
Randomness Extraction in AC0 and with Small Locality

Kuan Cheng ∗ Xin Li †

February 3, 2016

Abstract

We study two variants of seeded randomness extractors. The first one, as studied by Goldreich et

al. [7], is seeded extractors that can be computed by AC0 circuits. The second one, as introduced by

Bogdanov and Guo [3], is (strong) extractor families that consist of sparse transformations, i.e., functions

that have a small number of overall input-output dependencies (called sparse extractor families). In this

paper we focus on the stronger condition where any function in the family can be computed by local

functions. The parameters here are the length of the source n, the min-entropy k = k(n), the seed length

d = d(n), the output length m = m(n), the error ǫ = ǫ(n), and the locality of functions ℓ = ℓ(n).
In the AC0 extractor case, our main results substantially improve the positive results in [7], where for

k ≥ n/poly(log n) a seed length of O(m) is required to extract m bits with error 1/poly(n). We give

constructions of strong seeded extractors for k = δn ≥ n/poly(log n), with seed length d = O(log n),
output length m = kΩ(1), and error any 1/poly(n). We can then boost the output length to Ω(δk) with

seed length d = O(log n), or to (1−γ)k for any constant 0 < γ < 1 with d = O(1δ log n). In the special

case where δ is a constant and ǫ = 1/poly(n), our parameters are essentially optimal. In addition, we

can reduce the error to 2−poly(logn) at the price of increasing the seed length to d = poly(log n).
In the case of sparse extractor families, Bogdanov and Guo [3] gave constructions for any min-

entropy k with locality at least O(n/k log(m/ǫ) log(n/m)), but the family size is quite large, i.e., 2nm.

Equivalently, this means the seed length is at least nm. In this paper we significantly reduce the seed

length. For k ≥ n/poly(log n) and error 1/poly(n), our AC0 extractor with output kΩ(1) also has small

locality ℓ = poly(log n), and the seed length is only O(log n). We then show that for k ≥ n/poly(log n)

and ǫ ≥ 2−kΩ(1)

, we can use our error reduction techniques to get a strong seeded extractor with seed

length d = O(log n + log2(1/ǫ)
logn), output length m = kΩ(1) and locality log2(1/ǫ)poly(log n). Finally,

for min-entropy k = Ω(log2 n) and error ǫ ≥ 2−kΩ(1)

, we give a strong seeded extractor with seed length

d = O(k), m = (1 − γ)k and locality n
k log2(1/ǫ)(log n)poly(log k). As an intermediate tool for this

extractor, we construct a condenser that condenses an (n, k)-source into a (10k,Ω(k))-source with seed

length d = O(k), error 2−Ω(k) and locality Θ(nk log n).

∗kcheng17@jhu.edu. Department of Computer Science, Johns Hopkins University.
†lixints@cs.jhu.edu. Department of Computer Science, Johns Hopkins University

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 18 (2016)

1 Introduction

Randomness extractors are functions that transform biased random sources into almost uniform random bits.

Throughout this paper, we model biased random sources by the standard model of general weak random

sources, which are probability distributions over n-bit strings with a certain amount of min-entropy k. Such

sources are referred to as (n, k)-sources. In this case, it is well known that no deterministic extractors can

exist for one single weak random source even if k = n − 1; therefore seeded randomness extractors were

introduced in [16], which allow the extractors to have a short uniform random seed (say length O(logn)).
In typical situations, we require the extractor to be strong in the sense that the output is close to uniform

even given the seed.

Since their introduction, seeded randomness extractors have become fundamental objects in pseudoran-

domness, and have found numerous applications in derandomization, complexity theory, cryptography and

many other areas in theoretical computer science. In addition, through a long line of research, we now have

explicit constructions of seeded randomness extractors with almost optimal parameters (e.g., [8]).

While in general “explicit constructions” means constructions that can be computed in polynomial time

of the input size, some of the known constructions are actually more explicit than that. These include for

example extractors based on universal hashing [4], and Trevisan’s extractor [20], which can be computed by

highly uniform constant-depth circuits of polynomial size with parity gates. Motivated by this, Goldreich

et al. [7] studied the problem of constructing randomness extractors in AC0 (i.e., constant depth circuits of

polynomial size). From the complexity aspect, this also helps us better understand the computational power

of the class AC0. We continue with their study in this paper.

In a similar flavor, one can also consider randomness extractors that can be computed by local functions,

i.e., where every output bit only depends on a small number (say ℓ) of input bits. However, one can easily

see that in this case, just fixing at most ℓ bits of the weak source will cause the extractor to fail (at least

in the strong extractor case). To get around this, Bogdanov and Guo [3] introduced the notion of sparse

extractor families. These are a family of functions such that each function has a small number of overall

input-output dependencies, while taking a random function from the family serves as a randomness extractor.

Such extractors can be used generally in situations where hashing is used and preserving small input-output

dependencies is need. As an example, the authors in [3] used such extractors to obtain a transformation of

non-uniform one-way functions into non-uniform pseudorandom generators that preserve output locality.

We recall the definition of such extractors in [3].

Definition 1.1. [3] (sparse extractor family) An extractor family for (n, k)-sources with error ǫ is a distri-

bution H on functions {0, 1}n × {0, 1}s → {0, 1}m such that for any (n, k)-source X , we have

|(H,H(X,Us))− (H,Um)| ≤ ǫ.

The extractor family is strong if s = 0. Moreover, the family is t-sparse if for any function in the family, the

number of input-output pairs (i, j) such that the j’th output bit depends on the i’th input bit is at most t. The

family is ℓ-local if for any function in the family, any output bit depends on at most ℓ input bits.

In this paper, we continue the study of such extractors under the stronger condition of the family being

ℓ-local (instead of just being sparse). Furthermore, we will focus on the case of strong extractor families.

Note that a strong extractor family is equivalent to a strong seeded extractor, since the randomness used

to choose a function from the family can be included in the seed. Formally, we define such extractors as

follows.

Definition 1.2. A seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m is a strong (k, ǫ)-extractor family

with locality ℓ, if Ext satisfies the following two conditions.

1

• For any (n, k)-source X and independent uniform seed R ∈ {0, 1}d, we have

|(Ext(X,R), R)− Um+d| ≤ ǫ.

• For any fixing of the seed R = r, we have that Ext(x, r) is computable by ℓ-local functions, i.e., each

output bit depends on at most ℓ bits of x.

It can be seen that our definition of extractor families with small locality is a stronger notion than sparse

extractor families. Indeed, an extractor family with m output bits and locality ℓ is automatically an ℓm-

sparse extractor family, while the other direction may not hold.

Comparing with t-local extractors in [21] It is worthwhile to compare our definition of a strong extractor

family with small locality to the definition of t-local extractors by Vadhan [21]. For a t-local extractor, one

requires that for any fixing of the seed r, the outputs of the function Ext(x, r) as a whole depend on only t
bits of x. In contrast, in our definition we only require that each output bit of the function Ext(x, r) depends

on at most ℓ bits of x, while as a whole the output bits can depend on more than ℓ bits of x.

Of course, the definition of t-local extractors is stronger than ours, since any t-local extractor also has

locality at most ℓ according to our definition. However, the construction of t-local extractors in [21], which

uses the sample-then-extract approach, only works for large min-entropy (at least k >
√
n); while our goal

here is to construct strong extractor families even for very small min-entropy. Furthermore, by a lower bound

in [21], the parameter t in local-extractors is at least Ω(nm/k), which is larger than the output length m.

Although this is inevitable for local extractors, we can construct strong extractor families with long output

and small locality (i.e., ℓ≪ m).

1.1 Prior Work and Resuls

As mentioned before, Goldreich et al. [7] studied the problem of constructing randomness extractors in AC0.

They showed that in the strong extractor case, even extracting a single bit is impossible if k < n/poly(log n).
When k ≥ n/poly(log n), they showed how to extract Ω(log n) bits using O(logn) bits of seed, or more

generally how to extract m < k/2 bits using O(m) bits of seed. Note that in this case the seed length is

longer than the output length.1 In the non-strong extractor case, they showed that extracting r+Ω(r) bits is

impossible if k < n/poly(log n); while if k ≥ n/poly(log n) one can extract (1+c)r bits for some constant

c > 0, using r bits of seed. All of the above positive results have error 1/poly(n). Therefore, a natural and

main open problem left in [7] is to see if one can construct randomness extractors in AC0 with shorter seed

and longer output. Specifically, [7] asks if one can extract more than poly(log n)r bits in AC0 using a seed

length r = Ω(log n), when k ≥ n/poly(log n). In [7] the authors conjectured that the answer is negative.

We now turn to sparse extractor families. The authors in [3] gave a construction of a strong extrac-

tor family for all entropy k with output length m ≤ k, error ǫ, and sparsity O(n log(m/ǫ) log(n/m)),
which roughly corresponds to locality O(n/m log(m/ǫ) log(n/m)) ≥ O(n/k log(m/ǫ) log(n/m)) ≥
O(n/k log(n/ǫ)) whenever k ≤ n/2. They also showed that such sparsity is necessary when n0.99 ≤
m ≤ n/6 and ǫ is a constant. However, the main drawback of the construction in [3] is that the family size

is quite large. Indeed the family size is 2nm, which corresponds to a seed length of at least nm (in fact, since

the distribution H is not uniform, it will take even more random bits to sample from the family). Therefore,

a main open problem left in [3] is to reduce the size of the family (or, equivalently, the seed length).

De and Trevisan [5], using similar techniques as ours, also obtained a strong extractor for (n, k) sources

with k = δn for any constant δ with seed length d = O(logn) such that for any fixing of the seed, each bit

of the extractor’s output only depends on poly(log n) bits of the source. Their extractor outputs kΩ(1) bits,

1They also showed how to extract poly(log n) bits using O(log n) bits, but the error of the extractor becomes 1/poly(log n).

2

but the error is only n−α for some small constant 0 < α < 1. Our results apply to a much wider setting of

parameters. Indeed, as we shall see in the following, we can handle min-entropy as small as k = Ω(log2 n)

and error as small as 2−k
Ω(1)

.

1.2 Our Results

As our first contribution, we show that the authors’ conjecture about seeded AC0 extractors in [7] is false.

We give explicit constructions of strong seeded extractors in AC0 with much better parameters. This in

particular answers open problems 8.1 and 8.2 in [7]. To start with, we have the following theorem.

Theorem 1.3. For any constant c ∈ N, any k = Ω(n/ logc n) and any ǫ = 1/poly(n), there exists an

explicit construction of a strong (k, ǫ)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m that can be computed

by an AC0 circuit of depth c + 10, where d = O(log n) , m = kΩ(1) and the extractor family has locality

O(logc+5 n).

Note that the depth of the circuit is almost optimal, within an additive O(1) factor of the lower bound

given in [7]. In addition, our construction is also a family with locality only poly(log n). Note that the seed

length d = O(log n) is (asymptotically) optimal, while the locality beats the one obtained in [3] (which is

O(n/m log(m/ǫ) log(n/m)) = nΩ(1)) and is within a log4 n factor to O(n/k log(n/ǫ)).
Our result also improves that of De and Trevisan [5], even in the high min-entropy case, as our error can

be any 1/poly(n) instead of just n−α for some constant 0 < α < 1. Moreover, our seed length remains

O(logn) even for k = n/poly(log n), while in this case the seed length of the extractor in [5] becomes

poly(log n).
Next, we can boost our construction to extract almost all the entropy. Specifically, we have

Theorem 1.4. For any constant c ∈ N, any k = δn = Ω(n/ logc n), and any ǫ = 1/poly(n), there exists an

explicit construction of a strong (k, ǫ)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m that can be computed

by an AC0 circuit of depth O(c) +O(1) with either of the following parameters.

1. m = Ω(δk) and d = O(logn).

2. m = (1− γ)k for any constant 0 < γ < 1 and d = O(1δ log n).

Note that if δ is a constant, then we can extract (1 − γ)k bits with seed length O(logn) and error

ǫ = 1/poly(n), which is essentially optimal. In the case where k = n/poly(log n), we can either use

O(logn) bits to extract k/poly(log n) bits or use poly(log n) bits to extract (1− γ)k bits.

By increasing the seed length, we can achieve even smaller error with extractors in AC0. Specifically,

we have the following theorem.

Theorem 1.5. For any constants c1, c2 ∈ N, γ ∈ (0, 1), any k = Ω(n/ logc1 n), and any ǫ = 2− logc2 n,

there exists an explicit construction of a strong (k, ǫ)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m that can

be computed by an AC0 circuit of depth O(c1 + c2) +O(1), where d = poly(log n) and m = (1− γ)k.

Unfortunately the above two theorems do not preserve small locality as in Theorem 1.3, because our

output length boosting step does not preserve locality. However, we can still reduce the error of Theorem 1.3

while keeping the locality small. Specifically, we have the following theorem.

Theorem 1.6. There exists a constant α ∈ (0, 1) such that for any k ≥ n
poly(logn) and ǫ ≥ 2−k

α
, there

exists an explicit construction of a strong (k, ǫ)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m, with d =

O(logn+ log2(1/ǫ)
log n), m = kΘ(1) and locality log2(1/ǫ)poly(log n).

3

Finally, we consider strong extractor families with small locality for min-entropy k as small as log2 n.

Our approach is to first condense it into another weak source with constant entropy rate. For this purpose

we introduce the following definition of a (strong) randomness condenser with small locality.

Definition 1.7. A function Cond : {0, 1}n × {0, 1}d → {0, 1}n1 is a strong (n, k, n1, k1, ǫ)-condenser if

for every (n, k)-source X and independent uniform seed R ∈ {0, 1}d, R ◦ Cond(X,R) is ǫ-close to R ◦D,

where D is a distribution on {0, 1}n1 such that for any r ∈ {0, 1}d, we have that D|R=r is an (n1, k1)-
source. We say the condenser family has locality ℓ if for every fixing of R = r, the function Cond(., r) can

be computed by an ℓ-local function.

We now have the following theorem.

Theorem 1.8. For any k ≥ log2 n, there exists a strong (n, k, t = 10k, 0.08k, ǫ)-condenser Cond :
{0, 1}n × {0, 1}d→ {0, 1}t with d = O(k) , ǫ = 2−Ω(k) and locality Θ(nk logn).

Combining the condenser with our previous extractors, we get strong extractor families with small lo-

cality for any min-entropy k ≥ log2 n. Specifically, we have

Theorem 1.9. There exits a constant α ∈ (0, 1) such that for any k ≥ log2 n, any constant γ ∈ (0, 1)
and any ǫ ≥ 2−k

α
, there exists a strong (k, ǫ)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m, where d =

O(k),m = (1− γ)k and the extractor family has locality n
k log2(1/ǫ)(log n)poly(log k).

In the above two extractors, our seed length is still much better than that of [3]. However, our locality

becomes slightly worse, i.e., the dependence on ǫ changes from log(1/ǫ) to log2(1/ǫ). Whether one can

improve this is an interesting open problem.

1.3 Overview of the Constructions and Techniques

To get strong randomness extractors in AC0, we will extensively use the following two facts: the parity

and inner product over poly(log n) bits can be computed by AC0 circuits of size poly(n); in addition, any

Boolean function on O(logn) bits can be computed by a depth-2 AC0 circuit of size poly(n).

1.3.1 Basic construction

All our constructions are based on a basic construction of a strong extractor in AC0 for any k ≥ n
poly(logn)

with seed length d = O(logn) and error ǫ = n−Ω(1). This construction is a modification of the Impagliazzo-

Widgerson pseudorandom generator [10], interpreted as a randomness extractor in the general framework

found by Trevisan [20]. In the IW-generator, first one takes a Boolean function on n bits that is worst case

hard for circuits of size 2Ω(n), and uses a series of hardness amplification steps to get another function that

cannot be predicted with advantage more than 2−Ω(n) by circuits of size 2Ω(n). One can now use the Nisan-

Widgerson generator [15] together with this new function to get a pseudorandom generator that stretches

O(logn) random bits to n bits that fool any polynomial size circuit. Note that in the final step the hard

function is applied on only O(log n) bits, so one can think of the initial Boolean function to be on log n bits.

Trevisan [20] showed that given an (n, k)-source X , if one regards the n bits of X as the truth table of the

initial Boolean function on log n bits and apply the IW-generator, then by setting parameters appropriately

(e.g., set output length to be nα) one gets an extractor. The reason is that if the function is not an extractor,

then one can “reconstruct” part of the source X . More specifically, by the same argument of the IW-

generator, one can show that any x ∈ supp(X) that makes the output of the extractor to fail a certain

statistical test T , can be computed by a small size circuit (when viewing x as the truth table of the function)

with T gates. Since the total number of such circuits is small, the number of such bad elements in supp(X)
is also small. This extractor can work for min-entropy k ≥ nα.

4

However, this extractor itself is not in AC0 (which should be no surprise since it can handle min-entropy

k ≥ nα). Thus, at least one of the steps in the construction of the IW-generator/extractor is not in AC0. In

more details, the construction has four steps, with the first three steps used for hardness amplification and

the last step applying the NW-generator. In hardness amplification, the first step is developed by Babai et al.

[2] to obtain a mild average-case hard function from a worst-case hard function; the second step involves a

constant number of sub steps, with each sub step amplifying the hardness by using Impagliazzo’s hard core

set theorem [12], and eventually obtain a function with constant hardness; the third step is developed by

Impagliazzo and Widgerson [10], which uses a derandomized direct-product generator to obtain a function

that can only be predicted with exponentially small advantage. By carefully examining each step one can

see that the only step not in AC0 is actually the fist step of hardness amplification. Indeed, all the other

steps of hardness amplification are essentially doing the same thing: obtaining a function f ′ on O(logn)
bits from another function f on O(log n) bits, where the output of f ′ is obtained by taking the inner product

over two O(log n) bit strings s and r. In addition, s is obtained directly from part of the input of f ′, while

r is obtained by using the other part of the input of f ′ to generate O(log n) inputs to f and concatenate the

outputs. All of these can be done in AC0, assuming f is in AC0 (note that f here depends on X).

We therefore modify the IW-generator by removing the first step of hardness amplification, and start

with the second step of hardness amplification with the source X as the truth table of the initial Boolean

function. Thus the initial function f can be computed by using the logn input bits to select a bit from X ,

which can be done in AC0. Therefore the final Boolean function f ′ can be computed in AC0. The last step of

the construction, which applies the NW-generator, is just computing f ′ on several blocks of size O(logn),
which certainly is in AC0. This gives our basic extractor in AC0.

The analysis is again similar to Trevisan’s argument [20]. However, since we have removed the first step

of hardness amplification, now for any x ∈ supp(X) that makes the output of the extractor to fail a certain

statistical test T , we cannot obtain a small circuit that exactly comptues x. On the other hand, we can obtain

a small circuit that can approximate x well, i.e., can compute x correctly on 1−γ fraction of inputs for some

γ = 1/poly(log n). We then argue that the total number of strings within relative distance γ to the outputs

of the circuit is bounded, and therefore combining the total number of possible circuits we can again get a

bound on the number of such bad elements in supp(X). A careful analysis shows that our extractor works

for any min-entropy k ≥ n/poly(log n). However, to keep the circuit size small we have to set the output

length to be small enough, i.e., nα and set the error to be large enough, i.e., n−β . Note that in each hardness

amplification step the output of f ′ only depends on O(logn) outputs from f , thus our extractor also enjoys

the property of small locality, i.e., poly(log n) since the construction only has a constant number of hardness

amplification steps.

1.3.2 Error reduction

We now describe how we reduce the error of the extractor. We will use techniques similar to that of Raz et al.

[17], in which the authors showed a general way to reduce the error of strong seeded extractors. However,

the reduction in Raz et al. [17] does not preserve the AC0 property or small locality, thus we cannot directly

use it. Nevertheless, we will still use a lemma from [17], which roughly says the following: given any strong

seeded (k, ǫ)-extractor Ext with seed length d and output length m, then for any x ∈ {0, 1}n there exists a

set Gx ⊂ {0, 1}d of density 1−O(ǫ), such that if X is a source with entropy slightly larger than k, then the

distribution Ext(X,GX) is very close to having min-entropy m−O(1). Here Ext(X,GX) is the distribution

obtained by first sampling x according to X , then sampling r uniformly in Gx and outputting Ext(x, r).
Suppose now we want to achieve an error of any 1/poly(n). Giving this lemma, we can apply our basic

AC0 extractor with error ǫ = n−β for some t times, each time with fresh random seed, and then concatenate

the outputs. By the above lemma, the concatenation is roughly (O(ǫ))t-close to a source such that one of

the output has min-entropy m − O(1) (i.e., a somewhere high min-entropy source). By choosing t to be a

5

large enough constant the (O(ǫ))t can be smaller than any 1/poly(n). We now describe how to extract from

the somewhere high min-entropy source with error smaller than any 1/poly(n).
Assume that we have an AC0 extractor Ext′ that can extract from (m,m−√m)-sources with error any

ǫ′ = 1/poly(n) and output length m1/3. Then we can extract from the somewhere high min-entropy source

as follows. We use Ext′ to extract from each row of the source with fresh random seed, and then compute the

XOR of the outputs. We claim the output is (2−m
Ω(1)

+ǫ′)-close to uniform. To see this, assume without loss

of generality that the i’th row has min-entropy m−O(1). We can now fix the outputs of all the other rows,

which has a total size of tm1/3 ≪ √m as long as t is small. Thus, even after the fixing, with probability

1 − 2−m
Ω(1)

, we have that the i’th row has min-entropy at least m − √m. By applying Ext′ we know that

the XOR of the outputs is close to uniform.

What remains is the extractor Ext′. To construct it we divide the source with length m sequentially into

m1/3 blocks of length m2/3. Since the source has min-entropy m − √m, this forms a block source such

that each block roughly has min-entropy at least m2/3 −√m conditioned on the fixing of all previous ones.

We can now take a strong extractor Ext′′ in AC0 with seed length O(log n) and use the same seed to extract

from all the blocks, and concatenate the outputs. It suffices to have this extractor output one bit for each

block. Such AC0 extractors are easy to construct since each block has high min-entropy rate (i.e., 1− o(1)).
For example, we can use the extractors given by Goldreich et al. [7].

It is straightforward to check that our construction is in AC0, as long as the final step of computing the

XOR of t outputs can be done in AC0. For error 1/poly(n), it suffices to take t to be a constant and the

whole construction is in AC0, with seed length O(logn). We can even take t to be poly(log n), which will

give us error 2−poly(logn) and the construction is till in AC0; although we need to change Ext′′ a little bit and

the seed length now becomes poly(log n). In addition, our error reduction step also preserves small locality.

1.3.3 Increasing output length

The error reduction step reduces the output length from m to m1/3, which is still nΩ(1). We can increase the

output length by using a standard boosting technique as that developed by Nisan and Zuckerman [16, 25].

Specifically, we first use random bits to sample from the source for several times (using a sampler in AC0),

and the outputs will form a block source. We then apply our AC0 extractor on the block source backwards,

and use the output of one block as the seed to extract from the previous block. When doing this we divide

the seed into blocks each with the same length as the seed of the AC0 extractor, apply the AC0 extractor

using each block as the seed, and then concatenate the outputs. This way each time the output will increase

by a factor of nΩ(1). Thus after a constant number of times it will become say Ω(k). Since each step is

computable in AC0, the whole construction is still in AC0. Unfortunately, this step does not preserve small

locality.

1.3.4 Extractors with small locality for low entropy

To get strong extractor families with small locality for min-entropy k = Ω(log2 n), we adapt the techniques

in [3]. There the authors constructed a strong extractor family with small sparsity by randomly sampling

an m × n matrix M and outputting MX , where X is the (n, k)-source. Each entry in M is independently

sampled according to a Bernoulli distribution, and thus the family size is 2nm. We derandomize this con-

struction by sampling the second row to the last row using a random walk on an expander graph, starting

from the first row. For the first row, we observe that the process of generating the entries and doing inner

product with X can be realized by read-once small space computation, thus we can sample the first row

using the output of a pseudorandom generator for space bounded computation (e.g., Nisan’s generator [14]).

We show that this gives us a very good condenser with small locality, i.e., Theorem 1.8. Combining the

condenser with our previous extractors we then obtain strong extractor families with small locality.

6

1.4 Organization of this Paper

The rest of the paper is organized as follows. In Section 2 we review some basic definitions and the relevant

background. In Section 3 we describe our construction of a basic extractor in AC0, and with small locality.

Section 4 describes the error reduction techniques for AC0 extractors. In Section 5 we show how to increase

the output length of AC0 extractors. Section 6 deals with error reduction for extractor families with small

locality. In Section 7 we give our condenser and extractor with small locality for low entropy sources.

Finally, while our work improves previous works in many aspects, there are also many natural and interesting

open problems left. We conclude with some of the open problems in Section 8.

2 Preliminaries

For any i ∈ N, we use 〈i〉 to denote the binary string representing i. Let 〈·, ·〉 denote the inner product of

two binary strings having the same length. Let | · | denote the length of the input string. Let w(·) denote the

weight of the input binary string. For any strings x1 and x2, let x1 ◦ x2 denote the concatenation of x1 and

x2. For any strings x1, x2, . . . , xt, let©t
i=1xi denote x1 ◦ x2 ◦ · · · ◦ xt.

Let supp(·) denote the support of the input random variable.

Definition 2.1 (Weak Random Source, Block Source). The min-entropy of a random variable X is

H∞(X) = min
x∈supp(X)

{− log Pr(X = x)}.

We say a random variable X is an (n, k)-source if the length of X is n and H∞(X) ≥ k. We say

X = ©m
i=1Xi is an ((n1, k1), (n2, k2), . . . , (nm, km))-block source if ∀i ∈ [m], ∀x ∈ supp(©i−1

j=1Xj),
Xi|©i−1

j=1Xj=x is an (ni, ki)-source.

For simplicity, if n1, n2, · · · , nm are clear from the context, then we simply say that the block source X
is a (k1, k2, . . . , km)-block source.

We say an (n, k)-source X is a flat (n, k)-source if ∀a ∈ supp(X), Pr[X = a] = 2−k. In this paper, X
is usually a random binary string with finite length. So supp(X) includes all the binary strings of that length

such that ∀x ∈ supp(X),Pr[X = x] > 0.

We use U to denote the uniform distribution. In the following, we do not always claim the length of U ,

but its length can be figured out from the context.

Definition 2.2 (Statistical Distance). The statistical distance between two random variables X and Y , where

|X| = |Y | , is SD(X,Y) which is defined as follows.

SD(X,Y) = 1/2
∑

a∈{0,1}|X|

|Pr[X = a]− Pr[Y = a]|

Lemma 2.3 (Properties of Statistical Distance [1]). Statistical distance has the following properties.

1. (Triangle Inequality) For any random variables X , Y , Z, such that |X| = |Y | = |Z|, we have

SD(X,Y) ≤ SD(X,Z) + SD(Y, Z).

2. For any n,m ∈ N
+, any deterministic function f : {0, 1}n → {0, 1}m and any random variables X ,

Y over {0, 1}n, SD(f(X), f(Y)) ≤ SD(X,Y).

7

Definition 2.4 (Extractor). A (k, ǫ)-extractor is a function Ext : {0, 1}n × {0, 1}d → {0, 1}m with the

following property. For every (n, k)-source X , the distribution Ext(X,U) is within statistical distance ǫ
from uniform distributions over {0, 1}m.

A strong (k, ǫ)-extractor is a function Ext : {0, 1}n × {0, 1}d → {0, 1}m with the following property.

For every (n, k)-source X , the distribution U ◦ Ext(X,U) is within statistical distance ǫ from uniform

distributions over {0, 1}d+m. The entropy loss of the extractor is k −m.

The existence of extractors can be proved using the probabilistic method. The result is stated as follows.

Theorem 2.5 ([23]). For any n, k ∈ N and ǫ > 0, there exists a strong (k, ǫ)-extractor Ext : {0, 1}n ×
{0, 1}d → {0, 1}m such that d = log(n− k) + 2 log(1/ǫ) +O(1),m = k − 2 log 1/ǫ+O(1).

In addition, researchers have found explicit extractors with almost optimal parameters, for example we

have the following theorem.

Theorem 2.6 ([8]). For every constant α > 0, every n, k ∈ N and ǫ > 0, there exist an explicit construction

of strong (k, ǫ)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with d = O(log n
ǫ),m ≥ (1− α)k.

We also use the following version of Trevisan’s extractor [20].

Theorem 2.7 (Trevisan’s Extractor [20]). For any constant γ ∈ (0, 1], let k = nγ . For any ǫ ∈ (0, 2−k/12),
there exists an explicit construction of (k, ǫ)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m such that d =
O((log n/ǫ)2/ logn), m ∈ [36, k/2).

For block sources, randomness extraction can be done in parallel, using the same seed for each block.

Lemma 2.8 (Block Source Extraction). For any t ∈ N
+, let X = ©t

i=1Xi be any (k1, k2, . . . , kt)-block

source where for each i ∈ [t], |Xi| = ni. For every i ∈ [t], let Exti : {0, 1}ni × {0, 1}d → {0, 1}mi

be a strong (ki, ǫi)-extractor. Then the distribution R ◦ Ext1(X1, R) ◦ Ext2(X2, R) ◦ . . . ◦ Extt(Xt, R) is
∑

i∈[t] ǫi-close to uniform, where R is uniformly sampled from {0, 1}d, and independent of X .

Proof. We use induction. If the source has only 1 block, then the statement is true by the definition of strong

extractors.

Assume for (t−1) blocks, the statement is true. We view Ext1(X1, R)◦Ext2(X2, R)◦ . . .◦Extt(Xt, R)
as Y ◦ Extt(Xt, R). Here Y = Ext1(X1, R) ◦ Ext2(X2, R) ◦ . . . ◦ Extt−1(Xt−1, R). Let U1, U2 be two

independent uniform distributions, where |U1| = |Y | = m and |U2| = mt. Then

SD(R ◦ Y ◦ Extt(Xt, R), R ◦ U1 ◦ U2)

≤SD(R ◦ Y ◦ Extt(Xt, R), R ◦ U1 ◦ Z) + SD(R ◦ U1 ◦ Z,R ◦ U1 ◦ U2).
(1)

Here Z is the random variable such that ∀r ∈ {0, 1}d, ∀y ∈ {0, 1}m, Z|R=r,U1=y has the same distribution

as Extt(Xt, R)|R=r,Y=y.

First we give the upper bound of SD(R ◦ Y ◦ Extt(Xt, R), R ◦ U1 ◦ Z).

SD(R ◦ Y ◦ Extt(Xt, R), R ◦ U1 ◦ Z) (2)

=
1

2

∑

r∈{0,1}d

∑

y∈{0,1}m

∑

z∈{0,1}mt

|Pr[R = r] Pr[Y = y|R=r] Pr[Extt(Xt, R) = z|R=r,Y=y]

− Pr[R = r] Pr[U1 = y] Pr[Z = z|R=r,U1=y]|

=
1

2

∑

r∈{0,1}d

∑

y∈{0,1}m

∑

z∈{0,1}mt

Pr[R = r] Pr[Z = z|R=r,U1=y]|Pr[Y = y|R=r]− Pr[U1 = y]|

8

=
1

2

∑

r∈{0,1}d

∑

y∈{0,1}m

Pr[R = r]|Pr[Y = y|R=r]− Pr[U1 = y]|
∑

z∈{0,1}mt

Pr[Z = z|R=r,U1=y]

=
1

2

∑

r∈{0,1}d

∑

y∈{0,1}m

Pr[R = r]|Pr[Y = y|R=r]− Pr[U1 = y]|

=SD(R ◦ Y,R ◦ U)

≤
t−1
∑

i=1

ǫi

Next we give the upper bound of SD(R ◦ U1 ◦ Z,R ◦ U1 ◦ U2).

SD(R ◦ U1 ◦ Z,R ◦ U1 ◦ U2) (3)

=
1

2

∑

r∈{0,1}r

∑

u∈{0,1}m

∑

z∈{0,1}mt

|Pr[R = r] Pr[U1 = u] Pr[Z = z|R=r,U1=u]

− Pr[R = r] Pr[U1 = u] Pr[U2 = z]|

=
1

2

∑

r∈{0,1}r

∑

u∈{0,1}m

∑

z∈{0,1}mt

Pr[R = r] Pr[U1 = u]|Pr[Z = z|R=r,U1=u]− Pr[U2 = z]|

=
1

2

∑

u∈{0,1}m

∑

r∈{0,1}r

∑

z∈{0,1}mt

Pr[R = r] Pr[U1 = u]|Pr[Z = z|R=r,U1=u]− Pr[U2 = z]|

=
1

2

∑

u∈{0,1}m

Pr[U1 = u]
∑

r∈{0,1}r

∑

z∈{0,1}mt

Pr[R = r]|Pr[Z = z|R=r,U1=u]− Pr[U2 = z]|

=
1

2

∑

u∈{0,1}m

Pr[U1 = u]
∑

r∈{0,1}r

∑

z∈{0,1}mt

Pr[R = r]|Pr[Extt(Xt, R) = z|R=r,Y=u]− Pr[U2 = z]|

=
∑

u∈{0,1}m

Pr[U1 = u]SD(R ◦ Extt(Xt, R)|Y=u, R ◦ U2)

≤
∑

u∈{0,1}m

Pr[U1 = u]ǫt

=ǫt

So SD(R ◦ Y ◦ Extt(Xt, R), R ◦ U1 ◦ U2) ≤
∑t

i=1 ǫt. This proves the lemma.

For any circuit C, the size of C is denoted as size(C). The depth of C is denoted as depth(C).

Definition 2.9 (AC0). AC0 is the complexity class which consists of all families of circuits having constant

depth and polynomial size. The gates in those circuits are NOT gates, AND gates and OR gates where AND

gates and OR gates have unbounded fan-in.

Lemma 2.10. The following are some well known properties of AC0 circuits.

1. Any boolean function f : {0, 1}l=Θ(logn) → {0, 1} can be computed by an AC0 circuit of size poly(n)
and depth 2. In fact, it can be represented by either a CNF or a DNF.

9

2. For every c ∈ N, every integer l = Θ(logc n), the inner product function 〈·, ·〉 : {0, 1}l × {0, 1}l →
{0, 1} can be computed by an AC0 circuit of size poly(n) and depth c+ 1.

Proof. For the first property, for an input string u ∈ {0, 1}l,

f(u) =
2l−1
∨

j=0

(Iu=〈j〉 ∧ f(〈j〉)) =
2l−1
∧

j=0

(Iu 6=〈j〉 ∨ f(〈j〉)).

Here Ie is the indicator function such that Ie = 1 if e is true and Ie = 0 otherwise. We know that Iu=〈j〉
can be represented as a boolean formula with only AND and NOT gates, checking whether u = 〈j〉 bit by

bit. Similarly Iu 6=〈j〉 can be represented as a boolean formula with only OR and NOT gates by taking the

negation of Iu=〈j〉. So the computation of obtaining f(u) can be represented by a CNF/DNF. Thus it can be

realized by a circuit of depth 2 by merging the gates of adjacent levels.

For the second property, assume we are computing 〈s, x〉. Consider a c-step algorithm which is as

follows.

In the first step, we divide s into blocks s1, s2, . . . , st, where |si| = l′ = Θ(log n), ∀i ∈ [t]. Also we

divide x into blocks x1, x2, . . . , xt, where |xi| = l′, ∀i ∈ [t]. Then we compute 〈si, xi〉 for each i ∈ [t] and

provide them as the input bits for the next step. As each block has Θ(log n) bits, this step can be done by a

circuit of depth 2 according to the first property.

For the jth step where j = 2, . . . , c, we divide the input bits into blocks where each block has size l′.
We compute the parity of the bits in each block and pass them to the next step as the inputs for the next step.

For the last step, if l′ is large enough, there will be only 1 block and the parity of this block is 〈s, x〉.
For the jth step, where j = 2, . . . , c, as the size of each block is Θ(log n), we only need a circuit of depth

2 and polynomial size to compute the parity of each block according to the first property. The computation

for all the blocks can be done in parallel. Thus the jth step can be computed by a circuit of depth 2 and

polynomial size.

As a result, this algorithm can be realized by a circuit of depth 2c and polynomial size. By merging the

gates of adjacent depths, we can have a circuit of depth c+ 1 and polynomial size to compute 〈s, x〉.

Definition 2.11. A boolean function f : {0, 1}l → {0, 1} is δ-hard on uniform distributions for circuit size

g, if for any circuit C with at most g gates (size(C) ≤ g), we have Prx←U [C(x) = f(x)] < 1− δ.

Definition 2.12 (Graphs). Let G = (V,E) be a graph. Let A be the adjacency matrix of G. Let λ(G) be

the second largest eigenvalue of A. We say G is d-regular, if the degree of G is d. When G is clear in the

context, we simply denote λ(G) as λ.

3 The Basic Construction of Extractors in AC
0

Our basic construction is based on the general idea of I-W generator [10]. In [20], Trevisan showed that I-W

generator is an extractor if we regard the string x drawn from the input (n, k)-source X as the truth table of

a function fx s.t. fx(〈i〉), i ∈ [n] outputs the ith bit of x.

The construction of I-W generator involves a process of hardness amplifications from a worst-case hard

function to an average-case hard function. There are mainly 3 amplification steps. Viola [24] summarizes

these results in details, and we review them again. The first step is established by Babai et al. [2], which is

an amplification from worst-case hardness to mildly average-case hardness.

Lemma 3.1 ([2]). If there is a boolean function f : {0, 1}l → {0, 1} which is 0-hard for circuit size

g = 2Ω(l) then there is a boolean function f ′ : {0, 1}Θ(l) → {0, 1} that is 1/poly(l)-hard for circuit size

g′ = 2Ω(l).

10

The second step is an amplification from mildly average-case hardness to constant average-case hard-

ness, established by Impagliazzo [12].

Lemma 3.2 ([12]). 1. If there is a boolean function f : {0, 1}l → {0, 1} that is δ-hard for circuit size

g where δ < 1/(16l), then there is a boolean function f ′ : {0, 1}3l → {0, 1} that is 0.05δl-hard for

circuit size g′ = δO(1)l−O(1)g.

f ′(s, r) = 〈s, f(a1) ◦ f(a2) ◦ · · · ◦ f(al)〉

Here |s| = l, |r| = 2l and |ai| = l, ∀i ∈ [l]. Regarding r as a uniform random string, a1, . . . , al are

generated as pairwise independent random strings from the seed r.

2. If there is a boolean function f : {0, 1}l → {0, 1} that is δ-hard for circuit size g where δ < 1 is

a constant, then there is a boolean function f ′ : {0, 1}3l → {0, 1} that is 1/2 − O(l−2/3)-hard for

circuit size g′ = l−O(1)g, where

f ′(s, r) = 〈s, f(a1) ◦ f(a2) ◦ · · · ◦ f(al)〉.

Here |s| = l, |r| = 2l and |ai| = l, ∀i ∈ [l]. Regarding r as a uniform random string, a1, . . . , al are

generated as pairwise independent random strings from the seed r.

The first part of this lemma can be applied for a constant number of times to get a function having

constant average-case hardness. After that the second part is usually applied for only once to get a function

with constant average-case hardness such that the constant is large enough (at least 1/3).

The third step is an amplification from constant average-case hardness to even stronger average-case

hardness, developed by Impagliazzo and Widgerson [10]. Their construction uses the following Nisan-

Widgerson Generator [15] which is widely used in hardness amplification.

Definition 3.3 ((n,m, k, l)-design and Nisan-Widgerson Generator [15]). A system of sets S1, S2, . . . , Sm ⊆
[n] is an (n,m, k, l)-design, if ∀i ∈ [m], |Si| = l and ∀i, j ∈ [m], i 6= j, |Si ∩ Sj | ≤ k.

Let S = {S1, S2, . . . , Sm} be an (n,m, k, l) design and f : {0, 1}l → {0, 1} be a boolean function.

The Nisan-Widgerson Generator is defined as NWf,S(u) = f(u|S1) ◦ f(u|S2) ◦ · · · ◦ f(u|Sm). Here u|Si =
ui1 ◦ ui2 ◦ · · · ◦ uim assuming Si = {i1, . . . , im}.

Nisan and Widgeson [15] showed that the (n,m, k, l)-design can be constructed efficiently.

Lemma 3.4 (Implicit in [15]). For any α ∈ (0, 1), for any large enough l ∈ N, for any m < exp{αl4 }, there

exists a (n,m, αl, l)-design where n = ⌊10lα ⌋. This design can be computed in time polynomial of 2n.

As we need the parameters to be concrete (while in [15] they use big-O notations), we prove it again.

Proof. Our algorithm will construct these Sis one by one. For S1, we can choose an arbitrary subset of [n]
of size αl.

First of all, S1 can constructed by choosing l elements from [n].
Assume we have constructed S1, . . . , Si−1, now we construct Si. We first prove that Si exists. Consider

a random subset of size l from [n]. Let Hi,j = |Si ∩ Sj |. We know that EHi,j = l2/n. As n = ⌊10lα ⌋ ∈
[10lα − 1, 10lα], EHi,j ∈ [αl10 ,

αl
10 + 1].

So Pr[Hi,j ≥ αl] ≤ Pr[Hi,j ≥ (1 + 9)(EHi,j − 1)]
By the Chernoff bound,

Pr[Hi,j ≥ 10(EHi,j − 1)] ≤ Pr[Hi,j ≥ 9EHi,j] ≤ exp{−8EHi,j

3
} ≤ exp{− 4

15
αl} ≤ exp{−αl

4
}

11

By the union bound,

Pr[∀j = 1, . . . , i− 1, Hi,j ≤ αl] ≥ 1−m exp{−αl

4
} > 0.

This proves that there exists a proper Si. As there are n bits totally, we can find it in time polynomial of

2n.

The following is the third step of hardness amplification.

Lemma 3.5 (Implicit in [10]). For any γ ∈ (0, 1/30), if there is a boolean function f : {0, 1}l → {0, 1}
that is 1/3-hard for circuit size g = 2γl, then there is a boolean function f ′ : {0, 1}l′=Θ(l) → {0, 1} that is

(1/2− ǫ)-hard for circuit size g′ = Θ(g1/4ǫ2l−O(1)) where ǫ can be at least g−1/4 .

f ′(a, s, v1, w) = 〈s, f(a|S1 ⊕ v1) ◦ f(a|S2 ⊕ v2) ◦ · · · f(a|Sl
⊕ vl)〉

Here (S1, . . . , Sl) is an (|a|, l, γl/4, l)-design where |a| = ⌊40lγ ⌋. The vectors v1, . . . , vl are obtained by

a random walk on an expander graph, starting at v1 and walking according to w where |v1| = l, |w| = Θ(l).
The length of s is l. So l′ = |a|+ |s|+ |v1|+ |w| = Θ(l).

The construction of the Impagliazzo Widgerson Generator [10] is as follows. Given the input x ← X ,

let f : {0, 1}logn → {0, 1} be such that f(〈a〉) = xa, ∀a ∈ [n]. Then we run the 3 amplification steps,

Lemma 3.1, Lemma 3.2 (part1 for a constant number of times, part 2 for once) and Lemma 3.5 sequentially

to get function f ′ from f . The generator IW(x, u) = NWf ′,S(u). As pointed out by Trevisan [20], the

function IW is a (k, ǫ)-extractor. Let’s call it the IW-Extractor. It is implicit in [20] that the output length of

the IW-Extractor is kα and the statistical distance of IW(X,U) from uniform distributions is ǫ = 1/kβ for

some 0 < α, β < 1. This can be verified by a detailed analysis of the IW-Extractor.

However, this construction is not in AC0 because the first amplification step is not in AC0.

Our basic construction is an adjustment of the IW-Extractor.

Construction 3.6. For any c2 ∈ N
+ such that c2 ≥ 2 and any k = Θ(n/ logc2−2 n), let X be an (n, k)-

source . We construct a strong (k, 2ǫ) extractor Ext0 : {0, 1}n × {0, 1}d → {0, 1}m where ǫ = 1/nβ ,

β = 1/600, d = O(logn), m = kΘ(1). Let U be the uniform distribution of length d.

1. Draw x from X and u from U . Let f1 : {0, 1}l1 → {0, 1} be a boolean function such that ∀i ∈ [2l1],
f1(〈i〉) = xi where l1 = logn.

2. Run amplification step of Lemma 3.2 part 1 for c2 times and run amplification step of Lemma 3.2 part

2 once to get function f2 : {0, 1}l2 → {0, 1} from f1 where l2 = 3c2+1l1 = Θ(log n).

3. Run amplification step Lemma 3.5 to get function f3 : {0, 1}l3 → {0, 1} from f2 where l3 = Θ(log n).

4. Construct function Ext0 such that Ext0(x, u) = NWf3,S(u).

Here S = {S1, S2, . . . , Sm} is a (d,m, θl3, l3)-design with θ = l1/(900l3), d = ⌊10l3/θ⌋, m = ⌊2
θl3
4 ⌋ =

⌊n 1
3600 ⌋.

Lemma 3.7. In Construction 3.6, Ext0 is a strong (k, 2ǫ) extractor.

The proof follows from the “Bad Set” argument given by Trevisan [20]. In Trevisan [20] the argument

is not explicit for strong extractors. Here our argument is explicit for proving that our construction gives a

strong extractor.

12

Proof. We will prove that for every (n, k)-source X and for every A : {0, 1}d+m → {0, 1} the following

holds.

|Pr[A(Us ◦ Ext0(X,Us)) = 1]− Pr[A(U) = 1]| ≤ 2ǫ

Here Us is the uniform distribution over {0, 1}d and U is the uniform distribution over {0, 1}d+m.

For every flat (n, k)-source X , and for every (fixed) function A, let’s focus on a set B ⊆ {0, 1}n such

that ∀x ∈ supp(X), if x ∈ B, then

|Pr[A(Us ◦ Ext0(x, Us)) = 1]− Pr[A(U) = 1]| > ǫ.

According to Nisan and Widgerson [15], we have the following lemma.

Lemma 3.8 (Implicit in [15] [20]). If there exists an A-gate such that

|Pr[A(Us ◦ Ext0(x, Us)) = 1]− Pr[A(U) = 1]| > ǫ,

then there is a circuit C3 of size O(2θl3m), using A-gates, that can compute f3 correctly for 1/2 + ǫ/m
fraction of inputs.

Here A-gate is a special gate that can compute the function A.

By Lemma 3.8, there is a circuit C3 of size O(m2θl3) = O(2
5θl3
4) = O(n1/720), using A-gates, that can

compute f3 correctly for 1/2 + ǫ/m ≥ 1/2 + 1/n1/360 fraction of inputs.

By Lemma 3.5, there is a circuit C2, with A-gates, of size at most Θ(n
1
30) which can compute f2

correctly for at least 2/3 fraction of inputs.

According to Lemma 3.2 and our settings, there is a circuit C1, with A-gates, of size n
1
30 poly logn

which can compute f1 correctly for at least 1− 1/(c1 log
c2 n) fraction of inputs for some constant c1 > 0.

Next we give an upper bound on the size of B. ∀x ∈ B, assume we have a circuit of size S =
n1/30poly(log n), using A-gates, that can compute at least 1 − 1/(c1 log

c2 n) fraction of bits of x. The

total number of circuits, with A-gates, of size S is at most 2Θ(mS logS) = 2n
1/15poly(logn), as A is fixed

and has fan-in m + d = O(m). Each one of them corresponds to at most
∑n/(c1 log

c2 n)
i=0

(

n
i

)

≤ (e ·
c1 log

c2 n)n/(c1 log
c2 n) = 2O(n/(logc2−1 n) number of x. So

|B| ≤ 2n
1/15poly(logn)2O(n/(logc2−1 n) = 2O(n/(logc2−1 n).

As X is an (n, k)-source with k = Θ(n/ logc2−2 n),

Pr[X ∈ B] ≤ |B| · 2−k ≤ ǫ.

Then we know,

|Pr[A(Us ◦ Ext(X,Us)) = 1]− Pr[A(U) = 1]|
=

∑

x∈B

Pr[X = x]|Pr[A(Us ◦ Ext(x, Us)) = 1]− Pr[A(U) = 1]|

+
∑

x/∈B

Pr[X = x]|Pr[A(Us ◦ Ext(x, Us)) = 1]− Pr[A(U) = 1]|

≤2ǫ.

(4)

Lemma 3.9. The seed length of construction 3.6 is Θ(log n).

13

Proof. We know that l1 = logn, l2 = 3c2+1l1 = Θ(log n), l3 = Θ(log n). Also S is a (⌈10l3/c⌉ =
Θ(l3),m, cl3, l3)-design. So d = ⌊10l3/c⌋ = Θ(l3) = Θ(logn).

Lemma 3.10. The function Ext0 in Construction 3.6 is in AC0. The circuit depth is c2 + 5. The locality is

Θ(logc2+2 n) = poly(log n).

Proof. First we prove that the locality is Θ(logc2+2 n).
By the construction of f1, we know f1(〈i〉) is equal to the ith bit of x.

Fix the seed u. According to Lemma 3.2 part 1, if we apply the amplification once to get f ′ from f , then

f ′(s, r) depends on f(w1), f(w2), · · · , f(wl), as

f ′(s, r) = 〈s, f(w1) ◦ f(w2) ◦ · · · ◦ f(wl)〉.

Here l = O(logn) is equal to the input length of f .

The construction in Lemma 3.2 part 2 is the same as that of Lemma 3.2 part 1. As a result, if apply

Lemma 3.2 part 1 for c2 times and Lemma 3.2 part 2 for 1 time to get f2 from f1, the output of f2 depends

on Θ(logc2+1 n) bits of the input x.

According to Lemma 3.5, the output of f3 depends on f2(a|S1 ⊕ v1), f2(a|S2 ⊕ v2), · · · , f2(a|Sl
⊕ vl2),

as

f3(a, s, v1, w) = 〈s, f2(a|S1 ⊕ v1) ◦ f2(a|S2 ⊕ v2) ◦ · · · f2(a|Sl
⊕ vl2)〉

So the output of f3 depends on O(logc2+2 n) bits of the x.

So the overall locality is O(logc2+2 n) = poly logn.

Next we prove that the construction is in AC0.

The input of Ext0 has two parts, x and u. Combining all the hardness amplification steps and the NW

generator, we can see that essentially u is used for two purposes: to select some t = Θ(logc2+2(n)) bits

(denote it as x′) from x (i.e., provide t indices u′1, . . . , u
′
t in [n]), and to provide a vector s′ of length t, finally

taking the inner product of x′ and the vector s′. Here although for each amplification step we do an inner

product operation, the overall procedure can be realized by doing only one inner product operation.

Since u has O(logn) bits, s′ can be computed from u by using a circuit of depth 2, according to Lemma

2.10 part 1.

Next we show that selecting x′ from x using the indices can be computed by CNF/DNFs, of polynomial

size, with inputs being x and the indices. The indices, u′i, i ∈ [t], are decided by u. Let’s assume ∀i ∈
[t], u′i = hi(u) for some deterministic functions hi, i ∈ [t]. As |u| = O(logn), the indices can be computed

by CNF/DNFs of polynomial size. Also ∀i ∈ [t], f(u′i) can be represented by a CNF/DNF when u′i is given.

This is because

f(u′i) =

|x|
∨

j=0

(Iu′
i=j ∧ xj) =

|x|
∧

j=0

(Iu′
i 6=j ∨ xj).

Here Ie is the indicator function such that Ie = 1 if e is true and Ie = 0 otherwise. We know that Iu′
i=j can

be represented by a boolean formula with only AND and NOT gates, checking whether u′i = j bit by bit.

Similarly Iu′
i 6=j can be represented by a boolean formula with only OR and NOT gates, taking the negation

of Iu′
i=j . As a result, this step can be computed by a circuit of depth 2.

So the computation of obtaining x′ can be realized by a circuit of depth 3 by merging the gates between

adjacent depths.

Finally we can take the inner product of two vectors x′ and s′ of length t = Θ(logc2+2(n)). By Lemma

2.10 part 2, we know that this computation can be represented by a poly-size circuit of depth c2 + 3.

The two parts of computation can be merged together to be a circuit of depth c2 + 5, as we can merge

the last depth of the circuit obtaining x′ and the first depth of the circuit computing the inner product. The

14

size of the circuit is polynomial in n as both obtaining x′ and the inner product operation can be realized by

poly-size circuits.

According to to Lemma 3, Lemma 3.9, Lemma 3.10, we have the following theorem.

Theorem 3.11. For any c ∈ N, any k = Θ(n/ logc n), there exists an explicit strong (k, ǫ)-extractor

Ext : {0, 1}n × {0, 1}d → {0, 1}m in AC0 of depth c+ 7, where ǫ = n−1/600, d = Θ(log n), m = ⌊n 1
3600 ⌋

and the locality is Θ(logc+4 n) = poly logn.

We call this extractor the Basic-AC0-Extractor.

4 Error Reduction for AC
0 Extractors

4.1 For Polynomially Small Error

According to Theorem 3.11, for any k = n
poly(logn) , we have a (k, ǫ)-extractor in AC0, with ǫ = 1/nβ where

β is a constant. In this subsection, we will reduce the error parameter ǫ to give an explicit (k, ǫ)-extractor in

AC0 such that ǫ can be any 1/poly(n).
The first tool we will use is the AC0 extractor given by Goldreich et al. [7]. Although it’s output length

is only O(logn), the error parameter can be any 1/poly(n).

Lemma 4.1 (Theorem 3.1 of Goldreich et al. [7]). For every k = δn = n/poly(log n) and every ǫ =
1/poly(n), there exist an explicit construction of a strong extractor Ext : {0, 1}n × {0, 1}O(logn) →
{0, 1}Θ(logn) which is in AC0 of depth 4 + ⌈ log(n/k(n))log log n ⌉.

If δ ∈ (0, 1] is a constant, the locality of this extractor is Θ(log n).

The construction of Theorem 4.1 is a classic sample-then-extract procedure following from Vadhan [22].

First they developed a sampling method in AC0, then on input X they sample a source of length poly(log n)
with entropy rate O(δ). At last they use the extractor in [6] to finish the extraction.

Another tool we will be relying on is the error reduction method for extractors, given by Raz et al. [17].

They give an error reduction method for poly-time extractors and we will adapt it to the AC0 settings.

Lemma 4.2 (Gx Property [17]). Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k, ǫ)-extractor with ǫ < 1/4.

Let X be any (n, k + t)-source. For every x ∈ {0, 1}n, there exists a set Gx such that the following holds.

• For every x ∈ {0, 1}n, Gx ⊂ {0, 1}d and |Gx|/2d = 1− 2ǫ.

• Ext(X,GX) is within distance at most 2−t from an (m,m − O(1))-source. Here Ext(X,GX) is

obtained by first sampling x according to X , then choosing r uniformly from Gx, and outputting

Ext(x, r). We also denote Ext(X,GX) as Ext(X,U)|U∈GX
.

Raz et al. [17] showed the following result.

Lemma 4.3 ([17]). Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k, ǫ)-extractor. Consider Ext′ : {0, 1}n ×
{0, 1}2d → {0, 1}2m which is constructed in the following way.

Ext′(x, u) = Ext(x, u1) ◦ Ext(x, u2)

Here u = u1 ◦ u2.

For any t ≤ n− k, let X be an (n, k + t)-source . Let U be the uniform distribution of length 2d.

With probability at least 1−O(ǫ2), Ext′(X,U) is 2−t-close to having entropy m−O(1).

15

Remark 4.4. Here we briefly explain the result in lemma 4.3. The distribution of Y = Ext′(X,U1 ◦ U2) is

the convex combination of Y |U1∈GX ,U2∈GX
, Y |U1 /∈GX ,U2∈GX

, Y |U1∈GX ,U2 /∈GX
and Y |U1 /∈GX ,U2 /∈GX

. That

is

Y =IU1∈GX ,U2∈GX
Y |U1∈GX ,U2∈GX

+ IU1 /∈GX ,U2∈GX
Y |U1 /∈GX ,U2∈GX

+ IU1∈GX ,U2 /∈GX
Y |U1∈GX ,U2 /∈GX

+ IU1 /∈GX ,U2 /∈GX
Y |U1 /∈GX ,U2 /∈GX

.
(5)

Also we know that Pr[IU1 /∈GX ,U2 /∈GX
= 1] = O(ǫ2). As a result, according to Lemma 4.2, this lemma

follows.

Informally speaking, this means that if view Y = Ext′(X,U) = Y1 ◦ Y2, then with high probability

either Y1 or Y2 is 2t-close to having entropy m−O(1).
We adapt this lemma by doing the extraction for any t ∈ N

+ times instead of 2 times. We have the

following result.

Lemma 4.5. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k, ǫ)-extractor. For any t ∈ N
+, consider

Ext′ : {0, 1}n × {0, 1}td → {0, 1}tm which is constructed in the following way.

Ext′(x, u) = Ext(x, u1) ◦ Ext(x, u2) ◦ · · · ◦ Ext(x, ut)

Here u = u1 ◦ u2 ◦ · · · ◦ ut.
For any a ≤ n − k, let X be an (n, k + a)-source. Let U = ©t

i=1Ui be the uniform distribution such

that ∀i ∈ [t], |Ui| = d.

1. For S ⊆ [t], let IS,X be the indicator such that IS,X = 1 if ∀i ∈ S,Ui ∈ GX , ∀j /∈ S,Uj /∈ GX and

IS,X = 0 otherwise. Here GX is defined according to 4.2. The distribution of Ext′(X,U) is a convex

combination of the distributions of Ext′(X,U)|IS,X=1, S ⊆ [t]. That is

U ◦ Ext′(X,U) =
∑

S⊆[t]

IS,XU ◦ Ext′(X,U)|IS,X=1

2. For every S ⊆ [t1], S 6= ∅, there exists an i∗ ∈ [t1] such that Ext(X,Ui∗)|IS,X=1 is 2−a-close to

having entropy m−O(1).

Proof. The first assertion is proved as the follows. By the definition of Gx of Lemma 4.2, for each fixed

x ∈ supp(X),
∑

S⊆[t] IS,x = 1 as for each i, Ui ∈ Gx either happens or not. Also IS,X is a convex

combination of IS,x, ∀x ∈ supp(X). So
∑

S⊆[t] IS,X =
∑

S⊆[t]

∑

x∈supp(X) IS,xIX=x = 1. As a result, the

assertion follows.

The second assertion is proved as the follows. For every S ⊆ [t1], S 6= ∅, by the definition of IS,X , there

exists an i∗ ∈ [t1], Ui∗ ∈ GX . By Lemma 4.2, Ext(X,Ui∗)|Ui∗∈GX
= Ext(X,Ui∗)|IS,X=1 is 2−a-close to

having entropy m−O(1).

Finally we consider the following construction of an error reduction procedure.

Construction 4.6 (Error Reduction). For any c, c0 ∈ N, let k be any Θ(n/ logc n) and ǫ be any Θ(1/nc0).
Let X be an (n, k)-source. We construct a strong (k, ǫ)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m where

d = O(logn),m = kΘ(1).

• Let Ext0 : {0, 1}n0=n × {0, 1}d0 → {0, 1}m0 be a (k0, ǫ0)-extractor following from Theorem 3.11

where k0 = k −∆1,∆1 = log(n/ǫ), ǫ0 = n−Θ(1), d0 = O(logn), m0 = kΘ(1).

16

• Let Ext1 : {0, 1}n1=m0/t2 × {0, 1}d1 → {0, 1}m1 be a (k1, ǫ1)-extractor following from Lemma 4.1

where k1 = 0.9n1, ǫ1 = ǫ/n, d1 = O(logn),m1 = Θ(log n).

• Let t1 be such that (2ǫ0)
t1 ≤ 0.1ǫ. (We only consider the case that ǫ < ǫ0. If ǫ ≥ ǫ0, we set Ext to be

Ext0.)

• Let t2 = m
1/3
0 .

Our construction is as follows.

1. Let R1, R2, . . . , Rt1 be independent uniform distributions such that for every i ∈ [t1] the length of Ri

is d0. Get Y1 = Ext0(X,R1), . . . , Yt1 = Ext0(X,Rt1).

2. Get Y = Y1 ◦ Y2 ◦ Y3 ◦ · · · ◦ Yt1 .

3. For each i ∈ [t1], let Yi = Yi,1 ◦ Yi,2 ◦ · · · ◦ Yi,t2 such that for every j ∈ [t2], Yi,j has length

n1 = m0/t2. Let S1, S2, . . . , St1 be independent uniform distributions, each having length d1. Get

Zi,j = Ext1(Yi,j , Si), ∀i ∈ [t1], j ∈ [t2]. Let Zi = Zi,1 ◦ Zi,2 ◦ · · ·Zi,t2 .

4. Let R =©iRi, S =©iSi. We get Ext(X,U) = Z =
⊕t1

i Zi where U = R ◦ S.

Lemma 4.7. Construction 4.6 gives a strong (k, ǫ)-extractor.

Lemma 4.8 (Chain Rule of Min-Entropy [23]). Let (X,Y) be a jointly distributed random variable with

entropy k. The length of X is l. For every ǫ > 0, with probability at least 1 − ǫ over x ← X , Y |X=x has

entropy k − l − log(1/ǫ).
Also there exists another source (X,Y ′) such that ∀x ∈ {0, 1}l, Y ′|X=x has entropy k − l − log(1/ǫ)

and SD((X,Y), (X,Y ′)) ≤ ǫ.

Lemma 4.9. Let X = X1 ◦ · · · ◦Xt be an (n, n−∆)-source where for each i ∈ [t], |Xi| = n1 = ω(∆).
Let k1 = n1 −∆− log(1/ǫ0) where ǫ0 can be as small as 1/20.9n1 .

Let Ext1 : {0, 1}n1 × {0, 1}d1 → {0, 1}m1 be a strong (k1, ǫ1)-extractor.

Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be constructed as the following,

Ext(X,Us) = Ext1(X1, Us) ◦ · · · ◦ Ext1(Xt, Us).

Then Ext is a strong (n−∆, ǫ)-extractor where ǫ = SD(Us ◦ Ext(X,Us), U) ≤ t(ǫ0 + ǫ1).

Proof. We prove by induction over the block index i.
For simplicity, let X̃i = X1 ◦ · · · ◦ Xi for every i. We slightly abuse the notation Ext here so that

Ext(X̃i, Us) = Ext1(X1, Us) ◦ · · · ◦ Ext1(Xi, Us) denotes the extraction for the first i blocks.

For the first block, we know H∞(X1) = n1 −∆. According to the definition of Ext1,

SD(Us ◦ Ext1(X1, Us), U) ≤ ǫ1 ≤ (ǫ0 + ǫ1).

Assume for the first i − 1 blocks, SD(Us ◦ Ext1(X̃i−1, Us), U) ≤ (i − 1)(ǫ0 + ǫ1). Consider X̃i.

By Lemma 4.8, we know that there exists X ′i such that SD(X̃i, X̃i−1 ◦ X ′i) ≤ ǫ0, where X ′i is such that

∀x̃i−1 ∈ supp(X̃i−1), H∞(X ′i|X̃i−1 = x̃i−1) ≥ n1−∆− log(1/ǫ0). So according to Lemma 2.3 part 2, as

Us◦Ext(X̃i−1, Us)◦Ext1(Xi, Us) is a convex combination of u◦Ext(X̃i−1, u)◦Ext1(Xi, u), ∀u ∈ supp(Us)
and Us ◦ Ext(X̃i−1, Us) ◦ Ext1(X ′i, Us) is a convex combination of u ◦ Ext(X̃i−1, u) ◦ Ext1(X ′i, u), ∀u ∈
supp(Us), we have

SD(Us ◦ Ext(X̃i−1, Us) ◦ Ext1(Xi, Us), Us ◦ Ext(X̃i−1, Us) ◦ Ext1(X ′i, Us)) ≤ SD(X̃i, X̃i−1 ◦X ′i) ≤ ǫ0.

17

According to the assumption, Lemma 2.8 and the triangle inequality of Lemma 2.3, we have the follow-

ing.

SD(Us ◦ Ext(X̃i−1, Us) ◦ Ext1(Xi, Us), U)

≤SD(Us ◦ Ext(X̃i−1, Us) ◦ Ext1(Xi, Us), Us ◦ Ext(X̃i−1, Us) ◦ Ext1(X ′i, Us))

+ SD(Us ◦ Ext(X̃i−1, Us) ◦ Ext1(X ′i, Us), U)

≤ǫ0 + (i− 1)(ǫ0 + ǫ1) + ǫ1

=i(ǫ0 + ǫ1)

(6)

The first inequality is due to the triangle property of Lemma 2.3. For the second inequality, first we have

already shown that SD(Us◦Ext(X̃i−1, Us)◦Ext1(Xi, Us), Us◦Ext(X̃i−1, Us)◦Ext1(X ′i, Us)) ≤ ǫ0. Second,

as X̃i−1 ◦X ′i is a ((i − 1)n1 −∆, n1 −∆ − log(1/ǫ0))-block source, by our assumption and Lemma 2.8,

SD(Us ◦ Ext(X̃i−1, Us) ◦ Ext1(X ′i, Us), U) ≤ (i− 1)(ǫ0 + ǫ1) + ǫ1. This proves the induction step.

As a result, SD(Us ◦ Ext(X,Us), U) ≤ (ǫ0 + ǫ1)t.

Lemma 4.10. In Construction 4.6, the output length of Ext is m = Θ(m
1/3
0 log n) = Θ(n10800 log n).

Proof. The output length is equal to t2 ×m1 = m
1/3
0 Θ(log n) = Θ(n1/10800 logn)

Next we prove Lemma 4.7.

Proof of Lemma 4.7. By Lemma 4.5,

R ◦ Y
=

∑

T⊆[t1]

IT,X(R ◦ Y |IT,X=1)

=I∅,X(R ◦ Y |I∅,X=1) + (1− I∅,X)(R ◦ Y |I∅,X=0)

=I∅,X(R ◦ Y |I∅,X=1) +
∑

T⊆[t1],T 6=∅

IT,X(R ◦ Y |IT,X=1)

(7)

where IT,X is the indicator such that IT,X = 1, if ∀i ∈ T,Ri ∈ GX , ∀i /∈ T,Ri /∈ GX and IT,X = 0,

otherwise. The GX here is defined by Lemma 4.2 on X and Ext0.

Fixing a set T ⊆ [t1], T 6= ∅, by Lemma 4.5, there exists an i∗ ∈ [t1] such that Ri∗ ∈ GX and

R ◦ Y |IT,X=1 is 2−∆1-close to

R′ ◦A ◦W ◦B =©iR
′
i ◦A ◦W ◦B

where W = Yi∗ |Ri∈GX
has entropy at least m0−O(1). Here A,B and R′i, i = 1, 2, . . . , t are some random

variables where A = (i∗ − 1)m1, |B| = (t− i∗)m1 and ∀i ∈ [t], |R′i| = d1. In fact, R′ = R|IT,X=1.

According to our construction, next step we view A ◦W ◦B as having t1t2 blocks of block size n1. We

apply the extractor Ext1 on each block. Although for all blocks the extractions are conducted simultaneously,

we can still view the procedure as first extracting A and B, then extracting W . Assume for A, after extraction

by using seed SA, it outputs A′. Also for B, after extraction by using seed SB , it outputs B′. So after

extracting A and B, we get A′ ◦ W ◦ B′. The length of A′ ◦ B′ is at most t1m0m1/n1 = t1t2m1 =
Θ(t1t2 log n), as n1 = m0/t2.

We know that n1 = m0/t2 = m
2/3
0 ≥ 10t1t2m1 = m

1/3
0 poly(log n). Also according to Lemma

4.8, R′ ◦ SA ◦ SB ◦ A′ ◦ W ◦ B′ is ǫ′-close to R′ ◦ SA ◦ SB ◦ A′ ◦ W ′ ◦ B′ such that for every r′ ∈

18

supp(R′), a ∈ supp(A′), b ∈ supp(B′), sA ∈ supp(SA), sB ∈ supp(SB), conditioned on R′ = r′, SA =
sA, SB = sB, A

′ = a,B′ = b, W ′ has entropy at least n1 − O(logn) − t1t2m1 − log(1/ǫ′) = n1 − ∆2

where ∆2 = O(log n) + t1t2m1 + log(1/ǫ′) = O(m
1/3
0 log n). Here ǫ′ can be as small as 2−k

Ω(1)
. That is

∀r′ ∈ supp(R′), a ∈ supp(A′), b ∈ supp(B′), sA ∈ supp(SA), sB ∈ supp(SB),

H∞(W ′|R′=r′,SA=sA,SB=sB ,A′=a,B′=b) ≥ n1 −∆2.
(8)

Let Ext′1(W
′, Si∗) = ©i∈[t2]Ext1(W

′
i , Si∗) where W ′ = ©i∈[t2]W

′
i and ∀i ∈ [t2], |W ′i | = n1. By

Lemma 4.9, as k1 = 0.9n1 ≤ n1 − ∆2, Si∗ ◦ Ext′1(W ′, Si∗)|R′=r′,SA=sA,SB=sB ,A′=a,B′=b is (ǫ′0 + ǫ1)t2-

close to uniform distributions where ǫ′0 can be as small as 2−k
Ω(1)

.

As a result, we have the following.

SD(U ◦ Ext(X,U), U ′)

=SD(R ◦ S ◦ Ext(X,U), R ◦ S ◦ Ũ)

=SD(I∅,X(R ◦ S ◦ Ext(X,U)|I∅,X=1), I∅,X(R ◦ S ◦ Ũ |I∅,X=1))

+ SD((1− I∅,X)(R ◦ S ◦ Ext(X,U)|I∅,X=0), (1− I∅,X)(R ◦ S ◦ Ũ |I∅,X=0))

=Pr[I∅,X = 1]SD(R ◦ S ◦ Ext(X,U)|I∅,X=1, R ◦ S ◦ Ũ |I∅,X=1)

=(2ǫ0)
t1SD(R ◦ S ◦ Ext(X,U)|I∅,X=1, R ◦ S ◦ Ũ |I∅,X=1)

+ SD((1− I∅,X)(R ◦ S ◦ Ext(X,U)|I∅,X=0), (1− I∅,X)(R ◦ S ◦ Ũ |I∅,X=0))

(9)

As

(2ǫ0)
t1SD(R ◦ S ◦ Ext(X,U)|I∅,X=1, R ◦ S ◦ Ũ |I∅,X=1) ≤ (2ǫ0)

t1

let’s focus on SD((1− I∅,X)(R ◦ S ◦ Ext(X,U)|I∅,X=0), (1− I∅,X)(R ◦ S ◦ Ũ |I∅,X=0)).

SD((1− I∅,X)(R ◦ S ◦ Ext(X,U)|I∅,X=0), (1− I∅,X)(R ◦ S ◦ Ũ |I∅,X=0))

=SD(
∑

T⊆[t1],T 6=∅

IT,X(R ◦ S ◦ Ext(X,U)|IT,X=1),
∑

T⊆[t1],T 6=∅

IT,X(R ◦ S ◦ Ũ |IT,X=1))

=
∑

T⊆[t1],T 6=∅

Pr[IT,X = 1]SD(R ◦ S ◦ Ext(X,U)|IT,X=1, R ◦ S ◦ Ũ |IT,X=1)

≤
∑

T⊆[t1],T 6=∅

Pr[IT,X = 1](2−∆1 + SD(R′ ◦ S ◦ (A′ ⊕ Ext′1(W,Si∗)⊕B′), R′ ◦ S ◦ Ũ))

=(1− (2ǫ0)
t1)(2−∆1 + SD(R′ ◦ S ◦ (A′ ⊕ Ext′1(W,Si∗)⊕B′), R′ ◦ S ◦ Ũ))

≤2−∆1 + SD(R′ ◦ S ◦ (A′ ⊕ Ext′1(W,Si∗)⊕B′), R′ ◦ S ◦ Ũ)

≤2−∆1 + SD(R′ ◦ S ◦ (A′ ⊕ Ext′1(W,Si∗)⊕B′), R′ ◦ S ◦ (A′ ⊕ Ext′1(W
′, Si∗)⊕B′))

+ SD(R′ ◦ S ◦ (A′ ⊕ Ext′1(W
′, Si∗)⊕B′), R′ ◦ S ◦ Ũ)

≤2−∆1 + ǫ′ + SD(R′ ◦ S ◦ (A′ ⊕ Ext′1(W
′, Si∗)⊕B′), R′ ◦ S ◦ Ũ)

≤2−∆1 + ǫ′ + (ǫ′0 + ǫ1)t2

(10)

Here U,U ′, Ũ are uniform distributions. In the second equation, I∅,X is the indicator such that I∅,X = 1 if

∀i ∈ [t1], Ri /∈ GX where GX is defined by Lemma 4.2 on X and Ext0. For the first inequality, we need to

show that

SD(R ◦ S ◦ Ext(X,U)|IT,X=1, R
′ ◦ S ◦ (A′ ⊕ Ext′1(W,Si∗)⊕B′)) ≤ 2−∆1 .

19

We know that for every s ∈ supp(S), by Lemma 2.3 part 2,

SD(R ◦ S ◦ Ext(X,U)|IT,X=1,S=s, R
′ ◦ S ◦ (A′ ⊕ Ext′1(W,Si∗)⊕B′)|S=s)

≤SD(R ◦ Y |IT,X=1, R
′ ◦A ◦W ◦B)

≤2−∆1 .

(11)

Here R ◦S ◦Ext(X,U)|IT,X=1,S=s = h(R ◦Y |IT,X=1) for some deterministic function h as S = s is fixed.

Also R′ ◦ S ◦ (A′ ⊕ Ext′1(W,Si∗)⊕B′)|S=s = h(R′ ◦A ◦W ◦B) for the same reason. As a result,

SD(R ◦ S ◦ Ext(X,U)|IT,X=1, R
′ ◦ S ◦ (A′ ⊕ Ext′1(W,Si∗)⊕B′))

=
∑

s∈supp(S)

Pr[S = s]SD(R ◦ S ◦ Ext(X,U)|IT,X=1,S=s, R
′ ◦ S ◦ (A′ ⊕ Ext′1(W,Si∗)⊕B′)|S=s)

≤2−∆1 .

(12)

The third inequality holds by the triangle property of Lemma 2.3 part 1. The 4th inequality holds because

by Lemma 2.3 part 2,

SD(R′ ◦ S ◦ (A′ ⊕ Ext′1(W,Si∗)⊕B′)|S=s, R
′ ◦ S ◦ (A′ ⊕ Ext′1(W

′, Si∗)⊕B′)|S=s)

≤SD(R′ ◦ S ◦A ◦W ◦B,R′ ◦ S ◦A ◦W ′ ◦B)

≤ǫ′.
(13)

.

As a result, the total error is at most

(2ǫ0)
t1 + (2−∆1 + ǫ′ + (ǫ′0 + ǫ1)t2)

We can set ǫ′ = 0.1ǫ, ǫ′0 = ǫ/n so that (2−∆1 + ǫ′ + (ǫ′0 + ǫ1)t2) ≤ 0.1ǫ. As (2ǫ0)
t1 < 0.1ǫ, we know

SD(U ◦ Ext(X,U), U ′) ≤ ǫ.

Lemma 4.11. In Construction 4.6, the function Ext can be realized by a circuit of depth c+ 10. Its locality

is Θ(logc+5 n) = poly(log n).

Proof. According to Theorem 3.11 and Lemma 4.1, both Ext0 and Ext1 in our construction are in AC0.

For Ext0, it can be realized by circuits of depth c + 5. For Ext1, it can be realized by circuits of depth

4 + ⌈ log(n1/k1)
log logn1

⌉. As k1 = δ1n1 where δ1 is a constant, the depth is in fact 5.

In the first and second steps of Construction 4.6, we only run Ext0 for t1 times in parallel. So the

computation can be realized by circuits of depth c+ 7
For the third step, we run Ext1 for t1t2 times in parallel, which can be realized by circuits of depth 5.

The last step, according to Lemma 2.10, taking the XOR of a constant number of bits can be realized by

circuits of depth 2. Each bit of Z is the XOR of t1 bits and all the bits of Z can be computed in parallel. So

the computations in this step can be realized by circuits of depth 2.

Now we merge the three parts of circuits together. As the circuits between each parts can be merged by

deleting one depth, our construction can be realized by circuits of depth

(c+ 5) + 5 + 2− 2 = c+ 10.

For the locality, according to Theorem 3.11, the locality of Ext0 is poly(log n). According to Lemma

4.1, the locality of Ext1 is Θ(log n). So each bit of Z is related with at most t1×Θ(logn)×Θ(logc+4 n) =
Θ(logc+5 n) = poly(log n) bits of X . So the locality is Θ(logc+5 n) = poly(log n).

20

Lemma 4.12. In Construction 4.6, d = O(t1(d0 + d1)) = O(logn).

Proof. In Construction 4.6, as

U = R ◦ S =©iRi ◦©iSi,

|U | = O(t1d0 + t1d1). According to the settings of Ext0 and Ext1, we know that d0 = O(logn) and

d1 = O(logn). Also we know that t1 = O(1) as ǫ0 = n−Θ(1) and ǫ = 1/Θ(nc0). So d = O(logn).

Theorem 4.13. For any constant c ∈ N, any k = Θ(n/ logc n) and any ǫ = 1/poly(n), there exists an

explicit construction of a strong (k, ǫ)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m in AC0 of depth c+ 10
where d = O(logn) , m = Θ(n1/10800 logn) = kΘ(1) and the locality is Θ(logc+5 n) = poly(log n).

Proof. It follows from Construction 4.6, Lemma 4.7, Lemma 4.10 , Lemma 4.11 and Lemma 4.12.

4.2 For Super-Polynomially Small Error

By using poly-log length seeds, we can achieve even smaller errors. We mainly improve the sample-then-

extract procedure.

We first analyze the sampling method which is well studied by Zuckerman [25], Vadhan [22], Goldreich

et al. [7], etc.

Definition 4.14 ([22]). A (µ1, µ2, γ)-averaging sampler is a function Samp : {0, 1}r → [n]t such that

∀f : [n]→ [0, 1], if Ei∈[n][f(i)] ≥ µ1, then

Pr
I←Samp(Ur)

[
1

t

∑

i∈I

f(i) < µ2] ≤ γ.

The t samples generated by the sampler must be distinct.

According to Vadhan [22], we have the following lemma.

Lemma 4.15 (Sample a Source [22]). Let 0 < 3τ ≤ δ ≤ 1. If Samp : {0, 1}r → [n]t is a (µ1, µ2, γ)-
averaging sampler for µ1 = (δ−2τ)/ log(1/τ) and µ2 = (δ−3τ)/ log(1/τ), then for every (n, δn)-source

X , we have SD(U ◦XSamp(Ur), U ◦W) ≤ γ + 2−Ω(τn). Here U is the uniform distribution over {0, 1}r.

For every a in {0, 1}r, the random variable W |U=a is a (t, (δ − 3τ)t)-source.

In fact, Zuckerman [25] has already given a very good sampler (oblivious sampler) construction. This

construction is based on the existence of randomness extractors.

Definition 4.16 ([25]). An (n,m, t, γ, ǫ)-oblivious sampler is a deterministic function Samp : {0, 1}n →
({0, 1}m)t such that ∀f : {0, 1}m → [0, 1],

Pr
I←Samp(Ur)

[|1
t

∑

i∈I

f(i)−Ef | > ǫ] ≤ γ.

The following lemma explicitly gives a construction of oblivious samplers using extractors.

Lemma 4.17 ([25]). If there is an explicit (k = δn, ǫ)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m, then

there is an explicit (n,m, t = 2d, γ = 21−(1−δ)n, ǫ)-oblivious sampler.

The sampler is constructed as follows. Given a seed x of length n, the t = 2d samples are Ext(x, u),
∀u ∈ {0, 1}d.

21

As a result, we can construct the following samplers.

Lemma 4.18. For any a ∈ N
+ , let γ be any 1/2Θ(loga n).

• For any c ∈ N, let ǫ be any Θ(1/ logc n). There exists an explicit (Θ(loga n), log n, t, γ, ǫ)-oblivious

sampler for any integer t ∈ [t0, n] with t0 = poly(log n).

• For any constant α in (0, 1), any c ∈ N, any µ = Θ(1/ logc n), there exists an explicit (µ, αµ, γ)-
averaging sampler Samp : {0, 1}Θ(loga n) → [n]t in AC0 of circuit depth a + 2, for any integer

t ∈ [t0, n] with t0 = poly(log n).

Specifically, if c = 0, t can be any integer in [t0, n] with t0 = (log n)Θ(a).

Proof. Let k = loga n. For any ǫ = Θ(1/ logc n), let’s consider a (k, ǫ)-extractor Ext : {0, 1}n′=c0 log
a n ×

{0, 1}d → {0, 1}log n for some constant c0, following Lemma 2.7. Here we make one modification. We

replace the last d bits of the output with the seed. We can see in this way, Ext is still an extractor.

Here the entropy rate is δ = 1/c0 which is a constant. According to Lemma 2.7, we know that, d can be

Θ(log
2(n′/ǫ)
logn′) = Θ(log logn).

For the first assertion, according to Lemma 4.17, there exists an explicit construction of a (c loga n,
log n, t, γ, ǫ)-oblivious sampler where γ = 21−(1−2/c)(c log

a n). As we can increase the seed length to logn

by padding uniform random bits, t can be any integer in [t0, n] with t0 = 2
Θ(

log2(n′/ǫ)
logn′)

= poly(log n). As

c0 can be any large enough constant, γ can be 1/2Θ(loga n).

Next we prove the second assertion.

According to the definition of oblivious sampler, we know that ∀f : [n]→ [0, 1],

Pr
I←Samp(U)

[|1
t

∑

i∈I

f(i)−Ef | > ǫ] ≤ γ.

Next we consider the definition of averaging sampler.

Let (1− α)µ = ǫ. As µ = Θ(1/ logc n), ǫ = Θ(1/ logc n). For any f : [n]→ [0, 1] such that µ ≤ Ef ,

we have the following inequalities, where Samp is a (c loga n, log n, t, γ, ǫ)-oblivious sampler.

Pr
I←Samp(U)

[
1

t

∑

i∈I

f(i) < αµ]

= Pr
I←Samp(U)

[
1

t

∑

i∈I

f(i) < µ− ǫ]

= Pr
I←Samp(U)

[µ− 1

t

∑

i∈I

f(i) > ǫ]

≤ Pr
I←Samp(U)

[Ef − 1

t

∑

i∈I

f(i) > ǫ]

≤ Pr
I←Samp(U)

[|1
t

∑

i∈I

f(i)−Ef | > ǫ]

≤γ

(14)

The first inequality holds because if the event that µ − 1
t

∑

i∈I f(i) > ǫ happens, then the event that

Ef − 1
t

∑

i∈I f(i) > ǫ will happen, as µ ≤ Ef . The second inequality is because Ef − 1
t

∑

i∈I f(i) ≤
|Ef − 1

t

∑

i∈I f(i)|. So if Ef − 1
t

∑

i∈I f(i) > ǫ happens, then |1t
∑

i∈I f(i)−Ef | > ǫ happens.

22

Also as we replace the last d bits of the output of our extractor with the seed, the samples are distinct

according to the construction of Lemma 4.17.

According to the definition of averaging sampler, we know that this gives an explicit (µ, αµ, γ)-
averaging sampler.

According to the construction described in the proof of Lemma 4.17, the output of the sampler is com-

puted by running the extractor following Lemma 2.7 for t times in parallel. So the circuit depth is equal to

the circuit depth of the extractor Ext.

Let’s recall the construction of the Trevisan’s extractor Ext.

The encoding procedure is doing the multiplication of the encoding matrix and the input x of length

n′ = c loga n. By Lemma 2.10, this can be done by a circuit of depth a+ 1.

The last step is the procedure of N-W generator. The selection procedure can be represented as a

CNF/DNF, as the seed length for Ext is at most Θ(log n). (Detailed proof is the same as the proof of

Lemma 3.10.)

As a result, we need a circuit of depth a+ 2 to realize Samp.

For the special situation that c = 0, the seed length d for Ext can be Θ(a log logn). So t0 = 2d =
(log n)Θ(a).

After sampling, we give an extractor with smaller errors that can be applied on the samples. Specifically,

we use leftover hash lemma.

Lemma 4.19 (Leftover Hash Lemma [11]). Let X be an (n′, k = δn′)-source. For any ∆ > 0, let H be

a universal family of hash functions mapping n′ bits to m = k − 2∆ bits. The distribution U ◦ Ext(X,U)
is at distance at most 1/2∆ to uniform distribution where the function Ext : {0, 1}n′ × {0, 1}d → {0, 1}m
chooses the U ’th hash function hU in H and outputs hU (X).

We use the following universal hash function family H = {hu, u ∈ {0, 1}n′}. For every u, the hash

function hu(x) equals to the last m bits of u · x where u · x is computed in F2n
′ .

Specifically, for any constant a ∈ N
+, for any n′ = Θ(loga n) then Ext can be computed by an AC0

circuit of depth a+ 1.

Proof. The proof in [11] has already shown that the universal hash function is a strong extractor. We only

need to show that the hash functions can be computed in AC0.

Given a seed u, we need to compute u · x which is a multiplication in F2n
′ . We claim that this can be

done in AC0. Note that since the multiplication is in F2n
′ , it is also a bi-linear function when regarding the

two inputs as two n′-bit strings. Thus, each output bit is essentially the inner product over some input bits.

This shows that each output bit of p · q is an inner product of two vectors of n′ dimension. As n′ =
Θ(loga n), by Lemma 2.10, this can be done in AC0 of depth a+1 and size poly(n). All the output bits can

be computed in parallel. So u · x can be computed in AC0 of depth a+ 1 and size poly(n).

Theorem 4.20. For any constant a ∈ N
+, any constant δ ∈ (0, 1] and any ǫ = 1/2Θ(loga n), there exists an

explicit construction of a (k = δn, ǫ)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m in AC0 of depth Θ(a),
where d = (log n)Θ(a), m = Θ(loga n) and the locality is (log n)Θ(a).

Proof. We follow the sample-then-extract procedure.

Let Samp : {0, 1}rs → {0, 1}t be a (µ1, µ2, γ)-averaging sampler following from Lemma 4.18. Let

τ = 0.1δ, µ1 = (δ − 2τ)/ log(1/τ), µ2 = (δ − 3τ)/ log(1/τ), γ = 0.8ǫ. As a result, µ1 is a constant

and µ2 = αµ1 for some constant α ∈ (0, 1). For an (n, k)-source X , by Lemma 4.15, we have SD(R ◦
XSamp(R), R◦W) ≤ γ+2−Ω(τn). Here R is a uniform random variable. For every r in {0, 1}rs , the random

variable W |R=r is a (t, (δ − 3τ)t)-source.

By Lemma 4.18, rs = Θ(loga n) and t can be any integer in [t0, n] with t0 = (log n)Θ(a).

23

Let t be such that (δ− 3τ)t ≥ 10 loga n. Let m = 6 loga n. Let Ext1 : {0, 1}t×{0, 1}d1 → {0, 1}m be

a ((δ − 3τ)t, ǫ1 = 0.1ǫ)-extractor following from Lemma 4.19. As a result,

SD(U ◦ Ext1(W,U), U ′) ≤ ǫ1,

where U,U ′ are uniform distributions.

As a result, the sample-then-extract procedure gives an extractor of error

γ + 2−Ω(τn) + ǫ1 ≤ 0.8ǫ+ 2−Ω(τn) + 0.1ǫ.

As τ is a constant, 2−Ω(τn) ≤ 0.1ǫ.
Thus the error of the extractor is at most ǫ.
The seed length is rs + d1 = Θ(loga n+ t) = (log n)Θ(a).

The locality is t = (log n)Θ(a) because when the seed is fixed, we select t bits from X by sampling.

The sampler Samp is in AC0 of depth a + 1. The extractor Ext1 is in AC0 of depth Θ(a). So Ext is in

AC0 of depth Θ(a)

In this way, we in fact have an extractor with a smaller error comparing to Lemma 4.1.

Next we give the construction for error reduction of super-polynomially small errors.

Construction 4.21 (Error Reduction for Super-Polynomially Small Error). For any constant a ∈ N
+, any

constant c ∈ N, any k = Θ(n/ logc n) and any ǫ = 1/2Θ(loga n), let X be an (n, k)-source. We construct a

strong (k, ǫ)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with m = kΩ(1).

• Let Ext0 : {0, 1}n0=n × {0, 1}d0 → {0, 1}m0 be a (k0, ǫ0)-extractor following from Theorem 3.11

with k0 ≤ k −∆1,∆1 = log(n/ǫ), ǫ0 = k−Θ(1), d0 = Θ(logn), m0 = kO(1).

• Let Ext1 : {0, 1}n1=m0/t2×{0, 1}d1 → {0, 1}m1 be a (k1, ǫ1)-extractor following from Theorem 4.20

where k1 = 0.9n1, ǫ1 = ǫ/n, d1 = (log n)Θ(a), m1 = (log n)Θ(a).

• Let t1 be such that (2ǫ0)
t1 ≤ 0.1ǫ. (We only consider the case that ǫ < ǫ0. If ǫ ≥ ǫ0, we set Ext to be

Ext0.)

• Let t2 = m
1/3
0 .

Our construction is as follows.

1. Let R1, R2, . . . , Rt1 be independent uniform distributions such that for every i ∈ [t1] the length of Ri

is d0. Get Y1 = Ext0(X,R1), . . . , Yt1 = Ext0(X,Rt1).

2. Get Y = Y1 ◦ Y2 ◦ Y3 ◦ · · · ◦ Yt1 .

3. For each i ∈ [t1], let Yi = Yi,1 ◦ Yi,2 ◦ · · · ◦ Yi,t2 such that for every j ∈ [t2], Yi,j has length

n1 = m0/t2. Let S1, S2, . . . , St1 be independent uniform distributions, each having length d1. Get

Zi,j = Ext1(Yi,j , Si), ∀i ∈ [t1], j ∈ [t2]. Let Zi = Zi,1 ◦ Zi,2 ◦ · · ·Zi,t2 .

4. Let R =©iRi, S =©iSi. We get Ext(X,U) = Z =
⊕t1

i Zi where U = R ◦ S.

Theorem 4.22. For any constant a ∈ N
+, any constant c ∈ N, any k = Θ(n/ logc n), any ǫ = 1/2Θ(loga n)

and any constant γ ∈ (0, 1), there exists an explicit construction of a strong (k, ǫ)-extractor Ext : {0, 1}n×
{0, 1}d → {0, 1}m in AC0 of depth Θ(a + c), where d = (log n)Θ(a), m = n1/10800(log n)Θ(a) = kΩ(1)

and the locality is (log n)Θ(a+c).

24

Proof Sketch. The proof is almost the same as that of Theorem 4.13. We only need to make sure the param-

eters are correct.

There are two differences between Construction 4.21 and Construction 4.6. First, in Construction 4.21,

the extractor Ext1 follows from Theorem 4.18. Second, the ǫ in Construction 4.21 is super-polynomially

small.

We first claim that Ext is a (k, ǫ)-extractor. The proof strategy is the same as that of Lemma 4.7, except

that the parameters need to be modified.

As (2ǫ0)
t1 ≤ 0.1ǫ, we can take t1 = Θ(loga−1 n). According to the proof of Lemma 4.7, the error of

Ext is

(2ǫ0)
t1 + (2−∆1 + ǫ′ + (ǫ′0 + ǫ1)t2)

Here ǫ′, ǫ′0 follow the same definitions as those in the proof of Lemma 4.7. As a result, we know that both ǫ′

and ǫ′0 can be 1/2k
Ω(1)

.

Also we know that ∆1 = log(n/ǫ), ǫ1 = ǫ/n, t2 = kO(1).

So we can set ǫ′, ǫ′0 small enough so that 2−∆1 + ǫ′ + (ǫ′0 + ǫ1)t2 ≤ 0.1ǫ.
As a result, the overall error will be at most ǫ.
By the same proof as that of Lemma 4.10, we know that the output length is

m = t2 ×m1 = m
1/3
0 (log n)Θ(a) = kΩ(1).

For the seed length, we know that according to the settings of Ext0 and Ext1, as t1 = Θ(loga−1 n),
d = O(t1d0 + t1d1) = (log n)Θ(a).

As the locality of Ext0 is l0 = (log n)Θ(c), and the locality of Ext1 is l1 = (log n)Θ(a), the locality of

Ext is t1 × l1 × l0 = (log n)Θ(a+c).

According to our settings we know that Ext0 is in AC0 of depth Θ(c) and Ext0 is in AC0 of depth Θ(a).

Also we know that t1 = Θ(loga−1 n), t2 = m
1/3
0 , so the XOR of t1 bits can be computed in AC0 of depth

Θ(a) and size poly(n) by Lemma 2.10. So Ext is in AC0 of depth Θ(a+ c).

5 Output Length Optimization for AC
0 Extractors

In this section, we show how to extract (1− γ)k bits for any constant γ > 0.

5.1 Output Length OPT for Polynomially Small Error

By Theorem 4.13, we have a (k, ǫ)-extractor in AC0 for any k = n/poly(log n) and any ǫ = 1/poly(n).
According to Lemma 4.17, we can have the following lemma which gives an explicit construction of

oblivious samplers and averaging samplers.

Lemma 5.1. For any γ = 1/poly(n) and any ǫ = 1/poly(log n), there exists an explicit (O(log n), logn,

t, γ, ǫ)-oblivious sampler for any integer t in [t0, n] with t0 = poly(log n).
Let α ∈ (0, 1) be an arbitrary constant. For any µ = 1/poly(log n) and any γ = 1/poly(n), there

exists an explicit (µ, αµ, γ)-averaging sampler Samp : {0, 1}O(logn) → [n]t, for any integer t in [t0, n] with

t0 = poly(log n).

Proof. Let k = 2 logn. Consider a (k, ǫ)-extractor Ext : {0, 1}c logn × {0, 1}d → {0, 1}logn for some

constant c ∈ N
+, following Lemma 2.6. Here we make one modification. We replace the last d bits of the

output with the seed. We can see in this way, Ext is still an extractor.

25

The entropy rate is δ = 2/c. By Lemma 2.6, we know that, d can be Θ(log(c logn) + log(1/ǫ)) =
Θ(log logn).

As a result, by Lemma 4.17, there exists an explicit (c logn, logn, t, γ, ǫ)-oblivious sampler where

t = 2d = poly(log n), γ = 21−(1−2/c)(c logn), ǫ = 1/poly(log n). For t, we claim that t can be any number

in the range [t0, n] with t0 = poly(log n). This is because we can always add more bits in the seed (The

total length of the seed can be added up to log n). As we do not require the extractor to be strong, we can

always use the seed to replace the last d bits of the output. This shows that t can be any number in [t0, n]
with t0 = poly(log n). Since c can be any large enough constant, γ can be any 1/poly(n).

According to the definition of the oblivious sampler, we know that ∀f : [n]→ [0, 1],

Pr
I←Samp(U)

[|1
t

∑

i∈I

f(i)−Ef | > ǫ] ≤ γ.

Next we consider the definition of the averaging sampler.

Let (1− α)µ = ǫ. As µ = 1/poly(log n), ǫ = poly(log n). For any f : [n]→ [0, 1] such that µ ≤ Ef ,

we have the following inequalities.

Pr
I←Samp(U)

[
1

t

∑

i∈I

f(i) < αµ]

= Pr
I←Samp(U)

[
1

t

∑

i∈I

f(i) < µ− ǫ]

= Pr
I←Samp(U)

[µ− 1

t

∑

i∈I

f(i) > ǫ]

≤ Pr
I←Samp(U)

[Ef − 1

t

∑

i∈I

f(i) > ǫ]

≤ Pr
I←Samp(U)

[|1
t

∑

i∈I

f(i)−Ef | > ǫ]

≤γ.

(15)

The first inequality holds because if the event that µ − 1
t

∑

i∈I f(i) > ǫ happens, then the event that

Ef − 1
t

∑

i∈I f(i) > ǫ must happen, as µ ≤ Ef . The second inequality is because Ef − 1
t

∑

i∈I f(i) ≤
|Ef − 1

t

∑

i∈I f(i)|. So if Ef − 1
t

∑

i∈I f(i) > ǫ happens, then |1t
∑

i∈I f(i)−Ef | > ǫ happens.

Also as we replace the last d bits of the output of our extractor with the seed, the samples are distinct

according to the construction of Lemma 4.17.

This meets the definition of the averaging sampler. So this also gives an explicit (µ, αµ, γ)-averaging

sampler.

By Lemma 4.15, we can sample several times to get a block source.

Lemma 5.2 (Sample a Block Source). Let t be any constant in N
+. For any δ > 0, let X be an (n, k = δn)-

source . Let Samp : {0, 1}r → [n]m be a (µ1, µ2, γ)-averaging sampler where µ1 = (1t δ − 2τ)/ log(1/τ)

and µ2 = (1t δ − 3τ)/ log(1/τ), m = (t−1t k − log(1/ǫ0))/t. Let ǫs = γ + 2−Ω(τn). For any i ∈ [t], let Uis

be uniform distributions over {0, 1}r. Let Xi = XSamp(Ui), for i ∈ [t].
It concludes that ©t

i=1Ui ◦ ©t
i=1Xi is ǫ = t(ǫs + ǫ0)-close to ©t

i=1Ui ◦ ©t
i=1Wi where for every

u ∈ supp(©t
i=1Ui), conditioned on ©t

i=1Ui = u, ©t
i=1Wi is a (k1, k2, . . . , kt)-block source with block

size m and k1 = k2 = · · · = kt = (δ/t− 3τ)m. Here ǫ0 can be as small as 1/2Ω(k).

26

Proof. We prove by induction on i ∈ [t].
If i = 1, according to Lemma 4.15, we know U1 ◦X1 is ǫs = (γ + 2−Ω(τn))-close to U1 ◦W such that

∀u ∈ supp(U1), H∞(W |U1=u) = (δ/t− 3τ)m.

Next we prove the induction step.

Suppose©i
j=1Uj ◦ ©i

j=1Xj is (ǫs + ǫ0)i-close to©i
j=1Uj ◦ ©i

j=1Wj , where for every u ∈ {0, 1}ir,

conditioned on©i
j=1Uj = u,©i

j=1Wj is a (k1, k2, . . . , ki)-block source with block size m and k1 = k2 =
· · · = ki = (δ/t− 3τ)m.

Consider i+1. Recall the Chain Rule Lemma 4.8. First notice that©i
j=1Uj ◦©i

j=1Xj ◦X has entropy

ir + k. Then we know that©i
j=1Uj ◦ ©i

j=1Xj ◦ X is ǫ0-close to©i
j=1Uj ◦ ©i

j=1Xj ◦ X ′ such that for

every u ∈ {0, 1}ir and every x ∈ {0, 1}im, conditioned on ©i
j=1Uj = u,©i

j=1Xj = x, X ′ has entropy

k − im− log(1/ǫ0) ≥ k/t which means the entropy rate is at least δ/t.
By our assumption for i, ©i

j=1Uj ◦ ©i
j=1Xj ◦ X ′ is (ǫs + ǫ0)i-close to ©i

j=1Uj ◦ ©i
j=1Wj ◦ X̃ ,

where X̃ is a random variable such that ∀u ∈ {0, 1}ir, ∀x ∈ {0, 1}im, X̃|©i
j=1Uj=u,©i

j=1Xj=x has the same

distribution as X ′|©i
j=1Uj=u,©i

j=1Wj=x. As a result, for every u ∈ {0, 1}ir and x ∈ {0, 1}im, conditioned

on©i
j=1Uj = u,©i

j=1Wj = x, X̃ has entropy k − im− log(1/ǫ0) ≥ k/t.

Denote the event (©i
j=1Uj = u,©i

j=1Wj = x) as e, by Lemma 4.15, by sampling on source X̃|e,

we get Ui+1 ◦ (X̃|e)Samp(Ui+1) = Ui+1 ◦ X̃Samp(Ui+1)|e. It is ǫs-close to Ui+1 ◦W |e where ∀a ∈ {0, 1}r,

(W |e)|Ui+1=a is a (m, (δ/t−3τ)m)-source. Thus©i+1
j=1Uj◦©i

j=1Wj◦X̃Samp(Ui+1) is ǫs-close to©i+1
j=1Uj◦

©i
j=1Wj ◦W .

Let Wi+1 = W . As a result,©i+1
j=1Uj ◦ ©i

j=1Xj is (ǫs + ǫ0)(i+ 1)-close to©i+1
j=1Uj ◦ ©i+1

j=1Wj such

that for every u ∈ {0, 1}ir, conditioned on©i+1
j=1Uj = u,©i+1

j=1Wj is a (k1, k2, . . . , ki)-block source with

block size m and k1 = k2 = · · · = ki+1 = (δ/t− 3τ)m.

This proves that induction step.

This lemma reveals a way to get a block source by sampling. Block sources are easier to extract.

Another important technique is the parallel extraction. According to Raz at al. [18], we have the

following lemma.

Lemma 5.3 ([18]). Let Ext1 : {0, 1}n × {0, 1}d1 → {0, 1}m1 be a strong (k, ǫ)-extractor with entropy loss

∆1 and Ext2 : {0, 1}n × {0, 1}d2 → {0, 1}m2 be a strong (∆1 − s, ǫ2)-extractor with entropy loss ∆2 for

any s < ∆1. Suppose the function Ext : {0, 1}n × {0, 1}d1+d2 → {0, 1}m1+m2 is as follows.

Ext(x, u1 ◦ u2) = Ext1(x, u1) ◦ Ext2(x, u2)
Then Ext is a strong (k, (1

1−2−s)ǫ1 + ǫ2 ≤ ǫ1 + ǫ2 + 2−s)-extractor with entropy loss ∆2 + s.

This can be generalized to the parallel extraction for multiple times.

Lemma 5.4. Let X be an (n, k)-source. Let Ext : {0, 1}n×{0, 1}d → {0, 1}m be a strong (k0, ǫ)-extractor

with k0 = k − tm − s for any t, s such that tm + s < k. Let Ext′ : {0, 1}n × {0, 1}td → {0, 1}tm be

constructed as follows.

Ext′(x,©t
i=1ui) = Ext(x, u1) ◦ Ext(x, u2) ◦ · · · ◦ Ext(x, ut)

Then Ext′ is a strong (k, t(ǫ+ 2−s))-extractor.

27

Proof. Consider the mathematical induction on j.

For j = 1, it is true. As Ext is a strong (k0, ǫ)-extractor, it is also a strong (k, j(ǫ+ 2−s))-extractor.

Next we prove the induction step.

Assume it is true for j. Consider j + 1.

Ext′(x,©j+1
i=1ui) = Ext′(x,©j

i=1ui) ◦ Ext(x, uj+1)

Here Ext′(x,©j
i=1ui) is a strong (k, j(ǫ + 2−s))-source. Its entropy loss is k − jm. Also we know that

Ext is a strong (k− tm− s, ǫ)-extractor, thus a strong (k− jm− s, ǫ)-extractor. According to Lemma 5.3,

Ext′(x,©j+1
i=1ui) is a strong (k, (j + 1)(ǫ+ 2−s))-extractor. Its entropy loss is k − (j + 1)m.

This completes the proof.

Lemma 5.4 shows a way to extract more bits. Assume we have an (n, k)-source and an extractor, if

the output length of the extractor is kβ , β < 1, then we can extract several times to get a longer output.

However, if we merely do it in this way, we need a longer seed. In fact, if we extract enough times to make

the output length to be Θ(k), we need a seed with length Θ(k1−β log n). This immediately gives us the

following theorem.

Theorem 5.5. For any constant c ∈ N, any k = Θ(n/ logc n), any ǫ = 1/poly(n) and any constant

γ ∈ (0, 1), there exists an explicit construction of a strong (k, ǫ)-extractor Ext : {0, 1}n×{0, 1}d → {0, 1}m
in AC0 of depth c + 10. The locality is Θ(logc+5 n) = poly(log n). The seed length d = O(k

n1/10800). The

output length m = (1− γ)k.

Proof. Let Ext0 : {0, 1}n0 × {0, 1}d0 → {0, 1}m0 be a (k0, ǫ0 = ǫ/n) extractor following from Theorem

4.13. Here k0 = k − tm0 − s where s = log(n/ǫ), t = (1 − γ)k/m0. By lemma 5.4, we know that there

exists a (k, ǫ′) extractor Ext with ǫ′ = t(ǫ0 + 2−s) ≤ ǫ. The output length is (1− γ)k.

According to the construction in Lemma 5.4, Ext has the same circuit depth as Ext0. So Ext is in AC0

of depth c + 10. The locality of Ext is also the same as that of Ext0 which is Θ(logc+5 n) = poly(log n).
The seed length is t×O(logn) = O(k

n1/10800).

In order to achieve a small seed length, next we use classic bootstrapping techniques to extract more

bits. Our construction will be in AC0. However, our construction cannot keep the locality small.

Construction 5.6. For any c ∈ N, any k = δn = Θ(n/ logc n) and any ǫ = 1/poly(n), we construct a

(k, ǫ)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m where d = O(logn),m = Θ(δk).

• Let X be an (n, k)-source

• Let t ≥ 10800 be a constant.

• Let Samp : {0, 1}r → [n]ms be a (µ1, µ2, γ)-averaging sampler following from Lemma 5.1, where

µ1 = (1t δ − 2τ)/ log(1/τ) and µ2 = (1t δ − 3τ)/ log(1/τ), ms = (t−1t k − log(1/ǫ0))/t, τ = 1
4δ,

γ = ǫ/n. Let ǫs = γ + 2−Ω(τn).

• Let Ext0 : {0, 1}n0=ms × {0, 1}d0 → {0, 1}m0 be a (k0, ǫ0)-extractor following from Theorem 4.13

where k0 = 0.1(1t δ − 3τ)ms − s, ǫ0 = ǫ/(10tn), d0 = O(logn0), m0 = Θ(n
1/10800
0 logn0). Let s

be such that 2−s ≤ ǫ/(10tn).

Next we construct the function Ext as follows.

28

1. Get Let Xi = XSamp(Si) for i ∈ [t], where Si, i ∈ [t] are independent uniform distributions.

2. Get Yt = Ext0(Xt, U0) where U0 is the uniform distribution with length d0.

3. For i = t− 1 to 1, get Yi = Ext′(Xi, Yi+1) sequentially.

4. Output Ext(X,Ud) = Y1 = Ext′(X1, Y2), where Ud = U0 ◦ ©t
i=1Si and the function Ext′ is defined

as follows.

Ext′(x, r) =©min{⌊|r|/d0⌋,⌊0.9(
1
t
δ−3τ)ms/m0⌋}

i=1 Ext0(x, ri),

where r =©⌊|r|/d0⌋i=1 ri ◦ r′ for some extra bits r′ and ∀i, |ri| = d0.

Lemma 5.7. For ǫ1 = 1/2Ω(k) and for any ǫs = 1/poly(n), ©t
i=1Si ◦ ©t

i=1Xi is t(ǫs + ǫ1)-close to

©t
i=1Si ◦©t

i=1Wi where Sis are independent uniform distributions.

Here ∀r ∈ supp(©t
i=1Si), conditioned on©t

i=1Si = r,©t
i=1Wi is a (k1, k2, . . . , kt)-block source with

k1 = k2 = · · · = kt = k′ = (1t δ − 3τ)ms .

Proof. It follows from Lemma 5.2.

Lemma 5.8. In Construction 5.6, the function Ext is a strong (k, ǫ̃)-extractor with

ǫ̃ = t(ǫs + ǫ1) + tk(ǫ0 + 2−s).

By setting ǫ1 = 1/2Ω(k), according to the settings of ǫs, ǫ0 and s, we have ǫ̃ ≤ ǫ.

Proof of Lemma 5.8. By Lemma 5.7, ©t
i=1Si ◦ ©t

i=1Xi is t(ǫs + ǫ1) = 1/poly(n)-close to ©t
i=1Si ◦ B

where B = B1 ◦ B2 ◦ . . . ◦ Bt. The Sis are independent uniform distributions. Also ∀s ∈ supp(©t
i=1Si),

conditioned on ©t
i=1Si = s, B is a (k1, k2, . . . , kt)-block source with k1 = k2 = · · · = kt = k′ =

(1t δ − 3τ)ms. We denote the first i blocks to be B̃i =©i
j=1Bi.

Let Y ′i = Ext′(Bi, Y
′
i+1) for i = 1, 2, . . . , t where Y ′t+1 = U0 is the uniform distribution with length d0.

Next we use induction over i (from t to 1) to show that

SD(U0 ◦ Y ′i , U) ≤ (t+ 1− i)k(ǫ0 + 2−s).

The basic step is to prove that ∀b1, b2, . . . , bt−1 ∈ {0, 1}ms , conditioned on B1 = b1, . . . , Bt−1 = bt−1,

SD(U0 ◦ Y ′t , U) ≤ k(ǫ0 + 2−s). According to the definition of Ext′,

SD(U0 ◦ Ext′(Bt, U0), U) ≤ ǫ0.

This proves the basic step.

For the induction step, assume that ∀b1, b2, . . . , bi−1 ∈ {0, 1}ms , conditioned on B1 = b1, . . . , Bi−1 =
bi−1,

SD(U0 ◦ Y ′i , U) ≤ (t+ 1− i)k(ǫ0 + 2−s).

Consider U0 ◦ Y ′i−1 = U0 ◦ Ext′(Bi−1, Y
′
i).

We know that ∀b1, b2, . . . , bt−2 ∈ {0, 1}ms , conditioned on B1 = b1, . . . , Bi−2 = bi−2, B̃i−1 ◦ U0 ◦ Y ′i
is a convex combination of bi−1 ◦ U0 ◦ Y ′i , ∀bi−1 ∈ supp(B̃i−1). As a result,

SD(B̃i−1 ◦ U0 ◦ Y ′i , B̃i−1 ◦ U) ≤ (t+ 1− i)k(ǫ0 + 2−s).

29

Thus, ∀b1, b2, . . . , bt−2 ∈ {0, 1}ms , conditioned on B1 = b1, . . . , Bi−2 = bi−2, as B̃i−1 ◦ U0 ◦ Y ′i is a

convex combination of bi−1 ◦ U0 ◦ Y ′i , ∀bi−1 ∈ supp(B̃i−1) and B̃i−1 ◦ U is a convex combination of

bi−1 ◦ U, ∀b ∈ supp(B̃i−1), by Lemma 2.3 part 2,

SD(U0 ◦ Ext′(Bi−1, Y
′
i), U1 ◦ Ext′(Bi−1, U2))

≤SD(B̃i−1 ◦ U0 ◦ Y ′i , B̃i−1 ◦ U)

≤(t+ 1− i)k(ǫ0 + 2−s).

(16)

Here U = U1 ◦ U2. U1 is the uniform distribution having |U1| = |U0|. U2 is the uniform distribution

having |U2| = |Y ′i |.
According to the definition of Ext′ and Lemma 5.4, we know that ∀b1, b2, . . . , bi−2 ∈ {0, 1}ms , condi-

tioned on B1 = b1, . . . , Bi−2 = bi−2,

SD(U1 ◦ Ext′(Bi−1, U2), U) ≤ k(ǫ0 + 2−s).

So according to triangle inequality of Lemma 2.3, ∀b1, b2, . . . , bt−2 ∈ {0, 1}ms , conditioned on B1 =
b1, . . . , Bi−2 = bi−2,

SD(U0 ◦ Y ′i−1, U)

=SD(U0 ◦ Ext′(Bi−1, Y
′
i), U)

≤SD(U0 ◦ Ext′(Bi−1, Y
′
i), U1 ◦ Ext′(Bi−1, U2)) + SD(U1 ◦ Ext′(Bi−1, U2), U)

≤(t+ 1− i)k(ǫ0 + 2−s) + k(ǫ0 + 2−s)

=(t+ 1− (i− 1))k(ǫ0 + 2−s).

(17)

This proves the induction step.

So we have SD(U0 ◦ Y ′1 , U) ≤ tk(ǫ0 + 2−s).
As a result,

SD(Ud ◦ Ext(X,Ud), U)

=SD(U0 ◦©t
i=1Si ◦ Y1, U)

≤SD(U0 ◦©t
i=1Si ◦ Y1, U0 ◦©t

i=1Si ◦ Y ′1) + SD(U0 ◦©t
i=1Si ◦ Y ′1 , U)

≤SD(U0 ◦©t
i=1Si ◦©t

i=1Xi, U0 ◦©t
i=1Si ◦©t

i=1Bi) + SD(U0 ◦©t
i=1Si ◦ Y ′1 , U)

≤t(ǫs + ǫ1) + tk(ǫ0 + 2−s).

(18)

According to the settings of ǫ0, ǫs, t, ǫ1, we know the error is at most ǫ.

Lemma 5.9. In Construction 5.6, the length of Yi is

|Yi| = Θ(min{m0(
m0

d0
)t−i, 0.9(

1

t
δ − 3τ)ms}).

Specifically, m = |Y1| = Θ((1t δ − 3τ)ms) = Θ(δk).

Proof. For each time we compute Yi = Ext′(Xi, Yi+1), we know |Yi| ≤ |Yi+1|(m0
d0

). Also according to the

definition of Ext′, |Yi| ≤ 0.9(1t δ − 3τ)ms. So |Yi| = Θ(min{m0(
m0
d0

)t−i, 0.9(1t δ − 3τ)ms}) for i ∈ [t].

By Theorem 4.13, m0 = Θ(n
1/10800
0 logn). Also we know that n0 = ms = O(tk). As a result, when

t ≥ 10800, m0(
m0
d0

)t−1 = ω(ms). As a result, m = |Y1| = Θ((1t δ − 3τ)ms) = Θ(δk).

30

Lemma 5.10. In Construction 5.6, the seed length d = Θ(log n).

Proof. The seed for this extractor is Ud = U0 ◦©t
i=1Si. So |Ud| = |U0|+Σt

i|Si| = Θ(logn)+Θ(log n) =
Θ(log n).

Lemma 5.11. In Construction 5.6, the function Ext is in AC0. The depth of the circuit is 10800c+ 97203.

Proof. As the seed length of Samp is O(logn), the sampling procedure is in AC0 which can be realized by

a CNF/DNF. Thus the circuit depth is 2.

As the sampling procedure gives the indices for us to select bits from X , we needs 1 level of CNF/DNF

to select the bits. This also needs a circuit of depth 2.

By Theorem 4.13, Ext0 is in AC0 with depth c+10. According to the definition of Ext′, it runs Ext0 for

polynomial times in parallel, so it is also in AC0 of depth c+ 10.

In the first step of Construction 5.6, we do sampling by t times in parallel. As a t is a constant, this

operation is in AC0 of depth 2. Next the construction do a sequence of extractions. In step 2 and 3, we

run Ext′ for t times sequentially. As t is a constant and Ext′ is in AC0 with depth c + 10, the total depth is

t(c+ 10)− t+ 1.

The last step outputs Y1, there is no gates used here, so the depth is 0.

So the function Ext in Construction 5.6 is in AC0 with depth t(c+10)−t+1+2+2−2 = ct+9t+3 =
10800c+ 97203.

Theorem 5.12. For any constant γ ∈ (0, 1), any c ∈ N, any k = δn = Θ(n/ logc n) and any ǫ =
1/poly(n), there exists an explicit construction of a strong (k, ǫ)-extractor Ext : {0, 1}n × {0, 1}d →
{0, 1}m in AC0 with depth 10800c+ 97203, where d = Θ(log n), m = Θ(δk) .

Proof. By Construction 5.6, Lemma 5.8, Lemma 5.9, Lemma 5.10 , and Lemma 5.11 , the conclusion

immediately follows.

Theorem 5.13. For any constant γ ∈ (0, 1), any c ∈ N, any k = δn = Θ(n/ logc n) and any ǫ =
1/poly(n), there exists an explicit construction of a strong (k, ǫ)-extractor Ext : {0, 1}n × {0, 1}d →
{0, 1}m in AC0 with depth 10800c+ 97203 where d = Θ(logc+1 n) = poly(log n), m = (1− γ)k.

Proof. Let the extractor following Theorem 5.12 be Ext0 : {0, 1}n0 × {0, 1}d0 → {0, 1}m0 which is a

(k0, ǫ0)-extractor with n0 = n, k0 = γk − s. The construction of Ext is

Ext(x, u) =©t
i=1Ext0(x, ui).

Here t is such that tm0 = (1− γ)k.

By Lemma 5.12, we know that m0 = Θ(δk) where δ = 1
logc n . So t = O(1/δ). By Lemma 5.4, if

tm0 = (1− γ)k, then Ext is a (k, ǫ)-extractor with output length (1− γ)k and ǫ = t(ǫ0+2−s). As s can be

any poly(log n) and ǫ0 can be any 1/poly(n), ǫ can be any 1/poly(n). The seed length d = td0. By Theorem

5.12, d0 = Θ(log n),m0 = Θ(δk), so d = Θ(lognδ) = Θ(logc+1 n) = poly(log n), m = (1 − γ)k. The

circuit depth maintains the same as that in Theorem 5.12 because the extraction is conducted in parallel.

31

5.2 Output Length OPT for Super-Polynomially Small Error

In this subsection, we give the method which can extract more bits while having super-polynomially small

errors.

Construction 5.14 (Output Length OPT for Super-Polynomial Small Errors). For any constant a ∈ N
+,

any constant c ∈ N , any k = δn = Θ(n/ logc n) and any ǫ = 1/2Θ(loga n), we construct a (k, ǫ)-extractor

Ext : {0, 1}n × {0, 1}d → {0, 1}m where d = (log n)Θ(a), m = (1− γ)k.

• Let X be an (n, k = δn)-source

• Let t ≥ 10800 be a constant.

• Let Samp : {0, 1}r → [n]ms be a (µ1, µ2, γ)-averaging sampler following from Lemma 4.18, where

µ1 = (1t δ − 2τ)/ log(1/τ) and µ2 = (1t δ − 3τ)/ log(1/τ), ms = (t−1t k − log(1/ǫ0))/t, τ = 1
4δ,

γ = ǫ/n. Let ǫs = γ + 2−Ω(τn).

• Let Ext0 : {0, 1}n0=ms × {0, 1}d0 → {0, 1}m0 be a (k0, ǫ0)-extractor following from Theorem 4.22

where k0 = 0.1(1t δ − 3τ)ms − s, ǫ0 = ǫ/(10tn), d0 = (log n0)
Θ(a), m0 = n

1/10800
0 Θ(loga n0). Let

s be such that 2−s ≤ ǫ/(10tn).

Next we construct the function Ext as follows.

1. Get Let Xi = XSamp(X,Si) for i ∈ [t], where Si, i ∈ [t] are independent uniform distributions.

2. Get Yt = Ext0(Xt, U0) where U0 is the uniform distribution with length d0.

3. For i = t− 1 to 1, get Yi = Ext′(Xi, Yi+1) sequentially.

4. Output Ext(X,Ud) = Y1 = Ext′(X1, Y2), where Ud = U0 ◦ ©t
i=1Si and the function Ext′ is defined

as follows.

Ext′(x, r) =©min{⌊|r|/d0⌋,⌊0.9(
1
t
δ−3τ)ms/m0⌋}

i=1 Ext0(x, ri)

where r =©⌊|r|/d0⌋i=1 ri ◦ r′ for some extra bits r′ and ∀i, |ri| = d0.

Theorem 5.15. For any constant a ∈ N
+, any constant c ∈ N , any k = δn = Θ(n/ logc n), any

ǫ = 1/2Θ(loga n) and any constant γ ∈ (0, 1), there exists an explicit construction of a strong (k, ǫ)-extractor

Ext : {0, 1}n × {0, 1}d → {0, 1}m in AC0 of depth Θ(a+ c), where d = (log n)Θ(a+c), m = (1− γ)k.

Proof Sketch. The proof is almost the same as the proof of Theorem 5.13. We need to make sure that the

parameters are correct.

We first claim that Ext in Construction 5.14 is a (k, ǫ)-extractor. The proof strategy is the same as that

of Lemma 5.8 except that the parameters need to be modified. According to the same arguments as in the

proof of Lemma 5.8, the overall error is

ǫ̃ ≤ t(ǫs + ǫ1) + tk(ǫ0 + 2−s).

According to our settings, ǫs = O(ǫ/n), ǫ0 = ǫ/(10tn), 2−s ≤ ǫ/(10tn) and t is a constant. Also according

to the definition of ǫ1 in Lemma 5.8, ǫ1 can be 1/2Ω(k). So ǫ̃ ≤ ǫ.
The seed length of Ext is |Ud| =

∑t
i=1 |Si|+ |U0| = (log n)Θ(a).

The output length of Ext is |Y1| = Θ(δk) which follows the same argument of that of Lemma 5.9.

According to our settings, Samp is in AC0 of depth Θ(a) and Ext1 is in AC0 of depth Θ(a + c). Also

we know that t is a constant. So Ext is in AC0 of depth Θ(a+ c).
The theorem holds according to the same argument (Extraction in parallel) as the proof of Theorem

5.13. The seed length increases to (log n)Θ(a+c) as we extract Θ(1/δ) times in parallel.

32

6 Error Reduction For Sparse Extractors

Now we give error reduction methods for extractor families with small locality. As we do not require our

construction to be in AC0, the error can be exponentially small.

First we consider the construction of averaging samplers given by Vadhan [22] .

Lemma 6.1 ([22]). For every n ∈ N, 0 < θ < µ < 1, γ > 0, there is a (µ, µ − θ, γ)-averaging sampler

Samp : {0, 1}r → [n]t that

1. outputs t distinct samples for t ∈ [t0, n], where t0 = O(log(1/γ)
θ2

);

2. uses r = log(n/t) + log(1/γ) · poly(1/θ) random bits.

Theorem 6.2. For any constant δ ∈ (0, 1], there exists an explicit construction of a (k = δn, ǫ)-extractor

Ext : {0, 1}n×{0, 1}d → {0, 1}m where ǫ can be as small as 2−Ω(k), m = Θ(log(1/ǫ)), d = O(log(n/ǫ))
and the locality is Θ(log(1/ǫ)).

Proof. We follow a sample-then-extract procedure.

Let Samp : {0, 1}rs → {0, 1}t be a (µ1, µ2, γ)-averaging sampler following from Lemma 6.1. Let

τ = 0.1δ, µ1 = (δ − 2τ)/ log(1/τ), µ2 = (δ − 3τ)/ log(1/τ).
For any (n, k)-source X , by Lemma 4.15, we have SD(R ◦XSamp(R), R ◦W) ≤ γ + 2−Ω(τn). Here R

is uniformly sampled from {0, 1}rs . For every r in {0, 1}rs , the random variable W |R=r is a (t, (δ− 3τ)t)-
source.

As δ is a constant, we know that τ is a constant. So θ = µ1 − µ2 is a constant.

By Lemma 6.1, we can set t = Θ(log(1/γ)
θ2

) = Θ(log(1/γ)), rs = log(n/t) + log(1/γ) · poly(1/θ) =
O(log(n

tγ)).

Let Ext1 : {0, 1}t×{0, 1}d1 → {0, 1}m be a ((δ−3τ)t, ǫ1)-extractor following from Lemma 2.6 where

ǫ1 can be 2−Ω(k). As a result,

SD(U ◦ Ext1(W,U), U ′) ≤ ǫ1,

where U,U ′ are uniform distributions. Also d1 = O(log(t/ǫ1)), m = Θ(δt) = Θ(log(1/γ)).
As a result, the sample-then-extract procedure gives an extractor with the error

γ + 2−Ω(τn) + ǫ1.

According to our settings, γ+2−Ω(τn) can be as small as 2−Ω(k) when γ = 2−Ω(k) and ǫ1 can be 2−Ω(k).

Thus the error of the extractor can be 2−Ω(k) by setting 2−Ω(τn) ≤ 0.1ǫ, γ = 0.1ǫ, ǫ1 = 0.1ǫ.
The seed length is rs + d1 = Θ(log(n/t) + log(1/γ)) + Θ(log(t/ǫ1)) = Θ(log(n/ǫ)).
The locality is t = O(log(1/ǫ)). This is because when the seed is fixed, we select t bits from X by

sampling. After that, we apply Ext1 on these t bits. So each output bit depends on t bits when the seed is

fixed.

The output length m = Θ(δt) = Θ(log(1/γ)) = Θ(log(1/ǫ)).

Next we construct extractors with small locality and exponentially small errors.

First we give the construction for error reduction.

Construction 6.3 (Error Reduction for Sparse Extractors with Exponentially Small Errors). For any k =
n

poly(logn) , let X be an (n, k)-source. We construct a strong (k, ǫ)-extractor Ext : {0, 1}n × {0, 1}d →
{0, 1}m where ǫ can be as small as 2−k

Ω(1)
, d = Θ(log n+ log2(1/ǫ)

log n),m = kΘ(1).

• Let Ext0 : {0, 1}n0=n × {0, 1}d0 → {0, 1}m0 be a (k0, ǫ0)-extractor following from Theorem 3.11

where k0 = k −∆1,∆1 = log(n/ǫ), ǫ0 = k−Θ(1), d0 = Θ(log n), m0 = kΘ(1).

33

• Let Ext1 : {0, 1}n1=m0/t2 × {0, 1}d1 → {0, 1}m1 be a (k1, ǫ1)-extractor following from Lemma 6.2

where k1 = 0.9n1, ǫ1 = 2−Ω(k1), d1 = O(log(n/ǫ1)), m1 = Θ(log(1/ǫ1)).

• Let t1 be such that (2ǫ0)
t1 ≤ 0.1ǫ. (We only consider the case that ǫ < ǫ0. If ǫ ≥ ǫ0, we set Ext to be

Ext0.)

• Let t2 = m
1/3
0 .

Our construction is as follows.

1. Let R1, R2, . . . , Rt1 be independent uniform distributions such that for every i ∈ [t1] the length of Ri

is d0. Get Y1 = Ext0(X,R1), . . . , Yt1 = Ext0(X,Rt1).

2. Get Y = Y1 ◦ Y2 ◦ Y3 ◦ · · · ◦ Yt1 .

3. For each i ∈ [t1], let Yi = Yi,1 ◦ Yi,2 ◦ · · · ◦ Yi,t2 such that for every j ∈ [t2], Yi,j has length

n1 = m0/t2. Let S1, S2, . . . , St1 be independent uniform distributions, each having length d1. Get

Zi,j = Ext1(Yi,j , Si), ∀i ∈ [t1], j ∈ [t2. Let Zi = Zi,1 ◦ Zi,2 ◦ · · ·Zi,t2 .

4. Let R =©iRi, S =©iSi. We get Ext(X,U) = Z =
⊕t1

i Zi where U = R ◦ S.

Theorem 6.4. For any k = n
poly(logn) , there exists an explicit construction of a strong (k, ǫ)-extractor

Ext : {0, 1}n × {0, 1}d → {0, 1}m, where ǫ can be as small as 2−k
Ω(1)

, d = Θ(log n + log2(1/ǫ)
logn), m =

Θ(δn
1

10800 log(1ǫ)) = kΘ(1) and the locality is log2(1/ǫ)poly(log n).

Proof Sketch. The proof is almost the same as that of Theorem 4.13. We only need to make sure the param-

eters are correct.

There are two differences between Construction 6.3 and Construction 4.6. First, in Construction 6.3, the

extractor Ext1 follows from Theorem 6.1. Second, Construction 6.3 works for ǫ which can be as small as

2−k
Ω(1)

.

We first claim that the function Ext is a (k, ǫ)-extractor. The proof strategy is the same as that of Lemma

4.7, except that the parameters need to be modified.

As (2ǫ0)
t1 ≤ 0.1ǫ, t1 = O(log(1/ǫ)log n).

According to the proof of Lemma 4.7, the error for Ext is

(2ǫ0)
t1 + (2−∆1 + ǫ′ + (ǫ′0 + ǫ1)t2)

Here ǫ′, ǫ′0 follows the same definitions as that in the proof of Lemma 4.7. As a result, we know that both ǫ′

and ǫ′0 can be 2−k
Ω(1)

. Also ∆1 = log(n/ǫ), ǫ1 = ǫ/n.

As a result ǫ = 2−∆1 + ǫ′ + (ǫ′0 + ǫ1)t2 can be 2−k
Ω(1)

and the overall error can be at least 2−k
Ω(1)

.

By the same proof as that of Lemma 4.10, we know that the output length is m = Θ(n
1

10800 δ log(1ǫ)).

For the seed length, we know that according to the settings of Ext0 and Ext1, as t1 = O(log(1/ǫ)logn), if

t1 = ω(1) then d = Θ(t1d0 + t1d1) = Θ(log
2(1/ǫ)
logn). If t = O(1), the seed length should be Θ(log n) as we

need at least run Ext0 for once. As a result, the seed length is Θ(log n+ log2(1/ǫ)
log n).

As the locality of Ext0 is l0 = poly(log n) and the locality of Ext1 is l1 = O(log(1/ǫ)), the locality of

Ext is t1 × l1 × l0 = log2(1/ǫ)poly(log n).

34

Theorem 6.5. For any k = δn = n
poly(logn) and any constant γ ∈ (0, 1), there exists an explicit construction

of a strong (k, ǫ)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m, where ǫ can be as small as 2−k
Ω(1)

, d = kα

for some constant α ∈ (0, 1], m = (1− γ)k and the locality is log2(1/ǫ)poly(log n).

Proof. Let ǫ = 2−k
β

for some very small constant β < 1. Let Ext0 : {0, 1}n0 × {0, 1}d0 → {0, 1}m0

be a (k0, ǫ0 = ǫ/n)-extractor following from Theorem 6.4. Here k0 = k − tm0 − s where s = log(n/ǫ),
t = (1−γ)k/m0. By lemma 5.4, we know that there exists a (k, ǫ′)-extractor Ext with ǫ′ = t(ǫ0+2−s) ≤ ǫ.
The output length is (1− γ)k.

According to the construction in Lemma 5.4, the locality of Ext is the same as that of Ext0 which is

log2(1/ǫ)poly(log n). The seed length is t × Θ(log n + log2(1/ǫ)
logn) = kα for some α ∈ (0, 1] as β can be

small enough.

7 Randomness Condenser with Small Locality

In this section, we consider constructions of extractor families with small locality by first constructing a

condenser family with small locality. Our condenser will be based on random walks on expander graphs

and pseudorandom generators for space bounded computation.

7.1 Basic Construction

We give a condense-then-extract procedure by first constructing a randomness condenser.

Theorem 7.1 (Hitting Property of Random Walks [13] Theorem 23.6). Let G = (V,E) be a d-regular

graph with λ(G) = λ. Let B ⊆ V such that |B| = β|V |. Let (B, t) be the event that a random walk of

length t stays in B. Then Pr[(B, t)] ≤ (β + λ)t.

Lemma 7.2 ([1] implicit). For every n ∈ N and for every 0 < α < 1, there is an explicit construction of

d-regular Graphs Gn which have the following properties.

1. λ ≤ α.

2. Gn has n vertices.

3. d is a constant.

4. There exists a poly(log n)-time algorithm that given a label of a vertex v in Gn and an index i ∈ d,

output the ith neighbour of v in Gn.

Lemma 7.3 ([19]). Let H2(X) = log(1/coll(X)), coll(X) = PrX1,X2 [X1 = X2], where X1, X2 are

independent random variables having the same distribution as X .

For any random variable X ,

2H∞(X) ≥ H2(X).

Recall that w(·) denotes the weight of the input string as we defined in Section 2.

Lemma 7.4. Given any (n, k)-source X and any string x ∈ {0, 1}n, with probability 1−2−0.5k, w(X⊕x) ≥
k/(c1 log n) for any constant c1 ≥ 2; with probability 1 − 2−0.5k, w(X ⊕ x) ≤ n − k/(c1 logn) for any

constant c1 ≥ 2.

35

Proof. The number of strings which have i digits different from x is
(

n
i

)

. So the number of strings which

have at most l = k/(c1 logn) digits different from x is at most
∑l

i=0

(

n
i

)

≤ (enl)
l ≤ 20.5k for any constant

c1 ≥ 2. So with probability at least 1− 2−0.5k, w(X ⊕ x) ≥ l.
Also as

∑n
i=n−l

(

n
i

)

=
∑l

i=0

(

n
i

)

, with probability 1− 2−0.5k, w(X ⊕ x) ≤ n− l.

Lemma 7.5. Consider a random vector v ∈ {0, 1}n where v1, . . . , vn are independent random bits and

∀i,Pr[vi = 1] = p = 1/poly(n). For any ǫ = 1/poly(n), there is an explicit function f : {0, 1}l → {0, 1}n
where l = O(n logn), such that

∀i ∈ [n], |Pr[f(U)i = 1]− p| ≤ ǫ

where U is the uniform distribution of length l.
There exists an algorithm A which runs in O(log n) space and can compute f(s)i, given input s ∈

{0, 1}l and i ∈ [n].

Proof. We give the algorithm A which runs in O(logn) space and can compute f(s)i, given input s ∈
{0, 1}l and i ∈ [n].

Assume the binary expression of p is 0.b1b2b3 The algorithm A is as follows. Intuitively, A divides s
into n blocks and uses the ith block to generate a bit which simulates vi roughly according to the probability

p.

1. Assume that s has n blocks. The ith block is si where |si| = t = c logn for some constant c. Let

j = 1.

2. If j = t + 1, go to step 3. If si,j < bj , then set f(s)i = 1 and stop; if si,j > bj , set f(s)i = 0 and

stop; if si,j = bj , set j = j + 1 and go to step 2.

3. Set f(s)i = 1 and stop.

For every i, the probability

Pr[f(s)i = 1] = Pr[0.si,1 . . . si,t ≤ 0.b1b2 . . . bt] = 0.b1b2 . . . bt.

As a result,

∀i ∈ [n], |Pr[f(s)i = 1]− Pr[vi = 1]| ≤ 0.00 . . . bt+1bt+2 . . . ≤ 2−t = 2−c logn.

For any ǫ = 1/poly(n), if c is large enough, then 2−t = 2−c logn ≤ ǫ.
The input length for f is l = n× t = O(n logn).
As all the iterators and variables in A only need O(logn) space, A runs in space O(logn) . This proves

our conclusion.

Construction 7.6. For any k = Ω(log2 n), we construct an (n, k, t = 10k, 0.1k, ǫc = 2−0.1k)-condenser

Cond : {0, 1}n × {0, 1}d→ {0, 1}t with d = O(n logn) and locality c = n/l, l = k
2 log n .

1. Construct an expander graph G = (V,E) where V = {0, 1}r0=O(n logn) and λ = 0.01.

2. Use a uniform random string U1 of length r0 to select a vertex v1 of V .

3. Take a random walk on G starting from v1 to get v2, . . . , vt for t = 10k.

36

4. For i ∈ [t], get an n-bit string v′i = f(vi) such that ∀j ∈ [n],Pr[v′i,j = 1] − 1/l| ≤ 1/n2, where

f : {0, 1}r0 → {0, 1}n follows from Lemma 7.5, r0 = O(n logn).

5. Let M = (v′1, . . . , v
′
t)
T .

6. Let Cond(x, u) = Mx.

Let V ′ = {0, 1}n. Let Bi = {v ∈ V ′ : w(v) = i}, i ∈ [d]. Let Ax,j = {v ∈ Bj : 〈v, x〉 = 0}.
For any x ∈ {0, 1}n, let Vx = {v ∈ V : 〈f(v), x〉 = 0}. Let T = {v ∈ V : w(f(v)) ∈ [0.8c, 1.2c]}.

Lemma 7.7. In Construction 7.6, with probability 1− 2 exp{−Θ(c)}, w(v′1) ∈ [0.8c, 1.2c]. That is,

|T |
|V | ≥ 1− 2 exp{−Θ(c)}.

Proof. According to our construction, ∀i ∈ [n],Pr[v′1,i = 1] ∈ [1/l − 1/n2, 1/l + 1/n2] . As a result,

Ew(v′1) ∈ [n/l − 1/n, n/l + 1/n] = [c − 1/n, c + 1/n]. According to Chernoff Bound, we know that

Pr[w(v′1) ∈ [0.8c, 1.2c]] ≥ Pr[w(v′1) ∈ [0.9Ew(v′1), 1.1Ew(v′1)]] ≥ 1− 2 exp{−Θ(c)}.

Lemma 7.8. In construction 7.6, we have the following conclusions.

1. For any x ∈ {0, 1}n with w(x) ∈ [l, n− l], for any integer j ∈ [0.8c, 1.2c], βx,j = |Ax,j |/|Bj | ≤ 5/6.

2. For any x ∈ {0, 1}n with w(x) ∈ [l, n− l], |Vx|/|V | ≤ 5/6 + 1/poly(n).

3. Pr[MX1 = MX2] = p0 ≤ 2−0.5k+1 + (5/6 + 1/poly(n) + λ)t where X1, X2 are independent

random variables that both have the same distribution as X .

4. Ud ◦ Cond(X,Ud) is p
1/3
0 -close to Ud ◦W . Here Ud is a uniform distribution of length d. For every

u, W |Ud=u has entropy 1
3 log

1
p0

.

5. Ud ◦Cond(X,Ud) is ǫc = 2−0.1k-close to Ud ◦W where ∀u ∈ {0, 1}d, W |Ud=u has entropy d+0.1k.

Proof. We know that

βx,j =
1

2
(1 +

∑min{w(x),j}
i=0

(

w(x)
i

)(

n−w(x)
j−i

)

(−1)i
(

n
j

)).

Because 〈v, x〉 = 0 happens if and only if |{i ∈ [n] : xi = vi = 1}| is even.

Let ∆ =
∑min{w(x),j}

i=0

(

w(x)
i

)(

n−w(x)
j−i

)

(−1)i.
Consider the series ∆i =

(

w(x)
i

)(

n−w(x)
j−i

)

, i = 0, 1, . . . ,min{w(x), j}. Let ∆i ≥ ∆i+1, we can get

i ≥ jw(x)− n+ w(x) + j − 1

n+ 2
∈ [

0.8w(x)

l
− 3,

1.2w(x)

l
]

Let ∆i−1 ≤ ∆i, we can get

i ≤ jw(x) + w(x) + j + 1

n− 2
∈ [

0.8w(x)

l
,
1.2w(x)

l
+ 3].

So series ∆i, i = 0, 1, . . . ,min{w(x), j} has its maximum for some i ∈ [0.8w(x)
l − 3, 1.2w(x)

l + 3].

To make it simpler, first we consider the situation that 0 < w(x)
l − 3 and j > w(x)

l + 3.

37

Let i′ = argmaxi{∆i} which is in [w(x)
l − 3, w(x)

l + 3]. Consider ∆i′/∆i′−1. Let i′ = θw(x)
l + δ for

some θ ∈ [0.8, 1.2], δ ∈ [−3, 3].

∆i′

∆i′−1
=

w(x)− i′ + 1

i′
· j − i′ + 1

n− w(x)− j + i′

=
w(x)− θ

lw(x)− δ + 1
θ
lw(x) + δ

· j − θ
lw(x)− δ + 1

n− w(x)− j + θ
lw(x) + δ

(19)

The first term
w(x)− θ

lw(x)− δ + 1
θ
lw(x) + δ

= l +O(1).

As j ∈ [0.8c, 1.2c], we know

n− w(x)− j + θ
lw(x) + δ

j − θ
lw(x)− δ + 1

≥ n− w(x)− 0.8c+ θ
lw(x) + 3

0.8c− θ
lw(x)− 2

≥ 5l

6

So
∆i′

∆i′−1
≤ 2.

As
(

n
c

)

≥ ∆i′ +∆i′−1, we know
∆i′

(nc)
≤ 2/3. Thus βx ≤ 1/2(1 +

∆i′

(nc)
) ≤ 5/6.

If either 0 or j is in [w(x)
l − 3, w(x)

l + 3], to prove our conclusion, we only need to check the situation

that i′ = 0 and i′ = j.

If i′ = 0 or j then,

βx,j ≤
1

2
(1 +

(

n−l
j

)

(

n
j

)) ≤ 1

2
(1 + (1− l

n
)j) ≤ 1

2
(1 + (1− l

n
)0.8n/l) ≤ 3/4.

For the second assertion, let’s consider the expander graph G = (V,E). Assume v is a random node

uniformly drawn from V . For any i ∈ [n], the conditional random variable f(v)|w(f(v))=i is uniformly

distributed on Bi. This is because v is uniform, thus v′j , j ∈ [n] are independently identically distributed

according to Lemma 7.5. So Pr[f(v)|w(f(v))=i = v′], v′ ∈ Bi are all equal.

According to the Union Bound,

|Vx|/|V | ≤ (1− Pr[w(f(v)) ∈ [0.8c, 1.2c]]) +
∑

i∈[0.8c,1.2c]

Pr[w(f(v)) = i]
|Ax,i|
|Bi|

≤ (1− Pr[w(f(v)) ∈ 0.8c, 1.2c]) +
∑

i∈[0.8c,1.2c]

Pr[w(f(v)) = i]× 5/6

≤ 2 exp{−Θ(c)}+ 5/6.

(20)

Our assertion follows as c = n/l ≥ 2 logn.

For the 3rd assertion, let’s consider Pr[MX = 0] when l ≤ w(X) ≤ n− l.

By Theorem 7.1, for any x such that l ≤ w(x) ≤ n − l, Pr[Mx = 0] ≤ (|Vx|
|V | + λ)t. Here

|Vx|
|V | ≤

5/6 + 1/poly(n).
Let X1, X2 be independent random variables and have the same distribution as X .

p0 = Pr
X1,X2

[MX1 = MX2] =
∑

x2∈supp(X2)

Pr[X2 = x2] · Pr[MX1 = Mx2]

38

For any fixed x2 ∈ supp(X2), let X ′ = X1 ⊕ x2. So Pr[MX1 = Mx2] = Pr[MX ′ = 0]. We know

that X ′ is also an (n, k)-source. As a result, we have the following.

Pr[M(X ′) = 0]

≤Pr[w(X ′) /∈ [l, n− l]] + Pr[w(X ′) ∈ [l, n− l]]× Pr[MX ′ = 0|w(X′)∈[l,n−l]]

≤Pr[w(X ′) /∈ [l, n− l]] + Pr[MX ′ = 0|w(X′)∈[l,n−l]]

≤Pr[w(X ′) /∈ [l, n− l]] + (
|Vx|
|V | + λ)t

≤Pr[w(X ′) /∈ [l, n− l]] + (5/6 + 1/poly(n) + λ)t

≤2× 2−0.5k + (5/6 + 1/poly(n) + λ)t.

(21)

Thus,

p0 =
∑

x2∈supp(X2)

Pr[X2 = x2] · Pr[M(X1 ⊕ x2) = 0]

≤2−0.5k+1 + (5/6 + 1/poly(n) + λ)t.

(22)

For the 4th conclusion, let’s fix a Mu ∈ supp(M). We consider H2(MuX) as the following.

H2(MuX) = − log Pr[MuX1 = MuX2]

= − log
∑

x1,x2∈supp(X)

Pr[X1 = x1] Pr[X2 = x2]IMux1=Mux2
(23)

Here Ie is the indicator function such that Ie = 1 if and only if the event e happens. Here for each x1, x2,

IMux1=Mux2 is a fixed value (either 0 or 1, not a random variable because Mu is fixed).

Next let’s consider M to be a random variable generated by the seed Ud.

Let ZM =
∑

x1,x2∈supp(X) Pr[X1 = x1] Pr[X2 = x2]IMx1=Mx2 . We know that

EZM =
∑

x1,x2∈supp(X)

Pr[X1 = x1] Pr[X2 = x2] Pr[Mx1 = Mx2] = p0.

So according to Markov’s Inequality,

Pr[ZM ≥ p
2/3
0] ≤ p

1/3
0 .

So with probability at least 1− p
1/3
0 over M (over Ud), ZM ≤ p

2/3
0 .

Let’s fix Mu ∈ supp(M) such that ZMu ≤ p
2/3
0 .

Thus

H∞(MuX) ≥ 1/2H2(MuX)

= 1/2(− log(ZMu))

≥ −1/2 log(p2/30)

=
1

3
log

1

p0
.

(24)

This concludes that Ud ◦Cond(X,Ud) = Ud ◦MX is p
1/3
0 -close to Ud ◦W where for every u, W |Ud=u

has entropy 1/3 log 1
p0

.

As we know p0 ≤ 2−0.5k+1+(5/6+1/poly(n)+λ)t, k = Ω(log2 n). So if t = 10k, then p
1/3
0 ≤ 2−0.1k.

According to conclusion 5, Ud ◦ Cond(X,Ud) is ǫc-close to Ud ◦W where for every u, W |Ud=u has

entropy at least 0.1k where ǫc = 2−0.1k. This proves the last assertion.

39

7.2 Seed Length Reduction

The seed length can be shorter by applying the following PRG technique.

Theorem 7.9 (Space Bounded PRG[14]). For any s > 0, 0 < n ≤ 2s, there exists an explicit PRG

g : {0, 1}r → {0, 1}n, such that for any algorithm A using space s,

|Pr[A(g(Ur)) = 1]− Pr[A(Un) = 1]| ≤ 2−s.

Here r = O(s logn), Ur is uniform over {0, 1}r, Un is uniform over {0, 1}n.

Lemma 7.10. Let g : {0, 1}r=O(log2 n) → {0, 1}r0=O(n log n) be the PRG from Lemma 7.9 with error

parameter ǫg = 1/poly(n). Replace the 1-3 steps of Construction 7.6 with the following 3 steps.

1. Construct an expander graph G̃ = (Ṽ , Ẽ) where Ṽ = {0, 1}r and λ = 0.01.

2. Use a uniform random string U1 of length r to select a vertex ṽ1 of Ṽ .

3. Take a random walk on G̃ starting from ṽ1 to get ṽ2, . . . , ṽt, for t = 10k . Let vi = g(ṽi), i = 1, . . . , t.

Let Ṽx = {v ∈ Ṽ : 〈f(g(v)), x〉 = 0}. We have the following conclusions.

1. For any x ∈ {0, 1}n such that w(x) ∈ [l, n− l],

| |Ṽx|
|Ṽ |
− |Vx|
|V | | ≤ ǫg.

2. p0 = Pr[MX1 = MX2] ≤ 2−0.5k+1 + (5/6 + 1/poly(n) + λ)t where X1, X2 are independent

random variables that both have the same distribution as X .

3. Ud ◦ Cond(X,Ud) is p
1/3
0 -close to Ud ◦W . Here Ud is a uniform distribution of length d. For every

u, W |Ud=u has entropy 1
3 log

1
p0

.

4. Ud ◦Cond(X,Ud) is ǫc = 2−0.1k-close to Ud ◦W where ∀u ∈ {0, 1}d, W |Ud=u has entropy d+0.1k.

Proof. Consider the following algorithm A which decides whether v ∈ Vx on input (v, x).

Algorithm 1: Algorithm A(v, x)

Input: v ∈ {0, 1}r0 and x ∈ {0, 1}n
res = 0 ;

for i = 1 to n do

compute f(v)i ;

if f(v)i = 1 then

res = res + f(v)i · xi ;

end

end

if res = 0 then Output 1 ;

else Output 0 ;

We can see that algorithm A runs in space O(log n) because f(v)i, i = 1, . . . , n can be computed

sequentially by using O(logn) space according to Lemma 7.5 and all the other variables need O(logn)

space to record. Also A(v, x) = 1 if and only if v ∈ Vx. So Pr[A(Ur0 , x) = 1] = |Vx|
|V | .

40

Similarly, we can see Pr[A(g(Ur), x) = 1] = |Ṽx|

|Ṽ |
.

According to the definition of our PRG g, we know that,

|Pr[A(g(Ur), x) = 1]− Pr[A(Ur0 , x) = 1]| ≤ ǫg.

So

| |Ṽx|
|Ṽ |
− |Vx|
|V | | ≤ ǫg.

For the 2nd assertion, let’s consider Pr[MX = 0] when l ≤ w(X) ≤ n− l.

By Theorem 7.1, for any x such that l ≤ w(x) ≤ n− l, Pr[Mx = 0] ≤ (|Ṽx|

|Ṽ |
+ λ)t.

Let X1, X2 be independent random variables and have the same distribution as X .

p0 =
∑

x2∈supp(X2)

Pr[X2 = x2] · Pr[MX1 = Mx2]

For any fixed x2 ∈ supp(X2), let X ′ = X1 ⊕ x2. So Pr[MX1 = Mx2] = Pr[MX ′ = 0]. We know

that X ′ is also an (n, k)-source. As a result, we have the following.

Pr[M(X ′) = 0]

≤Pr[w(X ′) /∈ [l, n− l]] + Pr[w(X ′) ∈ [l, n− l]]× Pr[MX ′ = 0|w(X′)∈[l,n−l]]

≤Pr[w(X ′) /∈ [l, n− l]] + Pr[MX ′ = 0|w(X′)∈[l,n−l]]

≤Pr[w(X ′) /∈ [l, n− l]] + (
|Ṽx|
|Ṽ |

+ λ)t

≤Pr[w(X ′) /∈ [l, n− l]] + (
|Vx|
|V | + ǫg + λ)t

≤Pr[w(X ′) /∈ [l, n− l]] + (5/6 + 1/poly(n) + λ)t

≤2× 2−0.5k + (5/6 + 1/poly(n) + λ)t.

(25)

Thus,

p0 =
∑

x2∈supp(X2)

Pr[X2 = x2] · Pr[M(X1 ⊕ x2) = 0]

≤2−0.5k+1 + (5/6 + 1/poly(n) + λ)t.

(26)

Conclusion 3 and 4 follow the same proof as that of Lemma 7.8.

Theorem 7.11. For any k = Ω(log2 n), there exists an explicit construction of an (n, k, 10k, 0.1k, 2−0.1k)-
condenser with seed length Θ(k).

Proof. According to Lemma 7.10, it immediately follows that the function Cond in Construction 7.6 is an

(n, k, t, 0.1k, ǫc)-condenser for t = 10k, ǫc = 2−0.1k.

Now consider the seed length. We know that |U1| = Θ(log2 n). For the random walks, the random bits

needed have length Θ(t) = Θ(k). So the seed length is |U1|+Θ(t) = Θ(k).

41

7.3 Locality Control

There is one problem left in our construction. We want the locality of our extractor to be small. However,

in the current construction, we cannot guarantee that the locality is small, because the random walk may hit

some vectors that have large weights. We bypass this barrier by setting these vectors to be 0.

We need the following Chernoff Bound for random walks on expander graphs.

Lemma 7.12 ([9]). Let G be a regular graph with N vertices where the second largest eigenvalue is λ. For

every i ∈ [t], let fi : [N] → [0, 1] be any function. Consider a random walk v1, v2, . . . , vt in G from a

uniform start-vertex v1. Then for any ǫ > 0,

Pr[|
t

∑

i=1

f(vi)−
t

∑

i=1

Efi| ≥ ǫt] ≤ 2e−
ǫ2(1−λ)t

4 .

Now we give our final construction.

Construction 7.13. For any k = Ω(log2 n), we construct an (n, k, t = 10k, 0.08k, ǫc)-condenser Cond :
{0, 1}n × {0, 1}d→ {0, 1}t with d = Θ(k) , locality c = n/l, l = k

2 logn , ǫc = 2−k/500000.

Let g : {0, 1}r=O(log2 n) → {0, 1}r0=O(n logn) be the PRG from Lemma 7.9 with error parameter ǫg =
1/poly(n).

1. Construct an expander graph G̃ = (Ṽ , Ẽ) where Ṽ = {0, 1}r and λ(G̃) = 0.01 where r =
O(log2 n).

2. Using a uniform random string U1 of length r to select a vertex ṽ1 of Ṽ .

3. Take a random walk on G̃ to get ṽ2, . . . , ṽt. Let vi = g(ṽi), i = 1, . . . , t.

4. For i ∈ [t], get an n-bit string v′i = f(vi) such that ∀j ∈ [n],Pr[v′i,j = 1] − 1/l| ≤ 1/n2, where

f : {0, 1}r0 → {0, 1}n follows from Lemma 7.5, r0 = O(n logn).

5. Let M = (v′1, . . . , v
′
t)
T .

6. Construct the matrix M ′ = (v̄1, . . . , v̄t) such that for i ∈ [t], if w(v′i) > 1.2c, v̄i = 0, otherwise

v̄i = v′i.

7. Let Cond(x, u) = M ′x.

Let T̃ = {v ∈ Ṽ : w(f(g(v))) ∈ [0.8c, 1.2c]}.

Lemma 7.14. In Construction 7.13, with probability 1− 2e−k/500000,

|{i : w(v′i) ∈ [0.8c, 1.2c]}| ≥ 0.998t.

42

Proof. Consider the following algorithm A. Given v ∈ {0, 1}r0 , A tests whether w(f(v)) ∈ [0.8c, 1.2c].

Algorithm 2: Algorithm A(v)

Input: v ∈ {0, 1}r0
count = 0 ;

for i = 1 to n do

compute f(v)i ;

if f(v)i = 1 then

count++;

end

end

if count is in [0.8c, 1.2c] then Output 1 ;

else Output 0 ;

It can be seen that A runs in space O(logn). Because f(v)i, i = 1, . . . , n can be computed sequen-

tially using space O(logn) according to Lemma 7.5. Also all the iterators and variables used during the

computation require only O(log n) space.

As a result, according to the definition of space bounded PRG, for any ǫg = 1/poly(n),

|Pr[A(g(Ur)) = 1]− Pr[A(Ur0) = 1]| ≤ ǫg.

We know that Pr[A(g(Ur)) = 1] = |T̃ |

|Ṽ |
and Pr[A(Ur0) = 1] = |T |

|V | . Thus, | |T̃ |
|Ṽ |
− |T ||V | | ≤ ǫg.

According to Lemma 7.7,
|T |
|V | ≥ 1− 2 exp{−Θ(c)}.

As a result,
|T̃ |

|Ṽ |
≥ 1− 2 exp{−Θ(c)} − ǫg ≥ 1− 1/poly(n) .

Thus for each i, Pr[w(f(g(ṽ))) ∈ [0.8c, 1.2c]] ≥ 1 − 1/poly(n). Let EIṽi∈T̃ = u. Then u ≥ 1 −
1/poly(n).

According to our construction, we can assume Iṽi∈T̃ = h(ṽi), i = 1, . . . , t for some function h. By

Lemma 7.12,

Pr[|
t

∑

i=1

Iṽi∈T̃ −
t

∑

i=1

u| ≥ 0.001t] ≤ 2e−
(0.001)2(1−λ)t

4 ≤ 2e−t/5000000

We know that t = 10k and |{i : w(v′i) ∈ [0.8c, 1.2c]}| = ∑t
i=1 Iṽi∈T̃ . So with probability at least

1− 2e−k/500000,

|{i : w(v′i) ∈ [0.8c, 1.2c]}| ≥
t

∑

i=1

u− 0.001t ≥ (1− 1/poly(n))t− 0.001t ≥ 0.998t.

Lemma 7.15. The function Cond : {0, 1}n×{0, 1}d in Construction 7.13 is an (n, k, t, 0.08k, ǫc)-condenser

with seed length Θ(k).

Proof. According to Lemma 7.11, we know that for ǫ = 2−0.1k, Ud ◦MX is ǫ-close to Ud ◦W where for

every a ∈ {0, 1}d, H∞(W |Ud=a) = 0.1k. Let M ′X = h(Ud,MX). According to our construction, we

know that h is a deterministic function. More specifically, h(u, y) will set the ith coordinate of y to be 0 for

any i such that ṽi /∈ T̃ . The function h can check ṽi /∈ T̃ according to u deterministically.

43

As a result,

SD(Ud ◦M ′X,Ud ◦ h(Ud,W))

=SD(Ud ◦ h(Ud,MX), Ud ◦ h(Ud,W))

≤SD(Ud ◦MX,Ud ◦W)

≤ǫ.

(27)

Now let’s consider the entropy of Ud ◦ h(Ud,W). let ǫ0 = 2e−k/500000. By Lemma 7.14, for 1 − ǫ0
fraction of u ∈ {0, 1}d, there are at most 0.002t bits in W |Ud=u that are set to be 0.

As a result, for 1 − ǫ0 fraction of u ∈ {0, 1}d, u ◦ h(u,W |Ud=u) has entropy 0.1k − 0.002t ≥ 0.08k.

As a result, Ud ◦ h(Ud,W) is ǫ0-close to Ud ◦W ′ where for every u ∈ {0, 1}d, W ′|Ud=u has entropy 0.08k.

So Ud ◦M ′X is ǫ + ǫ0 ≤ 2−k/500000-close to Ud ◦W ′ where for every u ∈ {0, 1}d, W ′|Ud=u has entropy

0.08k.

Lemma 7.16. The locality of Construction 7.13 is 1.2c = Θ(nk log n).

Proof. As for every M ′i , the number of 1s in it is at most 1.2c, the locality is 1.2c = 1.2n/l = Θ(nk logn)

Theorem 7.17. For any k = Ω(log2 n), there exists an (n, k, t = 10k, 0.08k, ǫc)-condenser Cond :
{0, 1}n × {0, 1}d→ {0, 1}t with d = Θ(k) , ǫc = 2−k/500000 and the locality is Θ(nk logn).

Proof. It follows from Lemma 7.15 and Lemma 7.16.

Theorem 7.18. For any k = Ω(log2 n), for any constant γ ∈ (0, 1), there exists a strong (k, ǫ)-extractor

Ext : {0, 1}n × {0, 1}d → {0, 1}m, where ǫ can be as small as 2−k
Ω(1)

, d = Θ(k),m = (1 − γ)k and the

locality is n
k log2(1/ǫ)(log n)poly(log k).

Proof Sketch. We combine our (n, k,mc = 10k, 0.08k, ǫc = 2−0.1k)-condenser Cond : {0, 1}n×{0, 1}r→
{0, 1}mc where r = Θ(k) from Lemma 7.11 with the (0.08k, ǫ0)-extractor Ext0 : {0, 1}mc×{0, 1}d0=kα →
{0, 1}m0 from Theorem 6.5 for some constant α ∈ (0, 1] and for ǫc = 2−k

Ω(1)
.

Let Ext(X,U) = Ext0(Cond(X,U1), U2), where U = U1 ◦ U2. We know that U ◦ Ext(X,U) is

ǫ = ǫc + ǫ0 = 2−k
Ω(1)

-close to uniform distribution over {0, 1}Θ(k).

The locality of Cond is Θ(nk log n). The locality of Ext0 is log2(1/ǫ0)poly(log k). So the overall locality

is n
k log2(1/ǫ)(log n)poly(log k). The seed length is |U | = |U1|+ |U2| = d0 +Θ(k) = Θ(k).

Our theorem holds by applying the extraction in parallel technique in Lemma 5.4 to increase the output

length to (1− γ)k.

8 Open Problems

Our work leaves many natural open problems. First of all, the error of our AC0 extractor can only be as small

as 2−poly(logn), even though the min-entropy is k ≥ n/poly(log n). Can we get smaller error (e.g., 2−k
Ω(1)

or even 2−Ω(k))? Second, in terms of the seed length and output length, our AC0 extractor is only optimal

when k = Ω(n). Is it possible to achieve optimal seed length and output length when k = n/poly(log n)?
Turning to strong extractor families with small locality, again the parameters of our constructions do not

match the parameters of optimal seeded extractors. In particular, our seed length is still O(k) when the min-

entropy k is small. Can we reduce the seed length further? We note that using our analysis together with the

IW-generator/extractor, one can get something meaningful (i.e., a strong extractor family with a relatively

44

short seed and small locality) even when k = nα for some α > 1/2. But it’s unclear how to get below

this entropy. In addition, our technique to increase output length fails to preserve locality. Is it possible to

develop a locality-preserving technique for output length optimization? Furthermore, in general the locality

in our construction is a little worse in terms of the error ǫ than that of [3] (i.e., log2(1/ǫ) vs. log(1/ǫ)). This

stems from our error reduction technique. Can we improve it to reduce the locality? Finally, a basic question

here is still not clear: what is the correct relation between the six parameters input length n, min-entropy k,

seed length d, output length m, error ǫ, and locality ℓ? It would be nice to obtain a matching upper bound

and lower bound, as in the case of standard seeded extractors. We conjecture that a lower bound of locality
n
k log(n/ǫ) should hold, although we were not able to prove it in general.

References

[1] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge University

Press, 2009.

[2] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. Bpp has subexponential simulation unless Exptime

has publishable proofs. Computational Complexity, 3:307–318, 1993.

[3] Andrej Bogdanov and Siyao Guo. Sparse extractor families for all the entropy. In Proceedings of the

4th conference on Innovations in Theoretical Computer Science, pages 553–560. ACM, 2013.

[4] J. L. Carter and M. N. Wegman. Universal classes of hash functions. Journal of Computer and System

Sciences, 18:143–154, 1979.

[5] Anindya De and Luca Trevisan. Extractors using hardness amplification. In RANDOM 2009, 13th

International Workshop on Randomization and Approximation Techniques in Computer Science, 2009.

[6] O. Goldreich and A. Wigderson. Tiny families of families with random properties: A quality-size

trade-off for hashing. Random Structures and Algorithms, 11:315–343, 1997.

[7] Oded Goldreich, Emanuele Viola, and Avi Wigderson. On randomness extraction in ac0. In 30th

Conference on Computational Complexity (CCC 2015), volume 33, pages 601–668. Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik, 2015.

[8] Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. Unbalanced expanders and random-

ness extractors from Parvaresh-Vardy codes. Journal of the ACM, 56(4), 2009.

[9] Alexander D Healy. Randomness-efficient sampling within nc1. Computational Complexity, 17(1):3–

37, 2008.

[10] R. Impagliazzo and A. Wigderson. P = BPP if E requires exponential circuits: Derandomizing the

XOR lemma. In Proceedings of the 29th Annual ACM Symposium on Theory of Computing, pages

220–229, 1997.

[11] R. Impagliazzo and D. Zuckerman. How to recycle random bits. In Proceedings of the 30th Annual

IEEE Symposium on Foundations of Computer Science, pages 248–253, 1989.

[12] Russell Impagliazzo. Hard-core distributions for somewhat hard problems. In Foundations of Com-

puter Science, 1995. Proceedings., 36th Annual Symposium on, pages 538–545. IEEE, 1995.

[13] Stasys Jukna. Extremal combinatorics: with applications in computer science. Springer Science &

Business Media, 2011.

45

[14] Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica, 12:449–461,

1992.

[15] Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of Computer and System Sciences,

49(2):149–167, October 1994.

[16] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer and System

Sciences, 52(1):43–52, 1996.

[17] R. Raz, O. Reingold, and S. Vadhan. Error reduction for extractors. In Proceedings of the 40th Annual

IEEE Symposium on Foundations of Computer Science, pages 191–201, 1999.

[18] Ran Raz, Omer Reingold, and Salil Vadhan. Extracting all the randomness and reducing the error in

trevisan’s extractors. JCSS, 65(1):97–128, 2002.

[19] Maciej Skórski. Shannon entropy versus renyi entropy from a cryptographic viewpoint. In Cryptogra-

phy and Coding, pages 257–274. Springer, 2015.

[20] Luca Trevisan. Extractors and pseudorandom generators. Journal of the ACM, pages 860–879, 2001.

[21] S. Vadhan. On constructing locally computable extractors and cryptosystems in the bounded storage

model. In Advances in Cryptology — CRYPTO ’03, 23rd Annual International Cryptology Conference,

Proceedings, 2003.

[22] Salil P. Vadhan. Constructing locally computable extractors and cryptosystems in the bounded-storage

model. J. Cryptology, 17(1):43–77, 2004.

[23] Salil P Vadhan. Pseudorandomness. Now, 2012.

[24] Emanuele Viola. The complexity of constructing pseudorandom generators from hard functions. com-

putational complexity, 13(3-4):147–188, 2005.

[25] D. Zuckerman. Randomness-optimal oblivious sampling. Random Structures and Algorithms, 11:345–

367, 1997.

46

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

