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Abstract

We prove that any algorithm for learning parities requires either a memory of
quadratic size or an exponential number of samples. This proves a recent conjecture
of Steinhardt, Valiant and Wager [SVW15] and shows that for some learning problems
a large storage space is crucial.

More formally, in the problem of parity learning, an unknown string x ∈ {0, 1}n
was chosen uniformly at random. A learner tries to learn x from a stream of samples
(a1, b1), (a2, b2) . . ., where each at is uniformly distributed over {0, 1}n and bt is the
inner product of at and x, modulo 2. We show that any algorithm for parity learning,
that uses less than n2

25 bits of memory, requires an exponential number of samples.
Previously, there was no non-trivial lower bound on the number of samples needed,

for any learning problem, even if the allowed memory size is O(n) (where n is the space
needed to store one sample).

We also give an application of our result in the field of bounded-storage
cryptography. We show an encryption scheme that requires a private key of length n, as
well as time complexity of n per encryption/decription of each bit, and is provenly and

unconditionally secure as long as the attacker uses less than n2

25 memory bits and the
scheme is used at most an exponential number of times. Previous works on bounded-
storage cryptography assumed that the memory size used by the attacker is at most
linear in the time needed for encryption/decription.
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1 Introduction

Parity learning can be solved in polynomial time, by Gaussian elimination, using O(n)
samples and O(n2) memory bits. On the other hand, parity learning can be solved by trying
all the possibilities, using n+ o(n) memory bits and an exponential number of samples.

We prove that any algorithm for parity learning requires either n2

25
memory bits, or an

exponential number of samples. Our result may be of interest from the points of view of
learning theory, computational complexity and cryptography.

1.1 Learning Theory

The main message of this paper from the point of view of learning theory is that for some
learning problems, access to a relatively large memory is crucial. In other words, in some
cases, learning is infeasible, due to memory constraints. We show that there exist concept
classes that can be efficiently learnt from a polynomial number of samples, if the learner
has access to a quadratic-size memory, but require an exponential number of samples if the
memory used by the learner is of less than quadratic size. This gives a formally stated and
mathematically proved example for the intuitive feeling that a ”good” memory may be very
helpful in learning processes.

Many works studied the resources needed for learning, under certain information,
communication or memory constraints (see in particular [S14, SVW15] and the many
references given there). However, there was no previous non-trivial lower bound on the
number of samples needed, for any learning problem, even when the allowed memory size is
bounded by the length of one sample (where we don’t count the space taken by the current
sample that is being read).

The starting point of our work is the intriguing recent work of Steinhardt, Valiant and
Wager [SVW15]. Steinhardt, Valiant and Wager asked whether there exist concept classes
that can be efficiently learnt from a polynomial number of samples, but cannot be learnt
from a polynomial number of samples if the allowed memory size is linear in the length of one
sample. They conjectured that the problem of parity learning provides such a separation.
Our main result proves that conjecture.

Remark 1.1. Conjecture 1.1 of [SVW15] conjectures that any algorithm for parity learning
requires either at least n2

4
bits of memory, or at least 2n/4 samples. Our main result

qualitatively proves this conjecture, but with different constants. The conjecture, as stated,
(that is, with the ambitious constants 1

4
, 1

4
) is too strong.1

1Roughly speaking, this is the case since an algorithm similar to Gaussian elimination can solve parity

learning, using n2

4 +O(n) memory bits and a polynomial number of samples (by keeping in step k, a matrix

with k rows and n columns, where the first k columns form the identity matrix). If 2n/4 samples are
available, one can essentially solve a parity learning problem of size 3

4n + o(n), by considering only samples

with coefficients 0 on the last 1
4n−o(n) variables. Hence, if 2n/4 samples are available, 9

64n
2 +o(n2) memory

bits are sufficient.

2



1.2 Computational Complexity

Time-space tradeoffs have been extensively studied in the field of computational complexity,
in many works and various settings. Two brilliant lines of research were particularly
successful in establishing time-space lower bounds for computation.

The first line of works [BJS98, A99a, A99b, BSSV00] gives explicit examples for
polynomial-time computable Boolean functions f : {0, 1}n → {0, 1}, such that, any
algorithm for computing f requires either at least n1−ε memory bits, where ε > 0 is an

arbitrarily small constant, or time complexity of at least Ω
(
n
√

log n/ log log n
)

. These

bounds are proved for any branching program that computes f . Branching programs are
the standard and most general computational model for studying time-space tradeoffs in
the non-uniform setting (which is the more general setting), and is also the computational
model that we use in the current work.

The second line of works [F97, FLvMV05, W06, W07] (and other works) studies time-
space tradeoffs for SAT (and other NP problems), in the uniform setting, and proves that
any algorithm for SAT requires either at least n1−ε memory bits, or time complexity of at
least n1+δ (where 0 < ε, δ < 1 are constants). For an excellent survey, see [vM07].

Both lines of works obtain less than quadratic lower bounds on the time needed for
computation, under memory constraints. Quadratic lower bounds on the time needed for
computation are not known, even if the allowed memory-size is logarithmic. Comparing
these results to our work, one may ask what makes it possible to prove exponential lower
bounds on the time needed for parity learning, under memory constraints, while the known
time-space lower bounds for computations are significantly weaker? The main point to keep
in mind is that when studying time-space tradeoffs for computing a function, one assumes
that the input for the function can always be accessed, and the space needed to store the
input doesn’t count as memory that is used by the algorithm. Thus, the input is stored for
free. In our learning problem, it is assumed that after the learner saw a sample, the learner
cannot access that sample again, unless the sample was stored in the learner’s memory. The
learner can always get a new sample that is ”as good as the old one”, but she cannot access
the same sample that she saw before (without storing it in the memory).

Finally, let us note that by Barrington’s celebrated result, any function in NC can be
computed by a polynomial-length branching program of width 5 [B86]. Hence, proving
super-polynomial lower bounds on the time needed for computing a function, by a branching
program of width 5, would imply super-polynomial lower bounds for formula size.

1.3 Cryptography

Assume that a group of (two or more) users share a (random) secret key x ∈ {0, 1}n. Assume
that user Alice wants to send an encrypted bit M ∈ {0, 1} to user Bob. Let a be a string of
n bits, uniformly distributed over {0, 1}n, and assume that both Alice and Bob know a (we
can think of a as taken from a shared random string and if a shared random string is not
available Alice can just choose a randomly and send it to Bob). Let b be the inner product
of a and x, modulo 2. Thus, b is known to both Alice and Bob and can be used as a one time
pad to encrypt/decrypt M , that is, Alice encrypts by computing M ⊕ b and Bob decrypts
by computing M = (M ⊕ b)⊕ b.
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Assume that this protocol is used m+1 times, with the same secret key x, where m is less
than exponential. Denote by at, bt the string a and bit b used at time t. Suppose that during
all that time, an attacker could see (a1, b1), . . . , (am, bm), but the attacker has less than n2

25

bits of memory. Our main result shows that the attacker cannot guess the secret key x, with
better than exponentially small probability. Therefore, using the fact that inner product is a
strong extractor (with exponentially small error), even if the attacker sees am+1, the attacker
cannot predict bm+1, with better than exponentially small advantage over a random guess.

Thus, if the attacker has less than n2

25
bits of memory, the encryption remains secure as

long as it is used less than an exponential number of times.
Bounded-storage cryptography, first introduced by Maurer [M92] and extensively studied

in many works, studies cryptographical protocols that are secure under the assumption that
the memory used by the attacker is limited (see for example [CM97, AR99, ADR02, V03,
DM04], and many other works). Previous works on bounded-storage cryptography assumed
the existence of a high-rate source of randomness that streams random bits to all parties.
The main idea is that the attacker doesn’t have sufficiently large memory to store all random
bits, and hence a shared secret key can be used to randomly select (or extract) bits from the
random source that the attacker has very little information about.

In previous works, the number of random bits transmitted during the encryption was
assumed to be larger than the memory-size of the attacker. Thus, the time needed for
encryption/decryption was at least linear in the memory-size of the attacker. In contrast,
the time needed for encryption/decryption in our protocol is n, while the encryption is secure
against attackers with memory of size n2

25
.

Remark 1.2. If Alice and Bob want to transmit encrypted messages of length m, where
m ≥ n (and the attacker has O(n2) bits of memory), our protocol has no advantage over
previous ones, as the time needed for encryption/decription in our protocol is mn. The
advantage of our protocol is in situations where the users want to securely transmit many
shorter messages.

1.4 Our Result

Parity Learning

In the problem of parity learning, there is an unknown string x ∈ {0, 1}n that was chosen
uniformly at random. A learner tries to learn x from samples (a, b), where a ∈R {0, 1}n and
b = a · x (where a · x denotes inner product modulo 2). That is, the learning algorithm is
given a stream of samples, (a1, b1), (a2, b2) . . ., where each at is uniformly distributed over
{0, 1}n and for every t, bt = at · x.

Main Result

Theorem 1. For any c < 1
20

, there exists α > 0, such that the following holds: Let x be
uniformly distributed over {0, 1}n. Let m ≤ 2αn. Let A be an algorithm that is given as
input a stream of samples, (a1, b1), . . . , (am, bm), where each at is uniformly distributed over
{0, 1}n and for every t, bt = at ·x. Assume that A uses at most cn2 memory bits and outputs
a string x̃ ∈ {0, 1}n. Then, Pr[x̃ = x] ≤ O(2−αn).
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Theorem 1 is restated, in a stronger2 and more formal 3 form, as Theorem 2 in Section 7,
and the proof of Theorem 2 is given there.

2 Preliminaries

For an integer n, denote [n] = {1, . . . , n}. For a, x ∈ {0, 1}n, denote by a · x their inner
product modulo 2.

For a function P : Ω → R, we denote by |P |1 its `1 norm. In particular, for two
distributions, P,Q : Ω→ [0, 1], we denote by |P −Q|1 their `1 distance.

For a random variable X and an event E, we denote by PX the distribution of the random
variables X, and we denote by PX|E the distribution of the random variable X conditioned
on the event E.

Denote by Un the uniform distribution over {0, 1}n. For an affine subspace w ⊆ {0, 1}n,
denote by Uw the uniform distribution over w.

For n ∈ N, denote by A(n) the set of all affine subspaces of {0, 1}n.

3 Proof Outline

Computational Model

We model the learning algorithm by a branching program. A branching program of length m
and width d, for parity learning, is a directed (multi) graph with vertices arranged in m+ 1
layers containing at most d vertices each. Intuitively, each layer represents a time step and
each vertex represents a memory state of the learner. In the first layer, that we think of as
layer 0, there is only one vertex, called the start vertex. A vertex of outdegree 0 is called
a leaf. Every non-leaf vertex in the program has 2n+1 outgoing edges, labeled by elements
(a, b) ∈ {0, 1}n × {0, 1}, with exactly one edge labeled by each such (a, b), and all these
edges going into vertices in the next layer. Intuitively, these edges represent the action when
reading (at, bt). The samples (a1, b1), . . . , (am, bm) ∈ {0, 1}n × {0, 1} that are given as input,
define a computation-path in the branching program, by starting from the start vertex and
following at Step t the edge labeled by (at, bt), until reaching a leaf.

Each leaf v in the program is labeled by an affine subspace w(v) ∈ A(n), that we think
of as the output of the program on that leaf. The program outputs the label w(v) of the
leaf v reached by the computation-path. We interpret the output of the program as a guess
that x ∈ w(v).

We also consider affine branching programs, where every vertex v (not necessarily
a leaf) is labeled by an affine subspace w(v) ∈ A(n), such that, the start vertex is
labeled by the space {0, 1}n ∈ A(n), and for any edge (u, v), labeled by (a, b), we have
w(u)∩{x′ ∈ {0, 1}n : a ·x′ = b} ⊆ w(v). These properties guarantee that if the computation-

2Theorem 2 allows the algorithm to output an affine subspace of dimension ≤ 3
5n, and bounds by 2−αn

the probability that x belongs to that affine subspace.
3Theorem 2 models the algorithm by a branching program, which is more formal and clarifies that the

theorem holds also in the (more general) non-uniform setting.
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path reaches a vertex v then x ∈ w(v). Thus, we can interpret w(v) as an affine subspace
that is known to contain x.

An affine branching program is called accurate if for (almost) all vertices v, the
distribution of x, conditioned on the event that the computation-path reached v, is close
to the uniform distribution over w(v).

For exact definitions, see Section 5.

The High-Level Approach

The proof has two parts. We prove lower bounds for affine branching programs, and we
reduce general branching programs to affine branching programs. The hard part is the
reduction from general branching programs to affine branching programs. We note that this
reduction is very wasteful and expands the width of the branching program by a factor of
2Θ(n2). Nevertheless, since we allow our branching program to be of width up to 2O(n2), this
is still affordable (as long as the exact constant in the exponent is relatively small). We
have to make sure though that, when proving time-space lower bounds for affine branching
programs, the upper bounds that we assume on the width of the affine branching programs
are larger than the expansion of the width caused by the reduction.

We note that in the introduction to Conjecture 1.1 of [SVW15], Steinhardt, Valiant and
Wager mention that they were able to prove the conjecture “for any algorithm whose memory
states correspond to subspaces”. However, a formal statement (or proof) is not given, so we
do not know how similar their result is to our lower bound for affine branching programs.
We note that affine branching programs, as we define here, do not satisfy Conjecture 1.1
of [SVW15] (see Remark 1.1 and Footnote 1).

Lower Bounds for Affine Branching Programs

Assume that we have an affine branching program of length at most 2cn and width at most
2cn

2
, for a small enough constant c. Fix k = 4

5
n. We prove that the probability that the

computation-path reaches some vertex that is labeled with an affine subspace of dimension
≤ k is at most 2−Ω(n2).

Without loss of generality, we can assume that all vertices in the program are labeled with
affine subspaces of dimension ≥ k. Other vertices can just be removed as the computation-
path must reach a vertex labeled with a subspace of dimension k, before it reaches a vertex
labeled with a subspace of dimension < k (because the dimension can decrease by at most
1 along an edge).

We define the “orthogonal” to an affine subspace as the vector space orthogonal to the
vector space that defines that affine subspace (that is, the vector space that the affine
subspace is given as it’s translation).

Let v be a vertex in the program, such that, w(v) is of dimension k. It’s enough to prove
that the probability that the computation-path reaches v is at most 2−Ω(n2).

To prove this, we consider the vector spaces “orthogonal” to the affine subspaces that label
the vertices along the computation-path, and for each of them we consider its intersection
with the vector space “orthogonal” to w(v). We note that, in each step, the probability that
the dimension of the intersection increases is exponentially small (as it requires that the at
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currently being read is contained in some small vector space). Since the dimension of the
intersection must increase a linear number of times, in order for the computation-path to
reach v, a simple union bound shows that the probability to reach v is at most 2−Ω(n2).

The full details are given in Lemma 7.1.

From Branching Programs to Affine Branching Programs

In Section 6, we show how to simulate a branching program by an accurate affine branching
program. We do that layer after layer. Assume that we are already done with layer j − 1,
so every vertex in layer j − 1 is already labeled by an affine subspace, and the distribution
of x, conditioned on the event that the computation-path reached a vertex, is close to the
uniform distribution over the affine subspace that labels that vertex.

Now, take a vertex v in layer j, and consider the distribution of x, conditioned on the
event that the computation-path reached the vertex v. By the property that we already know
on layer j − 1, this distribution is close to a convex combination of uniform distributions
over affine subspaces of {0, 1}n.

One could split v into a large number of vertices, one vertex for each affine subspace
in the combination. However, this practically means that we would have a vertex for any
affine subspace. We would like to keep the number of vertices somewhat smaller. This is
done by grouping many affine subspaces into one group. The group will be labeled by an
affine subspace that contains all the affine subspaces in the group. Moreover, we will have
the property that for each such group, the uniform distribution over the affine subspace that
labels the group is close to the relevant weighted average of the uniform distributions over
the affine subspaces in the group. Thus, practically, we can replace all the affine subspaces
in the group by one affine subspace that represents all of them.

Lemma 4.3 shows that it is possible to group all the affine subspaces into a relatively
small number of groups.

We note that the entire inductive argument is delicate, as we cannot afford deteriorating
the error multiplicatively in each step and need to make sure that all errors are additive.

4 Distributions over Affine Subspaces

In this section, we study convex combinations of uniform distributions over affine subspaces
of {0, 1}n. Lemma 4.3 is the only result, proved in this section, that is used outside the
section.

In the following lemmas, we have a random variable W ∈ A(n) and we consider the
distribution EW [UW ]. This distribution is a convex combination of uniform distributions
over affine subspaces of {0, 1}n.

The first lemma identifies a condition that implies that the distribution EW [UW ] is close
to the uniform distribution over {0, 1}n.

Lemma 4.1. Let W ∈ A(n) be a random variable. Let r ≥ n
2
. Assume that for every

a ∈ {0, 1}n, such that a 6= ~0, and every b ∈ {0, 1},

Pr
W

[∀x ∈ W : a · x = b] ≤ 2−r.
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Then ∣∣∣E
W

[UW ]− Un
∣∣∣
1
< 2−(r−n

2 ).

Proof. The proof uses Fourier analysis. For any affine subspace w ⊆ {0, 1}n, the Fourier
coefficients of Uw are:

Ûw(a) =


2−n if ∀x ∈ w : a · x = 0
−2−n if ∀x ∈ w : a · x = 1

0 otherwise

Hence, the Fourier coefficients of EW [UW ] are:

Ê
W

[UW ](a) = 2−n ·
(

Pr
W

[∀x ∈ W : a · x = 0]− Pr
W

[∀x ∈ W : a · x = 1]
)
,

and note that this also implies

Ê
W

[UW ](~0) = 2−n.

The Fourier coefficients of Un are:

Ûn(a) =

{
2−n if a = ~0

0 if a 6= ~0

Thus, ∑
a∈{0,1}n

(
Ê
W

[UW ](a)− Ûn(a)
)2

< 2n ·
(
2−n · 2−r

)2
= 2−n−2r.

By Cauchy-Schwarz and Parseval,(
E

x∈R{0,1}n

∣∣∣E
W

[UW ](x)− Un(x)
∣∣∣)2

≤ E
x∈R{0,1}n

(
E
W

[UW ](x)− Un(x)
)2

=

∑
a∈{0,1}n

(
Ê
W

[UW ](a)− Ûn(a)
)2

< 2−n−2r.

Therefore,∣∣∣E
W

[UW ]− Un
∣∣∣
1

= 2n E
x∈R{0,1}n

∣∣∣E
W

[UW ](x)− Un(x)
∣∣∣ < 2n ·

√
2−n−2r = 2−(r−n/2).

The next lemma shows that always there exists an affine subspace s ⊆ {0, 1}n, such
that the distribution EW |(W⊆s)[UW ] is close to the uniform distribution over s, and the event
W ⊆ s occurs with non-negligible probability.

Lemma 4.2. Let W ∈ A(n) be a random variable. Let r ≥ n
2
. There exists an affine

subspace s ⊆ {0, 1}n, such that:

1.
Pr
W

[W ⊆ s] ≥ 2−
∑n−dim(s)−1

i=0 (r− i
2).

8



2. ∣∣∣∣ E
W |(W⊆s)

[UW ]− Us
∣∣∣∣
1

< 2−(r−n
2 ).

Proof. The proof is by induction on n. The base case, n = 0, is trivial, because in this case
the only element of A(n) is {~0}, so the lemma follows with s = {~0}.

Let n ≥ 1. If for every a ∈ {0, 1}n, such that a 6= ~0, and every b ∈ {0, 1}, we have
PrW [∀x ∈ W : a ·x = b] ≤ 2−r, the proof follows by Lemma 4.1, with s = {0, 1}n. Otherwise,
there exists a 6= ~0, and b ∈ {0, 1}, such that, PrW [∀x ∈ W : a · x = b] > 2−r. Denote by u
the (n− 1)-dimensional affine subspace

u = {x ∈ {0, 1}n : a · x = b}.

Thus,
Pr
W

[W ⊆ u] > 2−r.

Consider the random variable W ′ = W | (W ⊆ u). Since u is an (n − 1)-dimensional
affine subspace, we can identify u with {0, 1}n−1 and think of W ′ as a random variable over
A(n − 1). Hence, by the inductive hypothesis (applied with n − 1 and r − 1

2
), there exists

an affine subspace s ⊆ u, such that,

1.
Pr
W ′

[W ′ ⊆ s] ≥ 2−
∑n−dim(s)−1

i=1 (r− i
2).

2. ∣∣∣∣ E
W ′|(W ′⊆s)

[UW ′ ]− Us
∣∣∣∣
1

< 2−(r−n
2 ).

We will show that s satisfies the two properties claimed in the statement of the lemma.
For the first property, note that since s ⊆ u,

Pr[W ⊆ s] = Pr[W ⊆ u] · Pr[W ⊆ s | W ⊆ u] = Pr[W ⊆ u] · Pr[W ′ ⊆ s]

> 2−r · 2−
∑n−dim(s)−1

i=1 (r− i
2) = 2−

∑n−dim(s)−1
i=0 (r− i

2).

For the second property, note that since s ⊆ u,

E
W |(W⊆s)

[UW ] = E
W ′|(W ′⊆s)

[UW ′ ].

The next lemma is the main result of this section.

Lemma 4.3. Let W ∈ A(n) be a random variable. Let r ≥ n
2
. There exists a partial function

σ : A(n)→ A(n), such that:

1. PrW [W 6∈ domain(σ)] ≤ 2−2n.

2. For every w ∈ domain(σ), w ⊆ σ(w).
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3. For every s ∈ image(σ), ∣∣∣∣ E
W |(σ(W )=s)

[UW ]− Us
∣∣∣∣
1

< 2−(r−n
2 ).

4. For every k ∈ N, there are at most

4n · 2
∑n−k−1

i=0 (r− i
2)

elements s ∈ image(σ), with dim(s) ≥ k.

Proof. The proof is by repeatedly applying Lemma 4.2. We start with the random variable
W0 = W , and apply Lemma 4.2 on W0. We obtain a subspace s0 (the subspace s whose
existence is guaranteed by Lemma 4.2). For every w ⊆ s0, we define σ(w) = s0.

We then define the random variable W1 = W0 | (W0 6⊆ s0), and apply Lemma 4.2 on W1.
We obtain a subspace s1 (the subspace s whose existence is guaranteed by Lemma 4.2). For
every w ⊆ s1 on which σ was still not defined, we define σ(w) = s1.

In the same way, in Step i, we define the random variable Wi = Wi−1 | (Wi−1 6⊆ si−1).
Note that Wi = W | (W 6⊆ s0) ∧ . . . ∧ (W 6⊆ si−1), that is, Wi is the restriction of W to
the part of A(n) where σ was still not defined. We apply Lemma 4.2 on Wi and obtain a
subspace si (the subspace s whose existence is guaranteed by Lemma 4.2). For every w ⊆ si
on which σ was still not defined, we define σ(w) = si.

We repeat this until PrW [W 6∈ domain(σ)] ≤ 2−2n.
Note that for i′ < i, si′ 6= si, because the support of Wi doesn’t contain any element

w ⊆ si′ . Hence, the subspaces s0, s1, . . . are all different.
It remains to show that the four properties in the statement of the lemma hold.
The first property is obvious because we continue to define σ on more and more elements

repeatedly, until the first property holds.
The second property is obvious because we mapped w to si only if w ⊆ si.
The third property holds by the second property guaranteed by Lemma 4.2.
The forth property holds because by the first property guaranteed by Lemma 4.2, in each

step where we obtain a subspace si of dimension at least k, we define σ on a fraction of at

least 2−
∑n−k−1

i=0 (r− i
2) of the space that still remains. Thus, after at most 4n · 2

∑n−k−1
i=0 (r− i

2)

such steps we have Pr[W 6∈ domain(σ)] ≤ 2−2n, and we stop. Thus, the number of elements

si, of dimension at least k, that we obtain in the process, is at most 4n · 2
∑n−k−1

i=0 (r− i
2).

5 Branching Programs for Parity Learning

Recall that in the problem of parity learning, there is a string x ∈ {0, 1}n that was chosen
uniformly at random. A learner tries to learn x from a stream of samples, (a1, b1), (a2, b2) . . .,
where each at is uniformly distributed over {0, 1}n and for every t, bt = at · x.

5.1 General Branching Programs for Parity Learning

In the following definition, we model the learner by a branching program. We allow the
branching program to output an affine subspace w ∈ A(n). We interpret the output of the
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program as a guess that x ∈ w. Obviously, the output w is more meaningful when dim(w)
is relatively small.

Definition 5.1. Branching Program for Parity Learning: A branching program of
length m and width d, for parity learning, is a directed (multi) graph with vertices arranged
in m + 1 layers containing at most d vertices each. In the first layer, that we think of as
layer 0, there is only one vertex, called the start vertex. A vertex of outdegree 0 is called a leaf.
All vertices in the last layer are leaves (but there may be additional leaves). Every non-leaf
vertex in the program has 2n+1 outgoing edges, labeled by elements (a, b) ∈ {0, 1}n × {0, 1},
with exactly one edge labeled by each such (a, b), and all these edges going into vertices in
the next layer. Each leaf v in the program is labeled by an affine subspace w(v) ∈ A(n), that
we think of as the output of the program on that leaf.

Computation-Path: The samples (a1, b1), . . . , (am, bm) ∈ {0, 1}n×{0, 1} that are given
as input, define a computation-path in the branching program, by starting from the start
vertex and following at Step t the edge labeled by (at, bt), until reaching a leaf. The program
outputs the label w(v) of the leaf v reached by the computation-path.

Success Probability: The success probability of the program is the probability that
x ∈ w, where w is the affine subspace that the program outputs, and the probability is over
x, a1, . . . , am (where x, a1, . . . , am are uniformly distributed over {0, 1}n, and for every t,
bt = at · x).

5.2 Affine Branching Programs for Parity Learning

Next, we define a special type of a branching program for parity learning, that we call
an affine branching program for parity learning. In an affine branching program for parity
learning, every vertex v (not necessarily a leaf) is labeled by an affine subspace w(v) ∈ A(n).
We will have the property that if the computation-path reaches v then x ∈ w(v). Thus, we
can interpret w(v) as an affine subspace that is known to contain x.

Definition 5.2. Affine Branching Program for Parity Learning: A branching program
for parity learning is affine if each vertex v in the program is labeled by an affine subspace
w(v) ∈ A(n), and the following properties hold:

1. Start vertex: The start vertex is labeled by the space {0, 1}n ∈ A(n).

2. Soundness: For an edge e = (u, v), labeled by (a, b), denote

w(e) = w(u) ∩ {x′ ∈ {0, 1}n : a · x′ = b}.

Then,
w(e) ⊆ w(v).

Given an affine branching program for parity learning, and samples (a1, b1), . . . , (am, bm),
such that, for every t, bt = at · x, it follows by induction that for every vertex v in the
program, if the computation-path reaches v then x ∈ w(v). In particular, the output w of
the program always satisfies x ∈ w, and thus the success probability of an affine program is
always 1.

11



5.3 Accurate Affine Branching Programs for Parity Learning

For a vertex v in a branching program for parity learning, we denote by Px|v the distribution
of the random variable x, conditioned on the event that the vertex v was reached by the
computation-path.

Definition 5.3. ε-Accurate Affine Branching Program for Parity Learning: An
affine branching program of length m for parity learning is ε-accurate if all the leaves are in
the last layer, and the following additional property holds (where x, a1, . . . , am are uniformly
distributed over {0, 1}n, and for every t, bt = at · x):

3. Accuracy: Let 0 ≤ t ≤ m. Let Vt be the vertex in layer t, reached by the computation-
path. Let yt be a random variable uniformly distributed over the subspace w(Vt), Then,

|PVt,x − PVt,yt |1 ≤ ε,

or, equivalently,
E
Vt

∣∣Px|Vt − Uw(Vt)

∣∣
1
≤ ε.

6 From Branching Programs to Affine Branching

Programs

In this section, we show that any branching program B for parity learning can be simulated
by an affine branching program P for parity learning. Roughly speaking, each vertex of the
simulated program B will be represented by a set of vertices of the simulating program P .
Note that the width of P will typically be significantly larger than the width of B.

More precisely, a branching program B for parity learning is simulated by a branching
program P for parity learning if there exists a mapping Γ from the vertices of P to the
vertices of B, and the following properties hold:

1. Preservation of structure: For every i, Γ maps layer i of P to layer i of B. Moreover,
Γ maps leaves to leaves and non-leaf vertices to non-leaf vertices. Note that Γ is not
necessarily one-to-one.

2. Preservation of functionality: For every edge (u, v), labeled by (a, b), in P , there
is an edge (Γ(u),Γ(v)), labeled by (a, b), in B.

Lemma 6.1. Let k′ < n. Assume that there exists a length m and width d branching program
B for parity learning (of size n), such that: all leaves of B are in the last layer; the output
of B is always an affine subspace of dimension ≤ k′; and the success probability of B is β.

Let n
2
≤ r ≤ n. Let ε = 4m · 2−(r−n

2 ). Then, there exists an ε-accurate length m affine
branching program P for parity learning (of size n), such that:

1. For every k < n, the number of vertices in P , that are labeled with an affine subspace
of dimension k, is at most

4n · 2
∑n−k−1

i=0 (r− i
2) · dm.
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2. For every k, such that, k′ < k < n, the output of P is an affine subspace of dimension
< k, with probability of at least

β − ε− 2−(k−k′).

Proof. For every 0 ≤ j ≤ m, let εj = 4j ·2−(r−n
2 ). We will use Lemma 4.3 to turn, inductively,

the layers of B, one by one, into layers of an ε-accurate affine branching program, P . In
Step j of the induction, we will turn layer j of B into layer j of P , and define the label
w(v) ∈ A(n) for every vertex v in that layer of P . Formally, we will construct, inductively, a
sequence of programs B,P0, . . . , Pm = P , where each program is of length m, and for every j,
the program Pj differs from the previous program only in layer j (and in the edges going into
layer j and out of layer j). After Step j of the induction, we will have a branching program
Pj, such that, layers 0 to j of Pj form an affine branching program for parity learning. In
addition, the following inductive hypothesis will hold:

Inductive Hypothesis:

Let Lj be the set of vertices in layer j of Pj. Let Vj be the vertex in Lj, reached by the
computation-path of Pj. Note that Vj is a random variable that depends on x, a1, . . . , aj (and
recall that x, a1, . . . , am are uniformly distributed over {0, 1}n, and for every t, bt = at · x).
The inductive hypothesis is that there exists a random variable Uj over Lj, such that, if yj
is a random variable uniformly distributed over the subspace w(Uj), then∣∣PVj ,x − PUj ,yj

∣∣
1
≤ εj

2
. (1)

The inductive hypothesis is equivalent to the accuracy requirement (see Definition 5.3)
for layer j of Pj, up to a small multiplicative constant in the accuracy, but we need to
assume it in this slightly different form, in order to avoid deteriorating the accuracy by a
multiplicative factor in each step of the induction.

Base Case:

In the base case of the induction, j = 0, we define P0 by just labeling the start vertex of B
by {0, 1}n ∈ A(n). Thus, the start vertex property in the definition of an affine branching
program is satisfied. The soundness property is trivially satisfied because the restriction of
P0 to layer 0 contains no edges. Since we always start from the start vertex, the distribution
of the random variable x, conditioned on the event that we reached the start vertex, is
just Un, and hence the inductive hypothesis (Equation (1)) holds with U0 = V0.

Inductive Step:

Assume that we already turned layers 0 to j − 1 of B into layers 0 to j − 1 of P . That is,
we already defined the program Pj−1, and layers 0 to j − 1 of Pj−1 satisfy the start vertex
property, the soundness property, and the inductive hypothesis (Equation (1)). We will now
show how to define Pj from Pj−1, that is, how to turn layer j of B into layer j of P .

Let Uj−1 ∈ Lj−1 be the random variable that satisfies the inductive hypothesis
(Equation (1)) for layer j − 1 of Pj−1. Let yj−1 be a random variable uniformly distributed
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over the subspace w(Uj−1). Let a ∈R {0, 1}n. Let b = a · yj−1. Let E = (Uj−1, V ) be the
edge labeled by (a, b) outgoing Uj−1 in Pj−1. Thus, V is a vertex in layer j of Pj−1. Let
W = w(E), where w(E) is defined as in the soundness property in Definition 5.2. That is,

w(E) = w(Uj−1) ∩ {x′ ∈ {0, 1}n : a · x′ = b},

where (a, b) is the label of E, and w(Uj−1) is the label of Uj−1 in Pj−1.
Let v be a vertex in layer j of Pj−1 (and note that v is also a vertex in layer j of B). Let

Wv = W |(V = v).

Let σv : A(n)→ A(n) be the partial function whose existence is guaranteed by Lemma 4.3,
when applied on the random variable Wv. Extend σv : A(n)→ A(n) so that it outputs the
special value ∗ on every element where it was previously undefined.

In the program Pj, we will split the vertex v into |image(σv)| vertices (where image(σv)
already contains the additional special value ∗). For every s ∈ image(σv), we will have a
vertex (v, s). If s 6= ∗, we label the vertex (v, s) by the affine subspace s, and we label the
additional vertex (v, ∗) by {0, 1}n. For every s ∈ image(σv), the edges going out of (v, s)
(in Pj) will be the same as the edges going out of v in Pj−1. That is, for every edge (v, v′)
(from layer j to layer j + 1) in the program Pj−1, and every s ∈ image(σv), we will have an
edge ((v, s), v′) with the same label, (from layer j to layer j + 1) in the program Pj.

We will now define the edges going into the vertices (v, s) in the program Pj. For every
edge e = (u, v), labeled by (a, b), (from layer j− 1 to layer j), in the program Pj−1, consider
the affine subspace w = w(e) = w(u) ∩ {x′ ∈ {0, 1}n : a · x′ = b} (as in the soundness
property in Definition 5.2), where w(u) is the label of u in Pj−1. Let s = σv(w).

In Pj , we will have the edge (u, (v, s)) (labeled by (a, b)), from layer j − 1 to layer j,
that is, we connect u to (v, s). Note that the edge (u, (v, s)) satisfies the soundness property
in the definition of an affine branching program: If s 6= ∗, the vertex (v, s) is labeled by
s = σv(w) and by Poperty 2 of Lemma 4.3, w ⊆ σv(w). If s = ∗, the vertex (v, s) is labeled
by {0, 1}n and hence the soundness property is trivially satisfied.

Proof of the Inductive Hypothesis:

Next, we will prove the inductive hypothesis (Equation (1)), for Pj. We will define the
random variable Uj ∈ Lj as follows:

As before, let Uj−1 ∈ Lj−1 be the random variable that satisfies the inductive hypothesis
(Equation (1)) for layer j − 1 of Pj−1. Let yj−1 be a random variable uniformly distributed
over the subspace w(Uj−1). Let a ∈R {0, 1}n. Let b = a ·yj−1. Let E = (Uj−1, V ) be the edge
labeled by (a, b) outgoing Uj−1 in Pj−1. Thus, V is a vertex in layer j of Pj−1. As before, let
W = w(E) = w(Uj−1)∩{x′ ∈ {0, 1}n : a ·x′ = b}. As before, for a vertex v in layer j of Pj−1,
let σv : A(n) → A(n) be the partial function whose existence is guaranteed by Lemma 4.3,
when applied on the random variable Wv = W |(V = v), and extend σv : A(n) → A(n) so
that it outputs the special value ∗ on every element where it was previously undefined.

We define Uj = (V, σV (W )) ∈ Lj. Let yj be a random variable uniformly distributed over
the subspace w(Uj), and let Vj be the vertex in Lj, reached by the computation-path of Pj.
We need to prove that ∣∣PVj ,x − PUj ,yj

∣∣
1
≤ 2j · 2−(r−n

2 ). (2)
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Let y′j be a random variable uniformly distributed over the subspace W . Equation (2)
follows by the following two equations and by the triangle inequality:∣∣∣PUj ,y′j

− PUj ,yj

∣∣∣
1
≤ 2 · 2−(r−n

2 ). (3)∣∣∣PVj ,x − PUj ,y′j

∣∣∣
1
≤ 2(j − 1) · 2−(r−n

2 ). (4)

Thus, it is sufficient to prove Equation (3) and Equation (4). We will start with Equation (3).
By Property 3 of Lemma 4.3, for every v in layer j of Pj−1, and every s ∈ image(σv)\{∗},∣∣∣∣ E

W |(V=v),(σv(W )=s)
[UW ]− Us

∣∣∣∣
1

< 2−(r−n
2 ).

By the definitions of y′j and Uj,

E
W |(V=v),(σv(W )=s)

[UW ] = E
W |(Uj=(v,s))

[UW ] = Py′j |(Uj=(v,s)).

By the definition of yj,
Us = Pyj |(Uj=(v,s))

Hence ∣∣∣Py′j |(Uj=(v,s)) − Pyj |(Uj=(v,s))

∣∣∣
1
< 2−(r−n

2 ).

Taking expectation over Uj, and taking into account that, by Property 1 of Lemma 4.3,
for every v, Pr(σv(W ) = ∗) ≤ 2−2n, we obtain∣∣∣PUj ,y′j

− PUj ,yj

∣∣∣
1

= E
Uj

∣∣∣Py′j |Uj
− Pyj |Uj

∣∣∣
1
< 2−(r−n

2 ) + 2−2n,

which proves Equation (3).
We will now prove Equation (4). Let T be the following probabilistic transformation

from Lj−1 × {0, 1}n to Lj × {0, 1}n. Given (u, z) ∈ Lj−1 × {0, 1}n, the transformation T
chooses a ∈R {0, 1}n and b = a · z, and outputs (V, z), where V ∈ Lj is the vertex obtained
by following the edge labeled by (a, b) outgoing u in Pj.

By the definition of the computation-path, T (Vj−1, x) has the same distribution as (Vj, x).
By the definition of Uj, yj, y

′
j, we have that T (Uj−1, yj−1) has the same distribution as (Uj, y

′
j).

Hence, by the triangle inequality and the inductive hypothesis,∣∣∣PVj ,x − PUj ,y′j

∣∣∣
1

=
∣∣PT (Vj−1,x) − PT (Uj−1,yj−1)

∣∣
1
≤
∣∣PVj−1,x − PUj−1,yj−1

∣∣
1
≤ 2(j − 1) · 2−(r−n

2 ),

which gives Equation (4).
Since, by induction, layers 0 to j− 1 of Pj−1 form an affine branching program for parity

learning, and since we already saw that all the edges between layer j − 1 and layer j of Pj
satisfy the soundness property in the definition of an affine branching program, we have that
layers 0 to j of Pj form an affine branching program for parity learning.
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P is ε-Accurate:

We will now prove that the final branching program P = Pm, that we obtained, satisfies
the requirements of the lemma. We already know that P is an affine branching program for
parity learning.

We will start by proving that P is ε-accurate. Let 0 ≤ t ≤ m. Let Vt be the vertex in
layer t of P , reached by the computation-path of P . Let zt be a random variable uniformly
distributed over the subspace w(Vt), We need to prove that,

|PVt,x − PVt,zt|1 ≤ ε. (5)

Recall that by the inductive hypothesis (Equation (1)), there exists a random variable Ut
over layer t of P , such that, if yt is a random variable uniformly distributed over the subspace
w(Ut), then

|PVt,x − PUt,yt|1 ≤
ε
2
, (6)

and this also implies
|PVt − PUt|1 ≤

ε
2
.

By the last inequality and since for every v in layer t of P , it holds that Pzt|(Vt=v) = Pyt|(Ut=v)

(since they are both uniformly distributed over w(v)), we have

|PVt,zt − PUt,yt |1 = |PVt − PUt |1 ≤
ε
2
. (7)

Equation (5) follows by Equation (6), Equation (7) and the triangle inequality.

P Satisfies the Additional Properties:

We will now prove that P satisfies the two additional properties claimed in the statement of
the lemma. The first property holds since Property 4 of Lemma 4.3 ensures that for every

vertex in layers 1 to m of the branching program B, we obtain at most 4n · 2
∑n−k−1

i=0 (r− i
2)

vertices in the branching program P that are labeled with affine subspaces of dimension k.
It remains to prove the second property. Let Vm = (V, S) be the vertex in layer m of

P , reached by the computation-path of P . Note that Vm is a random variable that depends
on x, a1, . . . , am (and recall that x, a1, . . . , am are uniformly distributed over {0, 1}n, and for
every t, bt = at · x).

Note that V is the vertex in layer m of B, reached by the computation-path of B (on the
same x, a1, . . . , am). This is true since P simulates B. More precisely, by the construction, if
on x, a1, . . . , am, the program P reaches (V, S), then, on the same x, a1, . . . , am, the program
B reaches V .

Since the success probability of B is β,

Pr[x ∈ w(V )] = β,

where w(V ) is the label of V in B. Let ym be a random variable uniformly distributed over
the subspace w(Vm), where w(Vm) is the label of Vm in P . Since P is ε-accurate,

|PV,x − PV,ym|1 ≤ |PV,S,x − PV,S,ym|1 = |PVm,x − PVm,ym|1 ≤ ε.

Thus,
Pr[ym ∈ w(V )] ≥ Pr[x ∈ w(V )]− ε = β − ε.
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Let k > k′. Recall that w(V ) is of dimension ≤ k′. Thus, if w(Vm) is of dimension ≥ k,
the (conditional) probability that ym ∈ w(V ) is at most 2k

′−k. Thus,

β − ε ≤ Pr[ym ∈ w(V )] ≤ Pr[dim(w(Vm)) < k] + 2k
′−k.

That is,
Pr[dim(w(Vm)) < k] ≥ β − ε− 2−(k−k′).

7 Time-Space Lower Bounds for Parity Learning

In this section, we will use Lemma 6.1 to prove Theorem 2, our main result. Recall that
Theorem 2 is stronger than Theorem 1, and hence Theorem 1 follows as well. We start by a
lemma that will be used, in the proof of Theorem 2, to obtain time-space lower bounds for
affine branching programs.

Lemma 7.1. Let k < n. Let P be a length m affine branching program for parity learning
(of size n), such that, for every vertex u of P , dim(w(u)) ≥ k. Let v be a vertex of P , such
that, dim(w(v)) = k. Then, the probability that the computation-path of P reaches v is at
most

mn−k · 2
∑n−k−1

j=0 (n−2k−j).

Proof. Let s be the vector space “orthogonal” to w(v) in {0, 1}n. That is,

s = {a ∈ {0, 1}n : ∃b ∈ {0, 1} ∀x′ ∈ w(v) : a · x′ = b} .

Let V0, . . . , Vm be the vertices on the computation-path of P . Note that V0, . . . , Vm are
random variables that depend on x, a1, . . . , am. For every 0 ≤ i ≤ m, let Si be the vector
space “orthogonal” to w(Vi) in {0, 1}n. That is,

Si = {a ∈ {0, 1}n : ∃b ∈ {0, 1} ∀x′ ∈ w(Vi) : a · x′ = b} .

By the soundness property in Definition 5.2, for every 1 ≤ i ≤ m,

Si ⊆ span(Si−1 ∪ ai). (8)

For every 0 ≤ i ≤ m, let Zi = dim(Si ∩ s). Note that Z0 = 0, and by Equation (8),
for every 1 ≤ i ≤ m, Zi ≤ Zi−1 + 1. If the computation-path of P reaches v then for some
1 ≤ i ≤ m, Zi = n − k. Thus, if the computation-path of P reaches v, there exist n − k
indices i1 < . . . < in−k ∈ [m], such that, the following event, denoted by Ei1,...,in−k

, occurs:

Ei1,...,in−k
=

∧
j∈[n−k]

(Zij−1 = j − 1) ∧ (Zij = j).

(In particular, Ei1,...,in−k
occurs if for every j, we take ij to be the first i such that

Zi = j). We will bound the probability that the computation-path of P reaches v, by
bounding Pr[Ei1,...,in−k

], and taking the union bound over (less than) mn−k possibilities for
i1, . . . , in−k ∈ [m].
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Fix i1 < . . . < in−k ∈ [m]. For r ∈ {0, . . . , n− k}, let

Ei1,...,ir =
∧
j∈[r]

(Zij−1 = j − 1) ∧ (Zij = j).

Thus,

Pr[Ei1,...,in−k
] =

∏
j∈[n−k]

Pr[Ei1,...,ij | Ei1,...,ij−1
].

We will show how to bound Pr[Ei1,...,ij | Ei1,...,ij−1
].

Pr[Ei1,...,ij | Ei1,...,ij−1
] = Pr[(Zij−1 = j − 1) ∧ (Zij = j) | Ei1,...,ij−1

]

= Pr[(Zij−1 = j − 1) ∧ (Zij−1 < Zij) | Ei1,...,ij−1
]

≤ Pr[(Zij−1 < Zij) | Ei1,...,ij−1
∧ (Zij−1 = j − 1)]. (9)

Note that the event Ei1,...,ij−1
∧ (Zij−1 = j − 1) that we condition on, on the right hand side,

depends only on x, a1, . . . , aij−1. We will bound the probability for the event (Zij−1 < Zij),
conditioned on any event that fixes Zij−1 and depends only on x, a1, . . . , aij−1.

More generally, fix 1 ≤ i ≤ m, and let E ′i be the event (Zi−1 < Zi). Let E ′ be any
event that fixes Zi−1 and depends only on x, a1, . . . , ai−1. Without loss of generality, we can
assume that the event E ′ just fixes the values of x, a1, . . . , ai−1. We will show how to bound
Pr[E ′i | E ′].

Thus, we fix x, a1, . . . , ai−1 and we will bound Pr[E ′i] (conditioned on x, a1, . . . , ai−1). By
Equation (8), if E ′i occurs then dim(Si−1 ∩ s) < dim(Si ∩ s) ≤ dim(span(Si−1 ∪ ai) ∩ s),
and hence Si−1 ∩ s ( span(Si−1 ∪ ai) ∩ s, which implies that there exists a ∈ Si−1,
such that, a ⊕ ai ∈ s. For every fixed a ∈ Si−1, the event a ⊕ ai ∈ s occurs with
probability 2dim(s)−n = 2(n−k)−n = 2−k (since ai is uniformly distributed and independent
of x, a1, . . . , ai−1). We will bound the probability for E ′i by taking a union bound over all
possibilities for a, but doing so we take into account that a ∈ Si−1 satisfies a⊕ ai ∈ s if and
only if every a′ ∈ a⊕ (Si−1 ∩ s) satisfies a′ ⊕ ai ∈ s. Thus, we can take a union bound over
2dim(Si−1)−Zi−1 ≤ 2n−k−Zi−1 possibilities (where we assume that Zi−1 is fixed). Hence, by the
union bound

Pr[E ′i | E ′] ≤ 2n−k−Zi−1 · 2−k = 2n−2k−Zi−1 .

Thus, in particular, by Equation (9),

Pr[Ei1,...,ij | Ei1,...,ij−1
] ≤ 2n−2k−(j−1).

Hence,

Pr[Ei1,...,in−k
] ≤

∏
j∈[n−k]

2n−2k−(j−1) = 2
∑n−k−1

j=0 (n−2k−j).

By the union bound, the probability that the computation-path of P reaches v is at most

mn−k · 2
∑n−k−1

j=0 (n−2k−j).
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Theorem 2. For any c < 1
20

, there exists α > 0, such that the following holds: Let B be

a branching program of length at most 2αn and width at most 2cn
2

for parity learning (of
size n), such that, the output of B is always an affine subspace of dimension ≤ 3

5
n. Assume

for simplicity and without loss of generality that all leaves of B are in the last layer. Then,
the success probability of B (that is, the probability that x is contained in the subspace that
B outputs) is at most O(2−αn).

Proof. Let 0 < α < 1
5

be a sufficiently small constant (to be determined later on). Let B be

a branching program of length m = 2αn and width d = 2cn
2

for parity learning (of size n),
such that, the output of B is always an affine subspace of dimension ≤ 3

5
n. Assume for

simplicity and without loss of generality that all leaves of B are in the last layer. Denote by
β the success probability of B.

Let r =
(

1
2

+ 2α
)
·n. Let k = 4

5
n. By Lemma 6.1, there exists a length m affine branching

program P for parity learning (of size n), such that:

1. The number of vertices in P , that are labeled with an affine subspace of dimension k,
is at most

4n · 2
∑n−k−1

i=0 (r− i
2) · dm.

2. The output of P is an affine subspace of dimension ≤ k, with probability of at least

β − 4 · 2−αn − 2−
1
5
n ≥ β − 5 · 2−αn.

Assume without loss of generality that every vertex u of P , such that dim(w(u)) = k,
is a leaf. (Otherwise, we can just redefine u to be a leaf by removing all the edges going
out of it). Assume without loss of generality that for every vertex u of P , dim(w(u)) ≥ k.
(Otherwise, we can just remove u as it is unreachable from the start vertex, since we defined
all vertices labeled by subspaces of dimension k to be leaves and since by the soundness
property in Definition 5.2, the dimensions along the computation-path can only decrease by
1 in each step).

By Lemma 7.1, and by substituting the values of m, d, k, r, the probability that the
computation-path of P reaches some vertex that is labeled with an affine subspace of
dimension k is at most(

4n · 2
∑n−k−1

i=0 (r− i
2) · dm

)
·
(
mn−k · 2

∑n−k−1
i=0 (n−2k−i)

)
= 4nm · 2cn2 ·

(
2
∑n−k−1

i=0 ( 1
2
n+2αn− i

2)
)
·
(

2αn(n−k) · 2
∑n−k−1

i=0 (− 3
5
n−i)

)
= 4nm · 2cn2 · 2(n−k)(3αn− 1

10
n) ·
(

2
∑n−k−1

i=0 (− 3
2
i)
)

= 4nm · 2cn2 · 2(n−k)(3αn− 1
10
n) · 2−

3
4

(n−k)·(n−k−1)

= 4nm · 2cn2 · 2
1
5
n(3αn− 1

10
n− 3

20
n+ 3

4)

= 4nm · 2n2(c+ 3
5
α− 1

20
+ 3

20n).

Thus, if α < 5
3

(
1
20
− c
)
, this probability is at most 2−Ω(n2), and hence,

β − 5 · 2−αn ≤ 2−Ω(n2).

That is,
β ≤ O(2−αn).
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