4.1 to each of the matrices Mv, with
the same pair of sources for all v. This yields an r′×` matrix. We now show that 0.9 fraction
of the rows of this matrix are close to uniform even conditioned on the corresponding row of
the condensed M ′.

The analysis is straightforward – as M is independent of M ′ in 0.9 fraction of its rows,
the property of G′ guarantees that for 0.9 fraction of v ∈ R′ it holds that Mv is somewhere-
independent of M ′

v. Thus, for any such v, we have that the merged value of Mv is close to
uniform even conditioned on the merged value of M ′

v.
By consuming two sources with min-entropy d log n = (log n)1+δ we condense the r × `

matrix M to a matrix with r/(log n)δ rows while preserving the independence guarantee
for 0.9 fraction of the rows. As r = O(log n), one can repeat this condensing process for
1/δ iterations, each time using two fresh sources, so to obtain an independence-preserving
merger that consumes 2/δ sources each with min-entropy (log n)1+δ. This will be our final
merger.

2.5 A two-variables independence-preserving merger

In previous sections we saw how to reduce the construction of multi-source extractors to that
of merging two random variables while preserving independence. Let us recall the setting.
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We are given a pair of `-bit random variables X, Y , both of which are uniform, though they
may correlate arbitrarily. Let X ′, Y ′ be a second pair of `-bit random variables that are
arbitrarily correlated amongst themselves and with X, Y . We are guaranteed that at least
one of the following holds:

Independence in X. The random variable X is uniform even conditioned on X ′; or

Independence in Y . The random variable Y is uniform even conditioned on Y ′.

Our goal is to design an efficiently-computable function

IPMerg : {0, 1}` × {0, 1}` → {0, 1}`

such that IPMerg(X, Y ) is close to uniform even conditioned on IPMerg(X ′, Y ′). Of course,
simply outputting, say, the first input, won’t do as although we will output a uniform string,
it could be the case that this string is the one correlated with the corresponding string in
the other pair. In fact, as mentioned in the previous section, there is no function with such
a guarantee. Therefore, relaxing the problem a bit, we would like to design an efficiently-
computable function

IPMerg : {0, 1}` × {0, 1}` × {0, 1}n → {0, 1}`

such that IPMerg(X, Y,W ) is uniform even conditioned on IPMerg(X ′, Y ′,W ), where W is
an (n, k)-source that is independent of the joint distribution of X, Y,X ′, Y ′.

2.5.1 Some preliminary suggestions

A good starting point for motivating our construction is the following useful property of
strong seeded extractors. Roughly speaking, it can be shown that as long as one uses a fresh
seed, previous outputs of an extractor do not reveal information about the future output,
even if the sources being used are arbitrarily correlated. More precisely, we have the following
fact.

Fact 2.1. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a strong seeded extractor for min-entropy
k. Let S be a random variable that is uniformly distributed over {0, 1}d. Let W,W ′, S ′ be
arbitrarily correlated random variables that are jointly independent of S. Assume further
that H∞(W )� k. Then, Ext(W,S) is close to uniform even conditioned on Ext(W ′, S ′).

It is not hard to prove Fact 2.1 though we omit its proof. We will not use this fact anyhow
and recalled it here for motivating the actual construction. At any rate, given Fact 2.1, a
first attempt would be to completely ignore W , and define

IPMerg1(X, Y,W ) = Ext(X, Y ).

The reasoning behind this suggestion is the following: If there is independence in Y then one
might make the hasty conclusion that regardless of the correlations between the sources X
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and X ′, Fact 2.1 tells us that Ext(X, Y ) is close to uniform even conditioned on Ext(X ′, Y ′).
This, of course, is flawed – the source X and the seed Y to Ext are correlated and so,
regardless of X ′, Y ′, the output Ext(X, Y ) is not necessarily close to uniform. Of course, we
knew all along that one must use the extra randomness of W , so this idea was bound to fail.

A revised idea would be to use the fresh source W as a “buffer” between X, Y , and define

IPMerg2(X, Y,W ) = Extout(X,Extin(W,Y )).

This idea in fact almost works when there is independence in Y . We revise the construction
a bit further and define

IPMerg3(X, Y,W ) = Extout(X,Extin(W,Y |s)),

where Y |s stands for the length s prefix of Y . In particular, we set s = `/10. We further
set the output length of the inner extractor Extin (which is the seed length for the outer
extractor Extout) to s. The outer extractor Extout is also set to output s bits given a source
X with min-entropy 0.7`. By this choice of parameters, IPMerg3 has output length s = `/10
rather than `, though the reader should not worry about this issue as the number of output
bits can be easily increased back to ` using standard techniques, and in any case, our final
construction does not suffer this shrinkage in the output length. One can now prove the
following claim.

Extin

X

Y

W

Extout

IPMerg3

s

Claim 2.2. Assume that k � `. If there is independence in Y then IPMerg3(X, Y,W ) is
close to uniform even conditioned on IPMerg3(X ′, Y ′,W ).

We will not make use of Claim 2.2 since, as we discuss next, we do not know how to prove
a similar statement for the independence in X case. Nevertheless, IPMerg3 will be used in
our final construction. The attentive reader is referred to Section B for a proof sketch of
Claim 2.2.

What can go wrong by using IPMerg3 assuming that there is independence in X rather
than in Y ? At first look, IPMerg3 seems promising. Indeed, in that case X is uniform even
conditioned on the source X ′, the seed Y is uniform, and thanks to the buffer source W ,
Extin(W,Y |s) yields a seed for the outer extractor Extout that is independent of X. What
harm can the correlation between Y and Y ′ cause? Well, recall that each of the pairs (X, Y ),
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(Y, Y ′), (Y ′, X ′) might be correlated. Therefore, by conditioning on Y, Y ′ we may introduce
correlations between X and X ′. Thus, our proof strategy employed in Claim 2.2, which
involves conditioning on the values of (prefixes of) Y, Y ′ is problematic.

Although we do not know how to show that IPMerg3 works when there is independence
in X, it does work when there is independence in Y . Moreover, the problem we have seems
to arise only due to the correlations between X and the other random variables. In fact, this
can be made formal as one can show that IPMerg3 works perfectly assuming both X, Y are
uniform and assuming that one of the following holds:

1. X is uniform even conditioned on the joint distribution of Y,X ′, Y ′; or

2. Y is uniform even conditioned on Y ′.

Note that Case 2 is the original independence in Y case, so the analysis above holds for
that case. Case 1 is stronger than the independence in X case in that it assumes that X is
uniform not only conditioned on X ′ but rather conditioned on all other random variables in
the picture.

In the next section we show how to guarantee that one of these stronger properties
holds given only the original assumption. This reduction, however, will cause some further
complications that will require our attention.

2.5.2 Relying on a hierarchy of independence

The discussion above leads us to consider the following problem. Let X,X ′, Y, Y ′ be random
variables for which the original assumption holds, namely, both X and Y are uniform though
correlated, and we have independence either in X or in Y . As before, let W be a fresh (n, k)-
source. This source was used in the suggestion above as a “buffer” between X and Y . We
will make further use of W , and so this auxiliary source has several conceptual roles in the
final construction.

For what comes next, we also need a second (n, k)-source Z, though we do not consider
this source as a new source of randomness with respect to X,X ′, Y, Y ′, as we do not require
that Z is independent of (X,X ′, Y, Y ′). We only need Z to have some min-entropy left even
conditioned on (X,X ′, Y, Y ′). Having the big picture in mind, the variables X,X ′, Y, Y ′ are
not given as inputs to our extractor but are computed by the first two steps. The source
Z is one of the sources used by these steps, and we make sure that even conditioned on
(X,X ′, Y, Y ′), the source Z has some min-entropy left.

We would like to design a pair of functions

a : {0, 1}` × {0, 1}n × {0, 1}n → {0, 1}`,
b : {0, 1}` × {0, 1}n × {0, 1}n → {0, 1}`,

such that

• If there is independence in X then b(X,Z,W ) is close to uniform even conditioned on
the joint distribution of b(X ′, Z,W ), a(Y, Z,W ), and a(Y ′, Z,W ).
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• If there is independence in Y then a(Y, Z,W ) is close to uniform even conditioned on
a(Y ′, Z,W ).

We further require that each of b(X,Z,W ), a(Y, Z,W ) is uniform. By setting

Xnew = b(X,Z,W ),

X ′new = b(X ′, Z,W ),

Ynew = a(Y, Z,W ),

Y ′new = a(Y ′, Z,W ),

we see that if there is independence in X or in Y then one of the following holds:

1. Xnew is close to uniform even conditioned on Ynew, X
′
new, Y

′
new; or

2. Ynew is close to uniform even conditioned on Y ′new.

and furthermore, each of Xnew, Ynew is close to uniform. This is exactly the stronger guarantee
that we set off to obtain. It is therefore tempting to just go ahead and use this reduction in
a black-box manner, and define

IPMerg4(X, Y, Z,W ) = IPMerg3(Xnew, Ynew,W ).

Indeed, using the functions a, b, we “transformed” the original guarantee on X, Y,X ′, Y ′ to
the stronger guarantee on Xnew, Ynew, X

′
new, Y

′
new, under which one might hope that IPMerg3

can be shown to work. However, by a more careful inspection one can see that a new
problem arises – the variables Xnew, X ′new, Ynew, and Y ′new are no longer independent of W .
In particular, the proof sketch for Claim 2.2 that is given in Appendix B breaks.

a

X

Y

W

IPMerg3
Z

b Xnew

Ynew

IPMerg4

So, unfortunately, the idea of breaking the correlations between X and (Y,X ′, Y ′) so to
handle the independence in X case in a black-box manner while keeping intact the analysis
of the independence in Y case fails. Fortunately, however, the specific way in which we
implement a, b does allow us to make use of the ideas developed so far. It turns out that by
a suitable modification to IPMerg4, and by using specific instantiation for a, b, we can handle
both cases simultaneously. So, in order to continue with the analysis we must present our
construction for a, b.
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2.5.3 A specific implementation for establishing a hierarchy of independence

In this section we present a specific implementation for the functions a, b that were presented
in the previous section. The construction is based on the technique of alternating extraction.
As it turns out, we can also define the function a with one argument less, and so we define

a : {0, 1}` × {0, 1}n → {0, 1}`,
b : {0, 1}` × {0, 1}n × {0, 1}n → {0, 1}`,

by

a(X,W ) = Ext(W,X|s),
b(X,Z,W ) = Ext(W,Exts(Z,Exts(W,X|s))).

Here Ext is a strong seeded extractor with ` output bits, and Exts is the extractor obtained
by truncating the output of Ext after s bits. We argue that this implementation meets our
needs. To be more precise, we “cluster” the random variables that are obtained in different
stages of the computation of a, b, and set

M = X, Y,X ′, Y ′,

A = a(X,W ), a(X ′,W ), a(Y,W ), a(Y ′,W ),

Z = Exts(Z,Exts(W,X|s)),Exts(Z,Exts(W,X ′|s)).

So, M denotes the two pairs of random variables that are fed as inputs to the mergers.
The next stage of computation is captured by A. Note, in particular that this also includes
Exts(W,X|s) and Exts(W,X

′|s). Lastly, Z denotes the seeds fed to the outer extractor in the
computation of b.

We do not analyze a, b here and are satisfied with stating the following claim. In the
next section we show how one can use this specific implementation of a, b so to obtain our
final two-variables independence-preserving merger. The proof of (a formal restatement of)
Claim 2.3 appears in Section 5.1.1.

Claim 2.3. With the notation set so far, the following holds.

• If there is independence in X then b(X,Z,W ) is close to uniform even conditioned on
b(X ′, Z,W ),Z,A,M.

• If there is independence in Y then a(Y,W ) is close to uniform even conditioned on
a(Y ′,W ),M.

• Regardless of whether there is independence in X or in Y , it holds that a(Y,W ) is close
to uniform conditioned on M. Further, b(X,Z,W ) is close to uniform conditioned on
Z,A,M.
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2.5.4 Our final two-variables independence-preserving merger

Before presenting our two-variables independence-preserving merger, we need to acquire one
more object – an extractor with weak-seeds due to Raz [Raz05]. This is a strong seeded
extractor that works even if the seed is not uniform, but rather has min-entropy rate 1/2 + δ
for an arbitrarily small constant δ > 0 (see Theorem 3.10). With Raz’s extractor and
with a, b that were defined in the previous section, we can finally define our two-variables
independence-preserving merger by

IPMerg(X, Y, Z,W ) = Raz (b(X,Z,W ),Extin(Z, a(Y,W ))) .

We set the output length of the inner extractor Extin to s′, and the output length of Raz
to m. Recall that ` is the output length of a, b. We set things up such that s′ � s and
` � m. This is our way of making sure that some random variables will have enough min-
entropy even conditioned on some other, shorter, random variables. Our goal is to show that
IPMerg(X, Y, Z,W ) is close to uniform even conditioned on

IPMerg(X ′, Y ′, Z,W ) = Raz (b(X ′, Z,W ),Extin(Z, a(Y ′,W ))) .

For the analysis we consider two cases, corresponding to whether there is independence in
X or independence in Y .

Analyzing the independence in X case. By Claim 2.3, the source b(X,Z,W ) to Raz
is close to uniform even conditioned on b(X ′, Z,W ),A,Z,M. Note also that conditioned on
these random variables, b(X,Z,W ) is a deterministic function of W , and so b(X,Z,W ) is
close to uniform conditioned on the other source b(X ′, Z,W ) (which we already know) and
on the seeds Extin(Z, a(Y,W )), Extin(Z, a(Y ′,W )) to Raz (as they are deterministic functions
of Z conditioned on A).

Intuitively, this allows us to “replace” the source b(X,Z,W ) in Raz by the uniform
distribution. That is, it is enough to show that Raz(U,Extin(Z, a(Y,W ))) is close to uniform
conditioned on IPMerg(X ′, Y ′, Z,W ), where U is uniform and independent of all the other
random variables in the picture.

This is a much easier task! Indeed, the uniform distribution is some valid source for
Raz (granted, with lots of min-entropy). So, as long as the seed Extin(Z, a(Y,W )) fed to
Raz is close to uniform, we have that with high probability over s ∼ Extin(Z, a(Y,W )), the
output Raz(U, s) is close to uniform. Now, this random variable is completely independent
of all other random variables, and in particular it is close to uniform even conditioned on
IPMerg(X ′, Y ′, Z,W ). To show that Extin(Z, a(Y,W )) is close to uniform is not hard and we
skip the proof. We now move to the more delicate case.

Analyzing the independence in Y case. By Claim 2.3, a(Y,W ) is close to uniform
even conditioned on a(Y ′,W ),M. We note that a(Y,W ) is independent of Z conditioned
on M, and so a(Y,W ) is close to uniform even conditioned on Extin(Z, a(Y ′,W )), a(Y ′,W ),
andM. Therefore, the seed Extin(Z, a(Y,W )) to Raz is close to uniform even conditioned on

H = a(Y,W ),Extin(Z, a(Y ′,W )), a(Y ′,W ),M.
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In fact, as Extin(Z, a(Y,W )) is independent ofA conditioned onH, we have that Extin(Z, a(Y,W ))
is close to uniform even conditioned on

H′ = Extin(Z, a(Y ′,W )),A,M.

Recall that
b(X ′, Z,W ) = Ext(W,Exts(Z,Exts(W,X

′|s))).

Note that the variable Exts(W,X
′|s) is contained in A, which in turn is contained in H′.

Thus, Exts(Z,Exts(W,X
′|s)) is a deterministic function of Z conditioned on H′. Now, al-

though the seed Extin(Z, a(Y,W )) is also a deterministic function of Z conditioned on H′,
and in particular it may correlate with Exts(Z,Exts(W,X

′|s)), we can still condition on
Exts(Z,Exts(W,X

′|s)) and, with high probability, get that the seed Extin(Z, a(Y,W )) has min-
entropy s′−s. In fact, as we would like to remove the correlations between the source and the
seed fed to Raz, we also condition on the “part” of the source b(X,Z,W ) that correlates with
the seed Extin(Z, a(Y,W )), that is, we would like to condition on both Exts(Z,Exts(W,X|s))
and Exts(Z,Exts(W,X

′|s)). By interpreting s′ � s as s′ > 20s we have that conditioned on

H′′ = Exts(Z,Exts(W,X|s)),Exts(Z,Exts(W,X ′|s)),H′,

the seed Extin(Z, a(Y,W )) has min-entropy s′ − 2s > 0.9s′.
At this point, the output IPMerg(X ′, Y ′, Z,W ) is a deterministic function of b(X ′, Z,W )

which, in turn, is a deterministic function ofW . Thus, we can fix the output IPMerg(X ′, Y ′, Z,W )
without affecting the seed Extin(Z, a(Y,W )). That is, we have that the latter seed is close
to having min-entropy rate 0.9 even conditioned on IPMerg(X ′, Y ′, Z,W ),H′′. This is good
enough for a seed passed to Raz.

To conclude the proof, it suffices to show that the source b(X,Z,W ) fed to Raz has suffi-
cient amount of min-entropy even conditioned on the same set of variables IPMerg(X ′, Y ′, Z,W ),H′′.
Indeed, note that conditioned on these variables, the source b(X,Z,W ) and seed Extin(Z, a(Y,W ))
fed to Raz are independent. This is why we also bothered to condition on Exts(Z,Exts(W,X|s))
– the part of the source b(X,Z,W ) that correlates with the seed Extin(Z, a(Y,W )).

We now turn to show that the source b(X,Z,W ) has high min-entropy even conditioned
on IPMerg(X ′, Y ′, Z,W ),H′′. By Claim 2.3, b(X,Z,W ) is close to uniform conditioned
on Z,A,M. Note that conditioned on Z,A,M, the source b(X,Z,W ) is independent
of Extin(Z, a(Y ′,W )), and so the source b(X,Z,W ) is close to uniform even conditioned on
Extin(Z, a(Y ′,W )),Z,A,M. At this point, IPMerg(X ′, Y ′, Z,W ) is a deterministic function of
b(X ′, Z,W ) which, as we condition on Z, is in turn a deterministic function of W . As `� m,
we are guaranteed that even conditioned on IPMerg(X ′, Y ′, Z,W ), the source b(X,Z,W ),
which was close to uniform prior to the conditioning, has not lost much of its min-entropy. As
Exts(Z,Exts(W,X|s)) and Exts(Z,Exts(W,X

′|s)) are contained in Z, the latter conditioning
on IPMerg(X ′, Y ′, Z,W ) completes the list of random variables on which we condition to the
desired set IPMerg(X ′, Y ′, Z,W ),H′′.
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2.6 Improving the output length and the error guarantee

In this section we give a brief account for the proof of Theorem 1.2. The construction starts
by following the three steps that were described in the previous sections, though with two
differences. First, instead of setting t to be a large constant that depends only on the desired
error guarantee, we set t = (log n)Ω(δ). Second, we do not require that the number of bad
variables will be very small (that is, smaller than

√
r, with r = poly(n) being the number

of variables in the sequence). In fact, for what follows it suffices that 0.9 fraction of the
variables are good. This allows for a simpler implementation of Step 1 that requires only 2
sources rather than a large constant that depends on the parameters of Bourgain’s extractor
(see Lemma 8.6).

At this point we obtain a sequenceX1, . . . , Xr such that all but 0.1 fraction of the variables
are t-wise independent. Instead of applying the majority function, as was done in the proof
of Theorem 1.1, we follow [Li13a] and perform a sequence of steps, where in each step we
reduce the number of variables while maintaining the independence guarantee. To this end
we make use of Li’s condenser that is based on the lightest bin protocol of Feige [Fei99] (see
Theorem 8.3).

By consuming a source with min-entropy O(t log n) = O((log n)1+δ), Li’s condenser is

able to transform the original sequence to a sequence of roughly t · r1/
√
t variables that have

the same guarantee as the input sequence. That is, 0.9 fraction of the variables in the output
sequence are t-wise independent. By repeating this process for O(1/δ) steps, consuming one
source per step, we obtain a sequence of (log n)O(δ) variables, which can then be merged,
using a primitive called a merger with weak-seeds [Coh15a], by consuming one more source
(see Theorem 8.5).

For a formal treatment of the ideas and tools that were presented in the section, we refer
the reader to Section 8.

3 Preliminaries

In this section we set some notations that will be used throughout the paper and recall some
of the results from the literature that we apply frequently.

Setting some standard notations. Unless stated otherwise, the logarithm in this paper
is always taken base 2. For every natural number n ≥ 1, define [n] = {1, 2, . . . , n}. Through-
out the paper, whenever possible, we avoid the use of floor and ceiling in order not to make
the equations cumbersome. Whenever we say that a function is efficiently-computable we
mean that the corresponding family of functions can be computed by a (uniform) algorithm
that runs in polynomial-time in the input length.

In our proofs we consider sequences of matrices. We use the superscript to refer to a
matrix in the sequence and the subscript to refer to a row of the matrix. That is, mi

j denotes
the j’th row of the i’th matrix in the sequence {mk}k. All the matrices consider in this
paper are over {0, 1}.
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Random variables and distributions. We sometimes abuse notation and syntactically
treat random variables and their distribution as equal, specifically, we denote by Um a random
variable that is uniformly distributed over {0, 1}m. Furthermore, if Um appears in a joint
distribution (Um, X) then Um is independent of X. When m is clear from context, we omit it
from the subscript and write U . The support of a random variable X is denoted by supp(X).

Let X, Y be two random variables. We say that Y is a deterministic function of X if the
value of X determines the value of Y . Namely, there exists a function f such that Y = f(X).
Let X, Y, Z1, . . . , Zr be random variables.

Statistical distance. The statistical distance between two distributions X, Y on the same
domain D is defined by SD (X, Y ) = maxA⊆D {|Pr[X ∈ A]−Pr[Y ∈ A] |}. If SD(X, Y ) ≤ ε
we write X ≈ε Y and say that X and Y are ε-close.

We make frequent use of the following lemmas.

Lemma 3.1. Let X,X ′ be random variables on a common domain, and let f be a function
on that domain. Then, SD (f(X), f(X ′)) ≤ SD (X,X ′) .

Lemma 3.2. Let X,X ′ be two random variables on the same domain. Let Y, Z be a random
variables such that for any y ∈ supp(Y ), the random variables X | Y = y, Z | Y = y are
independent and the random variables X ′ | Y = y, Z | Y = y are independent. Then,

SD ((X, Y ), (X ′, Y )) = SD ((X,Z, Y ), (X ′, Z, Y )) .

Min-entropy. The min-entropy of a random variable X, denoted by H∞(X), is defined
by H∞(X) = minx∈supp(X) log2(1/Pr[X = x]). If X is supported on {0, 1}n, we define the
min-entropy rate of X by H∞(X)/n. In such case, if X has min-entropy k or more, we say
that X is an (n, k)-source. When wish to refer to an (n, k)-source without specifying the
quantitative parameters, we sometimes use the standard terms source or weak-source.

Average conditional min-entropy. Let X,W be two random variables. The average
conditional min-entropy of X given W is defined as

H̃∞(X | W ) = − log2

(
E

w∼W

[
2−H∞(X|W=w)

])
.

Lemma 3.3 ([DORS08]). Let X, Y, Z be random variables such that Y has support size at
most 2`. Then,

H̃∞(X | (Y, Z)) ≥ H̃∞((X, Y ) | Z)− ` ≥ H̃∞(X | Z)− `.

In particular, H̃∞(X | Y ) ≥ H∞(X)− `.

Lemma 3.4 ([DORS08]). For any two random variables X, Y and any ε > 0, it holds that

Pr
y∼Y

[
H∞(X | Y = y) < H̃∞(X | Y )− log(1/ε)

]
≤ ε.
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Lemma 3.5. Let X, Y, Z be random variables such that for any y ∈ supp(Y ) it holds that

X | Y = y and Z | Y = y are independent. Then, H̃∞(X | (Y, Z)) = H̃∞(X | Y ). In

particular, if X and Z are independent then H̃∞(X | Z) = H∞(X).

We also need the following standard definition of error correcting codes.

Definition 3.6. Let Σ be some set. A mapping ECC : Σk → Σn is called an error correcting
code with relative-distance δ if for any x, y ∈ Σk, it holds that the Hamming distance between
ECC(x) and ECC(y) is at least δn. The rate of the code, denoted by ρ, is defined by ρ = k/n.
We say that the alphabet size of the code is |Σ|.

Extractors. We provide standard definitions of extractors and state some of the results
we use.

Definition 3.7 (Seeded extractors). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is called a
seeded extractor for min-entropy k with error guarantee ε if for any (n, k)-source X it holds
that Ext(X,S) ≈ε Um, where S is uniformly distributed over {0, 1}d and is independent of
X. We say that Ext is a strong seeded-extractor if (Ext(X,S), S) ≈ε Um+d.

Definition 3.8 (Multi-source extractors). A function Ext : ({0, 1}n)b → {0, 1}m is called
an extractor for min-entropy k with error guarantee ε if for any independent (n, k)-sources
X1, . . . , Xb, it holds that Ext(X1, . . . , Xb) ≈ε Um. The extractor Ext is sometimes referred to
as a b-source extractor.

We sometimes say that an extractor Ext supports min-entropy k. By that we mean that
Ext is an extractor for min-entropy k. Throughout the paper we make use of the following
explicit strong seeded extractors.

Theorem 3.9 ([GUV09]). There exists a universal constant c > 0 such that the following
holds. For all positive integers n, k and ε > 0, there exists an efficiently-computable strong
seeded-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m for min-entropy k, with error guarantee ε,
seed length d = c · log(n/ε), and m = k/2 output bits.

The following theorem readily follows by Theorem 4 in [Raz05] and Theorem 3.9.

Theorem 3.10. There exist universal constants c′, c′′ such that the following holds. Let n, k
be integers and let ε > 0. Set d = c′ · log(n/ε). For all k ≥ c′′d, there exists an efficiently-
computable function Raz : {0, 1}n × {0, 1}d → {0, 1}k/2 with the following property. Let X
be an (n, k)-source, and let Y be an independent (d, 0.6d)-source. Then, (Raz(X, Y ), Y ) ≈ε
(U, Y ).

A strong seeded extractor Ext has the guarantee that (Ext(W,S), S) is close to uniform
whenever W has a sufficient amount of min-entropy and is independent of the uniform seed
S. Throughout the paper, however, we will typically apply strong seeded extractors to a
source and a seed that are functions of a common set of random variables. In particular,
the source and the seed will not be independent. Nevertheless, conditioned on the “history”
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of the computation led to these source and seed, independence does hold. Moreover, some
further technical issues arise – the source does not have high min-entropy conditioned on
any fixing of this history, and the seed is not uniform but rather close to uniform. The
following lemma allows one to avoid facing these issues again and again, and so we find it
very useful. A proof for Lemma 3.11 appears in Appendix A. We remark that a simple
proof for Lemma 3.11 can be found if one is willing to replace the error in the lemma with
2δ + 2ε (as apposed to δ + 2ε). However, this loss can be avoided with some more work
following [Rey11] and references therein.

Lemma 3.11. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a strong seeded extractor for min-
entropy k with error guarantee ε. Let W,S be random variables over n-bit strings and d-bit
strings, respectively. Let H be some random variable such that

H̃∞ (W | H) ≥ k + log(1/ε),

(S,H) ≈δ (U,H) .

Assume further that conditioned on H, the random variables W,S are independent. Then,

(Ext(W,S), S,H) ≈δ+2ε (U, S,H) .

4 Generating a Sequence of Somewhere-Independent

Matrices

In this section we show how to transform O(1) sources with min-entropy Õ(t) · log n to a
sequence of matrices such that all but few of the matrices are “somewhere independent”.
We start by formally defining this notion of independence.

Definition 4.1 (Somewhere-independent matrices). Let M,M1, . . . ,M t be random variables
in the form of r × ` matrices. Let H be a random variable and let δ > 0. We say that M is
(δ,H)-somewhere independent of M1, . . . ,M t if the following holds:

• There exists g ∈ [r] such that(
Mg,

{
M i

g

}t
i=1

,H
)
≈δ
(
U,
{
M i

g

}t
i=1

,H
)
.

• For any j ∈ [r], (Mj,H) ≈δ (U,H) .

Furthermore, we set the following notations:

• For any g ∈ [r] as in the first item, we say that M is (δ,H)-independent of M1, . . . ,M t

at g.

• For α ∈ [0, 1], we say that M is (α, δ,H)-independent of M1, . . . ,M t if there are αr
elements g ∈ [r] for which M is (δ,H)-independent of M1, . . . ,M t at g.
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• If H is empty then we omit it from the notations set above.

We remark that the somewhat technical presence of the random variable H in Defini-
tion 4.1 enables us to reuse the same source in our construction several times. The main
result of this section is the following proposition.

Proposition 4.2. There exists a universal constant α > 0 such that the following holds. For
all integers n, t, any ε > 0, and for any δ > 0, there exists an efficiently-computable function

GenSISeq : ({0, 1}n)b →
(
{0, 1}r′×m

)r
,

with b = 7/α, r = n3/α, r′ = O(t log n), and m = Ω(log(n/ε)), such that the following holds.
Let X1, . . . , Xb be independent (n, k)-sources with

k = Ω

(
t log(t) log

(
n log t

ε

))
.

Then, there exists B ⊂ [r], of size |B| ≤ r1/2−α, and a sequence M1, . . . ,M r of random
variables in the form of r′ ×m matrices such that the following holds:

• The sequence GenSISeq(X1, . . . , Xb) is r−1-close to (M1, . . . ,M r); and

• For any g ∈ [r]\B and any i1, . . . , it ∈ [r]\{g}, it holds that M g is (0.9, ε)-independent
of {M ij}tj=1.

The proposition readily follows by the following two lemmas.

Lemma 4.3. There exists a universal constant α > 0 such that the following holds. For all
integers n, `, there exists an efficiently-computable function

f : ({0, 1}n)b → {0, 1}r×`

with b = 7/α and r = n3/α, such that the following holds. Let X1, . . . , Xb be independent
(n, k)-sources with k = Ω(`)+(3/α2) log n. Assume further that k = no(1). Then, there exists
B ⊂ [r] of size |B| ≤ r1/2−α and a sequence Z1, . . . , Zr of `-bit random variables such that
the following holds:

• f(X1, . . . , Xb) is r−1-close to (Z1, . . . , Zr).

• For any j ∈ [r] \B, Zj is uniformly distributed over {0, 1}`.

Lemma 4.4. For all integers r, `, n, t, and for any ε > 0 such that

` = Ω

(
t log(t) · log

(
n log t

ε

))
,

there exists an efficiently-computable function

h : {0, 1}r×` × {0, 1}n →
(
{0, 1}r′×m

)r
,
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with m = Ω(`/(t log t)) and r′ = O(t log r) such that the following holds. Let M be a random
variable in the form of an r × ` matrix, and let X be an independent (n, k)-source with

k = Ω

(
t log(t) · log

(
` log t

ε

))
.

Then, for any g ∈ [r] such that Mg is uniform and for any i1, . . . , it ∈ [r] \ {g}, the matrix
h(M,X)g is (0.9, ε)-independent of h(M,X)i1 , . . . , h(M,X)it.

The proofs for Lemma 4.3 and Lemma 4.4 use distinct set of tools and so in Section 4.1 and
Section 4.2 we present the relevant tools for each of the lemmas, followed by the corresponding
proof.

4.1 Proof of Lemma 4.3

For the proof of Lemma 4.3 we make use of Bourgain’s two-source extractor [Bou05] and the
lossless condenser of Guruswami et al. [GUV09].

Theorem 4.5 ([Bou05]). There exists a universal constant β > 0 such that for any integer
n, there exists an efficiently-computable two-source extractor

Bour : {0, 1}n × {0, 1}n → {0, 1}m

for min-entropy (1/2− β)n with error guarantee 2−Ω(n) and m = Ω(n) output bits.

Definition 4.6 (Seeded condensers). A function Cond : {0, 1}n×{0, 1}d → {0, 1}m is said to
be a k →ε k

′ condenser if for any (n, k)-source X and for any independent random variable
S that is uniformly distributed over d-bit strings, it holds that Cond(X,S) is ε-close to a
random variable with min-entropy k′. The function Cond is called a lossless condenser if
k′ = k + d.

Theorem 4.7 ([GUV09]). For any constant τ > 0 (τ can be taken to be larger than 1),
all integers n, k such that k ≤ n, and for any ε > 0, there exists an efficiently-computable
k →ε k + d lossless condenser

Cond : {0, 1}n × {0, 1}d → {0, 1}m

having seed length d = (1 + 1/τ) log(nk/ε) +O(1) and m = 2d+ (1 + τ)k output bits.

For the proof of Lemma 4.3, we need the following lemma which, informally speaking,
states that any seeded condenser is also strong. A similar lemma, with slightly weaker
parameters, appears in [Li11].

Lemma 4.8. Let Cond : {0, 1}n × {0, 1}d → {0, 1}m be a k →ε k
′ condenser. Let X be an

(n, k)-source and let S be an independent random variable that is uniformly distributed over
d-bit strings. Then, for any δ > 0, with probability 1− δ over s ∼ S it holds that Cond(X, s)
is (2ε/δ)-close to having min-entropy k′ − d− log(2/δ).
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Proof. Let f(X,S) be a random variable with min-entropy k′ that is ε-close to Cond(X,S).
By Lemma 3.3,

H̃∞ (f(X,S) | S) ≥ H∞ (f(X,S))− |S| ≥ k′ − d.

Thus, by Lemma 3.4, except with probability δ/2 over s ∼ S, it holds that H∞(f(X, s)) ≥
k′ − d − log(2/δ). Now, by averaging, as f(X,S) ≈ε Cond(X,S), we have that except with
probability δ/2 over s ∼ S, Cond(X, s) is (2ε/δ)-close to f(X, s). Thus, by the union bound,
except with probability δ over s ∼ S, it holds that Cond(X, s) is (2ε/δ)-close to a random
variable with min-entropy k′ − d− log(2/δ), as stated.

We also make use of the following lemmas.

Lemma 4.9 ([BIW06]). Let X1, . . . , Xc be independent random variables over {0, 1}n such
that SD(Xi, Un) ≤ ε for all i ∈ [c]. Then, SD(X1 ⊕ · · · ⊕Xc, Un) ≤ εc.

Lemma 4.10 ([Li12b]). Let X,X ′ be random variables with a common range such that
SD(X,X ′) ≤ ε. Let (X, Y ) be a joint distribution. Then, there exists a joint distribution
(X ′, Y ) such that SD((X, Y ), (X ′, Y )) ≤ ε.

Proof of Lemma 4.3. We start by describing the construction of f and then turn to the
analysis. Let β be the universal constant from Theorem 4.5. Fix i ∈ [b]. Set

τ = 1 + 2β

α = β/16

ε = n−1/α

b = 7/α.

Given inputs x1, . . . , xb ∈ {0, 1}n we define f(x1, . . . , xb) as follows. For i ∈ [b], let
mi denote the r × m matrix obtained by applying the lossless condenser Cond from The-
orem 4.7 with τ as defined above to each possible seed. By Theorem 4.7, we have that
r = O((nk/ε)1+1/τ ) and m = 2d + (1 + τ)k. For an odd i ∈ [b], let mi,i+1 be the
r × m′ matrix that is defined as follows. For j ∈ [r], the j’th row of mi,i+1 is given by
mi,i+1
j = Bour

(
mi
j,m

i+1
j

)
. By Theorem 4.5, m′ = Ω(m). Lastly, we define the j’th row of

f(x1, . . . , xb) by

f(x1, . . . , xb)j =
b⊕

odd i=1

mi,i+1
j .

We now turn to the analysis. Fix i ∈ [b]. By Theorem 4.7, together with Lemma 4.8,
except with probability δ = r−(1/2+α) over s ∼ Ud, it holds that Cond(Xi, s) is ε′-close to an
(m, k′)-source, where k′ = k + d− log(2/δ) ≥ k − d, and ε′ = 2ε/δ.

Claim 4.11. ε′ ≤ r−α/3.
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Proof. By Theorem 4.7 and as τ > 1,

r = O

((
nk

ε

)1+1/τ
)
≤ O

(
k2
)
·
(

1

ε

) (1+α)(2+32α)
1+32α

. (4.1)

Thus,

1

δ
= r1/2+α ≤ O

(
k2
)
·
(

1

ε

)( 1
2

+α)· (1+α)(2+32α)
1+32α

.

Therefore,

ε′ =
2ε

δ
≤ O

(
k2
)
· ε1−( 1

2
+α)· (1+α)(2+32α)

1+32α ≤ O
(
k2
)
· ε2α ≤ εα,

where the penultimate inequality can be easily shown to hold for all α ≤ 1/16 (recall that
α = β/16 ≤ 1/16), and the last inequality follows as k = no(1) = (1/ε)o(1) and since α is
constant. Now, by Equation (4.1), together with k = (1/ε)o(1), it holds that r ≤ (1/ε)3, and
so ε′ ≤ r−α/3.

We proceed to verify that

Claim 4.12. k − d ≥ (1/2− β)m.

Proof. Recall that m = 2d+ (1 + τ)k, and so a simple calculation can be used to show that
the claim follows given that k ≥ d/α. As was shown in Claim 4.11, r ≤ (1/ε)3 and so, by our
choice of ε, we get that d ≤ (3/α) log n. Therefore, it suffices to show that k ≥ (3/α2) log n,
which follows by the hypothesis of the lemma.

By Claim 4.11 and Claim 4.12, there exists a set Bi ⊂ [r] of size |Bi| ≤ δr = r1/2−α

such that for any j 6∈ Bi it holds that M i
j is r−α/3-close to having min-entropy rate 1/2− β.

Consider any odd i ∈ [b]. By Theorem 4.5, for any j 6∈ Bi ∪ Bi+1, it holds that M i,i+1
j is

ε′′-close to uniform, where ε′′ = 2ε′ + 2−Ω(m) = O(r−α/3). Thus, by Lemma 4.9 and by our
choice of b, for any j 6∈ ∪bi=1Bi, it holds that f(X1, . . . , Xb)j is r−2-close to uniform.

Let B = ∪bi=1Bi and note that |B| ≤ b · r1/2−α. We now prove the existence of a sequence
of random variables Z1, . . . , Zr that is r−1-close to f(X1, . . . , Xb), with the property that for
any j ∈ [r] \B it holds that Zj is uniform. This is done by applying Lemma 4.10 for r− |B|
times. In each application, we replace one random variable that is r−2-close to uniform by a
truly uniform variable, while keeping the marginal distribution of the other variables intact.
To conclude the proof, we note that the multiplicative constant factor of b in the size of B
can be avoided by setting α to a slightly smaller value.

4.2 Proof of Lemma 4.4

For the proof of Lemma 4.4 we make use of two main building blocks, first of which are Goppa
codes (or algebraic-geometric codes). These are error correcting codes that come close to the
Singleton bound using a surprisingly small alphabet size (see Theorem 4.13 below). Second,
we make use of correlation breakers with advice, which were first implicitly constructed
by [CGL15] (see Theorem 4.15) and explicitly defined in [Coh15b] (see Definition 4.14).
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Theorem 4.13 ([GS95] (see also [Sti09])). Let p be any prime number and let m be an even
integer. Set q = pm. For every ρ ∈ [0, 1] and for any large enough integer n, there exists
an efficiently-computable rate ρ linear error correcting code ECC : Fρnq → Fnq with relative
distance δ such that

ρ+ δ ≥ 1− 1
√
q − 1

.

Definition 4.14. For an integer t ≥ 1 a t-correlation-breaker with advice for min-entropy
k and error guarantee ε is a function

AdvCB : {0, 1}` × {0, 1}n × {0, 1}a → {0, 1}m

with the following property. Let X,X1, . . . , X t be `-bit random variables such that X is uni-
form. Let W be an (n, k)-source that is independent of the joint distribution of X,X1, . . . , X t.
Then, for any α, α1, . . . , αt ∈ {0, 1}a such that α 6∈ {αi}ti=1, it holds that(

AdvCB(X,W,α), {AdvCB(X i,W, αi)}ti=1

)
≈ε
(
U, {AdvCB(X i,W, αi)}ti=1

)
.

The third argument to the function AdvCB is called the advice.

Theorem 4.15 ([CGL15]). For all integers `, n, a, t and for any ε > 0 such that

` = Ω
(
at · log

(an
ε

))
,

there exists an efficiently-computable t-correlation-breaker with advice AdvCB : {0, 1}`×{0, 1}n×
{0, 1}a → {0, 1}m for min-entropy

k = Ω

(
at · log

(
a`

ε

))
,

with error guarantee ε, and m = Ω(`/(at)) output bits.

With these results in hand, we are ready to prove Lemma 4.4.

Proof of Lemma 4.4. We first describe the construction of h and then turn to the analysis.
We make use of the following building blocks:

• Set q to the least even power of two that is larger than (20t + 1)2. Identify [r] with

some arbitrary subset of Flog2 r
q . Let ECC : Flog2 r

q → Fr′q be the error correcting code
given by Theorem 4.13 set with relative distance δ = 1 − 1/(10t). By Theorem 4.13,
such an explicit code exists with rate ρ ≥ 1/(20t), and so r′ ≤ 20t log2 r.

• Set a = log2 q and note that a = O(log t). Let AdvCB : {0, 1}` × {0, 1}n × {0, 1}a →
{0, 1}m be the t-advice correlation breaker given by Theorem 4.15 for min-entropy k
with error guarantee ε. Note that our assumption on k, ` and our choice of a suffice
for the hypothesis of Theorem 4.15 to hold with m = Ω(`/(t log t)).
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Let m ∈ {0, 1}r×` and w ∈ {0, 1}n. For i ∈ [r] and j ∈ [r′], we define row j of the matrix
h(m,w)i by

h(m,w)ij = AdvCB
(
mi, w,ECC(i)j

)
.

With the construction in hand, we turn to the analysis. Let M be a random variable in
the form of an r× ` matrix, and let W be an independent (n, k)-source. Let g ∈ [r] be such
that Mg is uniform and consider any i1, . . . , it ∈ [r] \ {g}. Consider some fixed v ∈ [t]. By
our choice of δ, the codeword ECC(g) agrees with ECC(iv) on at most 1/(10t) fraction of the
entries. Thus, there exists B ⊆ [r′] of size |B| ≤ r′/10 such that for any j 6∈ B, it holds that
ECC(g)j 6∈ {ECC(iv)j}tv=1 . As Mg is uniform, Theorem 4.15 implies that for any j 6∈ B,(

h(M,W )gj ,
{
h(M,W )ivj

}t
v=1

)
≈ε
(
U,
{
h(M,W )ivj

}t
v=1

)
.

As this holds for any j 6∈ B, and since |B| ≤ r′/10, we have that h(M,W )g is (0.9, ε)-
independent of {h(M,W )iv}tv=1, as stated.

5 Single-Source Independence-Preserving Mergers for

High Min-Entropy

In this section we construct an independence-preserving merger that uses a single auxiliary
source of randomness. Unfortunately, the min-entropy required by the source will be too
high so to prevent us from using this merger directly to the sequence of matrices obtained
by the function GenSISeq given in Proposition 4.2. Nevertheless, the merger that we develop
here will be used as a building block in the multi-source merger that is presented in Section 6.

Proposition 5.1. For all integers n, r, and for any ε > 0, there exists an efficiently-
computable function

IPMerg : {0, 1}r×s × {0, 1}n × {0, 1}n → {0, 1}s,

where s = Θ(log(n/ε)) such that the following holds. Let M = (M,M1, . . . ,M t) be a
sequence of random variables in the form of r × s matrices. Assume that M is (δ,H)-
somewhere-independent of M1, . . . ,M t. Let Z,W be n-bit random variables such that con-
ditioned on H, the joint distribution of M, Z is independent of W . Assume further that

H̃∞ (W | H) = Ω
(
t2rs

)
,

H̃∞ (Z | H) = Ω
(
t2rs

)
.

Then,(
IPMerg(M,Z,W ),

{
IPMerg(M i, Z,W )

}t
i=1

)
≈O(r(δ+ε))

(
U,
{
IPMerg(M i, Z,W )

}t
i=1

)
.
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We remark that although syntactically-wise IPMerg is given two n-bit strings as input,
which we think of as sampled from the sources Z and W , we consider IPMerg as using only
a single auxiliary source of randomness. This is as, according to Proposition 5.1, the source
Z may correlate with M, and only W is required to be a “fresh” source of randomness.

For the proof of Proposition 5.1 we introduce and construct an object called an independence-
preserving half condenser. This is the content of the following section. With the half con-
denser in hand, in Section 5.2 we can go ahead and prove Proposition 5.1.

5.1 Independence-preserving half-condensers

The main result of this section is the following lemma.

Lemma 5.2. For all integers n, r, and for any ε > 0, there exists an efficiently-computable
function

IPHalfCond : {0, 1}r×s × {0, 1}n × {0, 1}n → {0, 1}(r/2)×s,

with s = O(log(n/ε)), such that the following holds. LetM = (M,M1, . . . ,M t) be a sequence
of random variables in the form of r × s matrices. Assume that M is (δ,H)-somewhere-
independent of M1, . . . ,M t. Let Z,W be n-bit random variables such that conditioned on H,
the joint distribution of M, Z is independent of W . Assume further that

H̃∞ (W | H) = Ω
(
t2rs

)
,

H̃∞ (Z | H) = Ω
(
t2rs

)
.

Let M ′ = IPHalfCond(M,Z,W ) and (M ′)i = IPHalfCond(M i, Z,W ). Then, there exists a
random variable H′ such that the following holds:

• M ′ is (2δ + 12ε,H′)-somewhere-independent of {(M ′)i}ti=1.

• Conditioned on H′, the random variables W , M ′, {(M ′)i}ti=1 are jointly independent
of Z.

• H̃∞(W | H′) ≥ H̃∞(W | H)−O (t2rs).

• H̃∞(Z | H′) ≥ H̃∞(Z | H)−O (t2rs).

5.1.1 Establishing a hierarchy of independence

For the proof of Lemma 5.2, we need to establish a “hierarchy of independence” which is the
content of this section. Then, in Section 5.1.2, we prove Lemma 5.2. The result that appears
in this section relies on alternating extraction and appears, in slightly different forms, in
previous works [DP07, DW09, Li13a, Coh15a].

Let n, b be some integers, and let ε > 0. Let s = c · log(n/ε) be a length that suffices
for a seed of the strong seeded extractor from Theorem 3.9 when given a sample from an
n-bit source and with error guarantee ε. By Theorem 3.9, c is some universal constant. We
further assume that b ≥ s.
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Let Ext : {0, 1}n×{0, 1}s → {0, 1}b be the strong seeded extractor from Theorem 3.9 for
min-entropy 2b set with error guarantee ε. We let Exts : {0, 1}n × {0, 1}s → {0, 1}s denote
the function obtained by applying Ext and taking only the length s prefix of the output.
This is valid as we assume b ≥ s. We define a pair of functions

a : {0, 1}s × {0, 1}n → {0, 1}b,
b : {0, 1}s × {0, 1}n × {0, 1}n → {0, 1}b,

as follows. For v ∈ {0, 1}s, z ∈ {0, 1}n, and w ∈ {0, 1}n,

a(v, w) = Ext(w, v),

b(v, z, w) = Ext(w,Exts(z,Exts(w, v))).

Lemma 5.3. Let M = (M,M1, . . . ,M t) be a sequence of random variables in the form of
r × s matrices such that M is (δ,H)-independent of M1, . . . ,M t at g. Let W,Z be n-bit
random variables such that conditioned on H, the joint distribution of M, Z is independent
of W . Assume further that

H̃∞ (W | H) ≥ 3trb,

H̃∞ (Z | H) ≥ 3trs.

Write

A = {a(Mj,W ) | j ∈ [r]} ∪
{
a(M i

j ,W ) | i ∈ [t], j ∈ [r]
}
,

Z = {Exts(Z,Exts(W,Mj)) | j ∈ [r]} ∪
{
Exts(Z,Exts(W,M

i
j)) | i ∈ [t], j ∈ [r]

}
.

Then, the following holds:

1.
(
a(Mg,W ),

{
a(M i

g,W )
}t
i=1

,M,H
)
≈δ+2ε

(
U,
{
a(M i

g,W )
}t
i=1

,M,H
)
,

2.
(
b(Mg, Z,W ),

{
b(M i

g, Z,W )
}t
i=1

,Z,A,M,H
)
≈δ+6ε

(
U,
{
b(M i

g, Z,W )
}t
i=1

,Z,A,M,H
)
.

Furthermore, for any j ∈ [r],

3. (a(Mj,W ),M,H) ≈δ+2ε (U,M,H),

4. (b(Mj, Z,W ),Z,A,M,H) ≈δ+6ε (U,Z,A,M,H).

Lastly,

5. H̃∞ (Z | Z,A,M,H) ≥ H̃∞ (Z | H)− 2(t+ 1)rs.

6. H̃∞ (W | Z,A,M,H) ≥ H̃∞ (W | H)− (t+ 1)rb.
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Proof of Item 1. As M is (δ,H)-independent of M1, . . . ,M t at g, we have that(
Mg,

{
M i

g

}t
i=1

,H
)
≈δ
(
U,
{
M i

g

}t
i=1

,H
)
.

Conditioned on
{
M i

g

}t
i=1

,H, the random variable Mg is independent of the joint distribution

of
{
a(M i

g,W )
}t
i=1

. Hence, by Lemma 3.2,(
Mg,

{
a(M i

g,W )
}t
i=1

,
{
M i

g

}t
i=1

,H
)
≈δ
(
U,
{
a(M i

g,W )
}t
i=1

,
{
M i

g

}t
i=1

,H
)
.

By Lemma 3.3 and Lemma 3.5,

H̃∞

(
W |

{
a(M i

g,W )
}t
i=1

,
{
M i

g

}t
i=1

,H
)
≥ H̃∞ (W | H)− tb ≥ 2b+ log(1/ε).

The above equation, together with the fact that Mg is independent of W conditioned on{
a(M i

g,W )
}t
i=1

,
{
M i

g

}t
i=1

, H, enables us to apply Lemma 3.11 and conclude that(
a(Mg,W ),Mg,

{
a(M i

g,W )
}t
i=1

,
{
M i

g

}t
i=1

,H
)
≈δ+2ε

(
U,Mg,

{
a(M i

g,W )
}t
i=1

,
{
M i

g

}t
i=1

,H
)
.

Conditioned on Mg,
{
a(M i

g,W )
}t
i=1

,
{
M i

g

}t
i=1

, H, the random variable a(Mg,W ) is indepen-
dent of M. Hence, by Lemma 3.2,(

a(Mg,W ),
{
a(M i

g,W )
}t
i=1

,M,H
)
≈δ+2ε

(
U,
{
a(M i

g,W )
}t
i=1

,M,H
)
.

This concludes the proof of Item 1.

Proof of Item 2. By Item 1,(
a(Mg,W ),

{
a(M i

g,W )
}t
i=1

,M,H
)
≈δ+2ε

(
U,
{
a(M i

g,W )
}t
i=1

,M,H
)
.

As Exts(W,M
i
g) is a prefix of a(M i

g,W ), conditioned on
{
a(M i

g,W )
}t
i=1

,M,H, the ran-

dom variable a(Mg,W ) is independent of the joint distribution of
{
Exts(Z,Exts(W,M

i
g))
}t
i=1

.
Thus, by Lemma 3.2,

(a(Mg,W ),H1) ≈δ+2ε (U,H1) ,

where H1 =
{
Exts(Z,Exts(W,M

i
g))
}t
i=1

,
{
a(M i

g,W )
}t
i=1

,M,H. Note that conditioned on
H1, the random variable a(Mg,W ) is independent of Z. By Lemma 3.11, and since

H̃∞ (Z | H1) ≥ H̃∞ (Z | H)− ((t+ 1)rs+ ts) ≥ 2s+ log(1/ε),

we have that

(Exts(Z,Exts(W,Mg)), a(Mg,W ),H1) ≈δ+4ε (U, a(Mg,W ),H1) .
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Conditioned on a(Mg,W ),H1, the random variable Exts(Z,Exts(W,Mg)) is independent

of the joint distribution of A,
{
b(M i

g, Z,W )
}t
i=1

. Thus, by Lemma 3.2,(
Exts(Z,Exts(W,Mg)),

{
b(M i

g, Z,W )
}t
i=1

,H2

)
≈δ+4ε

(
U,
{
b(M i

g, Z,W )
}t
i=1

,H2

)
,

where H2 =
{
Exts(Z,Exts(W,M

i
g))
}t
i=1

,A,M,H. Now, by Lemma 3.11, and since

H̃∞

(
W |

{
b(M i

g, Z,W )
}t
i=1

,H2

)
≥ H̃∞ (W | H)− ((t+ 1)rb+ tb)

≥ 2b+ log(1/ε),

we have that(
b(Mg, Z,W ),Exts(Z,Exts(W,Mg)),

{
b(M i

g, Z,W )
}t
i=1

,H2

)
≈δ+6ε(

U,Exts(Z,Exts(W,Mg)),
{
b(M i

g, Z,W )
}t
i=1

,H2

)
.

Note that b(Mg, Z,W ) is independent ofZ conditioned on Exts(Z,Exts(W,Mg)),
{
b(M i

g, Z,W )
}t
i=1

,
H2. Hence, by Lemma 3.2,(
b(Mg, Z,W ),

{
b(M i

g, Z,W )
}t
i=1

,Z,A,M,H
)
≈δ+6ε

(
U,
{
b(M i

g, Z,W )
}t
i=1

,Z,A,M,H
)
,

which concludes the proof of Item 2.

Proof of Item 3. Let j ∈ [r]. As M is (δ,H)-somewhere-independent of M1, . . . ,M t, we have

that (Mj,H) ≈δ (U,H). By Lemma 3.11, and since H̃∞(W | H) ≥ 2b+ log(1/ε),

(a(Mj,W ),Mj,H) ≈δ+2ε (U,Mj,H) .

Note that conditioned on the fixing of Mj,H, the random variable a(Mj,W ) is independent
of M. Thus, by Lemma 3.2,

(a(Mj,W ),M,H) ≈δ+2ε (U,M,H) .

Proof of Item 4. Let j ∈ [r]. By Item 3,

(a(Mj,W ),M,H) ≈δ+2ε (U,M,H) .

By Lemma 3.11 and since

H̃∞ (Z | M,H) ≥ H̃∞ (Z | H)− (t+ 1)rs ≥ 2s+ log(1/ε),

we have that

(Exts(Z,Exts(W,Mj)), a(Mj,W ),M,H) ≈δ+4ε (U, a(Mj,W ),M,H) .
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Note that conditioned on a(Mj,W ),M,H, the random variable Exts(Z,Exts(W,Mj)) is in-
dependent of A. Hence, by Lemma 3.2,

(Exts(Z,Exts(W,Mj)),A,M,H) ≈δ+4ε (U,A,M,H) .

By Lemma 3.11, and since

H̃∞ (W | A,M,H) ≥ H̃∞ (W | H)− (t+ 1)rb ≥ 2b+ log(1/ε),

we have that

(b(Mj, Z,W ),Exts(Z,Exts(W,Mj)),A,M,H) ≈δ+6ε (U,Exts(Z,Exts(W,Mj)),A,M,H) .

Conditioned on Exts(Z,Exts(W,Mj)),A,M,H, the random variable b(Mj, Z,W ) is indepen-
dent of Z. Thus, by Lemma 3.2,

(b(Mj, Z,W ),Z,A,M,H) ≈δ+6ε (U,Z,A,M,H) .

Proof of Item 5 and Item 6. The proofs readily follow by applying Lemma 3.3 and Lemma 3.5
in a straightforward manner, and so we omit the details.

5.1.2 Proof of Lemma 5.2

We first describe the function IPHalfCond and then turn to the analysis. We start with some
preparations. First, as in Section 5.1.1, we set s = c · log(n/ε) to be a length that suffices
for a seed of the strong seeded extractor from Theorem 3.9 set with error guarantee ε, when
given a sample from an n-bit source. By Theorem 3.9, c is some universal constant, and so
indeed s = Θ(log(n/ε)) as stated. Let c′′′ be some large enough constant (to be chosen as a
function of c and of the constants c′, c′′ from Theorem 3.10), and set

s′ = c′′′ts,

b = 2c′′s′.

We make use of the following building blocks:

• Let Extin : {0, 1}n×{0, 1}b → {0, 1}s′ be the strong seeded extractor from Theorem 3.9
for min-entropy 2s′, set with error guarantee ε. Note that, indeed, a seed of length b
suffices.

• Let Extout : {0, 1}b×{0, 1}s
′ → {0, 1}s be the strong seeded extractor from Theorem 3.10

set with error guarantee ε. By Theorem 3.10, Extout is an extractor for min-entropy
max(2s, c′′s′) = c′′s′, where c′′ is the universal constant from Theorem 3.10.

• Let a : {0, 1}s × {0, 1}n → {0, 1}b and b : {0, 1}s × {0, 1}n × {0, 1}n → {0, 1}b be the
pair of functions defined in Section 5.1.1. Note that, as required, b ≥ s.
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With these building blocks in hand we are ready to define IPHalfCond. Given m ∈
{0, 1}r×s, z ∈ {0, 1}n, and w ∈ {0, 1}n, we define the j’th row of IPHalfCond(m, z, w) by

IPHalfCond(m, z, w)j = Extout (b (m2j, z, w) ,Extin (z, a (m2j−1, w))) .

Proof of Lemma 5.2. First, we define the random variable H′ guaranteed by the lemma as

H′ = Extin(Z,A),Z,A,M,H,

where Z,A,M are as defined in Lemma 5.3, and Extin(Z,A) is a shorthand notation for
{Extin(Z,A)}A∈A. The first, and main, item of Lemma 5.2 follows by the following claim.

Claim 5.4. Let g ∈ [r] be such that M is (δ,H)-independent of M1, . . . ,M t at g. Then
IPHalfCond(M,Z,W ) is (2δ + 12ε,H′)-independent of {IPHalfCond(M i, Z,W )}ti=1 at dg/2e.

Claim 5.4 readily follows by the following three claims.

Claim 5.5. For any j ∈ [r/2] it holds that

(IPHalfCond(M,Z,W )j,H′) ≈2δ+12ε (U,H′) .

Claim 5.6. Let g ∈ [r] be an odd integer such that(
Mg,

{
M i

g

}t
i=1

,H
)
≈δ
(
U,
{
M i

g

}t
i=1

,H
)
.

Then, (
IPHalfCond(M,Z,W )g′ ,

{
IPHalfCond(M i, Z,W )g′

}t
i=1

,H′
)
≈2δ+12ε(

U,
{
IPHalfCond(M i, Z,W )g′

}t
i=1

,H′
)
,

where g′ = (g + 1)/2.

Claim 5.7. Let g ∈ [r] be an even integer such that(
Mg,

{
M i

g

}t
i=1

,H
)
≈δ
(
U,
{
M i

g

}t
i=1

,H
)
.

Then, (
IPHalfCond(M,Z,W )g′ ,

{
IPHalfCond(M i, Z,W )g′

}t
i=1

,H′
)
≈2δ+12ε(

U,
{
IPHalfCond(M i, Z,W )g′

}t
i=1

,H′
)
,

where g′ = g/2.
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Proof of Claim 5.5. Let j ∈ [r/2]. Recall that

IPHalfCond(M,Z,W )j = Extout (b(M2j, Z,W ),Extin(Z, a(M2j−1,W ))) .

By Item 2 of Lemma 5.3,

(b(M2j, Z,W ),Z,A,M,H) ≈δ+6ε (U,Z,A,M,H) .

Conditioned on Z,A,M,H, the random variable b(M2j, Z,W ) and Extin(Z,A) are indepen-
dent. Lemma 3.2 then implies that

(b(M2j, Z,W ),H′) ≈δ+6ε (U,H′) .

As H′ contains Extin(Z, a(M2j−1,W )), Lemma 3.1 implies that

(IPHalfCond(M,Z,W )j,H′) ≈δ+6ε (Extout(U,Extin(Z, a(M2j−1,W ))),H′) .

We now turn to show that the right hand side

(Extout(U,Extin(Z, a(M2j−1,W ))),H′) ≈δ+6ε (U,H′) . (5.1)

Equation (5.1), together with the triangle inequality, will conclude the proof. To prove
Equation (5.1), it suffices to show that

(Extin(Z, a(M2j−1,W )),A,M,H) ≈δ+4ε (U,A,M,H) . (5.2)

Indeed, Equation (5.2) together with Lemma 3.11 imply that

(Extout(U,Extin(Z, a(M2j−1,W ))),Extin(Z, a(M2j−1,W )),A,M,H) ≈δ+6ε

(U,Extin(Z, a(M2j−1,W )),A,M,H) .

Now, conditioned on Extin(Z, a(M2j−1,W )),A,M,H, we have that the random variable
Extout(U,Extin(Z, a(M2j−1,W ))) is independent of (Z,Extin(Z,A)) and so Equation (5.1) fol-
lows by Lemma 3.2.

We turn to prove Equation (5.2). By Item 1 of Lemma 5.3,

(a(M2j−1,W ),M,H) ≈δ+2ε (U,M,H) .

As
H̃∞ (Z | M,H) ≥ H̃∞ (Z | H)− (t+ 1)rs ≥ 2s′ + log(1/ε),

and since a(M2j−1,W ) is independent of Z conditioned on M,H, it holds that

(Extin(Z, a(M2j−1,W )), a(M2j−1,W ),M,H) ≈δ+4ε (U, a(M2j−1,W ),M,H) .

As Extin(Z, a(M2j−1,W )) is independent of A conditioned on a(M2j−1,W ),M,H, Equa-
tion (5.2) follows by Lemma 3.2. This concludes the proof.
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Proof of Claim 5.6. Recall that for an odd g,

IPHalfCond(M,Z,W )(g+1)/2 = Extout (b(Mg+1, Z,W ),Extin(Z, a(Mg,W ))) ,

and that
b(Mg+1, Z,W ) = Ext(W,Exts(Z,Exts(W,Mg+1))).

By Item 1 of Lemma 5.3,(
a(Mg,W ),

{
a(M i

g,W )
}t
i=1

,M,H
)
≈δ+2ε

(
U,
{
a(M i

g,W )
}t
i=1

,M,H
)
.

Note that conditioned on
{
a(M i

g,W )
}t
i=1

,M,H, the random variable a(Mg,W ) is indepen-

dent of the joint distribution of
{
Extin(Z, a(M i

g,W ))
}t
i=1

. Thus, by Lemma 3.2,

(a(Mg,W ),H1) ≈δ+2ε (U,H1) ,

where
H1 =

{
Extin(Z, a(M i

g,W ))
}t
i=1

,
{
a(M i

g,W )
}t
i=1

,M,H.

By Lemma 3.11, together with the fact that

H̃∞ (Z | H1) ≥ H̃∞ (Z | H)− ((t+ 1)rs+ ts′) ≥ 2s′ + log(1/ε),

we have that

(Extin(Z, a(Mg,W )), a(Mg,W ),H1) ≈δ+4ε (U, a(Mg,W ),H1) .

As conditioned on a(Mg,W ),H1, the random variables Extin(Z, a(Mg,W )) and A are inde-
pendent, Lemma 3.2 implies that

(Extin(Z, a(Mg,W )),A,H1) ≈δ+4ε (U,A,H1) .

Set
H2 = {Exts(Z,Exts(W,M i

g+1))}ti=1,Exts(Z,Exts(W,Mg+1)),A,H1.

Conditioned on H2, we have that Extin(Z, a(Mg,W )) is (δ+ 4ε)-close to having min-entropy
s′ − (t + 1)s ≥ 0.9s′. As Extin(Z, a(Mg,W )) is independent of the joint distribution of
{IPHalfCond(M i, Z,W )(g+1)/2}ti=1 conditioned on H2, we have that conditioned on H3 =
{IPHalfCond(M i, Z,W )(g+1)/2}ti=1,H2, the random variable Extin(Z, a(Mg,W )) is (δ + 4ε)-
close to having min-entropy 0.9s′.

We now turn to show that conditioned on H3, the random variable b(Mg+1, Z,W ) is
(δ + 6ε)-close to having min-entropy c′′s′ + log(1/ε), as required by Extout. To this end, we
apply Item 4 of Lemma 5.3 to get

(b(Mg+1, Z,W ),Z,A,M,H) ≈δ+6ε (U,Z,A,M,H) .
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Conditioned on Z,A,M,H, the random variable b(Mg+1, Z,W ) is a deterministic function
of W whereas {Extin(Z, a(M i

g,W ))}ti=1, which are the only random variables in H2 that do
not appear in Z,A,M,H, are all deterministic functions of the independent random variable
Z. Hence, by Lemma 3.2,

(b(Mg+1, Z,W ),H2) ≈δ+6ε (U,H2) .

Further, the joint distribution of {IPHalfCond(M i, Z,W )(g+1)/2} conditioned on H2 is a de-
terministic function of W that consists of ts bits. Therefore, conditioned on H3, the random
variable b(Mg+1, Z,W ) is (δ + 6ε)-close to having min-entropy b− ts ≥ c′′s′ + log(1/ε).

So far we proved that conditioned on H3, the source b(Mg+1, Z,W ) to the extractor
Extout in the definition of IPHalfCond(M,Z,W )(g+1)/2 is (δ + 6ε)-close to having sufficient
min-entropy, and that the seed Extin(Z, a(Mg,W )) to that extractor is (δ + 4ε)-close to a
(s′, 0.9s′)-source. Further, note that conditioned on H3, the source and the seed above are
independent. Thus, by Lemma 3.11 (more precisely, by a straightforward adjustment of
Lemma 3.11 to the case of extractors with weak seeds), we have that(

IPHalfCond(M,Z,W )(g+1)/2,
{
IPHalfCond(M i, Z,W )(g+1)/2

}t
i=1

,H2

)
≈2δ+12ε(

U,
{
IPHalfCond(M i, Z,W )(g+1)/2

}t
i=1

,H2

)
.

We conclude the proof by noting that conditioned on H2, IPHalfCond(M,Z,W )(g+1)/2 is
independent of Extin(Z,A),Z, and so we can apply Lemma 3.2 so to “complete” the history
to H′, namely,(

IPHalfCond(M,Z,W )(g+1)/2,
{
IPHalfCond(M i, Z,W )(g+1)/2

}t
i=1

,H′
)
≈2δ+12ε(

U,
{
IPHalfCond(M i, Z,W )(g+1)/2

}t
i=1

,H′
)
.

Proof of Claim 5.7. Note that for an even integer g,

IPHalfCond(M,Z,W )g/2 = Extout (b(Mg, Z,W ),Extin(Z, a(Mg−1,W ))) ,

where
b(Mg, Z,W ) = Ext(W,Exts(Z,Exts(W,Mg))).

By Item 2 of Lemma 5.3,(
b(Mg, Z,W ),

{
b(M i

g, Z,W )
}t
i=1

,Z,A,M,H
)
≈δ+6ε

(
U,
{
b(M i

g, Z,W )
}t
i=1

,Z,A,M,H
)
.

Conditioned on Z,A,M,H, the random variable b(Mg, Z,W ) is independent of Extin(Z,A).
Lemma 3.2 then implies that(

b(Mg, Z,W ),
{
b(M i

g, Z,W )
}t
i=1

,H′
)
≈δ+6ε

(
U,
{
b(M i

g, Z,W )
}t
i=1

,H′
)
.

43



As H′ contains Extin(Z, a(Mg−1,W )),
{
Extin(Z, a(M i

g−1,W ))
}t
i=1

, Lemma 3.1 implies that(
IPHalfCond(M,Z,W )g/2,

{
IPHalfCond(M i, Z,W )g/2

}t
i=1

,H′
)
≈δ+6ε(

Extout(U,Extin(Z, a(Mg−1,W ))),
{
IPHalfCond(M i, Z,W )g/2

}t
i=1

,H′
)
. (5.3)

We now turn to show that the right hand side(
Extout(U,Extin(Z, a(Mg−1,W ))),

{
IPHalfCond(M i, Z,W )g/2

}t
i=1

,H′
)
≈δ+6ε(

U,
{
IPHalfCond(M i, Z,W )g/2

}t
i=1

,H′
)
. (5.4)

Equation (5.3) together with Equation (5.4) and the triangle inequality will then conclude
the proof. In order to prove Equation (5.4), we deduce from with Equation 5.2 that

(Extin(Z, a(Mg−1,W )),A,M,H) ≈δ+4ε (U,A,M,H) .

Thus, by Lemma 3.11,

(Extout(U,Extin(Z, a(Mg−1,W ))),Extin(Z, a(Mg−1,W )),A,M,H) ≈δ+6ε

(U,Extin(Z, a(Mg−1,W )),A,M,H) .

Equation (5.4) then follows as conditioned on Extin(Z, a(Mg−1,W )),A,M,H, the random
variable Extout(U,Extin(Z, a(Mg−1,W ))) is independent of the joint distribution of Z, Extin(Z,A),

and
{
IPHalfCond(M i, Z,W )g/2

}t
i=1

.

The second item of Lemma 5.2 follows by definition, and the third and fourth items follow
by Lemma 5.3 together with a straightforward application of Lemma 3.3 and Lemma 3.5.

5.2 Proof of Proposition 5.1

Proof of Proposition 5.1. First, we assume that r is a power of 2. If this is not the case, one
can complement the number of rows of M to 2dlog2 re by duplicating the last row. Clearly, M
is still (δ,H)-somewhere-independent of the matrices obtained by applying the same process
to M1, . . . ,M t. Furthermore, the asymptotic statement of the lemma remains unchanged.
Therefore, we may assume that q = log2 r is an integer.

Let s = Θ(log(n/ε)) be the parameter that appears in the statement of Lemma 5.2. For
j = 0, 1, . . . , q set rj = r · 2−j, and note that r0 = r and rq = 1. For j = 0, 1, . . . , q − 1, let

IPHalfCondj : {0, 1}rj×s × {0, 1}n × {0, 1}n → {0, 1}rj+1×s

be the function from Lemma 5.2 set with error guarantee ε.
Given inputs m ∈ {0, 1}r×s, w ∈ {0, 1}n, and z ∈ {0, 1}n, we define a sequence of

matrices m(0),m(1), . . . ,m(q), where m(j) is an rj × s matrix. First, we set m(0) = m. For
j = 0, . . . , q − 1, we define

m(j+1) =

{
IPHalfCondj

(
m(j), z, w

)
, j is even;

IPHalfCondj
(
m(j), w, z

)
, j is odd.
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Finally, we define IPMerg(m, z, w) = m(q).
Clearly, the fact that IPHalfCond is efficiently-computable, as guaranteed by Lemma 5.2,

implies that IPMerg is also efficiently-computable. We now prove by induction that there is
a sequence of random variables H0,H1, . . . ,Hq−1 such that for any j = 0, 1, . . . , q − 1,

• M(j) is (δj,Hj)-somewhere independent of {M i
(j)}ti=1, where δj = 2jδ + 12(2j − 1)ε.

• For an even integer j, conditioned on Hj, the random variables Z,M(j), {M i
(j)}ti=1 are

jointly independent of W .

• For an odd integer j, conditioned on Hj, the random variables W,M(j), {M i
(j)}ti=1 are

jointly independent of Z.

Further, there exists a universal constant c such that for any j ≥ 1,

• H̃∞ (W | Hj) ≥ H̃∞ (W | H)− ct2s ·
∑j−1

i=0 ri.

• H̃∞ (Z | Hj) ≥ H̃∞ (Z | H)− ct2s ·
∑j−1

i=0 ri.

The basis of the induction follows by the hypothesis of the lemma withH0 = H. Consider
j > 0. By the induction hypothesis, there exists a random variable Hj−1 such that:

• M(j−1) is (δj−1,Hj−1)-somewhere independent of {M i
(j−1)}ti=1.

• If j is even then conditioned on Hj−1, the random variables W,M(j−1), {M i
(j−1)}ti=1 are

jointly independent of Z.

• If j is odd then conditioned on Hj−1, the random variables Z,M(j−1), {M i
(j−1)}ti=1 are

jointly independent of W .

• H̃∞ (W | Hj−2) ≥ H̃∞ (W | H)− ct2s ·
∑j−1

i=0 ri.

• H̃∞ (Z | Hj−2) ≥ H̃∞ (Z | H)− ct2s ·
∑j−1

i=0 ri.

Therefore, by Lemma 5.2, there exists a random variable Hj such that M(j) is (δj,Hj)-
somewhere-independent of {M i

(j)}ti=1. It is easy to verify that the remaining items holds.

By the above, we have that M(q) is (δq,Hq)-somewhere independent of {M i
(q)}ti=1, where

δq = O(r(δ + ε)). This concludes the proof.

6 Multi-Source Independence-Preserving Mergers for

Low Min-Entropy

The main result of this section is the following proposition which, based on results from
the previous section, gives an independence-preserving merger that consumes several low
min-entropy sources for the merging process.
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Proposition 6.1. For all integers n, r, t, for any σ > 0 such that r = σ−b for some integer
b, and for any ε > 0, there exists an efficiently-computable function

IPMultiMerg : {0, 1}r×s × ({0, 1}n)2b+1 → {0, 1}s,

where s = Θ(log(n/ε)) such that the following holds. Let M = (M,M1, . . . ,M t) be a
sequence of random variables in the form of r × s matrices. Assume that M is (0.9, δ,H)-
somewhere-independent of M1, . . . ,M t. Let V0, . . . , Vb, W0, . . . ,Wb−1 be independent n-bit
random variables, all of which but for V0 are independent of M conditioned on H. Assume
that H̃∞(Vi | H) ≥ k for i = 0, . . . , b and that H̃∞(Wi | H) ≥ k for i = 0, . . . , b − 1, where
k = Ω (t2σ−1s) . Set

Z = IPMultiMerg(M,W0, . . . ,Wb−1, V0, . . . , Vb),

and for i ∈ [t] set

Zi = IPMultiMerg(M i,W0, . . . ,Wb−1, V0, . . . , Vb).

Then, (
Z,
{
Zi
}t
i=1

)
≈O(r(δ+ε))

(
U,
{
Zi
}t
i=1

)
.

The construction of IPMultiMerg is based on a two-source independence-preserving con-
denser IPCond which we construct in the following section. Then, in Section 6.2, we prove
Proposition 6.1.

6.1 Two-source independence-preserving condensers

In this section we construct a two-source independence-preserving condenser, which is de-
noted by IPCond. The construction of IPCond is based on the merger IPMerg (which in turn
is based on the condenser IPHalfCond) from Lemma 5.2.

Lemma 6.2. For all integers n,m, r, for any ε > 0, and for any σ > 0, there exists an
efficiently-computable function

IPCond : {0, 1}r×s × ({0, 1}n)3 → {0, 1}(σr)×s,

where s = Θ(log(n/ε)) such that the following holds. Let M = (M,M1, . . . ,M t) be a
sequence of random variables in the form of r × s matrices. Assume that M is (0.9, δ,H)-
independent of M1, . . . ,M t. Let Z,W be n-bit random variables such that conditioned on H,
the joint distribution of M, Z is independent of W . Let V be an n-bit random variable that,
conditioned on H, is independent of the joint distribution of Z,W,M. Assume further that

H̃∞ (W | H) = Ω
(
t2σ−1s

)
,

H̃∞ (Z | H) = Ω
(
t2σ−1s

)
,

H̃∞ (V | H) = Ω (ts) .

Then, IPCond(M,Z,W, V ) is (0.9, δ′,H′)-independent of {IPCond(M i, Z,W, V )}ti=1, where
H′ = W,Z,M and δ′ = O(σ−1(δ + ε)).
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For the proof of Lemma 6.2 we make use of the following theorem.

Theorem 6.3 ([KPS85, Gol11]). For any integer r, and for all ε > 0, δ > 0, there exists an
explicit bipartite graph G = (L,R,E) with |L| = |R| = r, and right degree d = O(1/(ε2δ)),
such that the following holds. For any G ⊆ L, of size |G| ≥ εr, it holds that 1 − δ fraction
of the vertices in R have a neighbour in G.

The following is an easy corollary of Theorem 6.3.

Corollary 6.4. For any constant ε > 0, any integer r, and any σ = σ(r) > 0, there exists an
explicit bipartite graph G = (L,R,E) with |L| = r, |R| = σr, and right degree d = O(σ−1),
such that the following holds. For any B ⊂ L with size |B| ≤ εr, 0.9 fraction of the vertices
in R have a neighbour outside of B.

The corollary follows simply by applying Theorem 6.3 with δ = σ/10, and disregard all
but (arbitrarily chosen) σr vertices in R.

Proof of Lemma 6.2. We first describe the construction of IPCond and then turn to the
analysis. To this end, we make use of the following building blocks:

• Let G = (L,R,E) be the explicit bipartite graph from Corollary 6.4 with |L| = r,
|R| = σr, and ε = 0.1. By Corollary 6.4, G has right degree d = O(σ−1).

• Let IPMerg : {0, 1}d×s × {0, 1}n × {0, 1}n → {0, 1}s be the function given by Proposi-
tion 5.1 set with error guarantee ε.

• Let Ext : {0, 1}n × {0, 1}s → {0, 1}s be the strong seeded extractor from Theorem 3.9
for min-entropy 2s, set with error guarantee ε.

Given a matrix m ∈ {0, 1}r×s and n-bit strings z, w, v, we define IPCond(m, z, w, v) as
follows. Using the bipartite graph G, we associate with the r×s binary matrix m a sequence
of σr binary matrices m(1), . . . ,m(σr), each of order d× s as follows. We identify L with [r]
and R with [σr]. For j = 1, . . . , σr, let m(j) denote the matrix obtained by taking the rows
of m that correspond to the d neighbors of j in G. We define

IPCond(m, z, w, v)j = Ext(v, IPMerg(m(j), z, w)).

We now turn to the analysis. Let B ⊆ [r] be the set of indices such that for any g 6∈ B,
M is (δ,H)-independent of M1, . . . ,M t at g. By the hypothesis of the lemma, |B| ≤ 0.1r.
By the property of G, and by construction, there exists a subset B′ ⊆ [σr] with |B′| ≤ 0.1σr
such that for any g′ 6∈ B′ it holds that the matrix M(g′) is (δ,H)-somewhere-independent of
{M i

(g′)}ti=1. Therefore, by Proposition 5.1, for any such g′ there exists a random variable Hg′

such that (
IPMerg(M(g′), Z,W ),

{
IPMerg(M i

(g′), Z,W )
}t
i=1

,Hg′

)
≈O(σ−1(δ+ε))(

U,
{
IPMerg(M i

(g′), Z,W )
}t
i=1

,Hg′

)
.
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As conditioned on
{
IPMerg(M i

(g′), Z,W )
}t
i=1

, Hg′ , the random variable IPMerg(M(g′), Z,W )

is independent of V , Lemma 3.2 implies that(
IPMerg(M(g′), Z,W ), V,

{
IPMerg(M i

(g′), Z,W )
}t
i=1

,Hg′

)
≈O(σ−1(δ+ε))(

U, V,
{
IPMerg(M i

(g′), Z,W )
}t
i=1

,Hg′

)
.

By Lemma 3.1,(
IPMerg(M(g′), Z,W ),

{
IPCond(M i, Z,W, V )g′

}t
i=1

,Hg′

)
≈O(σ−1(δ+ε))(

U,
{
IPCond(M i, Z,W, V )g′

}t
i=1

,Hg′

)
.

As H̃∞

(
V | {IPCond(M i, Z,W, V )g′}

t

i=1 ,Hg′

)
≥ H̃∞ (V | H)−ts ≥ 2s+log(1/ε), Lemma 3.11

implies that(
IPCond(M,Z,W, V )g′ , IPMerg(M(g′), Z,W ),

{
IPCond(M i, Z,W, V )g′

}t
i=1

,Hg′

)
≈O(σ−1(δ+ε))(

U, IPMerg(M(g′), Z,W ),
{
IPCond(M i, Z,W, V )g′

}t
i=1

,Hg′

)
.

Now, conditioned on IPMerg(M(g′), Z,W ), {IPCond(M i, Z,W, V )g′}
t

i=1, Hg′ , the random vari-
able IPCond(M,Z,W, V )g′ is a deterministic function of V , and so it is independent of the
joint distribution of W,Z,M. Thus, by Lemma 3.2,(

IPCond(M,Z,W, V )g′ ,
{
IPCond(M i, Z,W, V )g′

}t
i=1

,W, Z,M,H
)
≈O(σ−1(δ+ε))(

U,
{
IPCond(M i, Z,W, V )g′

}t
i=1

,W, Z,M,H
)
.

This concludes the proof.

6.2 Proof of Proposition 6.1

Proof of Proposition 6.1. We start by describing the construction of IPMultiMerg and then
turn to the analysis. To this end, we make use of the two-source independence-preserving
condenser IPCond given by Lemma 6.2. For j = 0, . . . , b, let rj = rσj. Note that r0 = r and
rb = 1. For j = 0, 1, . . . , b− 1, let

IPCondj : {0, 1}rj×s × ({0, 1}n)3 → {0, 1}rj+1×s

be the independence-preserving condenser from Lemma 6.2 set with error guarantee ε. Given
a matrix m ∈ {0, 1}r×s and n-bit strings v0, . . . , vb, w0, . . . , wb−1, we define a sequence of
matrices m(0), . . . ,m(b) where, for j = 0, . . . , b, the matrix m(j) is of order rj × s. First, we
let m(0) = m. For j = 0, . . . , b− 1, we define

m(j+1) = IPCondj
(
m(j), vj, wj, vj+1

)
.
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Finally, we define IPMultiMerg(m,w0, . . . , wb−1, v0, . . . , vb) = m(b).

With the construction in hand, we turn to the analysis. For j = 0, . . . , b, let M(j) =
{M i

(j)}ti=1 ∪ {M(j)}. Set H0 = H, and for j > 0 define Hj = Vj−1,Wj−1,M(j−1),Hj−1.

Further, set δ0 = δ and for j = 1, . . . , b define δj = σ−1(δj−1 + ε).
We prove by induction on j = 0, . . . , b thatM(j) is (0.9, δj,Hj)-independent ofM1

(j), . . . ,M
t
(j).

The base case j = 0 follows by the hypothesis of the proposition. Now, by the induction
hypothesis, the joint distribution of M(j), Vj is independent of Wj conditioned on Hj, and
Vj+1 is independent of the joint distribution of M(j), Vj,Wj conditioned on Hj. Further,
the average conditional min-entropy of Vj,Wj, and Vj+1 with respect to Hj satisfy the hy-
pothesis of Lemma 6.2. Thus, by Lemma 6.2, M(j+1) is (0.9, δj+1,Hj+1)-independent of
M1

(j+1), . . . ,M
t
(j+1). The proof then follows asM(b) is (0.9, δb,Hb)-independent ofM1

(b), . . . ,M
t
(b),

and since δb = O(r(ε+ δ)).

7 Proof of Theorem 1.1

In this section we prove Theorem 1.1. We start by giving a more formal restatement that
also refers to the error guarantee of the extractor.

Theorem 7.1. There exists a universal constant c such that the following holds. For
any integer n, any δ > 0, and any ε > 0, there exists an efficiently-computable extrac-
tor Ext : ({0, 1}n)b → {0, 1} for b = 2/δ+ c sources with min-entropy (log n)1+δ · ε−7, having
error guarantee ε.

For the proof of Theorem 7.1 we make use of the following theorem that, roughly speaking,
states that bounded independence fools threshold functions.

Theorem 7.2 ([DGJ+10]). Let D be a t-wise independent distribution on {±1}n, and let
h : {±1}n → {±1} be a halfspace. Then,∣∣∣ E

x∼D
[h(x)]− E

x∼U
[h(x)]

∣∣∣ ≤ c · log t√
t

,

for some universal constant c.

We also need the following standard fact.

Fact 7.3. For any odd integer n and for any t < n/2,

bn/2c−t∑
k=0

(
n

k

)
≥ 2n−1 −O

(
t · 2n√
n

)
.

Proof. The proof follows as
∑bn/2c

k=0

(
n
k

)
= 2n−1 and since

bn/2c∑
k=bn/2c−t+1

(
n

k

)
≤ t ·

(
n

bn/2c

)
= O

(
t · 2n√
n

)
.
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The following is an easy corollary of Theorem 7.2.

Corollary 7.4. Let X1, . . . , Xr be a sequence of {0, 1} random variables. Let α > 0 be
some constant. Assume that there exists B ⊆ [r], with |B| ≤ r1/2−α, such that the random
variables {Xi | i ∈ [r] \B} are t-wise independent and uniform. Then,

bias (Maj(X1, . . . , Xr)) = O

(
log t√
t

+ r−α
)
.

Proof. As the majority function is symmetric, we may assume for the analysis that B consists
of the largest r1/2−α integers in [r]. That is, the distribution X1, . . . , Xg is t-wise independent
and each Xi is uniform, where g = r − r1/2−α. Let U1, . . . , Ug be independent and uniform
{0, 1} random variables. Note that if Maj(X1, . . . , Xr) = 1 then

g∑
i=1

Xi ≥
r

2
− r1/2−α =

g

2
− r1/2−α

2
.

By Theorem 7.2, the probability that the latter event holds is bounded above by

Pr

[
g∑
i=1

Ui ≥
g

2
− r1/2−α

2

]
+O

(
log t√
t

)
≤ 1

2
+O

(
r−α +

log t√
t

)
,

where the inequality follows by Fact 7.3. Thus,

Pr [Maj(X1, . . . , Xr) = 1] ≤ 1

2
+O

(
r−α +

log t√
t

)
.

By a symmetric argument to the one used above, it holds that

Pr [Maj(X1, . . . , Xr) = 0] ≤ 1

2
+O

(
r−α +

log t√
t

)
.

This concludes the proof.

For the proof of Theorem 7.1, we also require the following lemma.

Lemma 7.5 ([AGM03]). Let X1, . . . , Xn be {0, 1} random variables. Assume that for any
∅ 6= I ⊆ [n], with size |I| ≤ t, the joint distribution of {Xi}i∈I is ε-close to uniform. Then,
X1, . . . , Xn is (nt · ε)-close to a t-wise independent distribution.

We are now ready to prove Theorem 7.1.

Proof of Theorem 7.1. Let α be the universal constant from Proposition 4.2. By Propo-
sition 4.2, applied with error guarantee ε = n−6t/α, given 7/α sources with min-entropy

Õ(t2) · log n, one can invoke the function GenSISeq so to efficiently generate a sequence of
r = n3/α random variables in the form of r′×s matrices M1, . . . ,M r, with r′ = O(t log n), and
s = Ω(log(n/ε)), having the following guarantee. There exists B ⊂ [r], of size |B| ≤ r1/2−α,
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such that the sequence M1, . . . ,M r is r−1-close to a sequence (M ′)1, . . . , (M ′)r for which the
following holds. For any g ∈ [r] \ B, and for any i1, . . . , it ∈ [r] \ {g}, it holds that (M ′)g is
(0.9, r−2t)-independent of {(M ′)ij}tj=1.

We can now apply the independence-preserving merger IPMultiMerg given by Proposi-
tion 6.1 with σ = (r′)−δ and with error guarantee r−2t to the sequence {M i}ri=1. Note that
the row of length of the matrices {M i}i is sufficiently large. By Proposition 6.1, one can use

2/δ + O(1) sources with min-entropy Õ(t3+δ) · (log n)1+δ so to obtain a sequence of {0, 1}
random variables Z1, . . . , Zr with the following property. There exists a sequence of {0, 1}
random variables Z ′1, . . . , Z

′
r that is r−1-close to the computed sequence Z1, . . . , Zr, for which

the following holds. For any g ∈ [r] \B, and any i1, . . . , it ∈ [r] \ {g},(
(Z ′)g, {(Z ′)ij}tj=1

)
≈ε
(
U, {(Z ′)ij}tj=1

)
,

where ε = O(r′ · r−2t) ≤ r−3t/2.
By Lemma 7.5, the joint distribution of the random variables {(Z ′)i}ri=1 is εrt ≤ r−t/2-

close to a sequence {Z ′′i }ri=1 such that for any I ⊆ [r]\B, of size |I| ≤ t, the joint distribution
of {Z ′′i }i∈I is uniform. By Corollary 7.4, the random variable Maj(Z ′′1 , . . . , Z

′′
r ) has bias

O(r−α + log(t)/
√
t). As this bound asymptotically dominates the distance between the

sequence {Zi}i and the sequence {Z ′′i }i, the bias of the computed value Maj(Z1, . . . , Zr) is
too bounded above by O(r−α + log(t)/

√
t). This concludes the proof.

8 Proof of Theorem 1.2

In this section we prove Theorem 1.2. The two main building blocks we need from the
literature are the condenser of Li [Li13a], that is based on the lightest bin protocol by
Feige [Fei99], as well as mergers with weak-seeds [Coh15a]. We state these results and some
definitions we use.

Definition 8.1. Let M be a random variable in the form of an r× ` matrix. We say that M
is a somewhere-random source if there exists g ∈ [r] such that Mg is uniformly distributed.

Definition 8.2. Let M be a random variable in the form of an r × ` matrix. We say that
M is (t, ε, δ)-independent if there exists G ⊆ [r] of size |G| ≥ δr such that for any I ⊆ G,
|I| ≤ t, the joint distribution of {Mi}i∈I is ε-close to uniform.

Theorem 8.3 ([Li13a]). For any constant 0 < γ < 1 there exists c = c(γ) such that the
following holds. Let r, `, n, k, t be integers such that t ≥ c is even, and let ε > 0. Assume
that

t ≤
√
r,

ε ≤ r−6t,

k = Ω(t · log(n/ε)),

` = Ω(log(n/ε)).
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Then, there exists an efficiently-computable function

LightestBin : {0, 1}r×` × {0, 1}n → {0, 1}r′×`′ ,

with r′ = O(t · r2/
√
t) and `′ = k/(2t), such that the following holds. Let M be a random

variable in the form of an r×` matrix that is (t, ε, δ)-independent for some constant δ > 1/2.

Let W be an (n, k)-source that is independent of M . Then, LightestBin(M,W ) is r−
√
t/2-close

to a random variable that is (t, ε′, (1− γ)δ)-independent, where ε′ ≤ (r′)−6t.

Definition 8.4 (Mergers with weak-seeds). A function

Merg : {0, 1}r×` × {0, 1}n → {0, 1}m

is called a merger with weak-seeds for entropy k, with error guarantee ε, if the following
holds. For any r× ` somewhere-random source X and an independent (n, k)-weak-source Y ,
it holds that Merg(X, Y ) ≈ε U.

Theorem 8.5 ([Coh15a]). For all integers n, r and for any ε > 0, there exists a poly(n, r, log(1/ε))-
time computable merger with weak-seeds for entropy k, with error guarantee ε,

Merg : {0, 1}r×` × {0, 1}n → {0, 1}m,

with

` = Θ
(
r2 · log(r) · log

(nr
ε

))
,

k = Ω

(
r · log(r) · log

(
r · log n

ε

))
,

m = `/(2r).

We also make use of the following lemma.

Lemma 8.6 ([Li15b]). There exists a universal constant c such that the following holds. For
all integers n, `, there exists an efficiently-computable function

f : {0, 1}n × {0, 1}n → {0, 1}r×`,

where r = nc, such that the following holds. Let X, Y be independent (n, k)-sources with
k = Ω(` + log(n/ε)). Then, f(X, Y ) is ε-close to a random variable M in the form of an
r × ` matrix such that 0.9 fraction of the rows of M are uniform.

With these building blocks, we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Unlike most proofs in this paper, we find it more convenient to de-
scribe the construction of the extractor along with its analysis.

Set t = (log n)δ/4 and ε = n−Ω(t) for some large enough hidden constant in the exponent.
Lemma 8.6 implies that by consuming two sources with min-entropy Ω((log n)1+δ), one can
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obtain a random variable that is ε-close to an r × ` matrix M , with r = nc and ` =
Ω((log n)1+δ) such that the following holds. There exists G ⊆ [r], |G| ≥ 0.9r, such that for
any g ∈ G, Mg is uniform. Here, c is the universal constant from Lemma 8.6.

By consuming one more source, Lemma 4.4 implies that we can efficiently transform the
r×` matrix obtained above to a sequence of matrices M1, . . . ,Mr, each of order r′×m, where
r′ = O(t log n) and m = Ω(log(n/ε)), having the following property. For any g ∈ G and for
any i1, . . . , it ∈ [r] \ {g}, the random variable Mg is (0.9, ε)-independent of Mi1 , . . . ,Mit .

Next, we set σ = (log n)−δ/4 and apply Proposition 6.1 to the sequence of matrices
M1, . . . ,Mr. By Proposition 6.1, using 8/δ + O(1) fresh sources, each having min-entropy
Ω((log n)1+δ), we obtain an r×Ω(log(n/ε)) matrix that is (t, ε′, 0.9)-independent, with ε′ =
O(εr′). By consuming one more source, we can increase the row length from Ω(log(n/ε)) to
Ω(t · log(n/ε)), which is required for the next step.

We now apply Theorem 8.3 so to obtain an r1 × `1 matrix that is (t, ε1, 0.9(1 − γ))-
independent, where

r1 = O
(

(log n)δ/4 ·
(
22c
)·(logn)1−δ/8)

,

`1 = Ω
(
(log n)1+δ/t

)
= Ω

(
(log n)1+3δ/4

)
,

ε1 = r−6t
1 .

Here, again, c is the universal constant from Lemma 8.6. We set the value of γ later on.
We can repeat this process, namely, apply Theorem 8.3 using a fresh source so to obtain

an r2 × `2 matrix that is (t, ε2, 0.9(1− γ)2)-independent, where

r2 = O
(

(log n)δ/4 ·
(
24c
)·(logn)1−δ/4)

,

`2 = `1,

ε2 = r−6t
2 ,

After j = d8/δe+ 1 iterations, we obtain an rj × `j matrix, where rj = O((log n)δ/4) and

`j = Ω((log n)1+3δ/4) that is εj-close to a somewhere-random source, with εj = 2−Ω((logn)δ/4).
Note that for this we need to choose γ such that (1− γ)d8/δe+1 > 1/2. As δ is constant, one
can set the value of the constant γ accordingly.

At this point we can apply Theorem 8.5 so to obtain a string S, which is O(εj)-close
to uniform on (log n)1+δ/4-bit strings. By consuming one more source with min-entropy
(log n)1+δ, we can use S as a seed to the seeded extractor from Theorem 3.9 so to extract
Ω((log n)1+δ) bits that are O(εj)-close to uniform. This concludes the proof.

9 Proof of Theorem 1.3

In this section we prove Theorem 1.3. Our proof follows [CS15] with the sole difference of
using the extractor from Theorem 1.2 rather than the extractor by [Li15b]. For completeness,
we give the necessary details. We start by recalling the definition of the following class of
sources from [CS15] and its relation to zero-fixing sources given in the subsequent claim.
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Definition 9.1 (Fixed-weight sources). Let n ≥ k ≥ w be integers. A random variable
X ⊆ {0, 1}n is called an (n, k, w)-fixed-weight source if there exists S ⊆ [n], with size
|S| = k, such that a sample from x ∼ X is obtained as follows. First, one samples a string
x′ ∈ {0, 1}k of weight w, uniformly at random from all

(
k
w

)
such strings. Then one sets

x|S = x′, and xi = 0 for all i 6∈ S.

Claim 9.2 ([CS15]). Let X be an (n, k)-zero-fixing source. Then, X is 2−Ω(k)-close to a
convex combination of (n, k, w)-fixed-weight sources, with k/3 ≤ w ≤ 2k/3.

For the proof we make use of the following result from [CS15] which, informally speak-
ing, shows that is is possible to efficiently transform a single fixed-weight source to several
independent weak-sources.

Theorem 9.3 ([CS15]). For any integers n, c, where c is a power of 2, there exists an
O(cn)-time computable function

Splitter : {0, 1}n → ({0, 1}n)c ,

with the following property. Let X be an (n, k, w)-fixed-weight source, with k/3 ≤ w ≤
2k/3. Let (Y1, . . . , Yc) = Splitter(X), with Yi ∈ {0, 1}n for all i ∈ [c]. Then, there exist
random variables M1, . . . ,Mc−1, and deterministic functions k1, . . . , kc−1 of them, such that
conditioned on any fixing (M1, . . . ,Mc−1) = (m1, . . . ,mc−1), the following holds:

• The random variables Y1, . . . , Yc are independent.

• For every i ∈ [c], the random variable Yi is an (n, ki, wi)-fixed-weight source, with
wi ∈ [w/c− 1, w/c], and k1 + · · ·+ kc = k − c+ 1.

Furthermore, except with probability c · 2−Ω(k/(c·log2 c)) over the fixings of (M1, . . . ,Mc−1), it
holds that for all i ∈ [c], ki ≥ 0.9k/c.

We also make use of the following (seedless) lossless condenser for bit-fixing sources due
to Rao [Rao09].

Theorem 9.4 ([Rao09]). For all integers n, k, there exists an efficiently-computable linear
transformation Cond : {0, 1}n → {0, 1}k logn, such that for any (n, k)-bit-fixing source X it
holds that Cond restricted to X is one-to-one.

With these results in hand, we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. We first describe the construction of ZeroBFExt and then turn to the
analysis. We make use of the following building blocks:

• Let Ext :
(
{0, 1}k logn

)c → {0, 1}` be the multi-source extractor from Theorem 1.2,
set to extract ` = Ω(k) bits from c independent (k log n, k)-weak-sources, with k ≥
O(log1+δ(k log n)). By Theorem 1.2, it suffices to take c = O(1/δ). Note further that
k = O((log log n)1+δ).
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• Let Splitter : {0, 1}n → ({0, 1}n)c be the function given by Theorem 9.3.

• Let Cond : {0, 1}n → {0, 1}k logn be the lossless-condenser given by Theorem 9.4.

Let x ∈ {0, 1}n. We define ZeroBFExt(x) as follows. First, we compute (y1, . . . , yc) =
Splitter(x). Secondly, for each i ∈ [c] we compute zi = Cond(yi). Finally, we define
ZeroBFExt(x) = Ext(z1, . . . , zc).

Turning to the analysis, by Claim 9.2, X is 2−Ω(k)-close to a convex combination of
(n, k, w)-weight-fixing sources {Xw}2k/3

w=k/3. Thus, Splitter(X) is 2−Ω(k)-close to a convex

combination of the random variables {Splitter(Xw)}2k/3
w=k/3. We denote ((Yw)1, . . . , (Yw)c) =

Splitter(Xw). Fix w ∈ [k/3, 2k/3]. By Theorem 9.3, conditioned on a suitable set of random
variables, (Yw)1, . . . , (Yw)c are independent. Moreover, except with probability 2−Ω(k) with
respect to the conditioning, it holds that for all i ∈ [c], (Yw)i is an (n, k′, w/c)-weight-fixing
source, with k′ ≥ 0.9k/c. Since(

k′

w/c

)
≥
(
k′

w/c

)w/c
≥
(

0.9k

w

)w/c
≥
(

0.9

2/3

)w/c
= 2Ω(k),

we have that H∞((Yw)i) = Ω(k) for all i ∈ [c], except with probability 2−Ω(k).
Recall that Zi = Cond(Yi). With the notation above, we have that Zi is 2−Ω(k)-close

to a convex combination of (Zw)i = Cond((Yw)i), where k/3 ≤ w ≤ 2k/3. Since (Yw)i is
contained in some (n, k)-bit-fixing source, Theorem 9.4 guarantees that Cond restricted to the
support of (Yw)i is one-to-one, and so H∞((Zw)i) = H∞((Yw)i) = Ω(k). Thus, except with
probability 2−Ω(k), we have that for all i ∈ [c], (Zw)i is a (k log n,Ω(k))-weak source. This

implies that ZeroBFExt(Xw) = Ext((Zw)1, . . . , (Zw)c) is 2−(log logn)Ω(1)
-close to uniform, which

completes the proof of the theorem as ZeroBFExt(X) is 2−Ω(k)-close to a convex combination

of {ZeroBFExt(Xw)}2k/3
w=k/3.

10 Summary and Open Problems

In this paper we gave an explicit construction of an extractor for 2/δ + O(1) sources, each
with min-entropy (log n)1+δ, for any δ > 0. The end goal would be to construct a two-
source extractor, or even a two-source disperser, for min-entropy O(log n). This would yield
significantly improved constructions of Ramsey graphs. The next natural step towards this
goal is to devise an extractor or a disperser for a constant number of sources with logarithmic
or even quasi-logarithmic min-entropy.

Another interesting problem is to come up with a construction of multi-source extrac-
tors or dispersers that has a simple and succinct description, though possibly with an in-
volved analysis. Bourgain’s two-source extractor [Bou05], which has a clean and simple
description, and whose analysis relies on results from point-line incidence bounds over finite
fields, certainly falls under this category. Unfortunately, however, Bourgain’s extractor only
supports min-entropy rate slightly below 1/2. The multi-source extractor by Barak et al.

55



[BIW06] is another example of an extractor that is very simple to describe, as its con-
struction only involves a simple sequence of additions and multiplications. The analysis
of this extractor is based on a statistical analog of the deep sum-product theorem from
additive combinatorics. However, for the latter extractor to support min-entropy rate δ,
it requires poly(1/δ)-sources. Constructing dispersers is based on the challenge-response
mechanism [BKS+05, BRSW12, Coh15c] and, unfortunately, these are also highly involved
constructs.

It is interesting to point out that a little over a decade ago, an analog situation occurred
for seeded extractors – after a long line of research that was accumulated to the fairly
involved seeded extractor by Lu et al. [LRVW03], a significantly simpler extractor (also
with better parameters) was obtained by Guruswami et al. [GUV09], and in subsequent
works [DW11, DKSS09, TSU12].
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A Proof of Lemma 3.11

In this section we prove Lemma 3.11. We start by proving the following lemma by [Rey11]
(see further references therein).

Lemma A.1 ([Rey11]). Let A,B,C,D, and F be random variables such that C,D have the
same domain. Suppose that for any a ∈ supp(A),

• (C | A = a) and (F | A = a) are independent
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• (C | A = a) and (B | A = a) are independent

• (D | A = a) and (F | A = a) are independent

• (D | A = a) and (B | A = a) are independent

Let f be a function such that

(f(B,C), C, A) ≈ε (F,C,A) .

Assume further that (D,A) ≈δ (C,A). Then,

(f(B,D), D,A) ≈δ+ε (F,D,A) .

For the proof of Lemma A.1 we make use of the following simple and well-known fact.

Fact A.2. Let X, Y be two random variables with a common domain D. Let A = {z ∈ D |
Pr[X = z] > Pr[Y = z]}. Then,

SD(X, Y ) =
∑
z∈A

Pr[X = z]−Pr[Y = z].

Proof of Lemma A.1. For ease of reading, for any a ∈ supp(A) and any random variable X,
we denote (X | A = a) by Xa. Now,

SD ((f(B,D), D,A), (F,D,A)) = E
a∼A

[SD ((f(Ba, Da), Da), (Fa, Da))]

Fix a ∈ supp(A). By the hypothesis, Ba, Da are independent and also Fa, Da are independent.
Hence,

SD ((f(Ba, Da), Da), (Fa, Da)) =
∑
x

Pr[Da = x] · SD(f(Ba, x), Fa).

The expression on the right hand side can be written as α(a) + β(a) where

α(a) =
∑
x

(Pr[Da = x]−Pr[Ca = x]) · SD(f(Ba, x), Fa),

and
β(a) =

∑
x

Pr[Ca = x] · SD(f(Ba, x), Fa).

As Ca, Ba are independent and Ca, Fa are independent,

β(a) = SD ((f(Ba, Ca), Ca), (Fa, Ca)) ,

and so
E
a∼A

[β(a)] = SD ((f(B,C), C, A), (F,C,A)) ≤ ε.
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We now turn to bound α(a). Let T be the set of all elements x such that Pr[Da = x] >
Pr[Ca = x]. By Fact A.2 and since SD(·) ∈ [0, 1],

α(a) =
∑
x

(Pr[Da = x]−Pr[Ca = x]) · SD(f(Ba, x), Fa)

≤
∑
x∈T

(Pr[Da = x]−Pr[Ca = x]) · SD(f(Ba, x), Fa)

≤
∑
x∈T

Pr[Da = x]−Pr[Ca = x]

= SD(Da, Ca).

Hence,
E
a∼A

[α(a)] = SD ((C,A), (D,A)) ≤ δ.

This concludes the proof.

We are now ready to prove Lemma 3.11.

Proof of Lemma 3.11. By Lemma A.1 applied with A = H, B = W , C = U1, D = S,
F = U2, and f = Ext, and since W is independent of S conditioned on H, it suffices to show
that

(Ext(W,U1), U1,H) ≈2ε (U2, U1,H) .

By Lemma 3.4, except with probability ε over h ∼ H it holds that H∞(W | (H = h)) ≥ k.
Conditioned on this event, the source fed to Ext has min-entropy k which is sufficient for
Ext, and so the output of the extractor is ε-close to uniform. By taking into account the
fact that with probability at most ε, W has insufficient min-entropy as required by Ext, the
above equation follows.

B Proof Sketch for Claim 2.2

In this section we sketch the proof for Claim 2.2.

Proof sketch for Claim 2.2. The general proof strategy is to show that there exists an event
which occurs with probability close to 1, conditioned on which, IPMerg3(X ′, Y ′,W ) is fixed
to a constant, whereas IPMerg3(X, Y,W ) is close to uniform. Clearly, this suffices to conclude
the proof. This event is found by performing a sequence of steps, where in each step we fix
some carefully chosen random variable.

We start by conditioning on the fixing Y ′|s = y′|s for y′|s ∼ Y ′|s. As we assume that
Y is independent of Y ′, we have that Y remains intact even conditioned on this fixing.
Moreover, since s = `/10, one can show that with high probability over y′|s ∼ Y ′|s, the
random variable X | (Y ′|s = y′|s) has min-entropy rate roughly 0.9. Keeping some min-
entropy in X conditioned on the fixing of Y ′|s is the reason why we switched from IPMerg2

to IPMerg3.
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Next, we condition on the fixing of the seed w′ ∼ Extin(W, y
′|s) to the outer extractor

Extout in the definition of IPMerg3(X ′, Y ′,W ). Note that this seed is a deterministic function
of W , as we already conditioned on the fixing Y ′|s = y′|s. Thus, conditioning on the fixing
Extin(W, y

′|s) = w′ does not introduce any correlations between W and the joint distribution
of the remaining random variables X, Y,X ′, Y ′. Furthermore, as the output length of Extin
is set to s, with high probability over w′ ∼ Extin(W, y

′|s), the random variable W has min-
entropy at least k − s conditioned on the fixing of Extin(W, y

′|s). Thus, by our assumption
k � `, only a negligible fraction of the min-entropy of W was lost conditioned on the pair
of fixings done so far.

We now fix y|s ∼ Y |s. As Y |s is uniform and independent of W conditioned on the
fixings done so far, and since W has sufficient min-entropy, we have that with high proba-
bility over y|s ∼ Y |s, the seed Extin(W, y|s) to the outer extractor Extout in the definition of
IPMerg3(X, Y,W ) is close to uniform. Informally speaking, this fixing further reduces the
min-entropy of X by s, and so X is still left with min-entropy k − 2s.

Conditioned on the fixings done so far, IPMerg3(X ′, Y ′,W ) = Extout(X
′, w′) is a de-

terministic function of X ′ that consists of s bits. By conditioning on the fixing of z′ ∼
IPMerg3(X ′, Y ′,W ), we have that X has min-entropy at least `− 3s = 0.7`.

To summarize, with high probability over the fixings done so far, IPMerg3(X ′, Y ′,W ) is
fixed to a constant whereas the outer extractor in the definition of IPMerg3(X, Y,W ) gets
X, which has min-entropy 0.7`, as a source, and the independent seed Extin(W, y|s) which
is close to uniform. Thus, with probability close to 1 over the fixings done so far, we have
that IPMerg3(X, Y,W ) is close to uniform whereas IPMerg3(X ′, Y ′,W ) is fixed. By the above
discussion, this proves the claim.

C Multi-Source Extractors and Dispersers From the

Literature

In the following table we give a summary of explicit multi-source extractors and dispersers
from the literature as well as our contribution. For the sake of readability, whenever possible,
the supported min-entropy was written accurately only up to multiplicative constant factors.
Further, information concerning the error guarantee and number of output bits is omitted.
Any appearance of δ should be considered with a universal quantifier. Unless otherwise
stated, δ must be taken as a constant. Any appearance of β is meant under an existential
quantifier. Unless specified otherwise, the construction is an extractor (as apposed to a
disperser).
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Construction Min-entropy Number of sources Comments

[CG88] (1/2 + δ)n 2

[CG88] o(n) 2 conditional

[BIW06] δn poly(1/δ)

[BKS+05] o(n) 3

[BKS+05] o(n) 2 disperser

[Bou05] (1/2− β)n 2

[Raz05] (1/2 + δ)n, log n 2

[Raz05, Rao09] δn, log n, log n 3

[BRSW12] 2(logn)1−β
2 disperser

[Rao09, BRSW12] max (k, (log n)10) O (log n/ log k)

[BSZ11] 0.4n 2 conditional

[Li11] n1/2+δ 3

[Li13b] max (k, (log n)4) O (log (log n/ log k))

[Li13a] (log n)2+δ O(1/δ) +O(1)

[Li15b] (log n)2+δ d14/δe+ 2

[Li15b] (log n)12 3

[Coh15a] (log n)7 3

[Coh15a] δn, log n, log log n 3

[Coh15c] polylog n 2 disperser

[CZ15] (log n)74 2

[Li15a] polylog n 2

[Mek15] (log n)10 2

This work (log n)1+δ 2/δ +O(1) δ may depend on n

Optimal log n 2
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