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Abstract

Inspired by Diakonikolas and Kane (2016), we reduce the class of problems consisting of
testing whether an unknown distribution over [n] equals a fixed distribution to this very problem
when the fixed distribution is uniform over [n]. Our reduction preserves the parameters of the
problem, which are n and the proximity parameter ǫ > 0, up to a constant factor.

While this reduction yields no new bounds on the sample complexity of either problems,
it provides a simple way of obtaining testers for equality to arbitrary fixed distributions from
testers for the uniform distribution.
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1 Introduction

Inspired by Diakonikolas and Kane [5], we present, for every fixed distribution D over [n], a simple
reduction of the problem of testing whether an unknown distribution over [n] equals D to the
problem of testing whether an unknown distribution over [n] equals the uniform distribution over
[n]. Specifically, we reduce ǫ-testing of equality to D to ǫ/3-testing of equality to the uniform
distribution over [6n], denoted U6n.

Hence, the sample (resp., time) complexity of testing equality to D, with respect to the proximity
parameter ǫ, is at most the sample (resp., time) complexity of testing equality to U6n with respect
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to the proximity parameter ǫ/3. Since optimal bounds were known for both problems (cf., e.g., [9,
2, 1, 11, 4, 13]), our reduction yields no new bounds. Still, it provides a simple way of obtaining
testers for equality to arbitrary fixed distributions from testers for the uniform distribution.

The setting at a glance. For any fixed distribution D over [n], we consider the problem of
ǫ-testing equality to D, where the tester is given samples drawn from an unknown distribution X
and is required to distinguish the case that X ≡ D from the case that X is ǫ-far from D, where
the distance is the standard statistical distance. The sample complexity of this testing problem,
depends on D, and is viewed as a function of n and ǫ. We write D ⊆ [n] to denote that D ranges
over [n].

Wishing to present reductions between such problems, we need to spell out what we mean by
such a reduction. Confining ourselves to problems of testing equality to fixed distributions, we say
that ǫ-testing equality to D ⊆ [n] reduces to ǫ′-testing equality to D′ ⊆ [n′] if there exists a randomized
process F that maps [n] to [n′] such that the distribution D is mapped to the distribution D′ and
any distribution that is ǫ-far from D is mapped to a distribution that is ǫ′-far from D′. We say that
F maps the distribution X to the distribution Y if Y ≡ F (X), where here we view the distributions
as random variables. Denoting the uniform distribution over n by Un, our main result can be stated
as follows.

Theorem 1 (completeness of testing equality to Un): For every distribution D over [n] and every

ǫ > 0, it holds that ǫ-testing equality to D reduces to ǫ/3-testing equality to U6n. Furthermore, the

same reduction F can be used for all ǫ > 0.

Hence, the sample complexity of ǫ-testing equality to D is upper bounded by the sample complexity
of ǫ/3-testing equality to U6n. We mention that in some cases, testing equality to D can be easier
than testing equality to Un; such natural cases contain grained distributions (see below). (A general
study of the dependence on D of the complexity of testing equality to D was undertaken in [13].)

The reduction at a glance. We decouple the reduction asserted in Theorem 1 into two steps.
In the first step, we assume that the distribution D has a probability function q that ranges
over multiples of 1/m, for some parameter m ∈ N; that is, m · q(i) is a non-negative integer
(for every i). We call such a distribution m-grained, and reduce testing equality to any fixed m-
grained distribution to testing equality to the uniform distribution over [m]. This reduction maps i
uniformly at random to a set Si of size m ·q(i) such that the Si’s are disjoint. Clearly, this reduction
maps the distribution q to the uniform distribution over m fixed elements, and it can be verified
that this randomized mapping preserves distances between distributions.

Since every distribution over [n] is ǫ/2-close to a O(n/ǫ)-grained distribution, it is stands to
reason that the general case can be reduced to the grained case. This is indeed true, but the
reduction is less obvious than the treatment of the grained case. Actually, we shall use a different
“graining” procedure, which yields a better result (i.e., the result stated above). Specifically, we
present a reduction of ǫ-testing equality to D to ǫ/3-testing equality to some 6n-grained distribution
D′, where D′ depends only on D. Letting q : [n]→ [0, 1] denote the probability function of D, the

reduction maps i ∈ [n] to itself with probability ⌊6n·q(i)⌋/6n
q(i) , and otherwise maps i to n + 1. This

description works when q(i) ≥ 1/2n for every i ∈ [n], and in order to guranteed this condition we
use a preliminary reduction that maps i ∈ [n] to itself with probability 1/2 and otherwise maps
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it uniformlty to [n]. It is quite obvious that the preliminary reduction cuts the distance between
distributions by a factor of two, and it can be shown that the main randomized mapping preserves
distances between distributions up to a constant factor (of 2/3).

History, credits, and an acknowledgement. The study of testing properties of distributions
was initiated by Batu, Fortnow, Rubinfeld, Smith and White [2]. Testers of sample complexity
poly(1/ǫ) · √n for equality to Un and for equality to an arbitrary distribution D over [n] were
presented by Goldreich and Ron [9] and Batu et al. [1], respectively, were the presentation in [9] is
only implicit.1 The tight lower and upper bound of Θ(

√
n/ǫ2) on the sample complexity of both

problems were presented in [11, 4, 13] (see also [6, 5]). For a general survey of the areas, the
interested reader is referred to Canonne [3].

As stated upfront, our reductions are inspired by Diakonikolas and Kane [5], who presented a
unified approach for deriving optimal testers for various properties of distributions (and pairs of
distributions) via reductions to testing the equality of two unknown distributions that have small
L2-norm. We note that our reduction from testing equality to grained distributions to testing
equality to the uniform distribution is implicit in [6].

Lastly, we wish to thank Ilias Diakonikolas for numerous email discussions, which were extremely
helpful in many ways.

2 Preliminaries

We consider discrete probability distributions. Such distribution have a finite support, which we
assume to be a subset of [n] for some n ∈ N, where the support of a distribution is the set of
elements assigned positive probability mass. We represent such distributions either by random
variables, like X, that are assigned values in [n] (indicated by writing X ∈ [n]), or by probability
functions like p : [n] → [0, 1] that satisfy

∑

i∈[n] p(i) = 1. These two representation correspond
via p(i) = Pr[X = i]. At times, we also refer to distributions as such, and denote them by
D. (Distributions over other finite sets can be treated analogously, but in such a case we should
provide the tester with a description of the set; indeed, n serves as a concise description of [n].)

Recall that the study of “distribution testing” refers to testing properties of distributions. That
is, the object being testing is a distribution, and the property it is tested for is a property of
distributions (equiv., a set of distributions). The tester itself is given samples from the distribution
and is required to distinguish the case that the distribution has the property from the case that the
distribution is far from having the property, where the distance between distributions is defined as
as the total variation distance between them (a.k.a the statistical difference). That is, X and Y
are said to be ǫ-close if

1

2
·
∑

i

|Pr[X = i]−Pr[Y = i]| ≤ ǫ, (1)

and otherwise they are deemed ǫ-far. With this definition in place, we are ready to recall the
standard definition of testing distributions.

Definition 2 (testing properties of distributions): Let D = {Dn}n∈N be a property of distributions

and s : N × (0, 1] → N. A tester, denoted T , of sample complexity s for the property D is a

1Testing equality to Un is implicit in a test of the distribution of the endpoint of a realtively short random walk
on a bounded-degree graph.
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probabilistic machine that, on input parameters n and ǫ, and a sequence of s(n) samples drawn

from an unknown distribution X ∈ [n], satisfies the following two conditions.

1. The tester accepts distributions that belong to D: If X is in Dn, then

Pri1,...,is∼X [T (n, ǫ; i1, ..., is)=1] ≥ 2/3,

where s = s(n, ǫ) and i1, ..., is are drawn independently from the distribution X.

2. The tester rejects distributions that far from D: If X is ǫ-far from any distribution in Dn

(i.e., X is ǫ-far from D), then

Pri1,...,is∼X [T (n, ǫ; i1, ..., is)=0] ≥ 2/3,

where s = s(n, ǫ) and i1, ..., is are as in the previous item.

Our focus is on “singleton” properties; that is, the property is {Dn}n∈N, where Dn is a fixed
distribution over [n]. Note that n fully specifies the distribution Dn, and we do not consider the
complexity of obtaining an explicit description of Dn from n. For sake of simplicity, we will consider
a generic n and omit it from the notation (i.e., use D rarher than Dn). Furthermore, we refer to
ǫ-testers derived by setting the proximity parameter to ǫ. Nevertheless, all testers discussed here are
actually uniform with respect to the proximity parameter ǫ (and also with respect to n, assuming
they already derived or obtained an explicit description of Dn).

Confining ourselves to problems of testing equality to distributions, we formally restate the
notion of a reduction used in the introduction. In fact, we explicitly refer to the randomized
mapping at the heart of the reduction, and also define a stronger (i.e., uniform over ǫ) notion of a
reduction that captures the furthermore part of Theorem 1.

Definition 3 (reductions via filters): We say that a randomized process F , called a filter, reduces

ǫ-testing equality to D ⊆ [n] to ǫ′-testing equality to D′ ⊆ [n′] if the distribution D is mapped to

the distribution D′ and any distribution that is ǫ-far from D is mapped to a distribution that is

ǫ′-far from D′. We say that F reduces testing equality to D ⊆ [n] to testing equality to D′ ⊆ [n′] if,

for some constant c and every ǫ > 0, it holds that F reduces ǫ-testing equality to D to ǫ/c-testing

equality to D′.

Recall that we say that F maps the distribution X to the distribution Y if Y and F (X) are
identically distributed (i.e., Y ≡ F (X)), where we view the distributions as random variables.
We stress that if Fq is invoked t times on the same i, then the t outcomes are (identically and)
independently distributed. Hence, a sequence of samples drawn independently from a distribution
X is mapped to a sequence of samples drawn independently from the distribution F (X).

3 The reduction

The following description was reproduced (and slightly adapted) from lecture notes for an intro-
ductory cource on property testing, which are currently in preparation [8]. Hence, the style is
somewhat different from the one in the introduction. In particular, the notion of a reduction is
not used explicitly (except in Propositions 6 and 9 and in Section 3.3).2 Instead, the randomized

2Propositions 6 and 9 were added in the current write-up, and Section 3.3 was significantly revised.
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mapping is called a filter, and reductions are presented in the form of testers that use filters in
order to transform samples given to them into samples for sub-testers that they invoke. Typically,
the sub-tester is invoked once, but at one occasion we allow the tester not to invoke the sub-tester
at all (but rather reject based on a simple test). This exception can be avoided, as discussed in
Section 3.3.

Recall that testing equality to a fixed distribution D means testing the property {D}; that is,
testing whether an unknown distribution equals the fixed distribution D. For any distribution D
over [n], we present a reduction of the task of ǫ-testing {D} to the task of ǫ/3-testing the uniform
distribution over [O(n)].

We decouple the reduction into two steps. In the first step, we assume that the distribution
D has a probability function q that ranges over multiples of 1/m, for some parameter m ∈ N;
that is, m · q(i) is a non-negative integer (for every i). We call such a distribution m-grained, and
reduce testing equality to any fixed m-grained distribution to testing uniformity (over [m]). Since
every distribution over [n] is ǫ/2-close to a O(n/ǫ)-grained distribution, it stands to reason that
the general case can be reduced to the grained case. This is indeed true, but the reduction is
less obvious than the treatment of the grained case. (Actually, we shall use a different “graining”
procedure, which yields a better result.)

Definition 4 (grained distributions): We say that a probability distribution over [n] having a

probability function q : [n] → [0, 1] is m-grained if q ranges over multiples of 1/m; that is, if for

every i ∈ [n] there exists a non-negative integer mi such that q(i) = mi/m.

Note that the uniform distribution over [n] is n-grained, and that an m-grained distribution must
have support size at most m. In particular, if a distribution D results from applying some function
to the uniform distribution over [m], then D is m-grained.

3.1 Testing equality to a fixed grained distribution

Fixing any m-grained distribution (represented by a probbaility function) q : [n] → {j/m : j ∈
N∪{0}}, we consider a randomized transformation (or “filter”), denoted Fq, that maps the support
of q to S = {〈i, j〉 : i ∈ [n] ∧ j ∈ [mi]}, where mi = m · q(i). Specifically, for every i in the
support of q, we map i uniformly to Si = {〈i, j〉 : j ∈ [mi]}; that is, Fq(i) is uniformly distributed
over Si. If i is outside the support of q (i.e., q(i) = 0), then we map it to 〈i, 0〉. Note that
|S| = ∑

i∈[n] mi =
∑

i∈[n] m · q(i) = m. The key observations about this filter are:

1. The filter Fq maps q to a uniform distribution: If Y is distributed according to q, then Fq(Y )
is distributed uniformly over S; that is, for every 〈i, j〉 ∈ S, it holds that

Pr[Fq(Y ) = 〈i, j〉] = Pr[Y = i] ·Pr[Fq(i) = 〈i, j〉]

= q(i) · 1

mi

=
mi

m
· 1

mi

which equals 1/m = 1/|S|.
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2. The filter preserves the variation distance between distributions: The total variation distance
between Fq(X) and Fq(X

′) equals the total variation distance between X and X ′. This holds
since, for S′ = S ∪ {〈i, 0〉 : i ∈ [n]}, we have

∑

〈i,j〉∈S′

∣

∣Pr[Fq(X) = 〈i, j〉]−Pr[Fq(X
′) = 〈i, j〉]

∣

∣

=
∑

〈i,j〉∈S′

∣

∣Pr[X = i] ·Pr[Fq(i) = 〈i, j〉]−Pr[X ′ = i] ·Pr[Fq(i) = 〈i, j〉]
∣

∣

=
∑

〈i,j〉∈S′

Pr[Fq(i) = 〈i, j〉] ·
∣

∣Pr[X = i]−Pr[X ′ = i]
∣

∣

=
∑

i∈[n]

∣

∣Pr[X = i]−Pr[X ′ = i]
∣

∣ .

Indeed, this is a generic statement that applies to any filter that maps i to a pair 〈i, Zi〉,
where Zi is an arbitrary distibution that only depends on i. (Equivalently, the statement
holds for any filter that maps i to a random variable Zi that only depends on i such that the
supports of the different Zi’s are disjoint.)

Noting that a knowledge of q allows to implement Fq as well as to map S to [m], yields the following
reduction.

Algorithm 5 (reducing testing equality to m-grained distributions to testing uniformity over [m]):
Let D be an m-grained distribution with probability function q : [n] → {j/m : j ∈ N ∪ {0}}. On

input (n, ǫ; i1, ..., is), where i1, ..., is ∈ [n] are samples drawn according to an unknow distribution p,
invoke an ǫ-tester for uniformity over [m] by providing it with the input (m, ǫ; i′1, ..., i

′
s) such that

for every k ∈ [s] the sample i′k is generated as follows:

1. Generate 〈ik, jk〉 ← Fq(ik).

Recall that if mik
def
= m ·q(ik) > 0, then jk is selected uniformly in [mk], and otherwise jk ← 0.

2. If jk ∈ [mik ], then 〈ik, jk〉 ∈ S is mapped to its rank in S (according to a fixed order of S),
where S = {〈i, j〉 : i∈ [n] ∧ j∈ [mi]}, and otherwise 〈ik, jk〉 6∈ S is mapped to m + 1.

(Altertaively, the reduction may just reject if any of the jk’s equals 0.)3

The forgoing description presumes that the tester for uniform distributions over [m] also operates
well when given arbitrary distributions (which may have a support that is not a subset of [m]).
However, any tester for uniformity can be easily extended to do so (see discussion in Section 3.3).
In any case, we get

Proposition 6 (Algorithm 5 as a reduction): The filter Fq used in Algorithm 5 reduces ǫ-testing

equality to an m-grained distribution D (over [n]) to ǫ-testing equality to the uniform distribution

over [m], where the distributions tested in the latter case are over [m + 1]. Furthermore, if the

support of q equals [n], which may happen only if m ≥ n, then the reduction is to testing whether

a distribution over [m] is uniform on [m].

Using any of the known uniformity tests that have sample complexity O(
√

n/ǫ2),4 we obtain –

3See farther discussion in Section 3.3.
4Recall that the alternatives include the tests of [11] and [4] or the collision probability test (of [9]), per its

improved analysis in [7].
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Corollary 7 (testing equality to m-grained distributions): For any fixed m-grained distribution

D, the property {D} can be ǫ-tested in sample complexity O(
√

m/ǫ2).

We note that the foregoing tester for equality to grained distributions is of independent interest,
which extends beyond its usage towards testing equality to arbitrary distributions.

3.2 From arbitrary distributions to grained ones

We now turn to the problem of testing equality to an arbitrary known distribution, represented
by q : [n] → [0, 1]. The basic idea is to round all probabilities to multiples of γ/n, for an error
parameter γ (which will be a small constant). Of course, this rounding should be performed so
that the sum of probabilities equals 1. For example, we may use a randomized filter that, on input
i, outputs i with probability mi·γ/n

q(i) , where mi = ⌊q(i) · n/γ⌋, and outputs n + 1 otherwise. Hence,

if i is distributed according to p, then the output of this filter will be i with probability γmi/n
q(i) ·p(i).

This works well if γmi/n ≈ q(i), which is the case if q(i) ≫ γ/n (equiv., mi ≫ 1), but may run
into trouble otherwise.

For starters, we note that if q(i) = 0, then we should take γmi/n
q(i) = 1, beacuse otherwise we may

not distinguish between distributions that are identical when conditioned on i’s such that q(i) > 0
(but differ significantly on i’s on which q(i) = 0).5 Similar effects occur when q(i) ∈ (0, γ/n): In
this case mi = 0 and so the proposed filter ignores the probability assigned by the distribution p
on this i. Hence, we modify the basic idea such to avoid this problem.

Specifically, we first use a filter that averages the input distribution p with the uniform distri-
bution, and so guarantees that all elements occur with probability at least 1/2n, while preseving
distances between different input distributions (up to a factor of two). Only then, do we apply the

foregoing proposed filter (which outputs i with probability mi·γ/n
q(i) , where mi = ⌊q(i) · n/γ⌋, and

outputs n + 1 otherwise). Details follow.

1. We first use a filter F ′ that, on input i ∈ [n], outputs i with probability 1/2, and outputs the
uniform distribution (on [n]) otherwise. Hence, if i is distributed according to the distribution
p, then F ′(i) is distributed according to p′ = F ′(p) such that

p′(i) =
1

2
· p(i) +

1

2
· 1
n

. (2)

(Indeed, we denote by F ′(p) the probability function of the distribution obtained by selecting
i according to the probability function p and outputing F ′(i).)

Let q′ = F ′(q); that is, q′(i) = 0.5 · q(i) + (1/2n) ≥ 1/2n.

2. Next, we apply a filter F ′′
q′ , which is related to the filter Fq used in Algorithm 5. Letting

mi = ⌊q′(i) · n/γ⌋, on input i ∈ [n], the filter outputs i with probability mi·γ/n
q′(i) , and outputs

n + 1 otherwise (i.e., with probability 1− miγ/n
q′(i) ).

5Consider for example the case that q(i) = 2/n on every i ∈ [n/2] and a distribution X that is uniform on [n].
Then, Pr[X = i|q(X) > 0] = q(i) for every i ∈ [n/2], but Pr[X = i|q(X) = 0] = 2/n for every i ∈ [(n/2) + 1, n].
Hence, X and the uniform distribution on [n/2] are very different, but are identical when conditioned on i’s such
that q(i) > 0.
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Note that miγ/n
q′(i) ≤ 1, since mi ≤ q′(i)·n/γ. On the other hand, recalling that q′(i) ≥ 1/2n and

observing that mi ·γ/n > ((q′(i)·n/γ)−1)·γ/n = q′(n)−(γ/n), it follows that miγ/n
q′(i) > 1−2γ.

Now, if i is distributed according to the distribution p′, then F ′′
q′(i) is distributed according

to p′′ : [n + 1]→ [0, 1] such that, for every i ∈ [n], it holds that

p′′(i) = p′(i) · mi · γ/n

q′(i)
(3)

and p′′(n + 1) = 1−
∑

i∈[n] p
′′(i).

Let q′′ denote the probability function related to q′. Then, for every i ∈ [n], it holds that

q′′(i) = q′(i) ·miγ/n
q′(i) = mi ·γ/n ∈ {j ·γ/n : j ∈ N∪{0}} and q′′(n+1) = 1−∑

i∈[n] mi ·γ/n < γ,

since m
def
=

∑

i∈[n] mi >
∑

i∈[n]((n/γ) · q′(i) − 1) = (n/γ) − n. Note that if n/γ is an integer,

then q′′ is n/γ-grained, since in this case q′′(n+1) = 1−m·γ/n = (n/γ−m)·γ/n. Furthermore,
if m = n/γ, which happens if and only if q′(i) = mi ·γ/n for every i ∈ [n], then q′′ has support
[n], and otherwise it has support [n + 1].

Combining these two filters, we obtain the desired reduction.

Algorithm 8 (reducing testing equality to a general distribution to testing equality to a O(n)-
grained distributions): Let D be an arbitrary distribution with probability function q : [n] → [0, 1],
and T be an ǫ′-tester for m-grained distributions having sample complexity s(m, ǫ′). On input

(n, ǫ; i1, ..., is), where i1, ..., is ∈ [n] are s = s(O(n), ǫ/3) samples drawn according to an unknow

distribution p, the tester proceeds as follows:

1. It produces a s-long sequence (i′′1 , ..., i′′s ) by applying F ′′
F ′(q) ◦F ′ to (i1, ..., is), where F ′ and F ′′

q′

are as in Eq. (2)&(3); that is, for every k ∈ [s], it produces i′k ← F ′(ik) and i′′k ← F ′′
F ′(q)(i

′
k).

(Recall that F ′′
q′ depends on a universal constant γ, which we shall set to 1/6.)

2. It invokes the ǫ/3-tester T for q′′ providing it with the sequence (i′′1 , ..., i
′′
s ). Note that this is

a sequence over [n + 1].

Using the notations as in Eq. (2)&(3), we first observe that the total variation distance between
p′ = F ′(p) and q′ = F ′(q) is half the total variation distance between p and q (since p′(i) =
0.5 · p(i) + (1/2n) and ditto for q′). Next, we observe that the total variation distance between
p′′ = F ′′

q′(p
′) and q′′ = F ′′

q′(p
′) is lower bounded by a constant fraction of the total variation distance

between p′ and q′. To see this, let X and Y be distributed according to p′ and q′, respectively, and
observe that

∑

i∈[n]

∣

∣Pr[Fq′(X) = i]−Pr[Fq′(Y ) = i]
∣

∣ =
∑

i∈[n]

∣

∣

∣

∣

p′(i) · miγ/n

q′(i)
− q′(i) · miγ/n

q′(i)

∣

∣

∣

∣

=
∑

i∈[n]

miγ/n

q′(i)
·
∣

∣p′(i)− q′(i)
∣

∣

≥ min
i∈[n]

{

miγ/n

q′(i)

}

·
∑

i∈[n]

·
∣

∣p′(i)− q′(i)
∣

∣ .
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As stated above, recalling that q′(i) ≥ 1/2n and mi = ⌊(n/γ) · q′(i)⌋ > (n/γ) · q′(i) − 1, it follows
that

miγ/n

q′(i)
>

((n/γ) · q′(i)− 1) · γ/n

q′(i)
= 1− γ/n

q′(i)
≥ 1− γ/n

1/2n
= 1− 2γ.

Hence, if p is ǫ-far from q, then p′ is ǫ/2-far from q′, and p′′ is ǫ/3-far from q′′, where we use γ ≤ 1/6.
On the other hand, if p = q, then p′′ = q′′. Noting that q′′ is an n/γ-grained distribution, provided
that n/γ is an integer (as is the case for γ = 1/6), we complete the analysis of the reduction. Hence,

Proposition 9 (Algorithm 8 as a reduction): The filter F ′′
F ′(q) ◦ F ′ used in Algorithm 8 reduces

ǫ-testing equality to any fixed distribution D (over [n]) to ǫ-testing equality to an 6n-grained distri-

bution over [n′], where n′ ∈ {n, n + 1} depends on q.6 Furthermore, the support of F ′′
F ′(q) ◦ F ′(q)

equals [n′].

Hence, the sample complexity of ǫ-testing equality to arbitrary distributions over [n] equals the

sample complexity of ǫ/3-testing equality to O(n)-grained distributions (which is essentially a special
case).

Digest. One difference between the filter underlying Algorithm 5 and the one underlying Algo-
rithm 8 is that the former preserves the exact distance between distributions, whereas the later
only preseves them up to a constant factor. The difference is reflected in the fact that the first
filter maps the different i’s to distributions of disjoint support, whereas the second filter (which is
composed of the filters of Eq. (2)&(3)) maps different i’s to distributions of non-disjoint support.
(Specifically, the filter of Eq. (2) maps every i ∈ [n] to a distribution that assigns each i′ ∈ [n]
probability at least 1/2n, whereas the filter of Eq. (3) typically maps each i ∈ [n] to a distribution
with a support that contains the element n + 1.)

3.3 From arbitrary distributions to the uniform one

Combining the reductions stated in Propositions 6 and 9, we obtain a proof of Theorem 1.

Theorem 10 (Theorem 1, restated) For every probability function q : [n] → [0, 1] the filter Fq′′ ◦
F ′′

F ′(q) ◦ F ′, where q′′ = F ′′
F ′(q) ◦ F ′(q) is as in Algorithm 8 and Fq′′ is as in Algorithm 5, reduces

ǫ-testing equality to q to ǫ/3-testing equality to the uniform distribution over [6n].

Proof: First, setting γ = 1/6 and using the filter F ′′
F ′(q) ◦ F ′, we reduce the problem of ǫ-testing

equality to q to the problem of ǫ/3-testing equality to the 6n-grained distribution q′′, while noting
that the distribution q′′ has support [n′], where n′ ∈ {n, n + 1} (depending on q). Note that the
latter assertion relies on the furthermore part of Proposition 9. Next, using the furthermore part
of Proposition 6, we note that Fq′′ reduces ǫ/3-testing equality to q′′ to ǫ/3-testing equality to the
uniform distribution over [6n].

Observe that the proof of Theorem 10 avoids the problem discussed right after the presentation
of Algorithm 5, which refers to the fact that testing equality to an m-grained distribution q : [n]→
[0, 1] is reduced to testing whether distributions over [n′] are uniform over [m], where in some cases

6Typically, n′ = n + 1. Recall that n′ = n if and only if D itself is 6n-grained, in which case the reduction is not
needed anyhow.
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n′ ∈ [n, n + m] rather than n′ = m. These bad cases arise when the support of q is a strict subset
of [n], and it was avoided since we applied the filter of Algorithm 5 to distributions q′′ : [n′]→ [0, 1]
that have support [n′]. Nevertheless, it is nice to have a reduction from the general case of “testing
uniformity” to the special case, where the general case refers to testing whether distributions over
[n] are uniform over [m], for any n and m, and the special case mandates that m = n. Such a
reduction is provided next.

Theorem 11 (testing uniform distributions, a reduction between two versions): There exists a

simple filter that maps Um to U2m, while mapping any distribution X that is ǫ-far from Um to a

distribution over [2m] that is ǫ/2-far from U2m. We stress that X is not necessarily distributed over

[m] and remind the reader that Un denotes the uniform distribution over [n].

Thus, this filter reduces ǫ-testing whether distributions over [n] are uniform over [m] to ǫ/2-testing
whether distributions over [2m] are uniform over [2m].

Proof: The filter, denoted F , maps i ∈ [m] uniformly at random to an element in {i,m+ i}, while
mapping any i 6∈ [m] uniformly at random to an element in [m]. Observe that any distribution over
[n] is mapped to a distribution over [2m] and that F (Um) ≡ U2m. Note that F does not necessarily
preserve distances between arbitrary distributions over [n] (e.g., both the uniform distribution over
[2m] and the uniform distribution over [m] ∪ [2m + 1, 3m] are mapped to the same distribution),
but (as shown next) F preserves distances to the relevant uniform distributions up to a constant
factor. Specifically, note that

∑

i∈[m+1,2m]

|Pr[F (X)= i] −Pr[U2m = i]| = 1

2
·

∑

i∈[m]

|Pr[X = i]−Pr[Um = i]|

and

∑

i∈[m]

|Pr[F (X)= i] −Pr[U2m = i]| ≥ Pr [F (X) ∈ [m]]−Pr [U2m ∈ [m]]

=

(

1

2
·Pr[X ∈ [m]] + Pr[X 6∈ [m]]

)

− 1

2

=
1

2
·

∑

i6∈[m]

|Pr[X = i]−Pr[Um = i]| .

Hence, the total variation distance between F (X) and U2m is at least half the total variation
distance between X and Um.

Playing with the parameters. The filter of Eq. (2) can be generalized by introducing a pa-
rameter β ∈ (0, 1) and letting p′(i) = (1 − β) · p(i) + β/n. Picking γ ∈ (0, β) such that n/γ is
an integer, we get a trade-off between the loss in the proximity parameter ǫ and the blow-up in
the size parameter n. Specifically, this reduces ǫ-testing equality to q to ǫ′-testing equality to the
uniform distribution over [n/γ], where ǫ′ = (1 − β) · (1 − (γ/β)) · ǫ. Recalling that the complexity
of the latter problem is proportional to

√

n/γ/(ǫ′)2, it seems that setting β = 1/2 and γ = 1/6 is
quite good (alas not optimal).
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4 On the complexity of testing whether a distribution is grained

A natural question that arises from the interest in grained distributions refers to the complexity of
testing whether an unknown distribution is grained. Specifically, given n and m (and a proximity
parameter ǫ), how many samples are required in order to determine whether an unknown distribu-
tion X over [n] is m-grained or ǫ-far from any m-grained distribution. This question can be partially
answered by invoking the results of Valiant and Valiant [12]. Specifically, for an upper bound we
use their “learning up to relabelling” algorithm, which may be viewed as a learner of histograms
(which is what it actually does). Recall that the histogram of the probability function p is defined
as the multiset {p(i) : i ∈ [n]} (equiv., as the set of pairs {(v,m) : m = |{i∈ [n] : p(i)=v}| > 0}).

Theorem 12 (learning the histogram [12, Thm. 1]):7 There exists an O(ǫ−2 · n/ log n) time al-

gorithm that, on input n, ǫ and O(ǫ−2 · n/ log n) samples drawn from an unknown distribution

p : [n]→ [0, 1], outputs, with probability 1− 1/poly(n), a histogram of a distribution that is ǫ-close
to p.

The implication of this result on testing any label-invariant property of distributions is immediate.
In our case, the tester consists of employing the algorithm of Theorem 12 with proximity parameter
ǫ/2 and accepting if and only if the output fits a histogram of a distribution that is ǫ/2-close to
being m-grained. The same holds with respect to estimating the distance from the set of m-grained
distributions (which can be captured as a special case of label-invariant properties). Hence, we get

Corollary 13 (testing whether a distribution is grained): For every n,m ∈ N, the set of m-grained

distributions over [n] has a tester of sample complexity O(ǫ−2 ·n/ log n). Furthermore, the distance

of an unkown distribution to the set of m-grained distributions over [n] can be approximated up to

an additive error of ǫ using the same number of samples.

We comment that it seems that using the techniques of [12] one can reduce the complexity to O(ǫ−2 ·
n′/ log n′), where n′ = min(n,m). On the other hand, for m ∈ [Ω(n), O(n)], the above distance
approximator is optimal, whereas it makes no sense to consider m > n/ǫ (since any distribution
over [n] is ǫ-close to being n/ǫ-grained). The negative result follows from the corresponding result
of Valiant and Valiant [12].

Theorem 14 (optimality of Theorem 12, [12, Thm. 2]):8 For every sufficiently small ǫ > 0,
there exist two distributions p1, p2 : [n]→ [0, 1] that are indistinguishable by O(ǫ−1n/ log n) samples

although p1 is ǫ-close to the uniform distribution over [n] and p2 is ǫ-close to the uniform distribution

over some set of n/2 elements.

Corollary 15 (optimality of Corollary 13): For any m ∈ [Ω(n), O(n)], estimating the distance

to the set of m-grained distributions over [n] up to a sufficiently small additive constant requires

Ω(n/ log n) samples.

7Valiant and Valiant [12] stated this result for the “relative earthmover distance” (REMD) and commented that
the total variation distance up to relabelling is upper bounded by REMD. This claim appears as a special case of [14,
Fact 1] (using τ = 0), and a detailed proof appears in [10].

8Like in Footnote 7, we note that Valiant and Valiant [12] stated this result for the “relative earthmover distance”
(REMD) and commented that the total variation distance up to relabelling is upper bounded by REMD. This claim
appears as a special case of [14, Fact 1] (using τ = 0), and a detailed proof appears in [10].
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Similarly, tolerant testing in the sense of distinguishing distributions that are ǫ1-close to being
m-grained from distributions that are ǫ2-far from being m-grained requires Ω(n/ log n) samples, for
any constant ǫ2 ∈ (0, 1/(2 · ⌊2m/n⌋)) and ǫ1 ∈ (0, ǫ2).

Proof Sketch: The case of m = n/2 follows by invoking Theorem 14 (with ǫ = δ), while observing
that the uniform distribution over [n/2] is m-grained whereas the uniform distribution over [n]
is (0.499 − δ)-far from the the set of distributions that are δ-close to beging m-grained.9 Hence,
distinguishing the distributions p2 and p1 (of Theorem 14) is reducible to (0.499 − 2δ)-testing the
set of distributions that are δ-close to be m-grained, which implies that the latter task has sample
complexity Ω(n/ log n). For m < n/2, we invoke Theorem 14 while resetting n to 2m, which means
that we consider distributions over [n] with a support that is a subset of [2m]. (So the lower bound
is Ω(m/ log m) = Ω(n/ log n), where the inequality uses m = Ω(n).)

For m > n/2, we show a reduction of the distinguishing task underlying Theorem 14 to the
testing problem at hand. Specifically, let t = ⌈2m/n⌉, and assume that t divides m (otherwise use
⌊m/t⌋ instead of m/t, and reduce this special case to the general case).10 Consider a randomized
filter, denoted Fm,t, that with probability 1/t maps i ∈ [m/t] to (m/t) + i, otherwise maps i to
itself, and always maps i 6∈ [m/t] to i− (m/t). Then, Fm,t maps the uniform distribution over [m/t]
to a distribution q2 such that q2(i) = (t−1)/m if i ∈ [m/t] and q2(i) = 1/m if i ∈ [(m/t)+1, 2m/t],
which is m-grained. On the other hand, Fm,t maps the uniform distribution over [2m/t] to a
distribution q1 such that q1(i) = (2t− 1)/2m if i ∈ [m/t] and q1(i) = 1/2m if i ∈ [(m/t) + 1, 2m/t],
which is 0.999/2t-far from being m-grained. Applying the same filter to the distributions p1 and p2

of Theorem 14 (while setting n = 2m/t and ǫ = δ), we obtain distributions p′2 and p′1 such that p′2 is
δ-close to being m-grained whereas p′1 is ((0.999/2t)− δ)-far from being m-grained, since filters can
only decarese the distance between distributions. Hence, distinguishing the distributions p2 and p1

(over [2m/t]) is reducible to (0.999/2t−2δ)-testing the set of distributions that are δ-close to being
m-grained, which implies that the latter task has sample complexity Ω((2m/t)/ log(2m/t)). (The
claim follows by recalling that 1/t = Ω(1), since m = O(n).)

Open Problems. Note that Corollary 15 does not refer to testing, but rather to distance approx-
imation, and there are natural cases in which the complexity of testing a property of distributions is
significantly lower than the corresponding distance approximation task (cf. [9] versus [12]). Hence,
we ask –

Open Problem 16 (the sample complexity of testing whether a distribution is grained): For

any m and n, what is the sample complexity of testing the property that consists of all m-grained

distributions over [n].

This question can be generalized to properties that allow m to reside in some predetermined set
M , where the most natural case is that M is an interval, say of the form [m′, 2m′].

Open Problem 17 (Problem 16, generalized): For any finite set M ⊂ N and n ∈ N, what is the

sample complexity of testing the property that consists of all distributions over [n] that are each

m-grained for some m ∈M .

9The constant 0.499 stands for an arbitrary large constant that is smaller than 0.5. Recall that the definition of
δ-far mandates that the relevant distance be greater than δ.

10For example, the reduction may use a filter that maps i ∈ [n] with itself with probability t · ⌊m/t⌋/m and maps
it to n otherwise.
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