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Abstract

Randomness extractors, which extract high quality (almost-uniform) random bits from biased ran-
dom sources, are important objects both in theory and in practice. While there have been significant
progress in obtaining near optimal constructions of randomness extractors in various settings, the com-
putational complexity of randomness extractors is still much less studied. In particular, it is not clear
whether randomness extractors with good parameters can be computed in several interesting complexity
classes that are much weaker than P.

In this paper we study randomness extractors in the following two models of computation: (1)
constant-depth circuits (AC0), and (2) the local computation model. Previous work in these models,
such as [Vio05a], [GVW15] and [BG13], only achieve constructions with weak parameters. In this work
we give explicit constructions of randomness extractors with much better parameters. Our results on
AC0 extractors refute a conjecture in [GVW15] and answer several open problems there. We also pro-
vide a lower bound on the error of extractors in AC0, which together with the entropy lower bound in
[Vio05a, GVW15] almost completely characterizes extractors in this class. Our results on local extrac-
tors also significantly improve the seed length in [BG13]. As an application, we use our AC0 extractors
to study pseudorandom generators in AC0, and show that we can construct both cryptographic pseu-
dorandom generators (under reasonable computational assumptions) and unconditional pseudorandom
generators for space bounded computation with very good parameters.

Our constructions combine several previous techniques in randomness extractors, as well as intro-
duce new techniques to reduce or preserve the complexity of extractors, which may be of independent
interest. These include (1) a general way to reduce the error of strong seeded extractors while preserving
the AC0 property and small locality, and (2) a seeded randomness condenser with small locality.
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1 Introduction

Randomness extractors are functions that transform biased random sources into almost uniform random bits.
Throughout this paper, we model biased random sources by the standard model of general weak random
sources, which are probability distributions over n-bit strings with a certain amount of min-entropy k.1

Such sources are referred to as (n, k)-sources. In this case, it is well known that no deterministic extractors
can exist for one single weak random source even if k = n − 1; therefore seeded randomness extractors
were introduced in [NZ96], which allow the extractors to have a short uniform random seed (say length
O(log n)). In typical situations, we require the extractor to be strong in the sense that the output is close to
uniform even given the seed. Formally, we have the following definition.

Definition 1.1 ([NZ96]). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a seeded (k, ε) extractor if for
any (n, k) source X , we have

|Ext(X,Ud)− Um| ≤ ε.

Ext is strong if in addition |(Ext(X,Ud), Ud)− (Um, Ud)| ≤ ε, where Um and Ud are independent uniform
strings on m and d bits respectively, and | · | stands for the statistical distance.

Since their introduction, seeded randomness extractors have become fundamental objects in pseudoran-
domness, and have found numerous applications in derandomization, complexity theory, cryptography and
many other areas in theoretical computer science. In addition, through a long line of research, we now have
explicit constructions of seeded randomness extractors with almost optimal parameters (e.g., [GUV09]).
However, the complexity of randomness extractors is still much less studied and understood. For example,
while in general explicit constructions of randomness extractors can be computed in polynomial time of the
input size, some of the known constructions are actually more explicit than that. These include for example
extractors based on universal hashing [CW79], and Trevisan’s extractor [Tre01], which can be computed by
highly uniform constant-depth circuits of polynomial size with parity gates. Thus a main question one can
ask is: can we do better and construct good randomness extractors with very low complexity?

This question is interesting not just by its own right, but also because such extractors, as building blocks,
can be used to potentially reduce the complexity of other important objects. In this paper we study this
question and consider the parallel and local complexity of randomness extractors.

The parallel-AC0 model. The hierarchy of NC and AC circuits are standard models for parallel com-
putation. It is easy to see that the class of NC0 or even `-local functions for small ` , which correspond to
functions where each output bit depends on at most ` input bits (including both the weak source and the
seed), cannot compute strong extractors (since one can just fix ` bits of the source). Thus, a natural relax-
ation is to consider the class AC0, which refers to the family of polynomial-size and constant-depth circuits
with unbounded fan-in gates. Note that although we have strong lower bounds here for explicit functions, it
is still not clear whether some important objects, such as randomness extractors and pseudorandom gener-
ators, can be computed in AC0 with good parameters. Thus the study of this question also helps us better
understand the power of this class.

Viola [Vio05a] was the first to consider this question, and his result was generalized by Goldreich et
al. [GVW15] to show that for strong seeded extractors, even extracting a single bit is impossible if k <
n/poly(log n). When k ≥ n/poly(log n), Goldreich et al. showed how to extract Ω(log n) bits using
O(log n) bits of seed, or more generally how to extract m < k/2 bits using O(m) bits of seed. Note that the
seed length is longer than the output length.2 When the extractor does not need to be strong, they showed that
extracting r+ Ω(r) bits using r bits of seed is impossible if k < n/poly(log n); while if k ≥ n/poly(log n)

1A probability distribution is said to have min-entropy k if the probability of getting any element in the support is at most 2−k.
2They also showed how to extract poly(logn) bits using an O(logn) bit seed, but the error of the extractor becomes

1/poly(logn).
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one can extract (1 + c)r bits for some constant c > 0, using r bits of seed. All the positive results here have
error 1/poly(n).

Therefore, a natural and main open problem left in [GVW15] is whether one can construct randomness
extractors in AC0 with shorter seed and longer output. Specifically, [GVW15] asks if one can extract more
than poly(log n)r bits in AC0 using a seed length r = Ω(log n), when k ≥ n/poly(log n). In [GVW15] the
authors conjectured that the answer is negative. Another open question is to see if one can achieve better
error, e.g., negligible error instead of 1/poly(n).

Goldreich et al. [GVW15] also studied deterministic extractors for bit-fixing sources, and most of their
effort went into extractors for oblivious bit-fixing sources (although they also briefly studied non-oblivious
bit-fixing sources). An (n, k)-oblivious bit-fixing source is a string of n bits such that some unknown k bits
are uniform, while the other n−k bits are fixed. Extractors for such sources are closely related to exposure-
resilient cryptography [CDH+00, KZ07]. In this case, a standard application of Håstad’s switching lemma
[Hås89] implies that it is impossible to construct extractors in AC0 for bit-fixing sources with min-entropy
k < n/poly(log n). The main result in [GVW15] is a theorem which shows the existence of deterministic
extractors in AC0 for min-entropy k ≥ n/poly(log n) that output k/poly(log n) bits with error 2−poly(logn).
We emphasize that this is an existential result, and [GVW15] did not give any explicit constructions of such
extractors.

The local model. Another relaxation, introduced by Bogdanov and Guo [BG13], is the notion of sparse
extractor families. These are families of functions for which each function in the family has a small number
of overall input-output dependencies (referred to as the sparsity, meaning that the input-output dependency
graph is sparse), while taking a random function from the family serves as a randomness extractor. Such
extractors can be used generally in situations where hashing is used and preserving small input-output de-
pendencies is needed. As an example, the authors in [BG13] used such extractors to obtain a transformation
of non-uniform one-way functions into non-uniform pseudorandom generators that preserves output locality.

In this paper, we consider the condition of the family being `-local, which is a worst case notion rather
than the average case notion of sparsity. Furthermore, we will focus on the case of strong extractor families.
Note that a strong extractor family is equivalent to a strong seeded extractor, since the randomness used to
choose a function from the family can be included in the seed. Thus, we study strong seeded extractors with
small locality, i.e., for any fixing of the seed, each output bit depends on at most ` input bits.

Note that an extractor family with m output bits and locality ` is automatically an `m-sparse extractor
family. Conversely, if an extractor is s-sparse, then half of its output bits depend on at most 2s/m input bits,
so by removing half of the output bits one could obtain locality 2s/m; a technical point here is that one may
need to drop different output bits depending on the seed, but this does not affect the error of the extractor.

The authors of [BG13] gave a construction of a strong extractor family for all entropy k with output
lengthm ≤ k, error ε, and sparsityO(n log(m/ε) log(n/m)), which corresponds to localityO( nm log(mε ) log( nm)) =
Ω(n/k log(n/ε)) whenever k ≤ n/2. They also showed that such sparsity is necessary whenever n0.99 ≤
m ≤ n/6 and ε is a constant. However, the main drawback of the construction in [BG13] is that the fam-
ily size is quite large. Indeed the family size is 2nm, which corresponds to a seed length of at least nm.3

Therefore, a main open problem in [BG13] is to reduce the size of the family (or, equivalently, the seed
length).

De and Trevisan [DT09] obtained a strong extractor for (n, k) sources such that for any fixing of the
seed, each bit of the extractor’s output only depends on poly(log n) bits of the source. However, their
construction only works for k = δn where δ is any constant. Their extractor has seed length d = O(log n)
and outputs kΩ(1) bits, but the error is only n−α for a small constant 0 < α < 1.

It is also worthwhile to compare our definition of a strong extractor family with small locality to the
definition of t-local extractors given by Vadhan [Vad03]. For a t-local extractor, one requires that for any

3In fact, the seed length is even larger since the seed is used to sample from a non-uniform distribution.
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fixing of the seed r, the output of the function Ext(x, r) as a whole depends on only t bits of x. In contrast,
our definition requires that each output bit of the function Ext(x, r) depends on at most ` bits of x. It can
be seen that a strong extractor with sparsity t is automatically a t-local extractor, but the converse may not
be true: a t-local extractor may have locality t and sparsity up to mt. By a lower bound in [Vad03], the
parameter t in local-extractors is at least Ω(nm/k), which is larger than m and matches the sparsity in
[BG13] and our results up to polylogarithmic factors. In this sense, our definition of extractor with small
locality is stronger than t-local extractors. Furthermore, the construction of t-local extractors in [Vad03],
which uses the sample-then-extract approach, only works for large min-entropy (at least k >

√
n); while

our goal here is to construct strong extractor families even for very small min-entropy, with locality `� m.

1.1 Our Results

As in [Vio05a, GVW15], in this paper we obtain both negative results and positive results about randomness
extraction in AC0. While the negative results in [Vio05a, GVW15] provide lower bounds on the entropy
required for AC0 extractors, our negative results provide lower bounds on the error such extractors can
achieve. We show that such extractors (both seeded extractors and deterministic extractors for bit-fixing
sources) cannot achieve error better than 2−poly(logn), even if the entropy of the sources is quite large.
Specifically, we have

Theorem 1.2. (General weak source) If Ext : {0, 1}n × {0, 1}d → {0, 1}m is a strong (k = n − 1, ε)-
extractor that can be computed by AC0 circuits of depth dth and size s, then ε = 2−(O(log s))dth−1 log(n+d).
(Bit-fixing source) There is a constant c > 1 such that if Ext : {0, 1}n → {0, 1}m is a (k, ε)-extractor for
oblivious bit-fixing sources with k = n− (c log s)dth−1, that can be computed by AC0 circuits of depth dth

and size s, then ε = 2−(O(log s))dth−1 logn. 4

Thus, our results combined with the lower bounds on the entropy requirement in [Vio05a, GVW15]
almost completely characterize the power of randomness extractors in AC0.

We now turn to our positive results. As our first contribution, we show that the authors’ conjecture about
seeded AC0 extractors in [GVW15] is false. We give explicit constructions of strong seeded extractors in
AC0 with much better parameters. This in particular answers open problems 8.1 and 8.2 in [GVW15]. To
start with, we have the following theorem.

Theorem 1.3. For any constant c ∈ N, any k = Ω(n/ logc n) and any ε = 1/poly(n), there exists an
explicit construction of a strong (k, ε)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m that can be computed
by an AC0 circuit of depth c + 10, where d = O(log n) , m = kΩ(1) and the extractor family has locality
O(logc+5 n).

Note that the depth of the circuit is almost optimal, within an additive O(1) factor of the lower bound
given in [GVW15]. In addition, our construction is also a family with locality only poly(log n). Note that the
seed length d = O(log n) is (asymptotically) optimal, while the locality beats the one obtained in [BG13]
(which is O(n/m log(m/ε) log(n/m)) = nΩ(1)) and is within a log4 n factor to O(n/k log(n/ε)).

Our result also improves that of De and Trevisan [DT09], even in the high min-entropy case, as our error
can be any 1/poly(n) instead of just n−α for some constant 0 < α < 1. Moreover, our seed length remains
O(log n) even for k = n/poly(log n), while in this case the extractor in [DT09] has seed length poly(log n).

Next, we can boost our construction to reduce the error and extract almost all the entropy. We have

Theorem 1.4. For any constant γ ∈ (0, 1), a, c ∈ N, any k = δn = Ω(n/ logc n), ε = 1/2O(loga n), there
exists an explicit strong (k, ε)-extractor Ext : {0, 1}n×{0, 1}d → {0, 1}m in AC0 with depth O(a+ c+ 1)

where d = O((log n+ log(n/ε) log(1/ε)
logn )/δ), m = (1− γ)k.

4This holds even if we allow Ext to have a uniform random seed, see Theorem 3.3.
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As our second contribution, we give explicit deterministic extractors in AC0 for oblivious bit-fixing
sources with entropy k ≥ n/poly(log n), which output (1− γ)k bits with error 2−poly(logn). This is in con-
trast to the non-explicit existential result in [GVW15]. Further, the output length and error of our extractor
are almost optimal, while the output length in [GVW15] is only k/poly(log n). Specifically, we have

Theorem 1.5. For any constant a, c ∈ N and any constant γ ∈ (0, 1], there exists an explicit deterministic
(k = Ω(n/ loga n), ε = 2− logc n)-extractor Ext : {0, 1}n → {0, 1}(1−γ)k that can be computed by AC0

circuits of depth O(a+ c+ 1), for any (n, k)-bit-fixing source.

For sparse extractor families, we can reduce the error of Theorem 1.3 while keeping the locality small.

Theorem 1.6. There exists a constant α ∈ (0, 1) such that for any k ≥ n
poly(logn) and ε ≥ 2−k

α
, there

exists an explicit construction of a strong (k, ε)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m, with d =

O(log n+ log(n/ε) log(1/ε)
logn ), m = kΩ(1) and locality log2(1/ε)poly(log n).

We also give strong extractor families with small locality for min-entropy k as small as log2 n. Our
approach is to first condense it into another weak source with constant entropy rate. For this purpose we
introduce the following definition of a (strong) randomness condenser with small locality.

Definition 1.7. A function Cond : {0, 1}n × {0, 1}d → {0, 1}n1 is a strong (n, k, n1, k1, ε)-condenser if
for every (n, k)-source X and independent uniform seed R ∈ {0, 1}d, R ◦ Cond(X,R) is ε-close to R ◦D,
where D is a distribution on {0, 1}n1 such that for any r ∈ {0, 1}d, we have that D|R=r is an (n1, k1)-
source. We say the condenser family has locality ` if for every fixing of R = r, the function Cond(., r) can
be computed by an `-local function.

We now have the following theorem.

Theorem 1.8. For any k ≥ log2 n, there exists a strong (n, k, t = 10k, 0.08k, ε)-condenser Cond :
{0, 1}n × {0, 1}d→ {0, 1}t with d = O(k) , ε = 2−Ω(k) and locality O(nk log n).

Combining the condenser with our previous extractors, we get strong extractor families with small lo-
cality for any min-entropy k ≥ log2 n. Specifically, we have

Theorem 1.9. There exits a constant α ∈ (0, 1) such that for any k ≥ log2 n, any constant γ ∈ (0, 1)
and any ε ≥ 2−k

α
, there exists a strong (k, ε)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m, where d =

O(k),m = (1− γ)k and the extractor family has locality n
k log2(1/ε)(log n)poly(log k).

In the above two extractors, our seed length is still much better than that of [BG13]. However, our
locality becomes slightly worse.

Related work, independent work and further results. The work of Dziembowski and Maurer [DM02]
also gave extractors with small locality. However, the model of the weak source studied there is uniform
random bits subject to a bounded leakage, which is more restrictive than the model of general weak random
sources we consider here. In particular, the analysis of [DM02], which uses a guessing game, may not
work for general weak random sources. A recent independent work by Papakonstantinou et. al [PWY16]
used similar techniques as [DM02] and gave constructions of seeded extractors in the multi-stream model
[GS05]. Their main motivation and result is an extractor that can extract Ω(k) bits from any (n, k) source
with k = Ω(n), using O(log n log(n/ε)) bits of seed together with two streams, O(log log(n/ε)) passes
and O(log(n/ε)) space. However, it turns out that their construction can also be realized in AC0 and also
has the property of small locality. Specifically, for an (n, k) source with k = δn = n/poly log(n) and
error ε = 2−poly log(n), their construction gives an AC0 extractor with seed length O( 1

δO(1) log n log(n/ε))
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and locality O( 1
δO(1) log(n/ε)). Their construction, which is based on randomly re-bucketing the bits of the

source into blocks and arguing this results in a block source, can be viewed as orthogonal to our construction,
which is based on hardness amplification. Compared to our results (Theorem 1.4 and Theorem 1.6), they
have a better dependence on ε but we have a better dependence on δ and n. For very small entropy (e.g.,
k = log2 n), we can first use our condenser and then apply their construction, which will give an extractor
with seed length O(k), output length Ω(k) and locality O(nk log n log(k/ε)).

1.2 Applications to pseudorandom generators in AC0

Like extractors, pseudorandom generators are also fundamental objects in the study of pseudorandomness,
and constructing “more explicit” pseudorandom generators is another interesting question that has gained
a lot of attention. A pseudorandom generator (or PRG for short) is an efficient deterministic function that
maps a short random seed into a long output that looks uniform to a certain class of distinguishers.

Definition 1.10. A function G : {0, 1}n → {0, 1}m is a pseudorandom generator for a class C of Boolean
functions with error ε, if for every function A ∈ C, we have that

|Pr[A(Um) = 1]− Pr[A(G(Un)) = 1]| ≤ ε.

Here we mainly consider two kinds of pseudorandom generators, namely cryptographic PRGs, which
are necessarily based on computational assumptions; and unconditional PRGs, most notably PRGs for space
bounded computation.

Standard cryptographic PRGs (i.e., PRGs that fool polynomial time computation or polynomial size
circuits with negligible error) are usually based on one-way functions (e.g., [HILL93]), and can be computed
in polynomial time. However, more explicit PRGs have also been considered in the literature, for the
purpose of constructing more efficient cryptographic protocols. Impagliazzo and Naor [IN96] showed how
to construct such a PRG in AC0, which stretches n bits to n+ log n bits. Their construction is based on the
assumed intractability of the subset sum problem. On the other hand, Viola [Vio05b] showed that there is
no black-box PRG construction with linear stretch in AC0 from one-way functions. Thus, to get such stretch
one must use non black-box constructions.

In [AIK06, AIK08], Applebaum et al. showed that the existence of cryptographic PRGs in NC0 with sub-
linear stretch follows from a variety of standard assumptions, and they constructed a cryptographic PRG in
NC0 with linear stretch based on a specific intractability assumption related to the hardness of decoding
sparsely generated linear codes. In [App13], Applebaum further constructed PRG collections (i.e., a family
of PRG functions) with linear stretch and polynomial stretch based on the assumption of one-wayness of a
variant of the random local functions proposed by Goldreich [Gol11].

In the case of unconditional PRGs, for d ≥ 5 Mossel et al. [MST06] constructed d-local PRGs with

output length nΩ(d/2) that fool all linear tests with error 2−n
1

2
√
d , which were used by Applebaum et al.

[AIK06] to give a 3-local PRG with linear stretch that fools all linear tests. In the same paper, Applebaum et
al. also gave a 3-local PRG with sub linear stretch that fools sublinear-space computation. Thus, it remains to
see if we can construct better PRGs (cryptographic or unconditional) in NC0 or AC0 with better parameters.

1.2.1 Our PRGs

We show that under reasonable computational assumptions, we can construct very good cryptographic PRGs
in AC0 (e.g. with polynomial stretch and negligible error). In addition, we show that we can construct very
good unconditional PRGs for space bounded computation in AC0 (e.g., with polynomial stretch).

We first give explicit cryptographic PRGs in AC0 based on the one-wayness of random local functions,
the same assumption as used in [App13]. To state the assumption we first need the following definitions.
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Definition 1.11 (Hypergraphs [App13]). An (n,m, d) hypergraph is a graph over n vertices and m hy-
peredges each of cardinality d. For each hyperedge S = (i0, i1, . . . , id−1), the indices i0, i1, . . . , id−1 are
ordered. The hyperedges of G are also ordered. Let G be denoted as ([n], S0, S1, . . . , Sm−1) where for
i = 0, 1, . . . ,m− 1, Si is a hyperedge.

Definition 1.12 (Goldreich’s Random Local Function [Gol11]). Given a predicate Q : {0, 1}d → {0, 1}
and an (n,m, d) hypergraph G = ([n], S0, . . . , Sm−1), the function fG,Q : {0, 1}n → {0, 1}m is defined as
follows: for input x, the ith output bit of fG,Q(x) is fG,Q(x)i = Q(xSi).

Form = m(n), the function collection FQ,n,m : {0, 1}s×{0, 1}n → {0, 1}m is defined via the mapping
(G, x)→ fG,Q(x), where G is sampled randomly by the s bits and x is sampled randomly by the n bits.

For every k ∈ {0, 1}s, we also denote F (k, ·) as Fk(·).

Definition 1.13 (One-wayness of a Collection of Functions). For ε = ε(n) ∈ (0, 1), a collection of functions
F : {0, 1}s × {0, 1}n → {0, 1}m is an ε-one-way function if for every efficient adversary A which outputs
a list of poly(n) candidates and for sufficiently large n’s, we have that

Pr
k,x,y=Fk(x)

[∃z ∈ A(k, y), z′ ∈ F−1
k (y), z = z′] < ε,

where k and x are independent and uniform.

We now have the following theorem.

Theorem 1.14. For any d-ary predicate Q, if the random local function FQ,n,m is δ-one-way for some
constant δ ∈ (0, 1), then we have the following results.

1. If there exists a constant α > 0 such that m ≥ (1 + α)n, then for any constant c > 1, there exists an
explicit cryptographic PRG G : {0, 1}r → {0, 1}t in AC0, where t ≥ cr and the error is negligible5.

2. If there exists a constant α > 0 such that m ≥ n1+α, then for any constant c > 1 there exists an
explicit cryptographic PRG G : {0, 1}r → {0, 1}t in AC0, where t ≥ rc and the error is negligible.

As noted in [App13], there are several evidence supporting this assumption. In particular, current ev-
idence is consistent with the existence of a δ-one-way random local function FQ,n,m with m ≥ n1+α for
some constant α > 0.

Compared to the constructions in [App13], our construction is in AC0 instead of NC0. However, our
construction has the following advantages.

• We construct a standard PRG instead of a PRG collection, where the PRG collection is a family of
functions and one needs to randomly choose one function before any application.

• The construction of a PRG with polynomial stretch in [App13] can only achieve polynomially small
error, and for negligible error one needs to assume that the random local function cannot be inverted
by any adversary with slightly super polynomial running time. Our construction, on the other hand,
achieves negligible error while only assuming that the random local function cannot be inverted by
any adversary that runs in polynomial time.

Next we give an explicit PRG in AC0 with polynomial stretch, that fools space bounded computation. It
is a straight forward application of our AC0-extractor to the Nisan-Zuckerman PRG [NZ96].

5The error ε : N → [0, 1] is negligible if ε(n) = n−ω(1).
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Theorem 1.15. For every constant c ∈ N and every m = m(s) = poly(s), there is an explicit PRG
g : {0, 1}r=O(s) → {0, 1}m in AC0, such that for any randomized algorithm A using space s,

|Pr[A(g(Ur)) = 1]− Pr[A(Um) = 1]| = ε ≤ 2−Θ(logc s),

where Ur is the uniform distribution of length r, Um is the uniform distribution of length m.

Compared to the Nisan-Zuckerman PRG [NZ96], our PRG is in AC0, which is more explicit. On the
other hand, our error is 2−Θ(logc s) for any constant c > 0 instead of being exponentially small as in [NZ96].
It is a natural open problem to see if we can reduce the error to exponentially small. We note that this cannot
be achieved by simply hoping to improve the extractor, since our negative result shows that seeded extractors
in AC0 cannot achieve error better than 2−poly(logn).

1.3 Overview of the Constructions and Techniques

Our negative results about the error of AC0 extractors follow by a simple application of Fourier analysis and
the well known spectrum concentration theorem of AC0 functions [LMN93]. We present it in Section 3.
We now briefly describe our positive results. We will extensively use the following two facts: the parity
and inner product over poly(log n) bits can be computed by AC0 circuits of size poly(n); in addition, any
Boolean function on O(log n) bits can be computed by a depth-2 AC0 circuit of size poly(n).

1.3.1 Basic construction

All our constructions are based on a basic construction of a strong extractor in AC0 for any k ≥ n
poly(logn)

with seed length d = O(log n) and error ε = n−Ω(1). This construction is a a modification of the
Impagliazzo-Wigderson pseudorandom generator [IW97], interpreted as a randomness extractor in the gen-
eral framework found by Trevisan [Tre01]. The IW-generator first takes a Boolean function on log n bits,
applies a series of hardness amplifications to get another Boolean function on O(log n) bits, and then uses
the Nisan-Wigderson generator [NW94] together with the new Boolean function. The hardness amplification
consists of three steps: the first step, developed by Babai et al. [BFNW93], is to obtain a mild average-case
hard function from a worst-case hard function; the second step involves a constant number of substeps, with
each substep amplifying the hardness by using Impagliazzo’s hard core set theorem [Imp95]; the third step,
developed by Impagliazzo and Wigderson [IW97], uses a derandomized direct-product generator to obtain
a function that can only be predicted with exponentially small advantage.

Trevisan [Tre01] showed that given an (n, k)-source X , if one regards the n bits of X as the truth
table of the initial Boolean function on log n bits and applies the IW-generator, then by setting parameters
appropriately one obtains an extractor. The reason is that for any x ∈ supp(X) that makes the output of the
extractor fail a certain statistical test T , one can “reconstruct” x by showing that it can computed by a small
size circuit, when viewing x as the truth table of the function with T gates. Thus the number of such bad
elements x ∈ supp(X) is upper bounded by the total number of such circuits. This extractor works for any
min-entropy k ≥ nα.

However, this extractor itself is not in AC0 (which is not surprising since it can handle min-entropy
k ≥ nα). Thus, at least one of the steps in the construction of the IW-generator/extractor is not in AC0. By
carefully examining each step one can see that the only step not in AC0 is actually the first step of hardness
amplification (This was also pointed out by [Vio05a]). Indeed, all the other steps of hardness amplification
are essentially doing the same thing: obtaining a function f ′ on O(log n) bits from another function f on
O(log n) bits, where the output of f ′ is obtained by taking the inner product over two O(log n) bit strings s
and r. In addition, s is obtained directly from part of the input of f ′, while r is obtained by using the other
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part of the input of f ′ to generate O(log n) inputs to f and concatenating the outputs. All of these steps can
be done in AC0, assuming f is in AC0 (note that f here depends on X).

We therefore modify the IW-generator by removing the first step of hardness amplification, and start
with the second step of hardness amplification with the source X as the truth table of the initial Boolean
function. Thus the initial function f can be computed by using the log n input bits to select a bit from X ,
which can be done in AC0. Therefore the final Boolean function f ′ can be computed in AC0. The last step of
the construction, which applies the NW-generator, is just computing f ′ on several blocks of size O(log n),
which certainly is in AC0. This gives our basic extractor in AC0.

The analysis is again similar to Trevisan’s argument [Tre01]. However, since we have removed the first
step of hardness amplification, now for any x ∈ supp(X) that makes the output of the extractor to fail a
certain statistical test T , we cannot obtain a small circuit that exactly computes x. On the other hand, we
can obtain a small circuit that can approximate x well, i.e., can compute x correctly on 1 − γ fraction of
inputs for some γ = 1/poly(log n). We then argue that the total number of strings within relative distance
γ to the outputs of the circuit is bounded, and therefore combining the total number of possible circuits we
can again get a bound on the number of such bad elements in supp(X). A careful analysis shows that our
extractor works for any min-entropy k ≥ n/poly(log n). However, to keep the circuit size small we have to
set the output length to be small enough, i.e., nα and set the error to be large enough, i.e., n−β .

1.3.2 Error reduction

We now describe how we reduce the error of the extractor. We will borrow some techniques from the work of
Raz et al. [RRV99], where the authors showed a general way to reduce the error of strong seeded extractors.
However, the techniques in Raz et al. [RRV99] do not preserve the AC0 property, thus our techniques are
significantly different from theirs. Nevertheless, our starting point is a lemma from [RRV99], which roughly
says the following: given any strong seeded (k, ε)-extractor Ext with seed length d and output length m,
then for any x ∈ {0, 1}n there exists a set Gx ⊂ {0, 1}d of density 1 − O(ε), such that if X is a source
with entropy slightly larger than k, then the distribution Ext(X,GX) is very close to having min-entropy
m−O(1). Here Ext(X,GX) is the distribution obtained by first sampling x according to X , then sampling
r uniformly in Gx and outputting Ext(x, r).

Giving this lemma, we can apply our basic AC0 extractor with error ε = n−β for some t times, each
time with fresh random seed, and then concatenate the outputs. By the above lemma, the concatenation is
roughly (O(ε))t-close to a source such that one of the output has min-entropy m−O(1) (i.e., a somewhere
high min-entropy source). By choosing t to be a large enough constant the (O(ε))t can be smaller than any
1/poly(n). We now describe how to extract from the somewhere high min-entropy source with error smaller
than any 1/poly(n), in AC0. This is where our construction differs significantly from [RRV99], as there one
can simply apply a good extractor for constant entropy rate.

Assume that we have an AC0 extractor Ext′ that can extract from (m,m−
√
m)-sources with error any

ε′ = 1/poly(n) and output length m1/3. Then we can extract from the somewhere high min-entropy source
as follows. We use Ext′ to extract from each row of the source with fresh random seed, and then compute the
XOR of the outputs. We claim the output is (2−m

Ω(1)
+ε′)-close to uniform. To see this, assume without loss

of generality that the i’th row has min-entropy m−O(1). We can now fix the outputs of all the other rows,
which has a total size of tm1/3 �

√
m as long as t is small. Thus, even after the fixing, with probability

1 − 2−m
Ω(1)

, we have that the i’th row has min-entropy at least m −
√
m. By applying Ext′ we know that

the XOR of the outputs is close to uniform.
What remains is the extractor Ext′. To construct it we divide the source with length m sequentially into

m1/3 blocks of length m2/3. Since the source has min-entropy m −
√
m, this forms a block source such

that each block roughly has min-entropy at least m2/3−
√
m conditioned on the fixing of all previous ones.

We can now take a strong extractor Ext′′ in AC0 with seed length O(log n) and use the same seed to extract
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from all the blocks, and concatenate the outputs. It suffices to have this extractor output one bit for each
block. Such AC0 extractors are easy to construct since each block has high min-entropy rate (i.e., 1− o(1)).
For example, we can use the extractors given by Goldreich et al. [GVW15].

It is straightforward to check that our construction is in AC0, as long as the final step of computing the
XOR of t outputs can be done in AC0. For error 1/poly(n), it suffices to take t to be a constant and the
whole construction is in AC0, with seed length O(log n). We can even take t to be poly(log n), which will
give us error 2−poly(logn).

1.3.3 Increasing output length

The error reduction step reduces the output length from m to m1/3, which is still nΩ(1). We can increase
the output length by using a standard boosting technique as that developed by Nisan and Zuckerman [NZ96,
Zuc97]. Specifically, we first use random bits to sample several blocks from the source, using a sampler in
AC0. We then apply our AC0 extractor on the blocks backwards, and use the output of one block as the seed
to extract from the previous block. When doing this we divide the seed into blocks each with the same length
as the seed of the AC0 extractor, apply the AC0 extractor using each block as the seed, and then concatenate
the outputs. This way each time the output will increase by a factor of nΩ(1). Thus after a constant number
of times it will become say Ω(k). Since each step is computable in AC0, the whole construction is still in
AC0.

1.3.4 Explicit AC0 extractors for bit-fixing source

Our explicit AC0 extractors for (oblivious) bit-fixing sources follow the high-level idea in [GVW15]. Specif-
ically, we first reduce the oblivious bit-fixing source to a non-oblivious bit-fixing source, and then apply an
extractor for non-oblivious bit-fixing sources. This approach is natural in the sense that the best known ex-
tractors for oblivious bit-fixing sources (e.g., parity or [KZ07]) can both work for small entropy and achieve
very small error. Thus by the negative results in [GVW15] and our paper, none of these can be in AC0.
However, extractors for non-oblivious bit-fixing sources are equivalent to resilient functions, and there are
well known resilient functions in AC0 such as the Ajtai-Linial function [AL93].

The construction in [GVW15] is not explicit, but only existential for two reasons. First, at that time the
Ajtai-Linial function is a random function, and there was no explicit construction matching it. Second, the
conversion from oblivious-bit fixing source to non-oblivious bit-fixing source in [GVW15] is to multiply
the source by a random matrix, for which the authors of [GVW15] showed its existence but were not able
to give an explicit construction. Now, the first obstacle is solved by recent explicit constructions of resilient
functions in AC0 that essentially match the Ajtai-Linial function ([CZ16, Mek15, Li16]). Here we use the
extractor in [Li16] that can output many bits. For the second obstacle, we notice that the extractors for
non-oblivious bit-fixing sources in [CZ16, Li16] do not need the uniform bits to be independent, but rather
only require poly(logN)-wise independence if N is the length of the source.

By exploiting this property, we can give an explicit construction of the matrix used to transfrom the
original oblivious bit-fixing source. Our construction is natural and simpler than that in [GVW15], in the
sense that it is a matrix over F2 while the matrix in [GVW15] uses fields of larger size. Specifically, we will
take a seeded extractor and view it as a bipartite graph with N = nO(1) vertices on the left, n vertices on
the right and left degree d = poly(logN) = poly(log n). We identify the right vertices with the n bits of
the bit-fixing source, and for each left vertex we obtain a bit which is the parity of its neighbors. The new
non-oblivious bit-fixing source is the N bit source obtained by concatenating the left bits.

Now suppose the original source has entropy k = δn for some δ ≥ 1/poly(log n), and let T denote
the unfixed bits. A standard property of the seeded extractor implies that most of the left vertices have a
good fraction of neighbors in T (i.e., an extractor is a good sampler), so that each left bit obtained from
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these vertices is uniform. Next we would like to argue that they are poly(logN)-wise independent. For this
we require the seeded extractor to have a stronger property: that it is a design extractor as defined by Li
[Li12]. Besides being an extractor itself, a design extractor requires that any pair of left vertices have a small
intersection of neighbors. Assuming this property, it is easy to show that if we take any small subset S of
the “good” left vertices, then there is a bit in T that is only connected to a single vertex in S (i.e., a unique
neighbor). Thus the XOR of any small enough subset of the “good” left bits is uniform, which indicates that
they are some t-wise independent. Several explicit constructions of design extractors were given in [Li12],
and for our applications it suffices to use a simple greedy construction. By adjusting the parameters, we can
ensure that t = poly(logN) which is enough for applying the extractor in [Li16]. In addition, the degree
d = poly(logN) so the parity of d bits can be computed in AC0.

Once we have the basic extractor, we can use the same techniques as in [GVW15] to reduce the error, and
use the techniques by Gabizon et al.[GRS04] to increase the output length (this is also done in [GVW15]).
Note that the techniques in [GRS04] require a seeded extractor. In order for the whole construction to be
in AC0, we use our previously constructed seeded extractor in AC0 which can output (1 − γ)k bits. Thus
we obtain almost optimal explicit AC0 extractors for oblivious bit-fixing sources. In contrast, the seeded
extractor used in [GVW15] only outputs k/poly(log n) bits, and thus their (non-explicit) AC0 extractor for
oblivious bit-fixing sources also only outputs k/poly(log n) bits.

1.3.5 Extractors with small locality for low entropy

Our basic extractor (Theorem 1.3) also enjoys the property of small locality, but it only works for large
entropy. To get constructions for small min-entropy, we adapt the techniques in [BG13]. There the authors
constructed a strong extractor family with small sparsity by randomly sampling an m × n matrix M and
outputting MX , where X is the (n, k)-source. Each entry in M is independently sampled according to a
Bernoulli distribution, and thus the family size is 2nm. We derandomize this construction by sampling the
second row to the last row using a random walk on an expander graph, starting from the first row. For the first
row, we observe that the process of generating the entries and doing inner product with X can be realized
by read-once small space computation, thus we can sample the first row using the output of a pseudorandom
generator for space bounded computation (e.g., Nisan’s generator [Nis92]). We show that this gives us a
very good condenser with small locality, i.e., Theorem 1.8. Combining the condenser with our previous
extractors we then obtain strong extractor families with small locality.

1.3.6 Applications to pseudorandom generators

For cryptographic pseudorandom generators, we mainly adapt the approach of Applebaum [App13], to the
AC0 setting. The construction of cryptographic pseudorandom generator families in [App13] is based on
random local functions. Specifically, given a random bipartite graph with n left vertices, m right vertices
and right degree d (think of d as a constant), and a suitable predicate P on d bits, Applebaum showed that
based on a conjecture on random local one-way functions, the m output bits obtained by applying P to
the m subsets of input bits corresponding to the hyper edges give a distribution with high pseudo Shannon
entropy. He then showed how to boost the output to have high pseudo min-entropy by concatenating several
independent copies. At this point he used an extractor in NC0 to turn the output into a pseudorandom string.

However, an extractor in NC0 needs to have a large seed length (i.e., Ω(n)), thus the NC0 PRG con-
structed using this approach only achieves linear stretch. Another issue is that the NC0 PRG is actually a
collection of functions rather than a single function, because the random bits used to sample the bipartite
graph is larger than the output length, and is treated as a public index to the collection of functions.

Here, by replacing the extractor with our AC0 extractor we can achieve a polynomial stretch PRG (based
on appropriate assumptions as in [App13]), although now the PRG is in AC0 instead of NC0. In addition, we
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can get a single PRG instead of a collection of PRG functions, by including the random bits used to sample
the bipartite graph as part of the seed. Since in the graph each right vertex only has a constant number d of
neighbors, the sampling usesmd log n bits and can be done in AC0. To ensure that the PRG has a stretch, we
take the sampled graph G and apply the same graph to several independent copies of n bit input strings. We
show that we can still use the method in [App13] to argue that this gives a a distribution with high pseudo
Shannon entropy. We then use the same method as in [App13] to turn it into a distribution with high pseudo
min-entropy, and finally we apply our AC0 extractor. This way we ensure that the md log n bits used to
sample the graph G are “absorbed” by the stretch of the PRG, and thus we get a standard PRG instead of a
collection of PRG functions.

For PRGs for space bounded computation, we simply adapt the PRG by Nisan and Zuckerman [NZ96],
which stretches O(S) random bits to any poly(S) bits that fool space S computation. We now replace the
seeded extractor used there by our AC0 extractor. Notice that the Nisan-Zuckerman PRG simply applies the
seeded extractor iteratively for a constant number of times, so the whole construction is still in AC0.

1.4 Open Problems

Our work leaves many natural open problems. First, in terms of the seed length and output length, our AC0

extractor is only optimal when k = Ω(n). Is it possible to simultaneously achieve optimal seed length and
output length when k = n/poly(log n)? Second, can we construct good AC0 extractors for other classes of
sources, such as independent sources and affine sources?

Turning to strong extractor families with small locality, again the parameters of our constructions do
not match the parameters of optimal seeded extractors. In particular, our seed length is still O(k) when the
min-entropy k is small. Can we reduce the seed length further? We note that using our analysis together
with the IW-generator/extractor, one can get something meaningful (i.e., a strong extractor family with a
relatively short seed and small locality) even when k = nα for some α > 1/2. But it’s unclear how to get
below this entropy.

For pseudorandom generators in AC0, there are also many interesting open problems left. For example,
can we construct better cryptographic PRGs, or use weaker computational assumptions? In particular, it
would be nice to construct a cryptographic PRG with polynomial stretch based on the one-wayness of a
random local function with m = (1 + α)n instead of m = n1+α as in our current construction. For space
bounded computation, is it possible to match the exponentially small error of the Nisan-Zukerman PRG?
Taking one step further, is it possible to construct PRGs in AC0 for space bounded computation, with stretch
matching the PRGs of Nisan [Nis92] and Impagliazzo-Nisan-Wigderson [INW94]?

1.5 Organization of this Paper

The rest of the paper is organized as follows. In Section 2 we review some basic definitions and the relevant
background. In Section 3, we give the lower bounds on errors of AC0 extractors for general weak sources
and bit-fixing sources. In Section 4 we describe our construction of a basic extractor in AC0, and with
small locality. In section 5 we describe the error reduction techniques for AC0 extractors. In Section 6 we
show how to increase the output length for our AC0 extractors. In section 7 we construct AC0 extractors
for bit-fixing sources. In Section 8 we construct extractors with small locality for small entropy sources. In
Section 9 we present several applications, i.e., constructing pseudorandom generators in AC0. We put some
omitted details in Appendix A.

11



2 Preliminaries

For any i ∈ N, we use 〈i〉 to denote the string which is the binary representation of i. Let 〈·, ·〉 denote the
inner product of two binary strings having the same length. Let | · | denote the length of the input string.
Let w(·) denote the weight of the input binary string. For any strings x1 and x2, let x1 ◦ x2 denote the
concatenation of x1 and x2. For any strings x1, x2, . . . , xt, let©t

i=1xi denote x1 ◦ x2 ◦ · · · ◦ xt.
Let supp(·) denote the support of the input random variable.

Definition 2.1 (Weak Random Source, Block Source). The min-entropy of a random variable X is

H∞(X) = min
x∈supp(X)

{− log Pr(X = x)}.

We say a random variable X is an (n, k)-source if the length of X is n and H∞(X) ≥ k. We say
X = ©m

i=1Xi is an ((n1, k1), (n2, k2), . . . , (nm, km))-block source if ∀i ∈ [m], ∀x ∈ supp(©i−1
j=1Xj),

Xi|©i−1
j=1Xj=x

is an (ni, ki)-source.

For simplicity, if n1, n2, · · · , nm are clear from the context, then we simply say that the block source X
is a (k1, k2, . . . , km)-block source.

We say an (n, k)-source X is a flat (n, k)-source if ∀a ∈ supp(X), Pr[X = a] = 2−k. In this paper, X
is usually a random binary string with finite length. So supp(X) includes all the binary strings of that length
such that ∀x ∈ supp(X),Pr[X = x] > 0.

Bit-fixing source is a special kind of weak source. In this paper we also consider deterministic extractors
for bit-fixing source.

Definition 2.2 (Non-oblivious Bit-Fixing Sources). A source X on {0, 1}n is a (q, t, γ)-non-oblivious bit-
fixing source (in short, NOBF source ) if there exists a subset Q ⊆ [n] of size at most q and a sequence of
functions f1, f2, . . . , fn : {0, 1}|I| → {0, 1} such that the joint distribution of the bits indexed by Q̄ = [n]\Q
(denoted by XQ̄) is (t, γ)-wise independent (γ-close to a t-wise independent source) and Xi = fi(XQ̄) for
every i ∈ Q.

Bit-fixing sources are special non-oblivious bit-fixing sources. An (n, t)-bit-fixing source is defined to
be an (n− t, t, 0)-non-oblivious bit-fixing source.

We use U to denote the uniform distribution. In the following, we do not always claim the length of U ,
but its length can be figured out from the context.

Definition 2.3 (Statistical Distance). The statistical distance between two random variablesX and Y , where
|X| = |Y | , is SD(X,Y ) which is defined as follows.

SD(X,Y ) = 1/2
∑

a∈{0,1}|X|
|Pr[X = a]− Pr[Y = a]|

Lemma 2.4 (Properties of Statistical Distance [AB09]). Statistical distance has the following properties.

1. (Triangle Inequality) For any random variables X , Y , Z, such that |X| = |Y | = |Z|, we have

SD(X,Y ) ≤ SD(X,Z) + SD(Y, Z).

2. For any n,m ∈ N+, any deterministic function f : {0, 1}n → {0, 1}m and any random variables X ,
Y over {0, 1}n, SD(f(X), f(Y )) ≤ SD(X,Y ).
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Definition 2.5 (Extractor). A (k, ε)-extractor is a function Ext : {0, 1}n × {0, 1}d → {0, 1}m with the
following property. For every (n, k)-source X , the distribution Ext(X,U) is within statistical distance ε
from uniform distributions over {0, 1}m.

A strong (k, ε)-extractor is a function Ext : {0, 1}n × {0, 1}d → {0, 1}m with the following property.
For every (n, k)-source X , the distribution U ◦ Ext(X,U) is within statistical distance ε from uniform
distributions over {0, 1}d+m. The entropy loss of the extractor is k −m.

The existence of extractors can be proved using the probabilistic method. The result is stated as follows.

Theorem 2.6 ([Vad12]). For any n, k ∈ N and ε > 0, there exists a strong (k, ε)-extractor Ext : {0, 1}n ×
{0, 1}d → {0, 1}m such that d = log(n− k) + 2 log(1/ε) +O(1),m = k − 2 log(1/ε) +O(1).

In addition, researchers have found explicit extractors with almost optimal parameters, for example we
have the following theorem.

Theorem 2.7 ([GUV09]). For every constant α > 0, every n, k ∈ N and ε > 0, there exist an explicit
construction of strong (k, ε)-extractor Ext : {0, 1}n×{0, 1}d → {0, 1}m with d = O(log n

ε ),m ≥ (1−α)k.

We also use the following version of Trevisan’s extractor [Tre01].

Theorem 2.8 (Trevisan’s Extractor [Tre01]). For any constant γ ∈ (0, 1], let k = nγ . For any ε ∈
(0, 2−k/12), there exists an explicit construction of (k, ε)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m
such that d = O((log n/ε)2/ log n), m ∈ [36, k/2).

For block sources, randomness extraction can be done in parallel, using the same seed for each block.

Lemma 2.9 (Block Source Extraction). For any t ∈ N+, let X = ©t
i=1Xi be any (k1, k2, . . . , kt)-block

source where for each i ∈ [t], |Xi| = ni. For every i ∈ [t], let Exti : {0, 1}ni × {0, 1}d → {0, 1}mi
be a strong (ki, εi)-extractor. Then the distribution R ◦ Ext1(X1, R) ◦ Ext2(X2, R) ◦ . . . ◦ Extt(Xt, R) is∑

i∈[t] εi-close to uniform, where R is uniformly sampled from {0, 1}d, and independent of X .

Proof. We use induction. If the source has only 1 block, then the statement is true by the definition of strong
extractors.

Assume for (t−1) blocks, the statement is true. We view Ext1(X1, R)◦Ext2(X2, R)◦ . . .◦Extt(Xt, R)
as Y ◦ Extt(Xt, R). Here Y = Ext1(X1, R) ◦ Ext2(X2, R) ◦ . . . ◦ Extt−1(Xt−1, R). Let U1, U2 be two
independent uniform distributions, where |U1| = |Y | = m and |U2| = mt. Then

SD(R ◦ Y ◦ Extt(Xt, R), R ◦ U1 ◦ U2)

≤SD(R ◦ Y ◦ Extt(Xt, R), R ◦ U1 ◦ Z) + SD(R ◦ U1 ◦ Z,R ◦ U1 ◦ U2).
(1)

Here Z is the random variable such that ∀r ∈ {0, 1}d, ∀y ∈ {0, 1}m, Z|R=r,U1=y has the same distribution
as Extt(Xt, R)|R=r,Y=y.

First we give the upper bound of SD(R ◦ Y ◦ Extt(Xt, R), R ◦ U1 ◦ Z).

SD(R ◦ Y ◦ Extt(Xt, R), R ◦ U1 ◦ Z) (2)

=
1

2

∑
r∈{0,1}d

∑
y∈{0,1}m

∑
z∈{0,1}mt

|Pr[R = r] Pr[Y = y|R=r] Pr[Extt(Xt, R) = z|R=r,Y=y]

− Pr[R = r] Pr[U1 = y] Pr[Z = z|R=r,U1=y]|

=
1

2

∑
r∈{0,1}d

∑
y∈{0,1}m

∑
z∈{0,1}mt

Pr[R = r] Pr[Z = z|R=r,U1=y]|Pr[Y = y|R=r]− Pr[U1 = y]|
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=
1

2

∑
r∈{0,1}d

∑
y∈{0,1}m

Pr[R = r]|Pr[Y = y|R=r]− Pr[U1 = y]|
∑

z∈{0,1}mt
Pr[Z = z|R=r,U1=y]

=
1

2

∑
r∈{0,1}d

∑
y∈{0,1}m

Pr[R = r]|Pr[Y = y|R=r]− Pr[U1 = y]|

=SD(R ◦ Y,R ◦ U)

≤
t−1∑
i=1

εi.

Next we give the upper bound of SD(R ◦ U1 ◦ Z,R ◦ U1 ◦ U2).

SD(R ◦ U1 ◦ Z,R ◦ U1 ◦ U2) (3)

=
1

2

∑
r∈{0,1}r

∑
u∈{0,1}m

∑
z∈{0,1}mt

|Pr[R = r] Pr[U1 = u] Pr[Z = z|R=r,U1=u]

− Pr[R = r] Pr[U1 = u] Pr[U2 = z]|

=
1

2

∑
r∈{0,1}r

∑
u∈{0,1}m

∑
z∈{0,1}mt

Pr[R = r] Pr[U1 = u]|Pr[Z = z|R=r,U1=u]− Pr[U2 = z]|

=
1

2

∑
u∈{0,1}m

∑
r∈{0,1}r

∑
z∈{0,1}mt

Pr[R = r] Pr[U1 = u]|Pr[Z = z|R=r,U1=u]− Pr[U2 = z]|

=
1

2

∑
u∈{0,1}m

Pr[U1 = u]
∑

r∈{0,1}r

∑
z∈{0,1}mt

Pr[R = r]|Pr[Z = z|R=r,U1=u]− Pr[U2 = z]|

=
1

2

∑
u∈{0,1}m

Pr[U1 = u]
∑

r∈{0,1}r

∑
z∈{0,1}mt

Pr[R = r]|Pr[Extt(Xt, R) = z|R=r,Y=u]− Pr[U2 = z]|

=
∑

u∈{0,1}m
Pr[U1 = u]SD(R ◦ Extt(Xt, R)|Y=u, R ◦ U2)

≤
∑

u∈{0,1}m
Pr[U1 = u]εt

=εt.

So SD(R ◦ Y ◦ Extt(Xt, R), R ◦ U1 ◦ U2) ≤
∑t

i=1 εt. This proves the lemma.

For any circuit C, the size of C is denoted as size(C). The depth of C is denoted as depth(C).

Definition 2.10 (AC0). AC0 is the complexity class which consists of all families of circuits having constant
depth and polynomial size. The gates in those circuits are NOT gates, AND gates and OR gates where AND
gates and OR gates have unbounded fan-in.

Lemma 2.11. The following are some well known properties of AC0 circuits. For any n ∈ N,

1. ([AB09] forklore) any boolean function f : {0, 1}l=Θ(logn) → {0, 1} can be computed by an AC0

circuit of size poly(n) and depth 2. In fact, it can be represented by either a CNF or a DNF.
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2. ([GGH+07]) for every c ∈ N, every integer l = Θ(logc n), if the function fl : {0, 1}l → {0, 1} can
be computed by circuits of depth O(log l) and size poly(l), then it can be computed by AC0 (in n)
circuits of depth c+ 1.

Proof. For the first assertion, for an input string u ∈ {0, 1}l,

f(u) =
2l−1∨
j=0

(Iu=〈j〉 ∧ f(〈j〉)) =
2l−1∧
j=0

(Iu6=〈j〉 ∨ f(〈j〉)).

Here Ie is the indicator function such that Ie = 1 if e is true and Ie = 0 otherwise. We know that Iu=〈j〉
can be represented as a boolean formula with only AND and NOT gates, checking whether u = 〈j〉 bit by
bit. Similarly Iu6=〈j〉 can be represented as a boolean formula with only OR and NOT gates by taking the
negation of Iu=〈j〉. So the computation of obtaining f(u) can be represented by a CNF/DNF. Thus it can be
realized by a circuit of depth 2 by merging the gates of adjacent levels.

Next we prove the second assertion.
As there exists an NC1-complete problem which is downward self-reducible [GGH+07], fl can be re-

duced to (AC0 reduction) to fl′ where l′ = lα, for any α ∈ (0, 1). Once we let l′ = lα = O(log n), f can be
computed in AC0 (in n). The circuit depth is c+ 1, as AC0 reduction has depth c and fl′ can be realized by
CNF/DNFs.

Definition 2.12. A boolean function f : {0, 1}l → {0, 1} is δ-hard on uniform distributions for circuit size
g, if for any circuit C with at most g gates (size(C) ≤ g), we have Prx←U [C(x) = f(x)] < 1− δ.

Definition 2.13 (Graphs). Let G = (V,E) be a graph. Let A be the adjacency matrix of G. Let λ(G) be
the second largest eigenvalue of A. We say G is d-regular, if the degree of G is d. When G is clear in the
context, we simply denote λ(G) as λ.

3 Lower Bound for Error Parameters of AC0 Extractors

Here we show a lower bound on the error of strong AC0 seeded extractors. Our conclusion is mainly based on
the well known LMN theorem deduced by Fourier analysis, given by Linial, Mansour, and Nisan [LMN93].

Let the Fourier expansion of a function f : {−1, 1}n → {−1, 1} be f(x) =
∑

S⊆[n] f̂SχS(x), where
χS(x) =

∏n
i=1 xi. For any f, g : {−1, 1}n → {−1, 1}, 〈f, g〉 = 1

2n
∑

x∈{−1,1}n f(x)g(x).

Theorem 3.1 (LMN Theorem [LMN93] [O’D14]). Let f : {−1, 1}n → {−1, 1} be computable by AC0

circuits of size s > 1 and depth dth. Let ε ∈ (0, 1/2]. There exists t = O(log(s/ε))dth−1 · log(1/ε) s.t.∑
S⊆[n],|S|>t

f̂2
S ≤ ε.

Our first lower bound is as the follows.

Theorem 3.2. If Ext : {0, 1}n × {0, 1}d → {0, 1}m is a strong (k = n − 1, ε)-extractor that can be
computed by AC0 circuits of depth dth and size s, then ε = 2−(O(log s))dth−1 log(n+d).

Proof. Without loss of generality, let m = 1. Let’s transform the function space of Ext to {−1, 1}n+d →
{−1, 1}, achieving function f . Let ε0 = 1/2. By Theorem 3.1, there exists t = O(log(s/ε0))dth−1 ·
log(1/ε0) = O(log s)dth−1 s.t. ∑

S⊆[n+d],|S|≤t

f̂2
S > 1− ε0 = 1/2.
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Fix an S = S1 ∪ {i+ n | i ∈ S2} with |S| ≤ t, where S1 ⊆ [n], S2 ⊆ {1, 2, . . . , d}. We know that

f̂S = 〈f, χS〉 = 1− 2 Pr
u

[f(u) 6= χS(u)]

where u is uniformly drawn from {−1, 1}n+d.
For a ∈ {−1, 1}, let Xa be the uniform distribution over {−1, 1}n conditioned on

∏
i∈S1

Xi = a.
Also for b ∈ {−1, 1}, let Rb be the uniform distribution over {−1, 1}d conditioned on

∏
i∈S2

Ri = b. So
χS(x ◦ r) = ab for x ∈ supp(Xa), r ∈ supp(Rb). For special situations, saying S1 = ∅ (or S2 = ∅ ), let Xa

(or Rb) be uniform.
As Ext is a strong (k, ε)-extractor, Rb only blows up the error by 2. Also note that by definition, Xa has

entropy n− 1. So
dist(f(Xa ◦Rb), U) ≤ 2ε,

where U is uniform over {−1, 1}.
So

∀a, b ∈ {−1, 1}, |Pr[f(Xa ◦Rb) 6= ab]− 1/2| ≤ 2ε.

Thus

|Pr
u

[f(u) 6= χS(u)]− 1/2| = |
∑

a∈{−1,1}

∑
b∈{−1,1}

1

4
(Pr[f(Xa ◦Rb) 6= ab]− 1/2)|

≤
∑

a∈{−1,1}

∑
b∈{−1,1}

1

4
|Pr[f(Xa ◦Rb) 6= ab]− 1/2|

≤ 2ε.

(4)

Hence
|f̂S | = |1− 2 Pr

u
[f(u) 6= χS(u)]| = 2|Pr

u
[f(u) 6= χS(u)]− 1/2| ≤ 4ε.

As a result,

1/2 ≤
∑

S⊆[n+d],|S|≤t

f̂2
S ≤

t∑
i=0

(
n+ d

i

)
(4ε)2.

So

ε ≥
√

1

32
∑t

i=0

(
n+d
i

) .
As
∑t

i=0

(
n+d
i

)
≤ ( e(n+d)

t )t = 2O(t log(n+d)) = 2O(log s)dth−1 log(n+d), ε = 2−O(log s)dth−1 log(n+d).

We also consider extractors for bit-fixing sources and give the following negative result on the error.

Theorem 3.3. There is a constant c > 1 such that if Ext : {0, 1}n × {0, 1}d → {0, 1}m is a strong (k, ε)-
extractor for oblivious bit-fixing sources with k = n− (c log s)dth−1, that can be computed by AC0 circuits
of depth dth and size s, then ε = 2−(O(log s))dth−1 log(n+d).

The proof is slightly different from that of theorem 3.2.
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Proof. Let m = 1 and also transform the function space of Ext to {−1, 1}n+d → {−1, 1}, achieving
function f . Let ε0 = 1/2. By Theorem 3.1, there exists t = O(log(s/ε0))dth−1 · log(1/ε0) = O(log s)dth−1

s.t. ∑
S⊆[n+d],|S|≤t

f̂2
S > 1− ε0 = 1/2.

Fix an S = S1 ∪ {i+ n | i ∈ S2}, with |S| ≤ t, where S1 ⊆ [n], S2 ⊆ {1, 2, . . . , d}. We know that

f̂S = 〈f, χS〉 = 1− 2 Pr
u

[f(u) 6= χS(u)]

where u is uniformly drawn from {−1, 1}n+d.
For a ∈ {−1, 1}|S1|, let Xa be the uniform distribution over {−1, 1}n conditioned on XS1 = a. For

b ∈ {−1, 1}|S2|, let Rb be the uniform distribution over {−1, 1}d conditioned on RS2 = b. So χS(x ◦ r) =∏
i∈[|S1|] ai

∏
j∈[|S2|] bj for x ∈ supp(Xa), r ∈ supp(Rb). For special situations, saying S1 = ∅ (or S2 = ∅

), let Xa (or Rb) be uniform.
As Ext is a strong (k, ε)-extractor, Rb only blows up the error by at most 2|S|. Also note that Xa has

entropy n− |S1| ≥ n− t = n−O(log s)dth−1 ≥ k = n− (c log s)dth−1 by choosing c large enough. So

dist(f(Xa ◦Rb), U) ≤ 2|S|ε,

where U is uniform over {−1, 1}.
So

∀a ∈ {−1, 1}|S1|,∀b ∈ {−1, 1}|S2|, |Pr[f(Xa ◦Rb) 6=
∏

i∈[|S1|]

ai
∏

j∈[|S2|]

bj ]− 1/2| ≤ 2|S|ε.

Thus

|Pr
u

[f(u) 6= χS(u)]− 1/2| = |
∑

a∈{−1,1}|S1|

∑
b∈{−1,1}|S2|

1

2|S|
(Pr[f(Xa ◦Rb) 6=

∏
i∈[|S1|]

ai
∏

j∈[|S2|]

bj ]− 1/2)|

≤
∑

a∈{−1,1}|S1|

∑
b∈{−1,1}|S2|

1

2|S|
|Pr[f(Xa ◦Rb) 6=

∏
i∈[|S1|]

ai
∏

j∈[|S2|]

bj ]− 1/2|

≤ 2|S|ε.

(5)

Hence
|f̂S | = |1− 2 Pr

u
[f(u) 6= χS(u)]| = 2|Pr

u
[f(u) 6= χS(u)]− 1/2| ≤ 2|S|+1ε.

As a result,

1/2 ≤
∑

S⊆[n+d],|S|≤t

f̂2
S ≤

t∑
i=0

(
n+ d

i

)
(2|S|+1ε)2 ≤

t∑
i=0

(
n+ d

i

)
(2t+1ε)2.

So

ε ≥ 2−(t+1)

√
1

2
∑t

i=0

(
n+d
i

) .
As
∑t

i=0

(
n+d
i

)
≤ ( e(n+d)

t )t = 2O(t log(n+d)) = 2O(log s)dth−1 log(n+d), ε = 2−O(log s)dth−1 log(n+d).
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4 The Basic Construction of Extractors in AC0

Our basic construction is based on the general idea of I-W generator [IW97]. In [Tre01], Trevisan showed
that I-W generator is an extractor if we regard the string x drawn from the input (n, k)-source X as the truth
table of a function fx s.t. fx(〈i〉), i ∈ [n] outputs the ith bit of x.

The construction of I-W generator involves a process of hardness amplifications from a worst-case hard
function to an average-case hard function. There are mainly 3 amplification steps. Viola [Vio05a] sum-
marizes these results in details, and we review them again. The first step is established by Babai et al.
[BFNW93], which is an amplification from worst-case hardness to mildly average-case hardness.

Lemma 4.1 ([BFNW93]). If there is a boolean function f : {0, 1}l → {0, 1} which is 0-hard for circuit
size g = 2Ω(l) then there is a boolean function f ′ : {0, 1}Θ(l) → {0, 1} that is 1/poly(l)-hard for circuit
size g′ = 2Ω(l).

The second step is an amplification from mildly average-case hardness to constant average-case hard-
ness, established by Impagliazzo [Imp95].

Lemma 4.2 ([Imp95]). 1. If there is a boolean function f : {0, 1}l → {0, 1} that is δ-hard for circuit
size g where δ < 1/(16l), then there is a boolean function f ′ : {0, 1}3l → {0, 1} that is 0.05δl-hard
for circuit size g′ = δO(1)l−O(1)g.

f ′(s, r) = 〈s, f(a1) ◦ f(a2) ◦ · · · ◦ f(al)〉

Here |s| = l, |r| = 2l and |ai| = l,∀i ∈ [l]. Regarding r as a uniform random string, a1, . . . , al are
generated as pairwise independent random strings from the seed r.

2. If there is a boolean function f : {0, 1}l → {0, 1} that is δ-hard for circuit size g where δ < 1 is
a constant, then there is a boolean function f ′ : {0, 1}3l → {0, 1} that is 1/2 − O(l−2/3)-hard for
circuit size g′ = l−O(1)g, where

f ′(s, r) = 〈s, f(a1) ◦ f(a2) ◦ · · · ◦ f(al)〉.

Here |s| = l, |r| = 2l and |ai| = l,∀i ∈ [l]. Regarding r as a uniform random string, a1, . . . , al are
generated as pairwise independent random strings from the seed r.

The first part of this lemma can be applied for a constant number of times to get a function having
constant average-case hardness. After that the second part is usually applied for only once to get a function
with constant average-case hardness such that the constant is large enough (at least 1/3).

The third step is an amplification from constant average-case hardness to even stronger average-case
hardness, developed by Impagliazzo and Widgerson [IW97]. Their construction uses the following Nisan-
Widgerson Generator [NW94] which is widely used in hardness amplification.

Definition 4.3 ((n,m, k, l)-design and Nisan-Widgerson Generator [NW94]). A system of sets S1, S2, . . . , Sm ⊆
[n] is an (n,m, k, l)-design, if ∀i ∈ [m], |Si| = l and ∀i, j ∈ [m], i 6= j, |Si ∩ Sj | ≤ k.

Let S = {S1, S2, . . . , Sm} be an (n,m, k, l) design and f : {0, 1}l → {0, 1} be a boolean function.
The Nisan-Widgerson Generator is defined as NWf,S(u) = f(u|S1) ◦ f(u|S2) ◦ · · · ◦ f(u|Sm). Here u|Si =
ui1 ◦ ui2 ◦ · · · ◦ uim assuming Si = {i1, . . . , im}.

Nisan and Widgeson [NW94] showed that the (n,m, k, l)-design can be constructed efficiently.

Lemma 4.4 (Implicit in [NW94]). For any α ∈ (0, 1), for any large enough l ∈ N, for any m < exp{αl4 },
there exists an (n,m,αl, l)-design where n = b10l

α c. This design can be computed in time polynomial of 2n.
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As we need the parameters to be concrete (while in [NW94] they use big-O notations), we prove it again.

Proof. Our algorithm will construct these Sis one by one. For S1, we can choose an arbitrary subset of [n]
of size αl.

First of all, S1 can constructed by choosing l elements from [n].
Assume we have constructed S1, . . . , Si−1, now we construct Si. We first prove that Si exists. Consider

a random subset of size l from [n]. Let Hi,j = |Si ∩ Sj |. We know that EHi,j = l2/n. As n = b10l
α c ∈

[10l
α − 1, 10l

α ], EHi,j ∈ [αl10 ,
αl
10 + 1].

So Pr[Hi,j ≥ αl] ≤ Pr[Hi,j ≥ (1 + 9)(EHi,j − 1)]
By the Chernoff bound,

Pr[Hi,j ≥ 10(EHi,j − 1)] ≤ Pr[Hi,j ≥ 9EHi,j ] ≤ exp{−8EHi,j

3
} ≤ exp{− 4

15
αl} ≤ exp{−αl

4
}

By the union bound,

Pr[∀j = 1, . . . , i− 1, Hi,j ≤ αl] ≥ 1−m exp{−αl
4
} > 0.

This proves that there exists a proper Si. As there are n bits totally, we can find it in time polynomial of
2n.

The following is the third step of hardness amplification.

Lemma 4.5 (Implicit in [IW97]). For any γ ∈ (0, 1/30), if there is a boolean function f : {0, 1}l → {0, 1}
that is 1/3-hard for circuit size g = 2γl, then there is a boolean function f ′ : {0, 1}l′=Θ(l) → {0, 1} that is
(1/2− ε)-hard for circuit size g′ = Θ(g1/4ε2l−2) where ε ≥ (500l)1/3g−1/12.

f ′(a, s, v1, w) = 〈s, f(a|S1 ⊕ v1) ◦ f(a|S2 ⊕ v2) ◦ · · · f(a|Sl ⊕ vl)〉

Here (S1, . . . , Sl) is an (|a|, l, γl/4, l)-design where |a| = b40l
γ c. The vectors v1, . . . , vl are obtained by

a random walk on an expander graph, starting at v1 and walking according tow where |v1| = l, |w| = Θ(l).
The length of s is l. So l′ = |a|+ |s|+ |v1|+ |w| = Θ(l).

The proof of Lemma 4.5 is in the Appendix.
The construction of the Impagliazzo Widgerson Generator [IW97] is as follows. Given the input x← X ,

let f : {0, 1}logn → {0, 1} be such that f(〈a〉) = xa, ∀a ∈ [n]. Then we run the 3 amplification steps,
Lemma 4.1, Lemma 4.2 (part1 for a constant number of times, part 2 for once) and Lemma 4.5 sequentially
to get function f ′ from f . The generator IW(x, u) = NWf ′,S(u). As pointed out by Trevisan [Tre01], the
function IW is a (k, ε)-extractor. Let’s call it the IW-Extractor. It is implicit in [Tre01] that the output length
of the IW-Extractor is kα and the statistical distance of IW(X,U) from uniform distributions is ε = 1/kβ

for some 0 < α, β < 1. This can be verified by a detailed analysis of the IW-Extractor.
However, this construction is not in AC0 because the first amplification step is not in AC0.
Our basic construction is an adjustment of the IW-Extractor.

Construction 4.6. For any c2 ∈ N+ such that c2 ≥ 2 and any k = Θ(n/ logc2−2 n), let X be an (n, k)-
source . We construct a strong (k, 2ε) extractor Ext0 : {0, 1}n × {0, 1}d → {0, 1}m where ε = 1/nβ ,
β = 1/600, d = O(log n), m = kΘ(1). Let U be the uniform distribution of length d.

1. Draw x from X and u from U . Let f1 : {0, 1}l1 → {0, 1} be a boolean function such that ∀i ∈ [2l1 ],
f1(〈i〉) = xi where l1 = log n.
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2. Run amplification step of Lemma 4.2 part 1 for c2 times and run amplification step of Lemma 4.2 part
2 once to get function f2 : {0, 1}l2 → {0, 1} from f1 where l2 = 3c2+1l1 = Θ(log n).

3. Run amplification step Lemma 4.5 to get function f3 : {0, 1}l3 → {0, 1} from f2 where l3 = Θ(log n).

4. Construct function Ext0 such that Ext0(x, u) = NWf3,S(u).

Here S = {S1, S2, . . . , Sm} is a (d,m, θl3, l3)-design with θ = l1/(900l3), d = b10l3/θc, m = b2
θl3
4 c =

bn
1

3600 c.

Lemma 4.7. In Construction 4.6, Ext0 is a strong (k, 2ε) extractor.

The proof follows from the “Bad Set” argument given by Trevisan [Tre01]. In Trevisan [Tre01] the
argument is not explicit for strong extractors. Here our argument is explicit for proving that our construction
gives a strong extractor.

Proof. We will prove that for every (n, k)-source X and for every A : {0, 1}d+m → {0, 1} the following
holds.

|Pr[A(Us ◦ Ext0(X,Us)) = 1]− Pr[A(U) = 1]| ≤ 2ε

Here Us is the uniform distribution over {0, 1}d and U is the uniform distribution over {0, 1}d+m.
For every flat (n, k)-source X , and for every (fixed) function A, let’s focus on a set B ⊆ {0, 1}n such

that ∀x ∈ supp(X), if x ∈ B, then

|Pr[A(Us ◦ Ext0(x, Us)) = 1]− Pr[A(U) = 1]| > ε.

According to Nisan and Widgerson [NW94], we have the following lemma.

Lemma 4.8 (Implicit in [NW94] [Tre01]). If there exists an A-gate such that

|Pr[A(Us ◦ Ext0(x, Us)) = 1]− Pr[A(U) = 1]| > ε,

then there is a circuit C3 of size O(2θl3m), using A-gates, that can compute f3 correctly for 1/2 + ε/m
fraction of inputs.

Here A-gate is a special gate that can compute the function A.

By Lemma 4.8, there is a circuit C3 of size O(m2θl3) = O(2
5θl3

4 ) = O(n1/720), using A-gates, that can
compute f3 correctly for 1/2 + ε/m ≥ 1/2 + 1/n1/400 fraction of inputs.

By Lemma 4.5, there is a circuit C2, with A-gates, of size at most Θ(n
1
30 ) which can compute f2

correctly for at least 2/3 fraction of inputs.
According to Lemma 4.2 and our settings, there is a circuit C1, with A-gates, of size n

1
30 poly log n

which can compute f1 correctly for at least 1− 1/(c1 logc2 n) fraction of inputs for some constant c1 > 0.
Next we give an upper bound on the size of B. ∀x ∈ B, assume we have a circuit of size S =

n1/30poly(log n), using A-gates, that can compute at least 1 − 1/(c1 logc2 n) fraction of bits of x. The
total number of circuits, with A-gates, of size S is at most 2Θ(mS logS) = 2n

1/15poly(logn), as A is fixed
and has fan-in m + d = O(m). Each one of them corresponds to at most

∑n/(c1 logc2 n)
i=0

(
n
i

)
≤ (e ·

c1 logc2 n)n/(c1 logc2 n) = 2O(n/ logc2−1 n) number of x. So

|B| ≤ 2n
1/15poly(logn)2O(n/ logc2−1 n) = 2O(n/(logc2−1 n).

As X is an (n, k)-source with k = Θ(n/ logc2−2 n),

Pr[X ∈ B] ≤ |B| · 2−k ≤ ε.
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Then we know,

|Pr[A(Us ◦ Ext(X,Us)) = 1]− Pr[A(U) = 1]|

=
∑
x∈B

Pr[X = x]|Pr[A(Us ◦ Ext(x, Us)) = 1]− Pr[A(U) = 1]|

+
∑
x/∈B

Pr[X = x]|Pr[A(Us ◦ Ext(x, Us)) = 1]− Pr[A(U) = 1]|

≤2ε.

(6)

Lemma 4.9. The seed length of construction 4.6 is O(log n).

Proof. We know that l1 = log n, l2 = 3c2+1l1 = Θ(log n), l3 = Θ(log n). Also S is a (d10l3/ce =
Θ(l3),m, cl3, l3)-design. So d = b10l3/cc = Θ(l3) = Θ(log n).

Lemma 4.10. The function Ext0 in Construction 4.6 is in AC0. The circuit depth is c2 + 5. The locality is
Θ(logc2+2 n) = poly(log n).

Proof. First we prove that the locality is Θ(logc2+2 n).
By the construction of f1, we know f1(〈i〉) is equal to the ith bit of x.
Fix the seed u. According to Lemma 4.2 part 1, if we apply the amplification once to get f ′ from f , then

f ′(s, r) depends on f(w1), f(w2), · · · , f(wl), as

f ′(s, r) = 〈s, f(w1) ◦ f(w2) ◦ · · · ◦ f(wl)〉.

Here l = O(log n) is equal to the input length of f .
The construction in Lemma 4.2 part 2 is the same as that of Lemma 4.2 part 1. As a result, if apply

Lemma 4.2 part 1 for c2 times and Lemma 4.2 part 2 for 1 time to get f2 from f1, the output of f2 depends
on Θ(logc2+1 n) bits of the input x.

According to Lemma 4.5, the output of f3 depends on f2(a|S1 ⊕ v1), f2(a|S2 ⊕ v2), · · · , f2(a|Sl ⊕ vl2),
as

f3(a, s, v1, w) = 〈s, f2(a|S1 ⊕ v1) ◦ f2(a|S2 ⊕ v2) ◦ · · · f2(a|Sl ⊕ vl2)〉

So the output of f3 depends on O(logc2+2 n) bits of the x.
So the overall locality is O(logc2+2 n) = poly log n.
Next we prove that the construction is in AC0.
The input of Ext0 has two parts, x and u. Combining all the hardness amplification steps and the NW

generator, we can see that essentially u is used for two purposes: to select some t = Θ(logc2+2(n)) bits
(denote it as x′) from x (i.e., provide t indices u′1, . . . , u

′
t in [n]), and to provide a vector s′ of length t, finally

taking the inner product of x′ and the vector s′. Here although for each amplification step we do an inner
product operation, the overall procedure can be realized by doing only one inner product operation.

Since u has O(log n) bits, s′ can be computed from u by using a circuit of depth 2, according to Lemma
2.11 part 1.

Next we show that selecting x′ from x using the indices can be computed by CNF/DNFs, of polynomial
size, with inputs being x and the indices. The indices, u′i, i ∈ [t], are decided by u. Let’s assume ∀i ∈
[t], u′i = hi(u) for some deterministic functions hi, i ∈ [t]. As |u| = O(log n), the indices can be computed
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by CNF/DNFs of polynomial size. Also ∀i ∈ [t], f(u′i) can be represented by a CNF/DNF when u′i is given.
This is because

f(u′i) =

|x|∨
j=0

(Iu′i=j ∧ xj) =

|x|∧
j=0

(Iu′i 6=j ∨ xj).

Here Ie is the indicator function such that Ie = 1 if e is true and Ie = 0 otherwise. We know that Iu′i=j can
be represented by a boolean formula with only AND and NOT gates, checking whether u′i = j bit by bit.
Similarly Iu′i 6=j can be represented by a boolean formula with only OR and NOT gates, taking the negation
of Iu′i=j . As a result, this step can be computed by a circuit of depth 2.

So the computation of obtaining x′ can be realized by a circuit of depth 3 by merging the gates between
adjacent depths.

Finally we can take the inner product of two vectors x′ and s′ of length t = Θ(logc2+2(n)). By Lemma
2.11 part 2, we know that this computation can be represented by a poly-size circuit of depth c2 + 3.

The two parts of computation can be merged together to be a circuit of depth c2 + 5, as we can merge
the last depth of the circuit obtaining x′ and the first depth of the circuit computing the inner product. The
size of the circuit is polynomial in n as both obtaining x′ and the inner product operation can be realized by
poly-size circuits.

By Construction 4.6, Lemma 4.7, Lemma 4.9, Lemma 4.10, we have the following theorem.

Theorem 4.11. For any c ∈ N, any k = Θ(n/ logc n), there exists an explicit strong (k, ε)-extractor
Ext : {0, 1}n × {0, 1}d → {0, 1}m in AC0 of depth c+ 7, where ε = n−1/600, d = O(log n), m = bn

1
3600 c

and the locality is Θ(logc+4 n) = poly log n.

We call this extractor the Basic-AC0-Extractor.

5 Error Reduction

By Theorem 4.11, for any k = n
poly(logn) , we have a (k, ε)-extractor in AC0, with ε = 1/nβ where β is a

constant. In this section, we do error reduction to give an explicit (k, ε)-extractor in AC0 such that ε can be
quasi-polynomially small.

We use two major techniques. First is the sample-then-extract method.

5.1 Sample-Then-Extract

We first analyze the sampling method which is well studied by Zuckerman [Zuc97], Vadhan [Vad04], Gol-
dreich et al. [GVW15] and Healy [Hea08].

Definition 5.1 ([Vad04]). A (µ1, µ2, γ)-averaging sampler is a function Samp : {0, 1}r → [n]t such that
∀f : [n]→ [0, 1], if Ei∈[n][f(i)] ≥ µ1, then

Pr
I←Samp(Ur)

[
1

t

∑
i∈I

f(i) < µ2] ≤ γ.

The t samples generated by the sampler must be distinct.

Vadhan [Vad04] gives the following lemma on how to use samplers on weak sources.
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Lemma 5.2 (Sample a Source [Vad04]). Let 0 < 3τ ≤ δ ≤ 1. If Samp : {0, 1}r → [n]t is a (µ1, µ2, γ)-
averaging sampler for µ1 = (δ−2τ)/ log(1/τ) and µ2 = (δ−3τ)/ log(1/τ), then for every (n, δn)-source
X , we have SD(U ◦XSamp(Ur), U ◦W ) ≤ γ + 2−Ω(τn). Here U is the uniform distribution over {0, 1}r.
For every a in {0, 1}r, the random variable W |U=a is a (t, (δ − 3τ)t)-source.

We mainly use the following samplers given by Healy [Hea08].

Theorem 5.3 ([Hea08] Theorem 3). For any n ∈ N, any µ ∈ (0, 1], ε > µ, there exists an (µ, µ −
ε, γ)-averaging sampler Samp : {0, 1}r → [n]t with seed length r = log n + O(log(1/γ)/ε2) and t =
O(log(1/γ)/ε2) which can be computed by NC1 circuits of size poly(n, 1/ε, log(1/γ)).

Remark 5.4. If γ = Θ(2− logc n), ε = Θ(1/ loga n), then the sampler can be computed by AC0 circuitsof
depth a+ c+ 1 by Lemma 2.11.

For sample complexity (parameter t), by Lemma 8.3 of [Vad04], we can modify the sampler and get a
new sampler with the number of samples to be at least t while having the same seed length.

After sampling, we use leftover hash lemma to do extraction.

Lemma 5.5 (Leftover Hash Lemma [IZ89]). Let X be an (n′, k = δn′)-source. For any ∆ > 0, let H be
a universal family of hash functions mapping n′ bits to m = k − 2∆ bits. The distribution U ◦ Ext(X,U)
is at distance at most 1/2∆ to uniform distribution where the function Ext : {0, 1}n′ × {0, 1}d → {0, 1}m
chooses the U ’th hash function hU in H and outputs hU (X).

We use the following universal hash function family H = {hu, u ∈ {0, 1}n
′}. For every u, the hash

function hu(x) equals to the last m bits of u · x where u · x is computed in F2n′ .
Specifically, for any constant a ∈ N+, for any n′ = Θ(loga n) then Ext can be computed by an AC0

circuit of depth a+ 1.

Proof. The proof in [IZ89] has already shown that the universal hash function is a strong extractor. We only
need to show that the hash functions can be computed in AC0.

Given a seed u, we need to compute u · x which is a multiplication in F2n′ . We claim that this can be
done in AC0. Note that since the multiplication is in F2n′ , it is also a bi-linear function when regarding the
two inputs as two n′-bit strings. Thus, each output bit is essentially the inner product over some input bits.

This shows that each output bit of p · q is an inner product of two vectors of n′ dimension. As n′ =
Θ(loga n), by Lemma 2.11, this can be done in AC0 of depth a+ 1 and size poly(n). All the output bits can
be computed in parallel. So u · x can be computed in AC0 of depth a+ 1 and size poly(n).

Theorem 5.6. For any constant δ ∈ (0, 1], a ∈ N+ and any ε = 1/2−Θ(loga n), there exists an explicit
construction of a (k = δn, ε)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m in AC0 of depth 2a + 1, where
d = O(log(n/ε)), m = Θ(log(n/ε)) and the locality is O(log(n/ε)).

Proof. We follow the sample-then-extract procedure.
Let Samp : {0, 1}rs → {0, 1}t be a (µ1, µ2, γ)-averaging sampler following from Theorem 5.3. Let τ

be a small enough constant, µ1 = (δ − 2τ)/ log(1/τ), µ2 = (δ − 3τ)/ log(1/τ), γ = 0.8ε. As a result, µ1

is a constant and µ2 = αµ1 for some constant α ∈ (0, 1). For an (n, k)-source X , by Lemma 5.2, we have
SD(R ◦XSamp(R), R ◦W ) ≤ γ + 2−Ω(τn). Here R is a uniform random variable. For every r in {0, 1}rs ,
the random variable W |R=r is a (t, (δ − 3τ)t)-source.

By Lemma 5.3, rs = log n+O(log(1/γ)) and we can set t = Θ(log(n/ε)) to be large enough.
Let ε1 = 0.1ε. We pick m = O(log(n/ε)) to be such that (δ − 3τ)t ≥ m + 2 log(1/ε1). Let Ext1 :

{0, 1}t × {0, 1}d1 → {0, 1}m be a ((δ − 3τ)t, ε1)-extractor following from Lemma 5.5. As a result,

SD(U ◦ Ext1(W,U), U ′) ≤ ε1,
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where U,U ′ are uniform distributions.
As a result, the sample-then-extract procedure gives an extractor of error

γ + 2−Ω(τn) + ε1 ≤ 0.8ε+ 2−Ω(τn) + 0.1ε.

As τ is a constant, 2−Ω(τn) ≤ 0.1ε.
Thus the error of the extractor is at most ε.
The seed length is rs + d1 = O(log(n/ε)).
The locality is t = O(log(n/ε)) because when the seed is fixed, we select t bits from X by sampling.
The sampler Samp is in AC0 of depth a + 1. The extractor Ext1 is in AC0 of depth a + 1. So Ext is in

AC0 of depth 2a+ 1.

In this way, we have an AC0 extractor which can have quasi-polynomial small errors.

5.2 Previous Error Reduction Techniques

Another tool we will be relying on is the error reduction method for extractors, given by Raz et al. [RRV99].
They give an error reduction method for poly-time extractors and we will adapt it to the AC0 settings.

Lemma 5.7 (Gx Property [RRV99]). Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k, ε)-extractor with
ε < 1/4. Let X be any (n, k + t)-source. For every x ∈ {0, 1}n, there exists a set Gx such that the
following holds.

• For every x ∈ {0, 1}n, Gx ⊂ {0, 1}d and |Gx|/2d = 1− 2ε.

• Ext(X,GX) is within distance at most 2−t from an (m,m − O(1))-source. Here Ext(X,GX) is
obtained by first sampling x according to X , then choosing r uniformly from Gx, and outputting
Ext(x, r). We also denote Ext(X,GX) as Ext(X,U)|U∈GX .

Raz et al. [RRV99] showed the following result.

Lemma 5.8 ([RRV99]). Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k, ε)-extractor. Consider Ext′ :
{0, 1}n × {0, 1}2d → {0, 1}2m which is constructed in the following way.

Ext′(x, u) = Ext(x, u1) ◦ Ext(x, u2)

Here u = u1 ◦ u2.
For any t ≤ n− k, let X be an (n, k + t)-source . Let U be the uniform distribution of length 2d.
With probability at least 1−O(ε2), Ext′(X,U) is 2−t-close to having entropy m−O(1).

Remark 5.9. Here we briefly explain the result in lemma 5.8. The distribution of Y = Ext′(X,U1 ◦ U2) is
the convex combination of Y |U1∈GX ,U2∈GX , Y |U1 /∈GX ,U2∈GX , Y |U1∈GX ,U2 /∈GX and Y |U1 /∈GX ,U2 /∈GX . That
is

Y =IU1∈GX ,U2∈GXY |U1∈GX ,U2∈GX + IU1 /∈GX ,U2∈GXY |U1 /∈GX ,U2∈GX
+ IU1∈GX ,U2 /∈GXY |U1∈GX ,U2 /∈GX + IU1 /∈GX ,U2 /∈GXY |U1 /∈GX ,U2 /∈GX .

(7)

Also we know that Pr[IU1 /∈GX ,U2 /∈GX = 1] = O(ε2). As a result, according to Lemma 5.7, this lemma
follows.
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Informally speaking, this means that if view Y = Ext′(X,U) = Y1 ◦ Y2, then with high probability
either Y1 or Y2 is 2t-close to having entropy m−O(1).

We adapt this lemma by doing the extraction for any t ∈ N+ times instead of 2 times. We have the
following result.

Lemma 5.10. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k, ε)-extractor. For any t ∈ N+, consider
Ext′ : {0, 1}n × {0, 1}td → {0, 1}tm which is constructed in the following way.

Ext′(x, u) = Ext(x, u1) ◦ Ext(x, u2) ◦ · · · ◦ Ext(x, ut)

Here u = u1 ◦ u2 ◦ · · · ◦ ut.
For any a ≤ n − k, let X be an (n, k + a)-source. Let U = ©t

i=1Ui be the uniform distribution such
that ∀i ∈ [t], |Ui| = d.

1. For S ⊆ [t], let IS,X be the indicator such that IS,X = 1 if ∀i ∈ S,Ui ∈ GX ,∀j /∈ S,Uj /∈ GX and
IS,X = 0 otherwise. Here GX is defined according to 5.7. The distribution of Ext′(X,U) is a convex
combination of the distributions of Ext′(X,U)|IS,X=1, S ⊆ [t]. That is

U ◦ Ext′(X,U) =
∑
S⊆[t]

IS,XU ◦ Ext′(X,U)|IS,X=1

2. For every S ⊆ [t1], S 6= ∅, there exists an i∗ ∈ [t1] such that Ext(X,Ui∗)|IS,X=1 is 2−a-close to
having entropy m−O(1).

Proof. The first assertion is proved as the follows. By the definition of Gx of Lemma 5.7, for each fixed
x ∈ supp(X),

∑
S⊆[t] IS,x = 1 as for each i, Ui ∈ Gx either happens or not. Also IS,X is a convex

combination of IS,x,∀x ∈ supp(X). So
∑

S⊆[t] IS,X =
∑

S⊆[t]

∑
x∈supp(X) IS,xIX=x = 1. As a result, the

assertion follows.
The second assertion is proved as the follows. For every S ⊆ [t1], S 6= ∅, by the definition of IS,X , there

exists an i∗ ∈ [t1], Ui∗ ∈ GX . By Lemma 5.7, Ext(X,Ui∗)|Ui∗∈GX = Ext(X,Ui∗)|IS,X=1 is 2−a-close to
having entropy m−O(1).

5.3 The Construction

Finally we give the construction for error reduction of super-polynomially small errors.

Construction 5.11 (Error Reduction for Super-Polynomially Small Error). For any constant a ∈ N+, any
constant c ∈ N, any k = Θ(n/ logc n) and any ε = 1/2Θ(loga n), we construct a strong (k, ε)-extractor
Ext : {0, 1}n × {0, 1}d → {0, 1}m with m = kΩ(1).

• Let Ext0 : {0, 1}n0=n × {0, 1}d0 → {0, 1}m0 be a (k0, ε0)-extractor following from Theorem 4.11
with k0 ≤ k −∆1,∆1 = log(n/ε), ε0 = k−Θ(1), d0 = Θ(log n), m0 = kO(1).

• Let Ext1 : {0, 1}n1=m0/t2 × {0, 1}d1 → {0, 1}m1 be a (k1, ε1)-extractor following from Theorem 5.6
where k1 = 0.9n1, ε1 = ε/n, d1 = O(log(n/ε)), m1 = Θ(log(n/ε)).

• Let t1 be such that (2ε0)t1 ≤ 0.1ε. (We focus on the case that ε < ε0. If ε ≥ ε0, we set Ext to be Ext0.)

• Let t2 = m
1/3
0 .
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Let X be the input (n, k) source. Our construction is as follows.

1. Let R1, R2, . . . , Rt1 be independent uniform distributions such that for every i ∈ [t1] the length of Ri
is d0. Get Y1 = Ext0(X,R1), . . . , Yt1 = Ext0(X,Rt1).

2. Get Y = Y1 ◦ Y2 ◦ Y3 ◦ · · · ◦ Yt1 .

3. For each i ∈ [t1], let Yi = Yi,1 ◦ Yi,2 ◦ · · · ◦ Yi,t2 such that for every j ∈ [t2], Yi,j has length
n1 = m0/t2. Let S1, S2, . . . , St1 be independent uniform distributions, each having length d1. Get
Zi,j = Ext1(Yi,j , Si),∀i ∈ [t1], j ∈ [t2]. Let Zi = Zi,1 ◦ Zi,2 ◦ · · ·Zi,t2 .

4. Let R =©iRi, S =©iSi. We get Ext(X,U) = Z =
⊕t1

i Zi where U = R ◦ S.

Lemma 5.12. Construction 5.11 gives a strong (k, ε)-extractor.

In order to prove this Lemma, we need the following facts.

Lemma 5.13 (Chain Rule of Min-Entropy [Vad12]). Let (X,Y ) be a jointly distributed random variable
with entropy k. The length of X is l. For every ε > 0, with probability at least 1 − ε over x ← X , Y |X=x

has entropy k − l − log(1/ε).
Also there exists another source (X,Y ′) such that ∀x ∈ {0, 1}l, Y ′|X=x has entropy k − l − log(1/ε)

and SD((X,Y ), (X,Y ′)) ≤ ε.

Lemma 5.14. Let X = X1 ◦ · · · ◦Xt be an (n, n−∆)-source where for each i ∈ [t], |Xi| = n1 = ω(∆).
Let k1 = n1 −∆− log(1/ε0) where ε0 can be as small as 1/20.9n1 .
Let Ext1 : {0, 1}n1 × {0, 1}d1 → {0, 1}m1 be a strong (k1, ε1)-extractor.
Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be constructed as the following,

Ext(X,Us) = Ext1(X1, Us) ◦ · · · ◦ Ext1(Xt, Us).

Then Ext is a strong (n−∆, ε)-extractor where ε = SD(Us ◦ Ext(X,Us), U) ≤ t(ε0 + ε1).

Proof. We prove by induction over the block index i.
For simplicity, let X̃i = X1 ◦ · · · ◦ Xi for every i. We slightly abuse the notation Ext here so that

Ext(X̃i, Us) = Ext1(X1, Us) ◦ · · · ◦ Ext1(Xi, Us) denotes the extraction for the first i blocks.
For the first block, we know H∞(X1) = n1 −∆. According to the definition of Ext1,

SD(Us ◦ Ext1(X1, Us), U) ≤ ε1 ≤ (ε0 + ε1).

Assume for the first i − 1 blocks, SD(Us ◦ Ext1(X̃i−1, Us), U) ≤ (i − 1)(ε0 + ε1). Consider X̃i. By
Lemma 5.13, we know that there exists X ′i such that SD(X̃i, X̃i−1 ◦ X ′i) ≤ ε0, where X ′i is such that
∀x̃i−1 ∈ supp(X̃i−1), H∞(X ′i|X̃i−1 = x̃i−1) ≥ n1−∆− log(1/ε0). So according to Lemma 2.4 part 2, as
Us◦Ext(X̃i−1, Us)◦Ext1(Xi, Us) is a convex combination of u◦Ext(X̃i−1, u)◦Ext1(Xi, u), ∀u ∈ supp(Us)
and Us ◦ Ext(X̃i−1, Us) ◦ Ext1(X ′i, Us) is a convex combination of u ◦ Ext(X̃i−1, u) ◦ Ext1(X ′i, u), ∀u ∈
supp(Us), we have

SD(Us ◦ Ext(X̃i−1, Us) ◦ Ext1(Xi, Us), Us ◦ Ext(X̃i−1, Us) ◦ Ext1(X ′i, Us)) ≤ SD(X̃i, X̃i−1 ◦X ′i) ≤ ε0.

According to the assumption, Lemma 2.9 and the triangle inequality of Lemma 2.4, we have the follow-
ing.
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SD(Us ◦ Ext(X̃i−1, Us) ◦ Ext1(Xi, Us), U)

≤SD(Us ◦ Ext(X̃i−1, Us) ◦ Ext1(Xi, Us), Us ◦ Ext(X̃i−1, Us) ◦ Ext1(X ′i, Us))

+ SD(Us ◦ Ext(X̃i−1, Us) ◦ Ext1(X ′i, Us), U)

≤ε0 + (i− 1)(ε0 + ε1) + ε1

=i(ε0 + ε1)

(8)

The first inequality is due to the triangle property of Lemma 2.4. For the second inequality, first we have
already shown that SD(Us◦Ext(X̃i−1, Us)◦Ext1(Xi, Us), Us◦Ext(X̃i−1, Us)◦Ext1(X ′i, Us)) ≤ ε0. Second,
as X̃i−1 ◦X ′i is a ((i − 1)n1 −∆, n1 −∆ − log(1/ε0))-block source, by our assumption and Lemma 2.9,
SD(Us ◦ Ext(X̃i−1, Us) ◦ Ext1(X ′i, Us), U) ≤ (i− 1)(ε0 + ε1) + ε1. This proves the induction step.

As a result, SD(Us ◦ Ext(X,Us), U) ≤ (ε0 + ε1)t.

Next we prove Lemma 5.12.

Proof of Lemma 5.12. Let GX be defined by Lemma 5.7 on X and Ext0.
For any T ⊆ [t1], let IT,X be the indicator such that IT,X = 1, if ∀i ∈ T,Ri ∈ GX ,∀i /∈ T,Ri /∈ GX

and IT,X = 0, otherwise. By Lemma 5.10,

R ◦ Y

=
∑
T⊆[t1]

IT,X(R ◦ Y |IT,X=1)

=I∅,X(R ◦ Y |I∅,X=1) + (1− I∅,X)(R ◦ Y |I∅,X=0)

=I∅,X(R ◦ Y |I∅,X=1) +
∑

T⊆[t1],T 6=∅

IT,X(R ◦ Y |IT,X=1)

(9)

Fixing a set T ⊆ [t1], T 6= ∅, by Lemma 5.10, there exists an i∗ ∈ [t1] such that Ri∗ ∈ GX and
R ◦ Y |IT,X=1 is 2−∆1-close to

R′ ◦A ◦W ◦B =©iR
′
i ◦A ◦W ◦B

Here W = Yi∗ |Ri∈GX has entropy at least m0 −O(1). Also, A,B and R′i, i = 1, 2, . . . , t are some random
variables where A = (i∗ − 1)m1, |B| = (t− i∗)m1 and ∀i ∈ [t], |R′i| = d1. In fact, R′ = R|IT,X=1.

According to our construction, next step we view A ◦W ◦B as having t1t2 blocks of block size n1. We
apply the extractor Ext1 on each block. Although for all blocks the extractions are conducted simultaneously,
we can still view the procedure as first extractingA andB, then extractingW . Assume forA, after extraction
by using seed SA, it outputs A′. Also for B, after extraction by using seed SB , it outputs B′. So after
extracting A and B, we get A′ ◦ W ◦ B′. The length of A′ ◦ B′ is at most t1m0m1/n1 = t1t2m1 =
Θ(t1t2 log n), as n1 = m0/t2.

We know that n1 = m0/t2 = m
2/3
0 ≥ 10t1t2m1 = m

1/3
0 poly(log n). Also according to Lemma

5.13, R′ ◦ SA ◦ SB ◦ A′ ◦ W ◦ B′ is ε′-close to R′ ◦ SA ◦ SB ◦ A′ ◦ W ′ ◦ B′ such that for every r′ ∈
supp(R′), a ∈ supp(A′), b ∈ supp(B′), sA ∈ supp(SA), sB ∈ supp(SB), conditioned on R′ = r′, SA =
sA, SB = sB, A

′ = a,B′ = b, W ′ has entropy at least n1 − O(log n) − t1t2m1 − log(1/ε′) = n1 − ∆2

where ∆2 = O(log n) + t1t2m1 + log(1/ε′) = O(m
1/3
0 log n). Here ε′ can be as small as 2−k

Ω(1)
. That is

∀r′ ∈ supp(R′), a ∈ supp(A′), b ∈ supp(B′), sA ∈ supp(SA), sB ∈ supp(SB),

H∞(W ′|R′=r′,SA=sA,SB=sB ,A′=a,B′=b) ≥ n1 −∆2.
(10)
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Let Ext′1(W ′, Si∗) = ©i∈[t2]Ext1(W ′i , Si∗) where W ′ = ©i∈[t2]W
′
i and ∀i ∈ [t2], |W ′i | = n1. By

Lemma 5.14, as k1 = 0.9n1 ≤ n1 −∆2, Si∗ ◦ Ext′1(W ′, Si∗)|R′=r′,SA=sA,SB=sB ,A′=a,B′=b is (ε′0 + ε1)t2-
close to uniform distributions where ε′0 can be as small as 2−k

Ω(1)
.

As a result, we have the following.

SD(U ◦ Ext(X,U), U ′)

=SD(R ◦ S ◦ Ext(X,U), R ◦ S ◦ Ũ)

=SD(I∅,X(R ◦ S ◦ Ext(X,U)|I∅,X=1), I∅,X(R ◦ S ◦ Ũ |I∅,X=1))

+ SD((1− I∅,X)(R ◦ S ◦ Ext(X,U)|I∅,X=0), (1− I∅,X)(R ◦ S ◦ Ũ |I∅,X=0))

= Pr[I∅,X = 1]SD(R ◦ S ◦ Ext(X,U)|I∅,X=1, R ◦ S ◦ Ũ |I∅,X=1)

=(2ε0)t1SD(R ◦ S ◦ Ext(X,U)|I∅,X=1, R ◦ S ◦ Ũ |I∅,X=1)

+ SD((1− I∅,X)(R ◦ S ◦ Ext(X,U)|I∅,X=0), (1− I∅,X)(R ◦ S ◦ Ũ |I∅,X=0))

(11)

As
(2ε0)t1SD(R ◦ S ◦ Ext(X,U)|I∅,X=1, R ◦ S ◦ Ũ |I∅,X=1) ≤ (2ε0)t1

let’s focus on SD((1− I∅,X)(R ◦ S ◦ Ext(X,U)|I∅,X=0), (1− I∅,X)(R ◦ S ◦ Ũ |I∅,X=0)).

SD((1− I∅,X)(R ◦ S ◦ Ext(X,U)|I∅,X=0), (1− I∅,X)(R ◦ S ◦ Ũ |I∅,X=0))

=SD(
∑

T⊆[t1],T 6=∅

IT,X(R ◦ S ◦ Ext(X,U)|IT,X=1),
∑

T⊆[t1],T 6=∅

IT,X(R ◦ S ◦ Ũ |IT,X=1))

=
∑

T⊆[t1],T 6=∅

Pr[IT,X = 1]SD(R ◦ S ◦ Ext(X,U)|IT,X=1, R ◦ S ◦ Ũ |IT,X=1)

≤
∑

T⊆[t1],T 6=∅

Pr[IT,X = 1](2−∆1 + SD(R′ ◦ S ◦ (A′ ⊕ Ext′1(W,Si∗)⊕B′), R′ ◦ S ◦ Ũ))

=(1− (2ε0)t1)(2−∆1 + SD(R′ ◦ S ◦ (A′ ⊕ Ext′1(W,Si∗)⊕B′), R′ ◦ S ◦ Ũ))

≤2−∆1 + SD(R′ ◦ S ◦ (A′ ⊕ Ext′1(W,Si∗)⊕B′), R′ ◦ S ◦ Ũ)

≤2−∆1 + SD(R′ ◦ S ◦ (A′ ⊕ Ext′1(W,Si∗)⊕B′), R′ ◦ S ◦ (A′ ⊕ Ext′1(W ′, Si∗)⊕B′))
+ SD(R′ ◦ S ◦ (A′ ⊕ Ext′1(W ′, Si∗)⊕B′), R′ ◦ S ◦ Ũ)

≤2−∆1 + ε′ + SD(R′ ◦ S ◦ (A′ ⊕ Ext′1(W ′, Si∗)⊕B′), R′ ◦ S ◦ Ũ)

≤2−∆1 + ε′ + (ε′0 + ε1)t2

(12)

Here U,U ′, Ũ are uniform distributions. In the second equation, I∅,X is the indicator such that I∅,X = 1 if
∀i ∈ [t1], Ri /∈ GX where GX is defined by Lemma 5.7 on X and Ext0. For the first inequality, we need to
show that

SD(R ◦ S ◦ Ext(X,U)|IT,X=1, R
′ ◦ S ◦ (A′ ⊕ Ext′1(W,Si∗)⊕B′)) ≤ 2−∆1 .

We know that for every s ∈ supp(S), by Lemma 2.4 part 2,

SD(R ◦ S ◦ Ext(X,U)|IT,X=1,S=s, R
′ ◦ S ◦ (A′ ⊕ Ext′1(W,Si∗)⊕B′)|S=s)

≤SD(R ◦ Y |IT,X=1, R
′ ◦A ◦W ◦B)

≤2−∆1 .

(13)
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Here R ◦S ◦Ext(X,U)|IT,X=1,S=s = h(R ◦Y |IT,X=1) for some deterministic function h as S = s is fixed.
Also R′ ◦ S ◦ (A′ ⊕ Ext′1(W,Si∗)⊕B′)|S=s = h(R′ ◦A ◦W ◦B) for the same reason. As a result,

SD(R ◦ S ◦ Ext(X,U)|IT,X=1, R
′ ◦ S ◦ (A′ ⊕ Ext′1(W,Si∗)⊕B′))

=
∑

s∈supp(S)

Pr[S = s]SD(R ◦ S ◦ Ext(X,U)|IT,X=1,S=s, R
′ ◦ S ◦ (A′ ⊕ Ext′1(W,Si∗)⊕B′)|S=s)

≤2−∆1 .

(14)

The third inequality holds by the triangle property of Lemma 2.4 part 1. The 4th inequality holds because
by Lemma 2.4 part 2,

SD(R′ ◦ S ◦ (A′ ⊕ Ext′1(W,Si∗)⊕B′)|S=s, R
′ ◦ S ◦ (A′ ⊕ Ext′1(W ′, Si∗)⊕B′)|S=s)

≤SD(R′ ◦ S ◦A ◦W ◦B,R′ ◦ S ◦A ◦W ′ ◦B)

≤ε′.
(15)

.
As a result, the total error is at most

(2ε0)t1 + (2−∆1 + ε′ + (ε′0 + ε1)t2)

We can set ε′ = 0.1ε, ε′0 = ε/n so that (2−∆1 + ε′ + (ε′0 + ε1)t2) ≤ 0.1ε. As (2ε0)t1 < 0.1ε, we know
SD(U ◦ Ext(X,U), U ′) ≤ ε.

Lemma 5.15. In Construction 5.11, the output length of Ext is m = Ω(n10800 log(n/ε)).

Proof. The output length is equal to t2 ×m1 = m
1/3
0 Ω(log(n/ε)) = Ω(n1/10800 log(n/ε))

Lemma 5.16. In Construction 5.11, the function Ext can be realized by a circuit of depth 3a + c + 7. Its
locality is O(log2a+c+4 n).

Proof. By Theorem 4.11 and Lemma 5.6, both Ext0 and Ext1 in our construction are in AC0. For Ext0, it
can be realized by circuits of depth c+ 7. For Ext1, it can be realized by circuits of depth 2a+ 1.

In the first and second steps of Construction 5.11, we only run Ext0 for t1 times in parallel. So the
computation can be realized by circuits of depth c+ 7

For the third step, we run Ext1 for t1t2 times in parallel, which can be realized by circuits of depth
2a+ 1.

The last step, according to Lemma 2.11, taking the XOR of O(log(1/ε)) bits can be realized by circuits
of depth a+ 1. Each bit of Z is the XOR of t1 bits and all the bits of Z can be computed in parallel. So the
computations in this step can be realized by circuits of depth a+ 1.

Now we merge the three parts of circuits together. As the circuits between each parts can be merged by
deleting one depth, our construction can be realized by circuits of depth

(c+ 7) + 2a+ 1 + a+ 1− 2 = 3a+ c+ 7.

For the locality, by Theorem 4.11, the locality of Ext0 is O(logc+4 n). By Lemma 5.6, the locality
of Ext1 is O(log(n/ε)). So each bit of Z is related with at most t1 × O(log(n/ε)) × O(logc+4 n) =
O(log2a+c+4 n) bits of X .
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Lemma 5.17. In Construction 5.11, d = O(log n+ log(n/ε) log(1/ε)
logn ).

Proof. In Construction 5.11, as
U = R ◦ S =©iRi ◦©iSi,

|U | = O(t1d0 + t1d1). By the definitions of Ext0 and Ext1, we know that d0 = O(log n) and d1 =
O(log(n/ε)). Also we know that t1 = O(log(1/ε)/ log n) because ε0 = n−Θ(1), (2ε0)t1 ≤ 0.1ε. Note that
we have to compute Ext0 for at least once. So d = O(log n+ log(n/ε) log(1/ε)

logn ).

Theorem 5.18. For any constant a, c ∈ N, any k = Θ(n/ logc n) and any ε = 1/2Θ(loga n), there exists
an explicit construction of a strong (k, ε)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m in AC0 of depth
3a + c + 7, where d = O(log n + log(n/ε) log(1/ε)

logn ), m = Ω(n1/10800 log(n/ε)) = kΩ(1) and the locality is
(log n)2a+c+4.

Proof. It follows from Construction 5.11, Lemma 5.12, Lemma 5.15 , Lemma 5.16 and Lemma 5.17.

If we do not require the extractor to be in AC0, we can get an extractor with low locality while having
very small error. The construction is similar to Construction 5.11. The proof is also in the same way as that
of Theorem 5.18. So we directly give the result.

Theorem 5.19. For any constant c ∈ N, any k = Θ( n
logc n), there exists an explicit construction of a

strong (k, ε)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m, where ε can be as small as 2−k
Ω(1)

, d =

Θ(log n+ log(n/ε) log(1/ε)
logn ), m = Ω(n

1
10800 log(nε )) = kΩ(1) and the locality is log2(1/ε) logc+O(1) n.

6 Output Length Stretching

In this section, we show how to extract (1− γ)k bits for any constant γ > 0.

6.1 Pre-sampling

By Theorem 5.18, we have a (k, ε)-extractor in AC0 for any k = n/poly(log n) and any ε = 1/poly(n). We
use pre-sampling to increase the output length.

Zuckerman [Zuc97] gives sampler (oblivious sampler) constructions from extractors.

Definition 6.1 ( [Zuc97] ). An (n,m, t, γ, ε)-oblivious sampler is a deterministic function Samp : {0, 1}n →
({0, 1}m)t such that ∀f : {0, 1}m → [0, 1],

Pr
I←Samp(Ur)

[|1
t

∑
i∈I

f(i)−Ef | > ε] ≤ γ.

The following lemma explicitly gives a construction of oblivious samplers using extractors.

Lemma 6.2 ( [Zuc97]). If there is an explicit (k = δn, ε)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m,
then there is an explicit (n,m, t = 2d, γ = 21−(1−δ)n, ε)-oblivious sampler.

The sampler is constructed as follows. Given a seed x of length n, the t = 2d samples are Ext(x, u),
∀u ∈ {0, 1}d.

As a result, we can construct the following samplers.

Lemma 6.3. For any a ∈ N+ , let γ be any 1/2Θ(loga n).
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• For any c ∈ N, let ε be any Θ(1/ logc n). There exists an explicit (O(log(1/γ)), log n, t, γ, ε)-
oblivious sampler for any integer t ∈ [t0, n] with t0 = poly(log n).

• For any constant α in (0, 1), any c ∈ N, any µ = Θ(1/ logc n), there exists an explicit (µ, αµ, γ)-
averaging sampler Samp : {0, 1}Θ(loga n) → [n]t in AC0 of circuit depth a + 2, for any integer
t ∈ [t0, n] with t0 = poly(log n).

Specifically, if c = 0, t can be any integer in [t0, n] with t0 = (log n)Θ(a).

Proof. Let k = loga n. For any ε = Θ(1/ logc n), let’s consider a (k, ε)-extractor Ext : {0, 1}n′=c0 loga n ×
{0, 1}d → {0, 1}logn for some constant c0, following Lemma 2.8. Here we make one modification. We
replace the last d bits of the output with the seed. We can see in this way, Ext is still an extractor.

Here the entropy rate is δ = 1/c0 which is a constant. According to Lemma 2.8, we know that, d can be
Θ( log2(n′/ε)

logn′ ) = Θ(log log n).
For the first assertion, according to Lemma 6.2, there exists an explicit construction of a (c loga n, log n,

t, γ, ε)-oblivious sampler where γ = 21−(1−2/c)(c loga n). As we can increase the seed length to log n by

padding uniform random bits, t can be any integer in [t0, n] with t0 = 2
Θ(

log2(n′/ε)
logn′ )

= poly(log n). As c0

can be any large enough constant, γ can be 1/2Θ(loga n).
Next we prove the second assertion.
According to the definition of oblivious sampler, we know that ∀f : [n]→ [0, 1],

Pr
I←Samp(U)

[|1
t

∑
i∈I

f(i)−Ef | > ε] ≤ γ.

Next we consider the definition of averaging sampler.
Let (1− α)µ = ε. As µ = Θ(1/ logc n), ε = Θ(1/ logc n). For any f : [n]→ [0, 1] such that µ ≤ Ef ,

we have the following inequalities, where Samp is a (c loga n, log n, t, γ, ε)-oblivious sampler.

Pr
I←Samp(U)

[
1

t

∑
i∈I

f(i) < αµ]

= Pr
I←Samp(U)

[
1

t

∑
i∈I

f(i) < µ− ε]

= Pr
I←Samp(U)

[µ− 1

t

∑
i∈I

f(i) > ε]

≤ Pr
I←Samp(U)

[Ef − 1

t

∑
i∈I

f(i) > ε]

≤ Pr
I←Samp(U)

[|1
t

∑
i∈I

f(i)−Ef | > ε]

≤γ

(16)

The first inequality holds because if the event that µ − 1
t

∑
i∈I f(i) > ε happens, then the event that

Ef − 1
t

∑
i∈I f(i) > ε will happen, as µ ≤ Ef . The second inequality is because Ef − 1

t

∑
i∈I f(i) ≤

|Ef − 1
t

∑
i∈I f(i)|. So if Ef − 1

t

∑
i∈I f(i) > ε happens, then |1t

∑
i∈I f(i)−Ef | > ε happens.

Also as we replace the last d bits of the output of our extractor with the seed, the samples are distinct
according to the construction of Lemma 6.2.

According to the definition of averaging sampler, we know that this gives an explicit (µ, αµ, γ)-
averaging sampler.
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According to the construction described in the proof of Lemma 6.2, the output of the sampler is com-
puted by running the extractor following Lemma 2.8 for t times in parallel. So the circuit depth is equal to
the circuit depth of the extractor Ext.

Let’s recall the construction of the Trevisan’s extractor Ext.
The encoding procedure is doing the multiplication of the encoding matrix and the input x of length

n′ = c loga n. By Lemma 2.11, this can be done by a circuit of depth a+ 1.
The last step is the procedure of N-W generator. The selection procedure can be represented as a

CNF/DNF, as the seed length for Ext is at most Θ(log n). (Detailed proof is the same as the proof of
Lemma 4.10.)

As a result, we need a circuit of depth a+ 2 to realize Samp.
For the special situation that c = 0, the seed length d for Ext can be Θ(a log log n). So t0 = 2d =

(log n)Θ(a).

By Lemma 5.2, we can sample several times to get a block source.

Lemma 6.4 (Sample a Block Source). Let t be any constant in N+. For any δ > 0, letX be an (n, k = δn)-
source . Let Samp : {0, 1}r → [n]m be a (µ1, µ2, γ)-averaging sampler where µ1 = (1

t δ − 2τ)/ log(1/τ)

and µ2 = (1
t δ − 3τ)/ log(1/τ), m = ( t−1

t k − log(1/ε0))/t. Let εs = γ + 2−Ω(τn). For any i ∈ [t], let Uis
be uniform distributions over {0, 1}r. Let Xi = XSamp(Ui), for i ∈ [t].

It concludes that ©t
i=1Ui ◦ ©t

i=1Xi is ε = t(εs + ε0)-close to ©t
i=1Ui ◦ ©t

i=1Wi where for every
u ∈ supp(©t

i=1Ui), conditioned on ©t
i=1Ui = u, ©t

i=1Wi is a (k1, k2, . . . , kt)-block source with block
size m and k1 = k2 = · · · = kt = (δ/t− 3τ)m. Here ε0 can be as small as 1/2Ω(k).

Proof. We prove by induction on i ∈ [t].
If i = 1, according to Lemma 5.2, we know U1 ◦X1 is εs = (γ + 2−Ω(τn))-close to U1 ◦W such that

∀u ∈ supp(U1), H∞(W |U1=u) = (δ/t− 3τ)m.
Next we prove the induction step.
Suppose©i

j=1Uj ◦ ©i
j=1Xj is (εs + ε0)i-close to©i

j=1Uj ◦ ©i
j=1Wj , where for every u ∈ {0, 1}ir,

conditioned on©i
j=1Uj = u,©i

j=1Wj is a (k1, k2, . . . , ki)-block source with block size m and k1 = k2 =
· · · = ki = (δ/t− 3τ)m.

Consider i+1. Recall the Chain Rule Lemma 5.13. First notice that©i
j=1Uj ◦©i

j=1Xj ◦X has entropy
ir + k. Then we know that©i

j=1Uj ◦ ©i
j=1Xj ◦ X is ε0-close to©i

j=1Uj ◦ ©i
j=1Xj ◦ X ′ such that for

every u ∈ {0, 1}ir and every x ∈ {0, 1}im, conditioned on ©i
j=1Uj = u,©i

j=1Xj = x, X ′ has entropy
k − im− log(1/ε0) ≥ k/t which means the entropy rate is at least δ/t.

By our assumption for i, ©i
j=1Uj ◦ ©i

j=1Xj ◦ X ′ is (εs + ε0)i-close to ©i
j=1Uj ◦ ©i

j=1Wj ◦ X̃ ,
where X̃ is a random variable such that ∀u ∈ {0, 1}ir,∀x ∈ {0, 1}im, X̃|©i

j=1Uj=u,©i
j=1Xj=x

has the same

distribution as X ′|©i
j=1Uj=u,©i

j=1Wj=x
. As a result, for every u ∈ {0, 1}ir and x ∈ {0, 1}im, conditioned

on©i
j=1Uj = u,©i

j=1Wj = x, X̃ has entropy k − im− log(1/ε0) ≥ k/t.
Denote the event (©i

j=1Uj = u,©i
j=1Wj = x) as e, by Lemma 5.2, by sampling on source X̃|e,

we get Ui+1 ◦ (X̃|e)Samp(Ui+1) = Ui+1 ◦ X̃Samp(Ui+1)|e. It is εs-close to Ui+1 ◦W |e where ∀a ∈ {0, 1}r,
(W |e)|Ui+1=a is a (m, (δ/t−3τ)m)-source. Thus©i+1

j=1Uj◦©i
j=1Wj◦X̃Samp(Ui+1) is εs-close to©i+1

j=1Uj◦
©i
j=1Wj ◦W .

Let Wi+1 = W . As a result,©i+1
j=1Uj ◦ ©i

j=1Xj is (εs + ε0)(i+ 1)-close to©i+1
j=1Uj ◦ ©

i+1
j=1Wj such

that for every u ∈ {0, 1}ir, conditioned on©i+1
j=1Uj = u,©i+1

j=1Wj is a (k1, k2, . . . , ki)-block source with
block size m and k1 = k2 = · · · = ki+1 = (δ/t− 3τ)m.

This proves that induction step.
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This lemma reveals a way to get a block source by sampling. Block sources are easier to extract.

6.2 Repeating Extraction

Another important technique is the parallel extraction. According to Raz at al. [RRV02], we have the
following lemma.

Lemma 6.5 ([RRV02]). Let Ext1 : {0, 1}n×{0, 1}d1 → {0, 1}m1 be a strong (k, ε)-extractor with entropy
loss ∆1 and Ext2 : {0, 1}n × {0, 1}d2 → {0, 1}m2 be a strong (∆1 − s, ε2)-extractor with entropy loss ∆2

for any s < ∆1. Suppose the function Ext : {0, 1}n × {0, 1}d1+d2 → {0, 1}m1+m2 is as follows.

Ext(x, u1 ◦ u2) = Ext1(x, u1) ◦ Ext2(x, u2)

Then Ext is a strong (k, ( 1
1−2−s )ε1 + ε2 ≤ ε1 + ε2 + 2−s)-extractor with entropy loss ∆2 + s.

This can be generalized to the parallel extraction for multiple times.

Lemma 6.6. LetX be an (n, k)-source. Let Ext : {0, 1}n×{0, 1}d → {0, 1}m be a strong (k0, ε)-extractor
with k0 = k − tm − s for any t, s such that tm + s < k. Let Ext′ : {0, 1}n × {0, 1}td → {0, 1}tm be
constructed as follows.

Ext′(x,©t
i=1ui) = Ext(x, u1) ◦ Ext(x, u2) ◦ · · · ◦ Ext(x, ut)

Then Ext′ is a strong (k, t(ε+ 2−s))-extractor.

Proof. Consider the mathematical induction on j.
For j = 1, it is true. As Ext is a strong (k0, ε)-extractor, it is also a strong (k, j(ε+ 2−s))-extractor.
Next we prove the induction step.
Assume it is true for j. Consider j + 1.

Ext′(x,©j+1
i=1ui) = Ext′(x,©j

i=1ui) ◦ Ext(x, uj+1)

Here Ext′(x,©j
i=1ui) is a strong (k, j(ε + 2−s))-source. Its entropy loss is k − jm. Also we know that

Ext is a strong (k− tm− s, ε)-extractor, thus a strong (k− jm− s, ε)-extractor. According to Lemma 6.5,
Ext′(x,©j+1

i=1ui) is a strong (k, (j + 1)(ε+ 2−s))-extractor. Its entropy loss is k − (j + 1)m.
This completes the proof.

Lemma 6.6 shows a way to extract more bits. Assume we have an (n, k)-source and an extractor, if
the output length of the extractor is kβ, β < 1, then we can extract several times to get a longer output.
However, if we merely do it in this way, we need a longer seed. In fact, if we extract enough times to make
the output length to be Θ(k), we need a seed with length Θ(k1−β log n). This immediately gives us the
following theorem.

Theorem 6.7. For any constant a, c ∈ N, γ ∈ (0, 1), any k = Θ(n/ logc n), ε = 1/2Θ(loga n), there exists
an explicit strong (k, ε)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m in AC0 of depth 3a + c + 7. The
locality is O(log2a+c+4 n). The seed length d = O( k log(1/ε)

n1/10800 logn
). The output length m = (1− γ)k.

Proof. Let Ext0 : {0, 1}n × {0, 1}d0 → {0, 1}m0 be a (k0, ε0 = ε/n) extractor following from Theorem
5.18. Here k0 = k − tm0 − s where s = log(n/ε), t = (1 − γ)k/m0. By lemma 6.6, we know that there
exists a (k, ε′) extractor Ext with ε′ = t(ε0 + 2−s) ≤ ε. The output length is (1− γ)k.

According to the construction in Lemma 6.6, Ext has the same circuit depth and locality as Ext0. The
seed length is t× d0 = O( k log(1/ε)

n1/10800 logn
).
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If we only consider local extractors then similarly we have the following.

Theorem 6.8. For any constant c ∈ N, γ ∈ (0, 1), any k = Θ( n
logc n), there exists an explicit construction

of a strong (k, ε)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m, where ε can be as small as 2−k
Ω(1)

, d =

O( k log(1/ε)

n1/10800 logn
), m = (1− γ)k and the locality is log2(1/ε) logc+O(1) n.

6.3 The Construction

In order to extract more bits while keeping seed length small, we use classic bootstrapping techniques. Our
construction is still in AC0 but it does not have small locality .

Construction 6.9. For any constant a, c ∈ N, any k = δn = Θ(n/ logc n), ε = 1/2Θ(loga n), we construct
a (k, ε)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m where d = O(log n+ log(n/ε) log(1/ε)

logn ), m = O(δk).

• Let X be an (n, k = δn)-source

• Let t ≥ 10800 be a large enough constant.

• Let Samp : {0, 1}r → [n]ms be a (µ1, µ2, γ)-averaging sampler following from Lemma 6.3, where
µ1 = (1

t δ − 2τ)/ log(1/τ) and µ2 = (1
t δ − 3τ)/ log(1/τ), ms = ( t−1

t k − log(1/ε0))/t, τ = 1
4δ,

γ = ε/n. Let εs = γ + 2−Ω(τn).

• Let Ext0 : {0, 1}n0=ms × {0, 1}d0 → {0, 1}m0 be a (k0, ε0)-extractor following from Theorem 5.18
where k0 = 0.1(1

t δ − 3τ)ms − s, ε0 = ε/(10tn), d0 = O(log n0 + log(n0/ε0) log(1/ε0)
logn0

), m0 =

n
1/10800
0 Θ(log(n0/ε0)). Let s be such that 2−s ≤ ε/(10tn).

Next we construct the function Ext as follows.

1. Get Let Xi = XSamp(X,Si) for i ∈ [t], where Si, i ∈ [t] are independent uniform distributions.

2. Get Yt = Ext0(Xt, U0) where U0 is the uniform distribution with length d0.

3. For i = t− 1 to 1, get Yi = Ext′(Xi, Yi+1) sequentially. The function Ext′ is defined as follows.

Ext′(x, r) =©min{b|r|/d0c,b0.9( 1
t
δ−3τ)ms/m0c}

i=1 Ext0(x, ri)

where r =©b|r|/d0c
i=1 ri ◦ r′ for some extra bits r′ and ∀i, |ri| = d0.

4. Output Ext(X,Ud) = Y1 = Ext′(X1, Y2), where Ud = U0 ◦©t
i=1Si.

Lemma 6.10. For ε1 = 1/2Ω(k),©t
i=1Si ◦©t

i=1Xi is t(εs + ε1)-close to©t
i=1Si ◦©t

i=1Wi.
Here Sis are independent uniform distributions and ∀r ∈ supp(©t

i=1Si), conditioned on©t
i=1Si = r,

©t
i=1Wi is a (k1, k2, . . . , kt)-block source with k1 = k2 = · · · = kt = k′ = (1

t δ − 3τ)ms .

Proof. It follows from Lemma 6.4.

Lemma 6.11. In Construction 6.9, the function Ext is a strong (k, ε)-extractor.
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Proof of Lemma 6.11. By Lemma 6.10,©t
i=1Si ◦©t

i=1Xi is t(εs + ε1) = 1/poly(n)-close to©t
i=1Si ◦B

where B = B1 ◦ B2 ◦ . . . ◦ Bt. The Sis are independent uniform distributions. Also ∀s ∈ supp(©t
i=1Si),

conditioned on ©t
i=1Si = s, B is a (k1, k2, . . . , kt)-block source with k1 = k2 = · · · = kt = k′ =

(1
t δ − 3τ)ms. We denote the first i blocks to be B̃i =©i

j=1Bi.
Let Y ′i = Ext′(Bi, Y

′
i+1) for i = 1, 2, . . . , t where Y ′t+1 = U0 is the uniform distribution with length d0.

Next we use induction over i (from t to 1) to show that

SD(U0 ◦ Y ′i , U) ≤ (t+ 1− i)k(ε0 + 2−s).

The basic step is to prove that ∀b1, b2, . . . , bt−1 ∈ {0, 1}ms , conditioned on B1 = b1, . . . , Bt−1 = bt−1,
SD(U0 ◦ Y ′t , U) ≤ k(ε0 + 2−s). According to the definition of Ext′,

SD(U0 ◦ Ext′(Bt, U0), U) ≤ ε0.

This proves the basic step.
For the induction step, assume that ∀b1, b2, . . . , bi−1 ∈ {0, 1}ms , conditioned on B1 = b1, . . . , Bi−1 =

bi−1,
SD(U0 ◦ Y ′i , U) ≤ (t+ 1− i)k(ε0 + 2−s).

Consider U0 ◦ Y ′i−1 = U0 ◦ Ext′(Bi−1, Y
′
i ).

We know that ∀b1, b2, . . . , bt−2 ∈ {0, 1}ms , conditioned on B1 = b1, . . . , Bi−2 = bi−2, B̃i−1 ◦ U0 ◦ Y ′i
is a convex combination of bi−1 ◦ U0 ◦ Y ′i , ∀bi−1 ∈ supp(B̃i−1). As a result,

SD(B̃i−1 ◦ U0 ◦ Y ′i , B̃i−1 ◦ U) ≤ (t+ 1− i)k(ε0 + 2−s).

Thus, ∀b1, b2, . . . , bt−2 ∈ {0, 1}ms , conditioned on B1 = b1, . . . , Bi−2 = bi−2, as B̃i−1 ◦ U0 ◦ Y ′i is a
convex combination of bi−1 ◦ U0 ◦ Y ′i , ∀bi−1 ∈ supp(B̃i−1) and B̃i−1 ◦ U is a convex combination of
bi−1 ◦ U,∀b ∈ supp(B̃i−1), by Lemma 2.4 part 2,

SD(U0 ◦ Ext′(Bi−1, Y
′
i ), U1 ◦ Ext′(Bi−1, U2))

≤SD(B̃i−1 ◦ U0 ◦ Y ′i , B̃i−1 ◦ U)

≤(t+ 1− i)k(ε0 + 2−s).

(17)

Here U = U1 ◦ U2. U1 is the uniform distribution having |U1| = |U0|. U2 is the uniform distribution
having |U2| = |Y ′i |.

According to the definition of Ext′ and Lemma 6.6, we know that ∀b1, b2, . . . , bi−2 ∈ {0, 1}ms , condi-
tioned on B1 = b1, . . . , Bi−2 = bi−2,

SD(U1 ◦ Ext′(Bi−1, U2), U) ≤ k(ε0 + 2−s).

So according to triangle inequality of Lemma 2.4, ∀b1, b2, . . . , bt−2 ∈ {0, 1}ms , conditioned on B1 =
b1, . . . , Bi−2 = bi−2,

SD(U0 ◦ Y ′i−1, U)

=SD(U0 ◦ Ext′(Bi−1, Y
′
i ), U)

≤SD(U0 ◦ Ext′(Bi−1, Y
′
i ), U1 ◦ Ext′(Bi−1, U2)) + SD(U1 ◦ Ext′(Bi−1, U2), U)

≤(t+ 1− i)k(ε0 + 2−s) + k(ε0 + 2−s)

=(t+ 1− (i− 1))k(ε0 + 2−s).

(18)

This proves the induction step.
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So we have SD(U0 ◦ Y ′1 , U) ≤ tk(ε0 + 2−s).
As a result,

SD(Ud ◦ Ext(X,Ud), U)

=SD(U0 ◦©t
i=1Si ◦ Y1, U)

≤SD(U0 ◦©t
i=1Si ◦ Y1, U0 ◦©t

i=1Si ◦ Y ′1) + SD(U0 ◦©t
i=1Si ◦ Y ′1 , U)

≤SD(U0 ◦©t
i=1Si ◦©t

i=1Xi, U0 ◦©t
i=1Si ◦©t

i=1Bi) + SD(U0 ◦©t
i=1Si ◦ Y ′1 , U)

≤t(εs + ε1) + tk(ε0 + 2−s).

(19)

According to the settings of ε0, εs, t and by setting ε1 to be small enough, we know the error is at most
ε.

Lemma 6.12. In Construction 6.9, the length of Yi is

|Yi| = Θ(min{m0(
m0

d0
)t−i, 0.9(

1

t
δ − 3τ)ms}).

Specifically, m = |Y1| = Θ((1
t δ − 3τ)ms) = Θ(δk).

Proof. For each time we compute Yi = Ext′(Xi, Yi+1), we know |Yi| ≤ |Yi+1|(m0
d0

). Also according to the
definition of Ext′, |Yi| ≤ 0.9(1

t δ − 3τ)ms. So |Yi| = Θ(min{m0(m0
d0

)t−i, 0.9(1
t δ − 3τ)ms}) for i ∈ [t].

By Theorem 5.18, m0 = Θ(n
1/10800
0 log n). Also we know that n0 = ms = O(tk). As a result, when

t ≥ 10800, m0(m0
d0

)t−1 = ω(ms). As a result, m = |Y1| = Θ((1
t δ − 3τ)ms) = Θ(δk).

Lemma 6.13. In Construction 6.9, the seed length d = O(log n+ log(n/ε) log(1/ε)
logn ).

Proof. The seed for this extractor is Ud = U0 ◦ ©t
i=1Si. So |Ud| = |U0| + Σt

i|Si| = O(log n +
log(n/ε) log(1/ε)

logn ) +O(log(1/ε)) = O(log n+ log(n/ε) log(1/ε)
logn ).

Lemma 6.14. In Construction 6.9, the function Ext is in AC0. The depth of the circuit is O(a+ c+ 1).

Proof. We in fact run Samp and Ext0 for constant number of times in sequential. So the total depth is
O(a+ c) as the depth of Samp and Ext0 are both O(a+ c+ 1).

Theorem 6.15. For any constant a, c ∈ N, any k = δn = Θ(n/ logc n), ε = 1/2Θ(loga n), there exists an
explicit strong (k, ε)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m in AC0 with depth O(a + c + 1), where
d = O(log n+ log(n/ε) log(1/ε)

logn ), m = Ω(δk) .

Proof. By Construction 6.9, Lemma 6.11, Lemma 6.12, Lemma 6.13 , and Lemma 6.14 , the conclusion
immediately follows.

Theorem 6.16. For any constant γ ∈ (0, 1), a, c ∈ N, any k = δn = Θ(n/ logc n), ε = 1/2Θ(loga n), there
exists an explicit strong (k, ε)-extractor Ext : {0, 1}n×{0, 1}d → {0, 1}m in AC0 with depth O(a+ c+ 1)

where d = O((log n+ log(n/ε) log(1/ε)
logn )/δ), m = (1− γ)k.
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Proof. Let the extractor following Theorem 6.15 be Ext0 : {0, 1}n0 × {0, 1}d0 → {0, 1}m0 which is a
(k0, ε0)-extractor with n0 = n, k0 = γk − s for some s < γk. The construction of Ext is

Ext(x, u) =©t
i=1Ext0(x, ui).

Here t is such that tm0 = (1− γ)k.
By Lemma 6.15, we know that m0 = Θ(δk) where δ = Θ( 1

logc n). So t = Θ(1/δ). By Lemma 6.6, if
tm0 = (1− γ)k, then Ext is a (k, ε)-extractor with output length (1− γ)k and error t(ε0 + 2−s).

We choose s to be large enough and ε0 to be small enough such that the error is at most ε. The seed
length d = td0. By Theorem 6.15, d0 = O(log n + log(n/ε) log(1/ε)

logn ),m0 = Ω(δk), so d = O((log n +
log(n/ε) log(1/ε)

logn )/δ), m = (1 − γ)k. The circuit depth maintains the same as that in Theorem 6.15 because
the extraction is conducted in parallel.

7 Deterministic Extractor for Bit-fixing Source

We use two crucial tools. One is the extractor for non-oblivious bit-fixing sources, proposed by Chattopad-
hyay and Zuckerman [CZ16] and improved by Li [Li16].

Theorem 7.1 ([Li16] Theorem 1.11). Let c be a constant. For any β > 0 and all n ∈ N, there exists an
explicit extractor Ext : {0, 1}n → {0, 1}m such that for any (q, t, γ)-non-oblivious bit-fixing source X on
n bits with q ≤ n1−β , t ≥ c log21 n and γ ≤ 1/nt+1,

SD(Ext(X), U) ≤ ε

where m = tΩ(1), ε = n−Ω(1).
The extractor can be computed by standard circuits of depth d logm

log logne+O(1).

To see the depth is d logm
log logne+O(1), let’s briefly recall the construction of the extractor. It first divides

the input in to nO(1) blocks. Then for each block, it applys the extractor from [Li16] Theorem 4.1 which has
depth 4. At last, it conducts a multiplication between a matrix of size m×O(m) and a vector of dimension
O(m), both over F2. The last step can be computed by a circuit of depth d logm

log logne+ 1 by Lemma 2.11 part
2.

The other tool is the design extractor introduced by Li [Li12].

Definition 7.2 ([Li12]). An (N,M,K,D, α, ε)-design extractor is a bipartite graph with left vertex set [N ],
right vertex set [M ], left degree D such that the following properties hold.

• (extractor property) For any subset S ⊆ [M ], let ρS = |S|/M . For any vertex v ∈ [N ], let ρv =
|Γ(v)∩S|/D. Let BadS = {v ∈ [N ] : |ρv − ρS | > ε}, then |BadS | ≤ K. (Γ(·) outputs the set of all
neighbors of the input.)

• (design property) For any two different vertices u, v ∈ [N ], |Γ(u) ∩ Γ(v)| ≤ αD.

Construction 7.3. For any constant a ∈ N, any t = poly(log n), the deterministic extractor Ext :

{0, 1}n → {0, 1}m=tΩ(1)
for any (n, δn = Θ(n/ loga n))-bit-fixing source is constructed as the follows.

• Construct an (N,M,K,D, α, ε)-design extractor, where M = n,K = n1/0.9, N = n1/0.3, ε =
1/ logcN , D = logbN , α = D/M + ε, for c = dlog t/ log logNe+a+1 and large enough constant
b = Θ(c).
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• Let Y = (Y1, Y2, . . . , YN ). Compute Yi =
⊕

j∈Γ(i)Xj , for i = 1, . . . , N , by taking i as the ith vertex
in the left set of the design extractor.

• Let Ext(X) = Ext′(Y ) where Ext′ : {0, 1}N → {0, 1}m is the extractor from Theorem 7.1 with error
ε = n−Ω(1).

Lemma 7.4. An (N,M,K,D, α, ε)-design extractor, where K = N1/3,M = K0.9, ε = 1/ logcN , D =
logbN ,α = D/M + ε, for any constant c and large enough constant b = Θ(c), can be constructed in
polynomial time.

Proof. In [Li12] it is showed that design extractors can be constructed in deterministic polynomial time by
a greedy algorithm.

The construction is based on a (k0, ε)-extractor Ext0 : {0, 1}n0 × {0, 1}d0 → {0, 1}m0 , from The-
orem 2.7 (almost optimal parameters), for any (n0, k0)-source, where n0 = 4k0,m0 = 0.9k0, d0 =
O(log(n0/ε)). Also we substitute the first d0 bits of the output by the seed s.t. every left vertex has exactly
2d0 neighbors. Recall the greedy algorithm proposed by Li [Li12], which picks vertices one by one, deleting
the vertices which does not meet the design property before each picking. At last we can get 2n0−k0 ≥ 23k0

left vertices. Let N = 23k0 ,K = 2k0 ,M = 2m0 . We know that ε = 1/ logcN and d0 = O(log(n0/ε)).
Thus if b = Θ(c) is large enough, D can be logbN by adding extra random bits to adjust the length of the
seed.

Lemma 7.5. For any constant a ∈ N, any t = poly(log n), ifX is an (M, δM = Θ(M/ logaM))-bit-fixing
source, then Y = g(X) is a (q, t, 0)-non-oblivious bit-fixing source, where q = K.

Proof. Assume the coordinates of random bits of X form the set S. By the extractor property of design
extractors, the number of left vertex x, such that |ρx − ρS | > ε, is at most K. These vertices form the set
BadS .

We prove that for any subset V ⊆ [N ]\BadS with size |V | ≤ t,
⊕

j∈V Yj is uniformly distributed.
Let V = {v1, v2, . . . , vt′} be a subset of [N ]\BadS , where t′ ≤ t. So |Γ(vt′) ∩ S| ≥ (δ − ε)D.

By the design property of design extractors, for any i = 1, 2, . . . , t′ − 1, |Γ(vt′) ∩ Γ(vi)| ≤ αD. So
|(Γ(vt′) ∩ S)\

⋃t′−1
i=1 Γ(vi)| ≥ (δ − ε)D − t · αD ≥ 1 for c = dlog t/ log logNe+ a+ 1 and large enough

constant b. Thus
⊕

j∈V Yj is uniformly distributed because some uniform random bits in Γ(vt′) ∩ S cannot

be canceled out by bits in
⋃t′−1
i=1 Γ(vi).

By the Information Theoretic XOR-Lemma in [Gol95], Y[N ]\BadS is t-wise independent. Thus Y =
g(X) is a (q = K, t, 0)-non-oblivious bit-fixing source.

Theorem 7.6. For any constant a ∈ N, there exists an explicit deterministic (k = δn = Θ(n/ loga n), ε =
n−Ω(1))-extractor Ext : {0, 1}n → {0, 1}m that can be computed by AC0 circuits of depth Θ( logm

log logn + a),
for any (n, k)-bit-fixing source, where m can be any poly(log n).

Proof. We claim that Construction 7.3 gives the desired extractor. Let X be an (n, k)-bit-fixing source.
By lemma 7.5, we get Y which is a (q, t, 0)-non-oblivious bit-fixing source with length Θ(n1/0.3), where
q = Θ(n1/0.9) and t can be any large enough poly(log n).

By Theorem 7.1, Ext(X) = Ext′(Y ) is ε-close to uniform. The output length m = tΩ(1) can be any
poly(log n) as we can set t to be any poly(log n).

We show that the circuit for computing the extractor is in uniform AC0. In Construction 7.3, each Yi
is the XOR of poly-logarithmic bits of X . Also the extractor of Theorem 7.1 is in AC0. So the overall
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construction is in AC0. It is in uniform AC0 because the design extractor can be constructed in polynomial
time by Lemma 7.4 while all other operations are explicit and can be computed by uniform AC0 circuits.

The depth of the circuit is Θ( logm
log logn + a). Because in Construction 7.3, c = dlog t/ log logNe+ a+ 1

and b = Θ(c). By lemma 2.11 part 2, the XOR of D = 1/ logbN bits can be computed by circuits of depth
b. Also the depth of Ext′ is d logm

log logne+O(1). Thus the overall depth is Θ( logm
log logn + a).

Next we do error reduction. Our method is based on the XOR lemma given by Barak, Impagliazzo and
Wigderson [BIW06].

Lemma 7.7 ([BIW06] Lemma 3.15). Let Y1, Y2, . . . , Yt be independent distributions over F such that ∀i ∈
[t],SD(Yi, U) ≤ ε. Then

SD(
t∑
i=1

Yi, U) ≤ (2ε)t,

where U is uniform over F.

Proof. For simplicity, let F = {0, 1, . . . ,M − 1}.
We use induction to show that for j = 1, 2, . . . , t, SD(

∑j
i=1 Yi, U) ≤ (2ε)j .

As Y1 is ε-close to uniform, this shows the base case.
Let Y ′ =

∑j−1
i=1 Yi. Suppose SD(Y ′, U) ≤ (2ε)j−1.

Let p′ = (p′0, p
′
1, . . . , p

′
M−1) be such that p′i = Pr[Y ′ = ib] = 1/M + δ′i, for i = 0, 1, . . . ,M −1, where

ib is the binary form of i.
We know that SD(Y ′, U) = 1/2(

∑M−1
i=1 |δ′i|) and

∑M−1
i=0 δ′i = 0.

Let p = (p0, p1, . . . , pM−1) be such that pi = Pr[Yj = ib] = 1/M + δi for i = 0, 1, . . . ,M − 1. We
know that SD(Yj , U) = 1/2(

∑M−1
i=1 |δi|) and

∑M−1
i=0 δi = 0.

So

Pr[Y ′ + Yj = ib]| =
M−1∑
k=0

Pr[Y ′ = kb] Pr[Yj = (i− k)b]

=

M−1∑
k=0

p′k · pi−k

= 1/M + 2(
M−1∑
k=0

δk)/M +
M−1∑
k=0

δkδi−k

= 1/M +

M−1∑
k=0

δkδi−k.

(20)

Thus |Pr[Y ′ + Yj = ib]− Pr[U = ib]| = |
∑M−1

k=0 δkδi−k|.
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As a result,

SD(Y ′ + Yj , U) = 1/2

M−1∑
i=0

|Pr[Y ′ ⊕ Yj = ib]− Pr[U = ib]|

= 1/2

M−1∑
i=0

|
M−1∑
k=1

δkδi−k|

≤ 1/2(
M−1∑
k=0

M−1∑
l=0

|δkδl|)

= 1/2(

M−1∑
i=1

|δ′i|)(
M−1∑
i=1

|δi|)

≤ (2ε)j .

(21)

Theorem 7.8. If Ext : {0, 1}n → {0, 1}m is a (k, ε)-extractor for (n, k)-bit-fixing sources, then for every
l ∈ N, the function Ext′ : {0, 1}ln → {0, 1}m, given by Ext′(x1, . . . , xl) = ⊕i∈[l]Ext(xi) is a (2lk, εΘ(l))-
extractor for (ln, 2lk)-bit-fixing sources.

Proof. Let X = (X(1), . . . , X(l)) be an (ln, 2lk)-bit-fixing source. Then for δ = k/n fraction of j ∈ [l],
X(j) is an (n, δn)-bit-fixing source. Because if not, the total number of random bits is at most δl · n+ (1−
δ)lδn < 2δln = 2lk. Also we know that X(1), X(2), . . . , X(l) are independent because X is a bit-fixing
source. We regard each Ext(X(i)) as a random element (coefficients of the corresponding polynomial) in
F2m . By Lemma 7.7, Ext′(X) is εΘ(l)-close to uniform.

By using the deterministic extractor in Theorem 7.6, combining with Theorem 7.8, adjusting the param-
eters, we get the following result.

Theorem 7.9. For any constant a, c ∈ N , there exists an explicit deterministic (k = Θ(n/ loga n), ε =
2− logc n)-extractor Ext : {0, 1}n → {0, 1}m that can be computed by AC0 circuits of depth Θ( logm

log logn +
a+ c), for any (n, k)-bit-fixing sources, where m can be any poly log n.

Finally we do output length optimization by applying the same technique as that in [GVW15]. The
technique is given by Gabizon et al.[GRS04].

Theorem 7.10. For any constant a, c ∈ N and any constant γ ∈ (0, 1], there exists an explicit deterministic
(k = Θ(n/ loga n), ε = 2− logc n)-extractor Ext : {0, 1}n → {0, 1}(1−γ)k that can be computed by AC0

circuits of depth Θ(a+ c+ 1), for any (n, k)-bit-fixing sources.

proof sketch. The difference between our construction and [GVW15] Theorem 5.12 is that, for the three cru-
cial components in the construction, we use the deterministic extractor of Theorem 7.9, the seeded extractor
of Theorem 6.16 and the averaging sampler in Lemma 5.3 instead. We briefly describe the construction as
the follows.

• A deterministic ε1-error extractor Ext1 : {0, 1}n → {0, 1}r+r2 for (n, µ′s)-bit-fixing sources, by
Theorem 7.9;

• A seeded ε2-error extractor Ext2 : {0, 1}n × {0, 1}r2 → {0, 1}m for (n, µn − s)-bit-fixing sources,
by Theorem 6.16;
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• An (µ, µ′, θ)-averaging sampler Samp : {0, 1}r → [n]s, by Lemma 6.3 .

We set µ = k/n, µ′ = µ/2, s = k/2 such that µ′s = Θ(n/ log2a n) and µn− s = Θ(n/ loga n). Also
we set ε1 = 2− log3c n, ε2 = θ = 2− log2c n, m = (1− γ)k, r2 = (log n)Θ(a+c) and r = Θ(log2c n).

Theorem 7.1 of [GRS04] constructs a deterministic extractor Ext : {0, 1}n → {0, 1}m for (n, µn)-bit-
fixing sources, where the error is ε = ε2 + 2r+3ε1 + 3θ. So ε ≤ 2− logc n. The construction is Ext(x) =
Ext2(x[n]\S(Z1) ◦ 0t, Z2), where Z1 is the first r bits of Ext1(X) and Z2 is the last r2 bits of Ext1(X).

Here we only need to compute the depth of the circuit. We know that r + r2 = (log n)Θ(a+c). The
depth of the final extractor is the sum of the depths of all three components. By Theorem 7.9, the depth
for the deterministic extractor is Θ(a+ c+ 1) . By theorem 6.16, the depth for the seeded extractor is also
Θ(a+ c+ 1). By Lemma 6.3, the depth for the sampler is Θ(c+ 1). So the overall depth is Θ(a+ c+ 1).

8 Randomness Condenser with Small Locality

In this section, we consider constructions of extractor families with small locality by first constructing a
condenser family with small locality. Our condenser will be based on random walks on expander graphs
and pseudorandom generators for space bounded computation.

8.1 Basic Construction

We give a condense-then-extract procedure by first constructing a randomness condenser.

Theorem 8.1 (Hitting Property of Random Walks [Juk11] Theorem 23.6). Let G = (V,E) be a d-regular
graph with λ(G) = λ. Let B ⊆ V such that |B| = β|V |. Let (B, t) be the event that a random walk of
length t stays in B. Then Pr[(B, t)] ≤ (β + λ)t.

Lemma 8.2 ([AB09] implicit). For every n ∈ N and for every 0 < α < 1, there is an explicit construction
of d-regular Graphs Gn which have the following properties.

1. λ ≤ α.

2. Gn has n vertices.

3. d is a constant.

4. There exists a poly(log n)-time algorithm that given a label of a vertex v in Gn and an index i ∈ d,
output the ith neighbor of v in Gn.

Lemma 8.3 ([Skó15]). Let H2(X) = log(1/coll(X)), coll(X) = PrX1,X2 [X1 = X2], where X1, X2 are
independent random variables having the same distribution as X .

For any random variable X ,
2H∞(X) ≥ H2(X).

Recall that w(·) denotes the weight of the input string as we defined in Section 2.

Lemma 8.4. Given any (n, k)-sourceX and any string x ∈ {0, 1}n, with probability 1−2−0.5k,w(X⊕x) ≥
k/(c1 log n) for any constant c1 ≥ 2; with probability 1 − 2−0.5k, w(X ⊕ x) ≤ n − k/(c1 log n) for any
constant c1 ≥ 2.
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Proof. The number of strings which have i digits different from x is
(
n
i

)
. So the number of strings which

have at most l = k/(c1 log n) digits different from x is at most
∑l

i=0

(
n
i

)
≤ ( enl )l ≤ 20.5k for any constant

c1 ≥ 2. So with probability at least 1− 2−0.5k, w(X ⊕ x) ≥ l.
Also as

∑n
i=n−l

(
n
i

)
=
∑l

i=0

(
n
i

)
, with probability 1− 2−0.5k, w(X ⊕ x) ≤ n− l.

Lemma 8.5. Consider a random vector v ∈ {0, 1}n where v1, . . . , vn are independent random bits and
∀i,Pr[vi = 1] = p = 1/poly(n). For any ε = 1/poly(n), there is an explicit function f : {0, 1}l → {0, 1}n
where l = O(n log n), such that

∀i ∈ [n], |Pr[f(U)i = 1]− p| ≤ ε

where U is the uniform distribution of length l.
There exists an algorithm A which runs in O(log n) space and can compute f(s)i, given input s ∈

{0, 1}l and i ∈ [n].

Proof. We give the algorithm A which runs in O(log n) space and can compute f(s)i, given input s ∈
{0, 1}l and i ∈ [n].

Assume the binary expression of p is 0.b1b2b3 . . .. The algorithmA is as follows. Intuitively,A divides s
into n blocks and uses the ith block to generate a bit which simulates vi roughly according to the probability
p.

1. Assume that s has n blocks. The ith block is si where |si| = t = c log n for some constant c. Let
j = 1.

2. If j = t + 1, go to step 3. If si,j < bj , then set f(s)i = 1 and stop; if si,j > bj , set f(s)i = 0 and
stop; if si,j = bj , set j = j + 1 and go to step 2.

3. Set f(s)i = 1 and stop.

For every i, the probability

Pr[f(s)i = 1] = Pr[0.si,1 . . . si,t ≤ 0.b1b2 . . . bt] = 0.b1b2 . . . bt.

As a result,

∀i ∈ [n], |Pr[f(s)i = 1]− Pr[vi = 1]| ≤ 0.00 . . . bt+1bt+2 . . . ≤ 2−t = 2−c logn.

For any ε = 1/poly(n), if c is large enough, then 2−t = 2−c logn ≤ ε.
The input length for f is l = n× t = O(n log n).
As all the iterators and variables in A only need O(log n) space, A runs in space O(log n) . This proves

our conclusion.

Construction 8.6. For any k = Ω(log2 n), we construct an (n, k, t = 10k, 0.1k, εc = 2−0.1k)-condenser
Cond : {0, 1}n × {0, 1}d→ {0, 1}t with d = O(n log n) and locality c = n/l, l = k

2 logn .

1. Construct an expander graph G = (V,E) where V = {0, 1}r0=O(n logn) and λ = 0.01.

2. Use a uniform random string U1 of length r0 to select a vertex v1 of V .

3. Take a random walk on G starting from v1 to get v2, . . . , vt for t = 10k.
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4. For i ∈ [t], get an n-bit string v′i = f(vi) such that ∀j ∈ [n],Pr[v′i,j = 1] − 1/l| ≤ 1/n2, where
f : {0, 1}r0 → {0, 1}n follows from Lemma 8.5, r0 = O(n log n).

5. Let M = (v′1, . . . , v
′
t)
T .

6. Let Cond(x, u) = Mx.

Let V ′ = {0, 1}n. Let Bi = {v ∈ V ′ : w(v) = i}, i ∈ [d]. Let Ax,j = {v ∈ Bj : 〈v, x〉 = 0}.
For any x ∈ {0, 1}n, let Vx = {v ∈ V : 〈f(v), x〉 = 0}. Let T = {v ∈ V : w(f(v)) ∈ [0.8c, 1.2c]}.

Lemma 8.7. In Construction 8.6, with probability 1− 2 exp{−Θ(c)}, w(v′1) ∈ [0.8c, 1.2c]. That is,

|T |
|V |
≥ 1− 2 exp{−Θ(c)}.

Proof. According to our construction, ∀i ∈ [n],Pr[v′1,i = 1] ∈ [1/l − 1/n2, 1/l + 1/n2] . As a result,
Ew(v′1) ∈ [n/l − 1/n, n/l + 1/n] = [c − 1/n, c + 1/n]. According to Chernoff Bound, we know that
Pr[w(v′1) ∈ [0.8c, 1.2c]] ≥ Pr[w(v′1) ∈ [0.9Ew(v′1), 1.1Ew(v′1)]] ≥ 1− 2 exp{−Θ(c)}.

Lemma 8.8. In construction 8.6, we have the following conclusions.

1. For any x ∈ {0, 1}n with w(x) ∈ [l, n− l], for any integer j ∈ [0.8c, 1.2c], βx,j = |Ax,j |/|Bj | ≤ 5/6.

2. For any x ∈ {0, 1}n with w(x) ∈ [l, n− l], |Vx|/|V | ≤ 5/6 + 1/poly(n).

3. Pr[MX1 = MX2] = p0 ≤ 2−0.5k+1 + (5/6 + 1/poly(n) + λ)t where X1, X2 are independent
random variables that both have the same distribution as X .

4. Ud ◦ Cond(X,Ud) is p1/3
0 -close to Ud ◦W . Here Ud is a uniform distribution of length d. For every

u, W |Ud=u has entropy 1
3 log 1

p0
.

5. Ud ◦Cond(X,Ud) is εc = 2−0.1k-close to Ud ◦W where ∀u ∈ {0, 1}d, W |Ud=u has entropy d+ 0.1k.

Proof. We know that

βx,j =
1

2
(1 +

∑min{w(x),j}
i=0

(
w(x)
i

)(
n−w(x)
j−i

)
(−1)i(

n
j

) ).

Because 〈v, x〉 = 0 happens if and only if |{i ∈ [n] : xi = vi = 1}| is even.
Let ∆ =

∑min{w(x),j}
i=0

(
w(x)
i

)(
n−w(x)
j−i

)
(−1)i.

Consider the series ∆i =
(
w(x)
i

)(
n−w(x)
j−i

)
, i = 0, 1, . . . ,min{w(x), j}. Let ∆i ≥ ∆i+1, we can get

i ≥ jw(x)− n+ w(x) + j − 1

n+ 2
∈ [

0.8w(x)

l
− 3,

1.2w(x)

l
]

Let ∆i−1 ≤ ∆i, we can get

i ≤ jw(x) + w(x) + j + 1

n− 2
∈ [

0.8w(x)

l
,
1.2w(x)

l
+ 3].

So series ∆i, i = 0, 1, . . . ,min{w(x), j} has its maximum for some i ∈ [0.8w(x)
l − 3, 1.2w(x)

l + 3].
To make it simpler, first we consider the situation that 0 < w(x)

l − 3 and j > w(x)
l + 3.
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Let i′ = arg maxi{∆i} which is in [w(x)
l − 3, w(x)

l + 3]. Consider ∆i′/∆i′−1. Let i′ = θw(x)
l + δ for

some θ ∈ [0.8, 1.2], δ ∈ [−3, 3].

∆i′

∆i′−1
=
w(x)− i′ + 1

i′
· j − i′ + 1

n− w(x)− j + i′

=
w(x)− θ

lw(x)− δ + 1
θ
lw(x) + δ

·
j − θ

lw(x)− δ + 1

n− w(x)− j + θ
lw(x) + δ

(22)

The first term
w(x)− θ

lw(x)− δ + 1
θ
lw(x) + δ

= l +O(1).

As j ∈ [0.8c, 1.2c], we know

n− w(x)− j + θ
lw(x) + δ

j − θ
lw(x)− δ + 1

≥
n− w(x)− 0.8c+ θ

lw(x) + 3

0.8c− θ
lw(x)− 2

≥ 5l

6

So ∆i′
∆i′−1

≤ 2.

As
(
n
c

)
≥ ∆i′ + ∆i′−1, we know ∆i′

(nc)
≤ 2/3. Thus βx ≤ 1/2(1 +

∆i′

(nc)
) ≤ 5/6.

If either 0 or j is in [w(x)
l − 3, w(x)

l + 3], to prove our conclusion, we only need to check the situation
that i′ = 0 and i′ = j.

If i′ = 0 or j then,

βx,j ≤
1

2
(1 +

(
n−l
j

)(
n
j

) ) ≤ 1

2
(1 + (1− l

n
)j) ≤ 1

2
(1 + (1− l

n
)0.8n/l) ≤ 3/4.

For the second assertion, let’s consider the expander graph G = (V,E). Assume v is a random node
uniformly drawn from V . For any i ∈ [n], the conditional random variable f(v)|w(f(v))=i is uniformly
distributed on Bi. This is because v is uniform, thus v′j , j ∈ [n] are independently identically distributed
according to Lemma 8.5. So Pr[f(v)|w(f(v))=i = v′], v′ ∈ Bi are all equal.

According to the Union Bound,

|Vx|/|V | ≤ (1− Pr[w(f(v)) ∈ [0.8c, 1.2c]]) +
∑

i∈[0.8c,1.2c]

Pr[w(f(v)) = i]
|Ax,i|
|Bi|

≤ (1− Pr[w(f(v)) ∈ 0.8c, 1.2c]) +
∑

i∈[0.8c,1.2c]

Pr[w(f(v)) = i]× 5/6

≤ 2 exp{−Θ(c)}+ 5/6.

(23)

Our assertion follows as c = n/l ≥ 2 log n.
For the 3rd assertion, let’s consider Pr[MX = 0] when l ≤ w(X) ≤ n− l.
By Theorem 8.1, for any x such that l ≤ w(x) ≤ n − l, Pr[Mx = 0] ≤ ( |Vx||V | + λ)t. Here |Vx||V | ≤

5/6 + 1/poly(n).
Let X1, X2 be independent random variables and have the same distribution as X .

p0 = Pr
X1,X2

[MX1 = MX2] =
∑

x2∈supp(X2)

Pr[X2 = x2] · Pr[MX1 = Mx2]
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For any fixed x2 ∈ supp(X2), let X ′ = X1 ⊕ x2. So Pr[MX1 = Mx2] = Pr[MX ′ = 0]. We know
that X ′ is also an (n, k)-source. As a result, we have the following.

Pr[M(X ′) = 0]

≤Pr[w(X ′) /∈ [l, n− l]] + Pr[w(X ′) ∈ [l, n− l]]× Pr[MX ′ = 0|w(X′)∈[l,n−l]]

≤Pr[w(X ′) /∈ [l, n− l]] + Pr[MX ′ = 0|w(X′)∈[l,n−l]]

≤Pr[w(X ′) /∈ [l, n− l]] + (
|Vx|
|V |

+ λ)t

≤Pr[w(X ′) /∈ [l, n− l]] + (5/6 + 1/poly(n) + λ)t

≤2× 2−0.5k + (5/6 + 1/poly(n) + λ)t.

(24)

Thus,

p0 =
∑

x2∈supp(X2)

Pr[X2 = x2] · Pr[M(X1 ⊕ x2) = 0]

≤2−0.5k+1 + (5/6 + 1/poly(n) + λ)t.

(25)

For the 4th conclusion, let’s fix a Mu ∈ supp(M). We consider H2(MuX) as the following.

H2(MuX) = − log Pr[MuX1 = MuX2]

= − log
∑

x1,x2∈supp(X)

Pr[X1 = x1] Pr[X2 = x2]IMux1=Mux2
(26)

Here Ie is the indicator function such that Ie = 1 if and only if the event e happens. Here for each x1, x2,
IMux1=Mux2 is a fixed value (either 0 or 1, not a random variable because Mu is fixed).

Next let’s consider M to be a random variable generated by the seed Ud.
Let ZM =

∑
x1,x2∈supp(X) Pr[X1 = x1] Pr[X2 = x2]IMx1=Mx2 . We know that

EZM =
∑

x1,x2∈supp(X)

Pr[X1 = x1] Pr[X2 = x2] Pr[Mx1 = Mx2] = p0.

So according to Markov’s Inequality,

Pr[ZM ≥ p2/3
0 ] ≤ p1/3

0 .

So with probability at least 1− p1/3
0 over M (over Ud), ZM ≤ p2/3

0 .
Let’s fix Mu ∈ supp(M) such that ZMu ≤ p

2/3
0 .

Thus

H∞(MuX) ≥ 1/2H2(MuX)

= 1/2(− log(ZMu))

≥ −1/2 log(p
2/3
0 )

=
1

3
log

1

p0
.

(27)

This concludes that Ud ◦Cond(X,Ud) = Ud ◦MX is p1/3
0 -close to Ud ◦W where for every u, W |Ud=u

has entropy 1/3 log 1
p0

.

As we know p0 ≤ 2−0.5k+1+(5/6+1/poly(n)+λ)t, k = Ω(log2 n). So if t = 10k, then p1/3
0 ≤ 2−0.1k.

According to conclusion 5, Ud ◦ Cond(X,Ud) is εc-close to Ud ◦W where for every u, W |Ud=u has
entropy at least 0.1k where εc = 2−0.1k. This proves the last assertion.
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8.2 Seed Length Reduction

The seed length can be shorter by applying the following PRG technique.

Theorem 8.9 (Space Bounded PRG[Nis92]). For any s > 0, 0 < n ≤ 2s, there exists an explicit PRG
g : {0, 1}r → {0, 1}n, such that for any algorithm A using space s,

|Pr[A(g(Ur)) = 1]− Pr[A(Un) = 1]| ≤ 2−s.

Here r = O(s log n), Ur is uniform over {0, 1}r, Un is uniform over {0, 1}n.

Lemma 8.10. Let g : {0, 1}r=O(log2 n) → {0, 1}r0=O(n logn) be the PRG from Lemma 8.9 with error
parameter εg = 1/poly(n). Replace the 1-3 steps of Construction 8.6 with the following 3 steps.

1. Construct an expander graph G̃ = (Ṽ , Ẽ) where Ṽ = {0, 1}r and λ = 0.01.

2. Use a uniform random string U1 of length r to select a vertex ṽ1 of Ṽ .

3. Take a random walk on G̃ starting from ṽ1 to get ṽ2, . . . , ṽt, for t = 10k . Let vi = g(ṽi), i = 1, . . . , t.

Let Ṽx = {v ∈ Ṽ : 〈f(g(v)), x〉 = 0}. We have the following conclusions.

1. For any x ∈ {0, 1}n such that w(x) ∈ [l, n− l],

| |Ṽx|
|Ṽ |
− |Vx|
|V |
| ≤ εg.

2. p0 = Pr[MX1 = MX2] ≤ 2−0.5k+1 + (5/6 + 1/poly(n) + λ)t where X1, X2 are independent
random variables that both have the same distribution as X .

3. Ud ◦ Cond(X,Ud) is p1/3
0 -close to Ud ◦W . Here Ud is a uniform distribution of length d. For every

u, W |Ud=u has entropy 1
3 log 1

p0
.

4. Ud ◦Cond(X,Ud) is εc = 2−0.1k-close to Ud ◦W where ∀u ∈ {0, 1}d, W |Ud=u has entropy d+ 0.1k.

Proof. Consider the following algorithm A which decides whether v ∈ Vx on input (v, x).

Algorithm 8.1: A(v, x)

Input: v ∈ {0, 1}r0 and x ∈ {0, 1}n
res = 0 ;
for i = 1 to n do

compute f(v)i ;
if f(v)i = 1 then

res = res + f(v)i · xi ;
end

end
if res = 0 then Output 1 ;
else Output 0 ;

We can see that algorithm A runs in space O(log n) because f(v)i, i = 1, . . . , n can be computed
sequentially by using O(log n) space according to Lemma 8.5 and all the other variables need O(log n)

space to record. Also A(v, x) = 1 if and only if v ∈ Vx. So Pr[A(Ur0 , x) = 1] = |Vx|
|V | .
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Similarly, we can see Pr[A(g(Ur), x) = 1] = |Ṽx|
|Ṽ | .

According to the definition of our PRG g, we know that,

|Pr[A(g(Ur), x) = 1]− Pr[A(Ur0 , x) = 1]| ≤ εg.

So

| |Ṽx|
|Ṽ |
− |Vx|
|V |
| ≤ εg.

For the 2nd assertion, let’s consider Pr[MX = 0] when l ≤ w(X) ≤ n− l.
By Theorem 8.1, for any x such that l ≤ w(x) ≤ n− l, Pr[Mx = 0] ≤ ( |Ṽx||Ṽ | + λ)t.
Let X1, X2 be independent random variables and have the same distribution as X .

p0 =
∑

x2∈supp(X2)

Pr[X2 = x2] · Pr[MX1 = Mx2]

For any fixed x2 ∈ supp(X2), let X ′ = X1 ⊕ x2. So Pr[MX1 = Mx2] = Pr[MX ′ = 0]. We know
that X ′ is also an (n, k)-source. As a result, we have the following.

Pr[M(X ′) = 0]

≤Pr[w(X ′) /∈ [l, n− l]] + Pr[w(X ′) ∈ [l, n− l]]× Pr[MX ′ = 0|w(X′)∈[l,n−l]]

≤Pr[w(X ′) /∈ [l, n− l]] + Pr[MX ′ = 0|w(X′)∈[l,n−l]]

≤Pr[w(X ′) /∈ [l, n− l]] + (
|Ṽx|
|Ṽ |

+ λ)t

≤Pr[w(X ′) /∈ [l, n− l]] + (
|Vx|
|V |

+ εg + λ)t

≤Pr[w(X ′) /∈ [l, n− l]] + (5/6 + 1/poly(n) + λ)t

≤2× 2−0.5k + (5/6 + 1/poly(n) + λ)t.

(28)

Thus,

p0 =
∑

x2∈supp(X2)

Pr[X2 = x2] · Pr[M(X1 ⊕ x2) = 0]

≤2−0.5k+1 + (5/6 + 1/poly(n) + λ)t.

(29)

Conclusion 3 and 4 follow the same proof as that of Lemma 8.8.

Theorem 8.11. For any k = Ω(log2 n), there exists an explicit construction of an (n, k, 10k, 0.1k, 2−0.1k)-
condenser with seed length Θ(k).

Proof. According to Lemma 8.10, it immediately follows that the function Cond in Construction 8.6 is an
(n, k, t, 0.1k, εc)-condenser for t = 10k, εc = 2−0.1k.

Now consider the seed length. We know that |U1| = Θ(log2 n). For the random walks, the random bits
needed have length Θ(t) = Θ(k). So the seed length is |U1|+ Θ(t) = Θ(k).
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8.3 Locality Control

There is one problem left in our construction. We want the locality of our extractor to be small. However,
in the current construction, we cannot guarantee that the locality is small, because the random walk may hit
some vectors that have large weights. We bypass this barrier by setting these vectors to be 0.

We need the following Chernoff Bound for random walks on expander graphs.

Theorem 8.12 ([Hea08] Theorem 1). Let G be a regular graph with N vertices where the second largest
eigenvalue is λ. For every i ∈ [t], let fi : [N ] → [0, 1] be any function. Consider a random walk
v1, v2, . . . , vt in G from a uniform start-vertex v1. Then for any ε > 0,

Pr[|
t∑
i=1

fi(vi)−
t∑
i=1

Efi| ≥ εt] ≤ 2e−
ε2(1−λ)t

4 .

Now we give our final construction.

Construction 8.13. For any k = Ω(log2 n), we construct an (n, k, t = 10k, 0.08k, εc)-condenser Cond :
{0, 1}n × {0, 1}d→ {0, 1}t with d = Θ(k) , locality c = n/l, l = k

2 logn , εc = 2−k/500000.

Let g : {0, 1}r=O(log2 n) → {0, 1}r0=O(n logn) be the PRG from Lemma 8.9 with error parameter εg =
1/poly(n).

1. Construct an expander graph G̃ = (Ṽ , Ẽ) where Ṽ = {0, 1}r and λ(G̃) = 0.01 where r =
O(log2 n).

2. Using a uniform random string U1 of length r to select a vertex ṽ1 of Ṽ .

3. Take a random walk on G̃ to get ṽ2, . . . , ṽt. Let vi = g(ṽi), i = 1, . . . , t.

4. For i ∈ [t], get an n-bit string v′i = f(vi) such that ∀j ∈ [n],Pr[v′i,j = 1] − 1/l| ≤ 1/n2, where
f : {0, 1}r0 → {0, 1}n follows from Lemma 8.5, r0 = O(n log n).

5. Let M = (v′1, . . . , v
′
t)
T .

6. Construct the matrix M ′ = (v̄1, . . . , v̄t) such that for i ∈ [t], if w(v′i) > 1.2c, v̄i = 0, otherwise
v̄i = v′i.

7. Let Cond(x, u) = M ′x.

Let T̃ = {v ∈ Ṽ : w(f(g(v))) ∈ [0.8c, 1.2c]}.

Lemma 8.14. In Construction 8.13, with probability 1− 2e−k/500000,

|{i : w(v′i) ∈ [0.8c, 1.2c]}| ≥ 0.998t.
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Proof. Consider the following algorithm A. Given v ∈ {0, 1}r0 , A tests whether w(f(v)) ∈ [0.8c, 1.2c].

Algorithm 8.2: A(v)

Input: v ∈ {0, 1}r0
count = 0 ;
for i = 1 to n do

compute f(v)i ;
if f(v)i = 1 then

count++;
end

end
if count is in [0.8c, 1.2c] then Output 1 ;
else Output 0 ;

It can be seen that A runs in space O(log n). Because f(v)i, i = 1, . . . , n can be computed sequen-
tially using space O(log n) according to Lemma 8.5. Also all the iterators and variables used during the
computation require only O(log n) space.

As a result, according to the definition of space bounded PRG, for any εg = 1/poly(n),

|Pr[A(g(Ur)) = 1]− Pr[A(Ur0) = 1]| ≤ εg.

We know that Pr[A(g(Ur)) = 1] = |T̃ |
|Ṽ | and Pr[A(Ur0) = 1] = |T |

|V | . Thus, | |T̃ ||Ṽ | −
|T |
|V | | ≤ εg.

According to Lemma 8.7, |T ||V | ≥ 1− 2 exp{−Θ(c)}.

As a result, |T̃ ||Ṽ | ≥ 1− 2 exp{−Θ(c)} − εg ≥ 1− 1/poly(n) .

Thus for each i, Pr[w(f(g(ṽ))) ∈ [0.8c, 1.2c]] ≥ 1 − 1/poly(n). Let EIṽi∈T̃ = u. Then u ≥ 1 −
1/poly(n).

According to our construction, we can assume Iṽi∈T̃ = h(ṽi), i = 1, . . . , t for some function h. By
Theorem 8.12,

Pr[|
t∑
i=1

Iṽi∈T̃ −
t∑
i=1

u| ≥ 0.001t] ≤ 2e−
(0.001)2(1−λ)t

4 ≤ 2e−t/5000000

We know that t = 10k and |{i : w(v′i) ∈ [0.8c, 1.2c]}| =
∑t

i=1 Iṽi∈T̃ . So with probability at least
1− 2e−k/500000,

|{i : w(v′i) ∈ [0.8c, 1.2c]}| ≥
t∑
i=1

u− 0.001t ≥ (1− 1/poly(n))t− 0.001t ≥ 0.998t.

Lemma 8.15. The function Cond : {0, 1}n×{0, 1}d in Construction 8.13 is an (n, k, t, 0.08k, εc)-condenser
with seed length Θ(k).

Proof. According to Lemma 8.11, we know that for ε = 2−0.1k, Ud ◦MX is ε-close to Ud ◦W where for
every a ∈ {0, 1}d, H∞(W |Ud=a) = 0.1k. Let M ′X = h(Ud,MX). According to our construction, we
know that h is a deterministic function. More specifically, h(u, y) will set the ith coordinate of y to be 0 for
any i such that ṽi /∈ T̃ . The function h can check ṽi /∈ T̃ according to u deterministically.
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As a result,

SD(Ud ◦M ′X,Ud ◦ h(Ud,W ))

=SD(Ud ◦ h(Ud,MX), Ud ◦ h(Ud,W ))

≤SD(Ud ◦MX,Ud ◦W )

≤ε.

(30)

Now let’s consider the entropy of Ud ◦ h(Ud,W ). let ε0 = 2e−k/500000. By Lemma 8.14, for 1 − ε0
fraction of u ∈ {0, 1}d, there are at most 0.002t bits in W |Ud=u that are set to be 0.

As a result, for 1 − ε0 fraction of u ∈ {0, 1}d, u ◦ h(u,W |Ud=u) has entropy 0.1k − 0.002t ≥ 0.08k.
As a result, Ud ◦ h(Ud,W ) is ε0-close to Ud ◦W ′ where for every u ∈ {0, 1}d, W ′|Ud=u has entropy 0.08k.
So Ud ◦M ′X is ε + ε0 ≤ 2−k/500000-close to Ud ◦W ′ where for every u ∈ {0, 1}d, W ′|Ud=u has entropy
0.08k.

Lemma 8.16. The locality of Construction 8.13 is 1.2c = Θ(nk log n).

Proof. As for every M ′i , the number of 1s in it is at most 1.2c, the locality is 1.2c = 1.2n/l = Θ(nk log n)

Theorem 8.17. For any k = Ω(log2 n), there exists an (n, k, t = 10k, 0.08k, εc)-condenser Cond :
{0, 1}n × {0, 1}d→ {0, 1}t with d = Θ(k) , εc = 2−k/500000 and the locality is Θ(nk log n).

Proof. It follows from Lemma 8.15 and Lemma 8.16.

Theorem 8.18. For any k = Ω(log2 n), for any constant γ ∈ (0, 1), there exists a strong (k, ε)-extractor
Ext : {0, 1}n × {0, 1}d → {0, 1}m, where ε can be as small as 2−k

Ω(1)
, d = Θ(k),m = (1 − γ)k and the

locality is n
k log2(1/ε)(log n)(logO(1) k).

Proof Sketch. We combine our (n, k,mc = 10k, 0.08k, εc = 2−0.1k)-condenser Cond : {0, 1}n × {0, 1}r
→ {0, 1}mc where r = Θ(k) from Lemma 8.11 with the (0.08k, ε0)-extractor Ext0 : {0, 1}mc×{0, 1}d0 →
{0, 1}m0 from Theorem 6.8 for εc = 2−k

Ω(1)
.

Let Ext(X,U) = Ext0(Cond(X,U1), U2), where U = U1 ◦ U2. We know that U ◦ Ext(X,U) is
ε = εc + ε0 = 2−k

Ω(1)
-close to uniform distribution over {0, 1}Θ(k).

The locality of Cond is Θ(nk log n). The locality of Ext0 is log2(1/ε)(logO(1)mc). So the overall locality
is n

k log2(1/ε)(log n)(logO(1) k). The seed length is |U | = |U1|+ |U2| = d0 + Θ(k) = Θ(k) by setting ε to
be large enough, since d0 = O( k log(1/εc)

m
1/10800
c logmc

).

Our theorem holds by applying the extraction in parallel technique in Lemma 6.6 to increase the output
length to (1− γ)k.

Since we note that the extractor in [PWY16] (Supplementary Information Theorem 3) also has small
locality, we can also combine our condenser with their extractor to get the following.

Theorem 8.19. For any constant γ ∈ (0, 1), any k = Ω(log2 n), ε = 2−o(k), there exists an explicit
strong (k, ε)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m, d = Θ(k),m = (1 − γ)k and the locality is
n
k (log n) log(k/ε).
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Proof. We combine our (n, k,mc = 10k, 0.08k, εc = 2−0.1k)-condenser Cond : {0, 1}n × {0, 1}r →
{0, 1}mc where r = Θ(k) from Lemma 8.11 with the (0.08k, ε0)-extractor Ext0 : {0, 1}mc × {0, 1}d0 →
{0, 1}m0 from [PWY16] (Supplementary Information Theorem 3), where ε0 = O(ε), d = O(logmc log(mc/εc)),m0 =
O(mc).

Let Ext(X,U) = Ext0(Cond(X,U1), U2), where U = U1 ◦U2, with U1 being uniform over {0, 1}r, U2

uniform over {0, 1}d0 . We have that U ◦ Ext(X,U) is ε = εc + ε0 ≤ ε-close to uniform distribution over
{0, 1}Θ(k), by setting ε0 to be small enough.

The locality of Cond is Θ(nk log n). The locality of Ext0 is log(mc/ε0). So the overall locality is
n
k (log n) log(k/ε). The seed length is |U | = |U1|+ |U2| = Θ(k) + d0 = Θ(k).

Our theorem holds by applying the extraction in parallel technique in Lemma 6.6 to increase the output
length to (1− γ)k.

9 Applications

In this section, we give some constructions of PRGs based on our AC0 extractor.

9.1 PRG in AC0 Based on Random Local One-way Function

Our first construction is based on random local one-way functions following the method of Applebaum
[App13].

Let dist(·) denotes the hamming distance between the two input strings (with equal length).

Definition 9.1 (Hypergraphs [App13]). An (n,m, d) hypergraph is a graph over n vertices and m hyper-
edges each of cardinality d. For each hyperedge S = (i0, i1, . . . , id−1), the indices i0, i1, . . . , id−1 are
ordered. The hyperedges of G are also ordered. Let G be denoted as ([n], S0, S1, . . . , Sm−1) where for
i = 0, 1, . . . ,m− 1, Si is a hyperedge.

Remark 9.2. Here we do not require the indices i0, i1, . . . , id−1 to be distinct. This setting is the same as
that in [BQ12] and [Gol11] (Random Construction).

Definition 9.3 (Predicate). A d-ary predicate Q : {0, 1}d → {0, 1} is a function which partitions {0, 1}d in
to V0 and V1, where Va = {w ∈ {0, 1}d|Q(w) = a} for a = 0, 1.

Let HQ = (V0 ∪V1, E) be a bipartite graph where (u, v) ∈ V0×V1 is an edge if dist(u, v) = 1. LetM
be all the possible matchings of HQ. The size of the maximum matching of HQ is

Match(Q) = max
M∈M

Pr
v

[∃u, (u, v) ∈M or (v, u) ∈M ] = max
M∈M

2|M |/2d,

where v is uniformly distributed in V0 ∪ V1.

Definition 9.4 (Collection of Functions). For s = s(n),m = m(n), a collection of functions F : {0, 1}s ×
{0, 1}n → {0, 1}m takes an input (k, x) and outputs F (k, x). Here k is a public index and x can be viewed
as the input for the kth function in the collection. We also denote F (k, x) as Fk(x) where Fk is the kth
function in the collection.

Remark 9.5. For simplicity, we usually consider n as an exponential of 2.

In the following paragraph, an efficient adversary is defined to be a probabilistic polynomial time Turing
Machine. Also the term efficient means in probabilistic polynomial time.
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Definition 9.6 (Approximate One-way Function for Collection of Functions). For δ = δ(n) ∈ (0, 1) and
ε = ε(n) ∈ (0, 1), a collection of functions F : {0, 1}s × {0, 1}n → {0, 1}m is an (ε, δ)-approximate one-
way function if for every efficient adversary A which outputs a list of poly(n) candidates and for sufficiently
large n’s, we have that

Pr
k,x,y=Fk(x)

[∃z ∈ A(k, y), z′ ∈ F−1
k (y), dist(z, z′)/n ≤ δ] < ε,

where k and x are independent and uniform. Specially, when δ = 0, we say the collection F is ε-one-way.

Definition 9.7 (Goldreich’s Random Local Function [Gol11]). Given a predicate Q : {0, 1}d → {0, 1} and
an (n,m, d) hypergraph G = ([n], S0, . . . , Sm−1), the function fG,Q : {0, 1}n → {0, 1}m is defined as
follows: for input x, the ith output bit of fG,Q(x) is fG,Q(x)i = Q(xSi).

Form = m(n), the function collection FQ,n,m : {0, 1}s×{0, 1}n → {0, 1}m is defined via the mapping
(G, x)→ fG,Q(x).

Lemma 9.8. For every d = O(log n), every m = poly(n) and every predicate Q : {0, 1}d → {0, 1}, the
random local function FQ,n,m, following Definition 9.7, is in AC0.

Proof. For every i ∈ [m], we claim that the ith output bit of FQ,n,m(G, x) can be computed in AC0. The
reason is as follows. We know that FQ,n,m(G, x)i = Q(xSi). So it is determined by d bits of x and Si which
corresponds to d log n bits of G. Thus for Si = (j0, j1, . . . , jd−1), ∀l ∈ [d], the lth input for Q is

xjl =

n∨
k=0

(Ijl=k ∧ xk) =

n∧
k=0

(Ijl 6=k ∨ xk).

As |jl| = log n, Ijl=k and Ijl 6=k can be computed in AC0 by Lemma 2.11. So every input bit in xSi can be
computed in AC0. As d = O(log n), we know that FQ,n,m(G, x)i = Q(xSi) can be computed in AC0. Thus
FQ,n,m(G, x) can be computed in AC0.

Definition 9.9. Two distribution ensembles Y = {Yn} and Z = {Zn} are ε-indistinguishable if for every
efficient adversary A,

|Pr[A(1n, Yn) = 1]− Pr[A(1n, Zn) = 1]| ≤ ε(n).

Here the subscript of a random variable indicates its length.

Definition 9.10 (PRG for a Collection of Functions). Letm = m(n). A collection of functions F : {0, 1}s×
{0, 1}n → {0, 1}m is an ε-PRG, if (K,FK(Un)) is ε-indistinguishable from the uniform distribution. Here
K is uniform over {0, 1}s, Un is uniform over {0, 1}n.

A collection of functions F : {0, 1}s×{0, 1}n → {0, 1}m is ε-unpredictable generator (UG) if for every
efficient adversary A and every sequence of indices {in}n∈N where in ∈ [m(n)], we have that

Pr
k←Us,x←Un

[A(k, Fk(x)[0,...,in−1]) = Fk(x)in ] ≤ ε(n)

for sufficiently large n’s. Here F is ε-last-bit unpredictable generator (LUG) if in = m(n)− 1.

Remark 9.11. Let t = t(r). A function G : {0, 1}r → {0, 1}t is a classic ε-PRG, if (K,FK(Un)) is ε-
indistinguishable from the uniform distribution. HereK is uniform over {0, 1}r, Un is uniform over {0, 1}n.

The definition of PRG for a collection of functions implies the classic definition of PRG. Following our
definition, if there exists an explicit ε-PRG F (·, ·) for a collection of functions, we know (Us, FUs(Un)) is
ε-indistinguishable from uniform distributions. Let G : {0, 1}r=s+n → {0, 1}t=s+m be such that ∀k ∈
{0, 1}s, ∀x ∈ {0, 1}n, G(k ◦ x) = k ◦ F (k, x). We know that G(Ur) is indistinguishable from uniform
distributions. So G is a classic ε-PRG.
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Definition 9.12. An ε-LPRG is an ε-PRG whose output length is linear of its input length (including the
index length, m > (1 + δ)(n+ s) for some constant δ).

An ε-PPRG is an ε-PRG whose output length is a polynomial of its input length (including the index
length, m > (n+ s)(1+δ) for some constant δ).

Lemma 9.13. For every c ∈ N+, an ε-PRG G : {0, 1}r → {0, 1}t in AC0 can be transformed to an
(cε)-PRG G′ : {0, 1}r → {0, 1}t(t/r)c .

Here G′(·) = G(c)(·), where G(i+1)(·) = G(i)(·),∀i ∈ N+ and G(1)(·) = G(·).
If c is a constant, then G′ is in AC0.

Proof. We use inductions. Assume the the output length for G(i) is t(i).
For the basic step, as G is an ε-PRG, G(1) = G is an ε-PRG.
For the induction step, assume for i, G(i) is an (iε)-PRG. Suppose there exists an efficient adversary A

such that
|Pr[A(G(i+1)(Ur)) = 1]− Pr[A(Ut(i+1)) = 1]| > (i+ 1)ε.

We know that

|Pr[A(G(i+1)(Ur)) = 1]− Pr[A(Ut(i+1)) = 1]|
≤|Pr[A(G(i+1)(Ur)) = 1]− Pr[A(G(Ut(i))) = 1]|+ |Pr[A(G(Ut(i))) = 1]− Pr[A(Ut(i+1)) = 1]|

(31)

As |Pr[A(G(Ut(i))) = 1]− Pr[A(Ut(i+1)) = 1]| ≤ ε,

|Pr[A(G(i+1)(Ur)) = 1]− Pr[A(G(Ut(i))) = 1]| > iε

contradicting the the induction assumption. So G(i+1) is an (i+ 1)ε-PRG.

Theorem 9.14. For any d-ary predicate Q, if the random local function FQ,n,m is δ-one-way for some
constant δ ∈ (0, 1), then we have the following results.

1. For some constant c = c(d) > 1, if m > cn , then there exists a ε-LPRG in AC0 with ε being
negligible.

2. For any constant c > 1, if m > nc, then there exists a ε-PPRG in AC0 with ε being negligible.

Before we prove Theorem 9.14, we first use it to obtain our main theorem in this subsection.

Theorem 9.15. For any d-ary predicate Q, if the random local function FQ,n,m is δ-one-way for some
constant δ ∈ (0, 1), then we have the following results.

1. For some constant c > 1, if m > cn , then for any constant a > 1, there exists a ε-LPRG G :
{0, 1}r → {0, 1}t in AC0, where t ≥ ar and ε is negligible.

2. For any constant c > 1, if m > nc, then for any constant a > 1 there exists a ε-PPRG G : {0, 1}r →
{0, 1}t in AC0, where t ≥ ra and ε is negligible.

Proof. For the first assertion, let the LPRG in Theorem 9.14 be G0 : {0, 1}r0 → {0, 1}t0 with t0 > c0r0 for
some constant c0 > 1. We apply the construction in Lemma 9.13 to obtain G(c1) such that cc10 ≥ a. So c1 is
a constant. By Lemma 9.13 we know that G(c1) is a c1ε-PRG in AC0. This proves the first assertion.

By the same reason, the second assertion also holds.

Construction 9.16. Let FQ,n,m : {0, 1}s × {0, 1}n → {0, 1}m be the random local function following
Definition 9.7. We construct F ′ : {0, 1}s × {0, 1}n′ → {0, 1}m′ where n′ = tn,m′ = tm, t = n.
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1. Draw G uniformly from {0, 1}s.

2. Draw x(1), x(2), . . . , x(t) independently uniformly from {0, 1}n. Let x = (x(1), x(2), . . . , x(t)).

3. Output F ′(G, x) =©t
i=1G(x(i)).

Lemma 9.17. In Construction 9.16, for every constant d ∈ N+, every predicateQ : {0, 1}d → {0, 1}, every
m = poly(n) and every ε = 1/poly(n), if FQ,n,m is (1

2 +ε)-last-bit unpredictable then F ′ is (1
2 +ε(1+1/n))-

unpredictable.

Proof. Suppose there exists a next-bit predictor P and a sequence of indices {in} such that

Pr
x←Un,G←Us,y=F ′(G,x)

[P (G, y0,...,in−1) = yin ] ≥ 1

2
+ ε(n)(1 + 1/n)

for sufficiently large n’s.
Now we construct a last-bit predicator P ′ which can predicate the last bit of FQ,n,m with success prob-

ability 1/2 + ε.
By Remark 3.2 of [App13], P ′ can find an index j ∈ [m′] by running a randomized algorithm M in

polynomial time, such that, with probability 1− 2−Θ(n) over the random bits used in M ,

Pr
G,x,y=F ′(G,x)

[P (G, y[0,...,j−1]) = yj ] >
1

2
+ ε(n) +

ε(n)

2n
.

Recall that in Remark 3.2 of [App13], M ′ tries every index and pick the best one.
According to Construction 9.16, assume j = an+ b for some a, b ∈ N, b < n.
Given (G, y[0,...,m−2]), P ′ generates x(1), x(2), . . . , x(a−1) independently uniformly over {0, 1}n. Also

P ′ constructs a hypergraph G′ by swapping Sb and Sm−1 of G. Next, P ′ computes y′ = ©a
i=1G

′(x(i)) ◦
y[0,...,b−2]. Finally P ′ outputs P (G′, y′). As G is uniform, G′ is also uniform. Also as x(1), . . . , x(a) are
uniform, (G′, y′) has the same distribution as (G, y[0,...,j−1]). So

Pr[P ′(G′, y′) = ym−1] ≥ 1

2
+ ε(n) +

ε(n)

2n
− 2Θ(n) >

1

2
+ ε(n).

This contradicts that FQ,n,m is (1
2 + ε)-last-bit unpredictable.

Theorem 9.18 ([App13], Section 5). For every constant d ∈ N, predicate Q : {0, 1}d → {0, 1}, and
constant ε ∈ (0,Match(Q)/2), there exists a constant c > 0 such that for every polynomial m > cn the
following holds. If the collection FQ,n,m is ε/5-one-way then it is a (1 − Match(Q)/2 + δ)-last-bit UG
where δ = ε(1− o(1)). Thus it is also a (1−Match(Q)/2 + ε)-UG.

Remark 9.19. Our definition of random local function has only one difference with the definition of [App13].
That is, for each hyperedge we do not require the incoming vertices to be distinct. This difference does not
affect the correctness of Theorem 9.18.

Construction 9.20 (Modified from [App13] Construction 6.8). Let F : {0, 1}s(n) × {0, 1}n → {0, 1}m(n)

be a UG and Ext : {0, 1}n1 × {0, 1}d1 → {0, 1}m1 be a strong (k = αn1, ε1)-extractor following Theorem
6.16 where n1 = n, α is some constant, ε = 1/2Θ(loga n) for some large enough constant a ∈ N+, d1 =
(log a)Θ(a), m = 0.9k.

We construct the following UG H : {0, 1}sn × {0, 1}n2+d1n → {0, 1}mn.
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1. Index: Generate G0, G1, . . . , Gn−1 independently uniformly over {0, 1}s. Generate extractor seeds
u0, u1, . . . , um−1 independently uniformly over {0, 1}d1 . Denote G = (G0, G1, . . . , Gn−1) and u =
(u0, u1, . . . , um−1).

2. Input: Generate x(0), x(1), . . . , x(n−1) independently uniformly over {0, 1}n.

Denote x = (x(0), x(1), . . . , x(n−1)).

3. Output: Compute the n ×m matrix Y whose ith row is Gi(x(i)). Let Yi denote the ith column of Y .
Output H(G, u, x) = Ext(Y0, u0) ◦ Ext(Y1, u1) ◦ · · · ◦ Ext(Ym−1, um−1).

Remark 9.21. There are 2 differences between our construction and Construction 6.8 of [App13]. First, we
use our AC0-extractor to do extraction. As our extractor is strong, its seed can also be regarded as part of
the public key (index). Second, our construction is for any m, while their construction only considers m as
a linear function of n.

Lemma 9.22. For any constant ε ∈ [0, 1/2), if F is (1
2 + ε)-unpredictable, then the mapping H is a PRG

with negligible error.

Proof Sketch. The proof is almost the same as that of Lemma 6.9 of [App13].
By the same argument of Lemma 6.9 of [App13], we know that for every sequence of efficiently com-

putable index family {in} and every efficient adversary A, there exists a random variable W ∈ {0, 1}n
jointly distributed with G and Y such that

• the min-entropy of W , given any fixed G and the first in columns of Y , is at least n(1− 2ε− o(1)).

• A cannot distinguish between (G, Y[0,...,in]) and (G, [Y[0,...,in−1]W ]) with more than negligible advan-
tage even when A is given an oracle which samples the distribution (G, Y,W ). Here [Y[0,...,in−1]W ]
is a matrix such that the first in columns are Y[0,...,in−1] and the last column is W .

By the definition of strong extractors, for every family {in}, the distribution

(G, u, Y[0,...,in−1],Ext(Yin , uin))

is indistinguishable from (G, u, Y[1,...,in−1], Um1). Otherwise, suppose there is an adversary B that can dis-
tinguish the two distributions. We construct another adversary A as the follows. First A generates a uniform
u as seeds for the extractors and invokes B on (G, u, y,Ext(v, u)) where G is generated from uniform, y is
drawn from Y[0,...,in−1]. If v is drawn from Yin then B gets a sample from (G, u, Y[0,...,in−1],Ext(Yin , u)).
If v is drawn from W , then B gets a sample from (G, u, Y[0,...,in−1],Ext(W,u)) which is ε0-close to
(G, u, Y[0,...,in−1], Um1) by the definition of strong extractors, where ε0 is negligible according to our settings
in Construction 9.20 and Um1 is the uniform distribution of length m1. So A can distinguish (G, Y[0,...,in])
and (G, [Y[0,...,in−1]W ]), having the same distinguishing advantage as B does (up to a negligible loss). This
is a contradiction.

As a result, for every family {in}, the distributions

(G, u,H(G, u, x)[0,...,in]) and (G, u,H(G, u, x)[0,in−1] ◦ Um1)

are indistinguishable. So H is a (1/2 + neg(n))-UG. By Fact 6.1 (Yao’s theorem) of [App13], H is a
PRG.

Proof of Theorem 9.14. We combine Construction 9.16 and Construction 9.20 together by using the UG of
Construction 9.16 in Construction 9.20. By Theorem 9.18 and Lemma 9.22, we know that our construction
gives a PRG (with negligible error). Assume the PRG is H : {0, 1}sH × {0, 1}nH → {0, 1}mH .
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Next we mainly focus on the stretch. The output length of H is mH = Θ(ntm), the input length
(including the index length) is sH + nH = sn+ d1n+ n2t. Here we know that s = m log n, t = n.

Assume m > cn for some constant c > 1. We know that mH
sH+nH

= c′ > 1, for some constant c′.
For the polynomial stretch case, assume m > nc for some constant c > 1. We know that mH ≥

(sH + nH)c
′

for some constant c′ > 1.
For both cases, the construction is in AC0. The reason is as follows. By Lemma 9.8, the random local

function is in AC0. In Construction 9.16 and Construction 9.20, we compute O(nt) random local functions
(some of them share the same index) in parallel. Also our extractor is in AC0. So the overall construction is
in AC0.

This proves the theorem.

9.2 PRG in AC0 for Space Bounded Computation

In this subsection, we give an AC0 version of the PRG in [NZ96].

Theorem 9.23. For every constant c ∈ N and every m = m(s) = poly(s), there is an explicit PRG
g : {0, 1}r=O(s) → {0, 1}m in AC0, such that for any randomized algorithm A using space s,

|Pr[A(g(Ur)) = 1]− Pr[A(Um) = 1]| = ε ≤ 2−Θ(logc s),

where Ur is the uniform distribution of length r, Um is the uniform distribution of length m.

Proof Sketch. We modify the construction of [NZ96] by replacing their extractor with the extractor from
Theorem 6.16 for some constant entropy rate and with error parameter ε′ = 2−Θ(logc s). In the PRG con-
struction of [NZ96], it only requires an extractor for constant entropy rate. As our extractor meets their
requirement, the proof in [NZ96] still holds under this modification.

For the security parameter ε, according to [NZ96], ε = poly(s)(ε′ + 2−s). As a result, ε = 2−Θ(logc s).
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A Proof of Lemma 4.5

Lemma A.1 (Lemma 4.5 restated, implicit in [IW97]). For any γ ∈ (0, 1/30), if there is a boolean function
f : {0, 1}l → {0, 1} that is 1/3-hard for circuit size g = 2γl, then there is a boolean function f ′ :
{0, 1}l′=Θ(l) → {0, 1} that is (1/2− ε)-hard for circuit size g′ = Θ(g1/4ε2l−2) where ε ≥ (500l)1/3g−1/12.

f ′(a, s, v1, w) = 〈s, f(a|S1 ⊕ v1) ◦ f(a|S2 ⊕ v2) ◦ · · · f(a|Sl ⊕ vl)〉

Here (S1, . . . , Sl) is an (|a|, l, γl/4, l)-design where |a| = b40l
γ c. The vectors v1, . . . , vl are obtained by

a random walk on an expander graph, starting at v1 and walking according tow where |v1| = l, |w| = Θ(l).
The length of s is l. So l′ = |a|+ |s|+ |v1|+ |w| = Θ(l).
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In order to clearly compute the circuit size, we need the following theorem.

Theorem A.2 (Circuit Size of Majority Function [W+87] Page 76, Theorem 4.1). The circuit size of the
majority function on n input bits is O(n).

We need the following version of Goldreich Levin Theorem.

Theorem A.3 (Goldreich-Levin Algorithm [GL89], Circuit Version). For any ε > 0, for any function
f : {0, 1}l → {0, 1}t, if there is a circuit C : {0, 1}l+t → {0, 1} of size g such that we have

Pr
x,r

[C(x, r) = 〈f(x), r〉] ≥ 1/2 + ε,

where r is uniformly random distributed over {0, 1}t, x is uniformly distributed over {0, 1}l, then there is a
circuit C ′ : {0, 1}l → {0, 1}t of size O(gt2/ε2) such that

Pr
x

[C ′(x) = f(x)] ≥ ε3/(500t).

Proof. As
Pr
x,r

[C(x, r) = 〈f(x), r〉] ≥ 1/2 + ε,

for at least ε/2 fraction of all x ∈ {0, 1}l,

Pr
r

[C(x, r) = 〈f(x), r〉] ≥ 1/2 + ε/2.

Let T = {x : Prr[C(x, r) = 〈f(x), r〉] ≥ 1/2 + ε/2}. We have |T |/2l ≥ ε/2.
For every x in T , consider the following Goldreich-Levin algorithm GL.

Algorithm A.1: GL(x)

Input: x ∈ {0, 1}l
Let Lx = ∅
Generate uniform random strings r0, r1, . . . , rk−1 over {0, 1}t, where k = dlog(100t/ε2 + 1)e.
For every S ⊆ [k], S 6= ∅, let rS =

∑
j∈S rj .

Let R = {rS ∈ {0, 1}t : ∅ 6= S ⊆ [k]}
for b0, b1, . . . , bk−1 ∈ {0, 1} do

For every S ⊆ [k], S 6= ∅, let bS =
∑

j∈S bj
Let B = {bS ∈ {0, 1} : ∅ 6= S ⊆ [k]}
for i = 0 to t− 1 do

yi = maj∅6=S⊆[k]{C(x, rS ⊕ ei)⊕ bS}
end
Add y to Lx

end
return Lx
We claim that ∀x ∈ T , with probability at least 0.99 over the random variables used in GL, x ∈ Lx.

The reason is as follows.
In the algorithm GL, we try all the possibilities of b0, . . . , bk−1. Consider one special choice of them,

saying bj = 〈f(x), rj〉,∀j ∈ [k]. As a result, bS = 〈f(x), rS〉,∀S ⊆ [k], S 6= ∅. Now we fix an x ∈ T and
an i ∈ [t]. If C(x, rS ⊕ ei) = 〈f(x), rS ⊕ ei〉, then C(x, rS ⊕ ei)⊕ bS = f(x)i. We know that, as x ∈ T ,

Pr
rS

[C(x, rS ⊕ ei) = 〈f(x), rS ⊕ ei〉] = 1/2 + ε′/2
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for ε′ ∈ [ε, 1]. So
Pr
rS

[C(x, rS ⊕ ei)⊕ bS = f(x)i] = 1/2 + ε′/2.

According to the construction of rS in our algorithm, rS’s, ∀S ⊆ [k], S 6= ∅ are pairwise independent.
Let IS denote the indicator such that IS = 1 if C(x, rS ⊕ ei) ⊕ bS = f(x)i and IS = 0 otherwise. Let
I =

∑
∅6=S⊆[k] IS . Thus EIS = 1/2 + ε′/2. So EI = (1/2 + ε′/2)(2k − 1). Also, the variance of IS is

Var(IS) = EI2
S − (EIS)2 = EIS − (EIS)2 ≤ 1/4. So Var(I) =

∑
∅6=S⊆[k] Var(IS) ≤

∑
∅6=S⊆[k]

1
4 =

(2k − 1)/4. So according to the Chebyshev’s inequality,

Pr[I ≤ 1/2(2k − 1)] ≤ Pr[|I −EI| ≥ ε′

2
(2k − 1)] ≤ Var(I)

( ε
′

2 (2k − 1))2
=

1

ε′2(2k − 1)
≤ 1/(100t),

as 2k − 1 ≥ 100t/ε2 and ε′ ≥ ε. Thus Pr[yi 6= f(x)i] ≤ Pr[I ≤ 1/2(2k − 1)] ≤ 1/(100t). According to
the union bound, Pr[y = f(x)] ≥ 1− t/(100t) = 0.99.

We know that as we have guessed all the possible values of b0, b1, . . . , bk−1, one of them should be
correct. So for every x ∈ T , with probability at least 0.99 over r0, r1, . . . , rk−1, x is in Lx.

Now we modify this algorithm to construct the circuit C ′. Notice that we only need to prove that there
exists a circuit C ′. So we are going to fix the random variables and the choice of b0, b1, . . . , bk−1 in the
algorithm.

We first fix those random variables. Assume we use the same random variables r0, r1, . . . , rk−1 to get
Lx for every x ∈ T . For every x ∈ T , let Ix denote the event that x ∈ Lx. We know that EIx ≥ 0.99. So
E
∑

x∈T Ix ≥ 0.99|T |. So there exists r′0, r
′
1, . . . , r

′
k−1 such that

(
∑
x∈T

Ix)|ri=r′i,∀i∈[k] ≥ 0.99|T |.

Denote the event ri = r′i,∀i ∈ [k] as ϕ.
After we fix these random variables, we fix the choice of b0, b1, . . . , bk−1. We know that for at least

0.99|T | number of x ∈ T , x ∈ Lx|ϕ. For every x, let yx,b0,...,bk−1
denote the element in Lx|ϕ corresponding

to b0, b1, . . . , bk−1. As the size of Lx|ϕ is 2k ≤ 200t/ε2 + 2, there exists b′0, b
′
1, . . . , b

′
k−1 ∈ {0, 1} such that

for at least 0.99|T |
2l2k

≥ ε3/(500t) fraction of x ∈ {0, 1}l, yx,b′0,b′1,...,b′k−1
= f(x).

By fixing the random variables and b0, b1, . . . , bk−1, according to our algorithm, we have a circuit C ′,
such that for every i ∈ [t],

C ′(x)i = maj∅6=S⊆[k]{C(x, r′S ⊕ ei)⊕ b′S}

where ∀S ⊆ [k], S 6= ∅, r′S =
∑

j∈S r
′
j , b
′
S =

∑
j∈S b

′
j .

By Theorem A.2, we know the circuit size for computing majority function over 2k − 1 input bits is
O(2k).

As all the random variables and b0, . . . , bk−1 are fixed, for every i ∈ [l] and every S ⊆ [k], S 6= ∅,
r′S ⊕ ei and b′S are fixed (given bits, not need to be computed by the circuit).

So we can see that for every i ∈ [t], the circuit size of C ′(·)i is O(g · 2k + 2k) = O(gt/ε2 + t/ε2) =
O(gt/ε2). So the circuit size of C ′ is O(gt2/ε2).

Lemma A.4 ([IW97] Section 5.3). For any γ ∈ (0, 1/30), if there is a boolean function f : {0, 1}l → {0, 1}
that is 1/3-hard for circuit size g = 2γl, then there is a boolean function f̃ : {0, 1}l̃=Θ(l) → {0, 1}l that is
g−1/4-hard for circuit size g1/4.

f̃(a, v1, w) = f(a|S1 ⊕ v1) ◦ f(a|S2 ⊕ v2) ◦ · · · f(a|Sl ⊕ vl)
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Here (S1, . . . , Sl) is an (|a|, l, γl/4, l)-design where |a| = b40l
γ c. The vectors v1, . . . , vl are obtained by

a random walk on an expander graph, starting at v1 and walking according tow where |v1| = l, |w| = Θ(l).
So l̃ = |a|+ |v1|+ |w| = Θ(l).

Now we prove Lemma A.1.

Proof. By Lemma A.4, for any γ ∈ (0, 1/30), if there is a boolean function f : {0, 1}l → {0, 1} that
is 1/3-hard for circuit size g = 2γl, then there is a boolean function f̃ : {0, 1}l̃=Θ(l) → {0, 1}l that is
ε̃ = g−1/4-hard for circuit size g̃ = g1/4.

f̃(a, v1, w) = f(a|S1 ⊕ v1) ◦ f(a|S2 ⊕ v2) ◦ · · · f(a|Sl ⊕ vl)

Now consider f ′ : {0, 1}l̃+l → {0, 1} which is as follows.

f ′(a, s, v1, w) = 〈s, f(a|S1 ⊕ v1) ◦ f(a|S2 ⊕ v2) ◦ · · · f(a|Sl ⊕ vl)〉

where |s| = l.
By Theorem A.3, f ′ is (1/2− ε)-hard for circuits of size g′ = Θ(g̃ε2l−2) = Θ(g1/4ε2l−2) where ε can

be such that ε3/(500l) ≥ ε̃. That is ε ≥ (500l)1/3g−1/12.
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