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Abstract

In this paper, we apply tools from algebraic geometry to prove new results concerning extrac-
tors for algebraic sets, the recursive Fourier sampling problem, and VC dimension. We present
a new construction of an extractor which works for algebraic sets defined by polynomials over
F2 of substantially higher degree than the current state-of-the-art construction. We also exactly
determine the F2-polynomial degree of the recursive Fourier sampling problem and use this to
provide new partial results towards a circuit lower bound for this problem. Finally, we answer
a question posed in [MR15] concerning VC dimension, interpolation degree and the Hilbert
function.

1 Introduction

1.1 Extractors

For a finite domain Ω and a collection of distributions C over Ω, we say that a function E :
Ω→ {0, 1}m is an extractor (sometimes called a deterministic extractor) for C if, for every random
variable X distributed according to any distribution in C, E(X) is close to the uniform distribution.
We call each distribution C ∈ C a source. Of course, in order to have any hope of the collection
of distributions C to have an extractor, some sort of condition must be satisfied by the sources.
While it is trivial to exhibit simple conditions on C such that a random function will, with high
probability, be an extractor, the problem becomes far more interesting when one requires an explicit
construction of E (that is to say, a construction realizable by some deterministic polynomial time
Turing machine). The natural question is then: for which C do there exist explicit constructions of
extractors?

Numerous versions of this question have been considered. In this paper, we consider the
case, originally introduced in [Dvi12], where each source is the uniform distribution over the set of
common zeros of a collection of polynomials defined over some field. Such a set is called an algebraic
set and such a source is called an algebraic source. Algebraic sources are a natural generalization
of affine sources (see, for instance [GR05] and [Bou07]) and bit-fixing sources (see, for instance,
[GRS04] and [KZ03]) and build naturally on the earlier work of efficiently samplable sources (see,
for instance, [TV00], [KRVZ06], and [DGW07]).

To be precise, for a finite field F, and a positive integer d, we consider algebraic sets V ⊆ Fn
where V is the set of common zeros of a collection of polynomials f1, . . . , ft ∈ F[x1, . . . , xn] such

∗remscrim@mit.edu

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 20 (2016)



that deg(fi) ≤ d. We say that V has density ρ if |V | ≥ ρ|Fn|. We say that a function f : Fn → F
is an extractor for algebraic sets defined by polynomials of degree at most d and density ρ if f is
close to uniform on every such algebraic set. A closely related weaker notion is that of a disperser
for algebraic sets, where we say that a function f : Fn → F is a disperser for algebraic sets defined
by polynomials of degree at most d and density ρ if, for every such algebraic set V , the image of
f : V → F (the restriction of f to V ) is F. Clearly any extractor is also a disperser.

As shown in [Dvi12], there exist explicit extractors for polynomials of degree d defined over
moderately sized fields, where |F| = poly(d), and density ρ = 2−

n
2 as well as over large fields, where

|F| = dΩ(n2) and very small density. However, very little is known about the extreme case in which
F = F2, the two element finite field. To the best of our knowledge, the current state of the art
construction for extractors and dispersers is that of [CT13], in which an explicit construction was

exhibited for an extractor for algebraic sets defined by at most (log log n)
1
2e polynomials each of

degree at most 2, as well as for a disperser for algebraic sets defined by at most t polynomials

each of degree at most d = (1 − o(1))
log(n

t
)

log0.9 n
(in particular, when t ≤ nα for some α < 1, then the

requirement on degree is d < (1− α− o(1)) log0.1 n).
In this paper, we focus on the case in which F = F2, and exhibit explicit extractors (and

hence explicit dispersers) for algebraic sets defined by polynomials of substantially higher degree
than any previous construction. We now formally state our results. For any set V ⊆ Fn2 , we say
that a function f : Fn2 → F2 has bias ε on V if

bias(f |V ) := |Ex∼V [(−1)f(x)]| ≤ ε.

A function f : Fn2 → F2 is called an extractor for algebraic sets defined by polynomials of degree at
most d of density ρ with bias ε if bias(f |V ) ≤ ε for every such algebraic set V . We show that any
δ-versatile function (this will be defined precisely in §3) is an extractor.

Theorem 1. Let f : Fn2 → F2 be δ-versatile (on Fn2 ), where δ ≥ n
2 −n

γ for some 0 ≤ γ < 1
2 . Then,

there is a constant c > 0 such that, for any constants α, β such that 0 < α, β < 1
2 , and for any

d ≤ nα and ρ ≥ 2−n
β
, f is an extractor with bias

c
(
nγ+d log(

√
n
ρ

)
)

√
n

for algebraic sets of density at

least ρ that are the common zeros of a collection of polynomials each of degree at most d.

Much as was the case in [Dvi12] and [CT13], our construction relies on statements involving
the set of zeros of a single low degree polynomial defined over F. The key distinction between our
construction and earlier constructions, which allows our construction to work even for rather high
degree polynomials over F2, is that our construction exploits the structure of this set of zeros,
rather than simply bounds on the size of the set of zeros that follow directly from the degree of the
polynomial (that is to say, bounds that follow directly from the fundamental theorem of algebra,
or, in other words, Schwartz-Zippel type bounds).

1.2 Recursive Fourier Sampling

The recursive Fourier sampling problem is one of the most well studied problems in quantum
complexity theory. This problem was first defined, along with the complexity class BQP (Bounded-
Error Quantum Polynomial Time), in [BV93], the foundational work of quantum complexity theory.
In that paper, this problem, whose formal definition we delay for now, was used to exhibit an
oracle A relative to which BQP is not contained in NP or even MA, that is to say an A such
that BQPA 6⊂ NPA and BQPA 6⊂ MAA. Such oracle separations are interesting both because they
are, perhaps, suggestive of a unrelativized separation, as well as because they concretely exhibit
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a measure of complexity in which quantum computers provably outperform classical computers:
query complexity, where the resource of interest is the number of queries to the (very long) input
string.

For this reason, it is natural to seek oracle separations between BQP and increasingly larger
classical complexity classes. However, very little progress in this direction has been made. While
some results are known, such as the fact, proven in [Aar10], that there is an oracle A such that
BQPA 6⊂ BPPApath and BQPA 6⊂ SZKA, even the question of whether or not there exists an oracle

A such that BQPA 6⊂ AMA remains open, as does, of course, the substantially stronger question of
whether or not there exists an oracle A such that BQPA 6⊂ PHA.

It is this potential oracle separation between BQP and the polynomial hierarchy that we now
focus on. The natural approach to this problem, which has been used successfully to show many
other similar oracle separations between certain complexity classes and the polynomial hierarchy, is
to exploit the connection between relativized separations from the polynomial hierarchy and lower
bounds against constant depth circuits [FSS84],[Yao85]. Here, the key idea is to reinterpret the ∃
and ∀ quantifiers of a PH machine as OR and AND gates, respectively, to convert a PH machine
solving some oracle problem on a 2n bit long oracle string, into a constant depth, 2poly(n) sized
circuit, consisting of AND, OR, and NOT gates that solves the same problem. Using this idea, and
a 2ω(poly(n)) lower bound on the size of a constant depth circuit computing the PARITY function
(on an input of size 2n), one concludes that there is an oracle A relative to which ⊕PA 6⊂ PHA.
The same idea can, and has, been used to show other such relativized separations.

Therefore, given this connection between relativized separations from the polynomial hierar-
chy and lower bounds against constant depth circuits, and the powerful techniques that exist to show
lower bounds against constant depth circuits, [FSS84],[Ajt83],[Has86],[Raz87],[Smo87], one might
very naturally ask why the question of whether or not there exists an A such that BQPA 6⊂ PHA

remains open. Most fundamentally, the problem is that, in order to show that a particular func-
tion f cannot be computed by a small circuit, all of these circuit lower bound techniques either
explicitly (in the case of [Raz87] or [Smo87]) or implicitly (in the case of [FSS84],[Ajt83],[Has86] as
shown by [LMN93]) argue that f cannot be well approximated by a low-degree polynomial. This
is a problem because, as shown in [BBC+98], any function that can be computed by an efficient
quantum algorithm is well approximated by a low degree polynomial.

More precisely, however, [BBC+98] only guarantees the existence of a low-degree polynomial
over R, whereas the non-existence of a low-degree polynomial over any field F would suffice (via
the Razborov-Smolensky method) to prove a circuit lower bound, and so this certainly does not
completely doom the application of traditional circuit lower bound techniques. Nevertheless, the
result of [BBC+98] does suggest that a deeper understanding of approximation by low-degree
polynomials may be necessary to resolve the question of whether or not there exists an oracle A
such that BQPA 6⊂ PHA. It is this issue that we focus on within this paper.

As has been observed by many authors (for instance [BV93],[BV97],[Aar03],[Joh08],[Aar10])
the recursive Fourier sampling problem (or a slight variant) is a prime candidate for exhibiting an
oracle A such that BQPA 6⊂ PHA, as this problem seems to perfectly exploit the advantages of a
quantum computer at the expense of a classical one.

The recursive Fourier sampling problem will be formally defined in §5. For the moment,
we will simply state that it is a promise problem (that is to say, a partial Boolean function whose
value is only defined on a portion of the input space, called the promise) which is known to have
an efficient quantum algorithm. By the result of [BBC+98], this immediately implies that there
is a low degree real polynomial that well approximates the recursive Fourier sampling problem
on the promise. In fact, from the standpoint of proving a circuit lower bound, the situation
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is even “worse” than this, due to the result of [Joh11], which shows that there is an even lower
degree real polynomial than the one guaranteed by [BBC+98] which exactly represents the recursive
Fourier sampling problem on its promise. Moreover, [Joh11] proves exactly matching upper and
lower bounds on any real polynomial that represents the recursive Fourier sampling problem on
its promise, thereby completely resolving the question of the polynomial degree of the recursive
Fourier sampling problem, with respect to polynomials over R.

In this paper, we consider the question of the polynomial degree of the recursive Fourier
sampling problem for polynomials defined over F2. That is to say, we consider the question of
what is the lowest degree polynomial defined over F2 that represents the recursive Fourier sampling
problem on its promise. Before proceeding further, we briefly note that this question is only non-
trivial because the recursive Fourier sampling problem is a promise problem. For any total function
g : Fn2 → F2, there is a unique multilinear polynomial f ∈ F2[x1, . . . , xn] that agrees everywhere with
g; the degree of f is, of course, the minimal degree of any polynomial in F[x1, . . . , xn] that agrees
everywhere with g. For a promise problem, however, there can be many multilinear polynomials,
of varying degrees, that all agree on the promise.

Over F2, there is a simple, though relatively high degree, polynomial that exactly computes
the recursive Fourier sampling problem. Our key result, stated in the following theorems, is that,
for a certain appropriate settings of the parameters, this simple polynomial is, in fact, the lowest
degree polynomial that agrees with recursive Fourier sampling everywhere on its promise. In fact,
we show something even stronger: no polynomial of lower degree can even non-trivially one-sided
agree with the recursive Fourier sampling problem (that is to say, if a polynomial is zero everywhere
(on the promise) that the recursive Fourier sampling problem is zero, then that polynomial must
be zero on the entire promise). We then use these results to prove new statements about the ability
of constant depth circuits to compute the recursive Fourier sampling problem.

Theorem 2. For any positive integers k, h, Let n = 2k − 1 and let RFSMAJ
n,h denote the recursive

Fourier sampling function with majority. Then 6 ∃g ∈ F2[x1, . . . , xm] such that deg(g) <
(
n+1

2

)h
and

g(x) = RFSMAJ
n,h (x) ∀x ∈ UMAJ

p,h . Moreover, if any g ∈ F2[x1, . . . , xm] such that deg(g) <
(
n+1

2

)h
vanishes everywhere on UMAJ

0,h , it vanishes everywhere on UMAJ
1,h .

Theorem 3. For any positive integers d, n, h such that d|n, and n ≥ d(2d
2

+d−1), Let RFS
GIPn,d
n,h

denote the recursive Fourier sampling function with generalized inner product. Then 6 ∃g ∈ F2[x1, . . . , xm]

such that deg(g) < dh and g(x) = RFS
GIPn,d
n,h (x) ∀x ∈ UGIPn,d

p,h . Moreover, if any g ∈ F2[x1, . . . , xm]

such that deg(g) < dh vanishes everywhere on U
GIPn,d
0,h , it vanishes everywhere on U

GIPn,d
1,h .

1.3 VC Dimension

We say that a subset J ⊆ [n] is shattered by a family of vectors C ⊆ {0, 1}n if, ∀s : J → {0, 1}, ∃c ∈
C such that cj = s(j) ∀j ∈ J (in other words, if one considers the set of all substrings of elements
of C comprised of the positions indexed by J , this collection of substrings is precisely {0, 1}|J |).
We then write

str(C) = {J ⊆ [n] : J is shattered byC}
to denote the sets that are shattered with respect to C. We then define the VC dimension of C as

VC(C) = max{|J | : J ∈ str(C)}.

For a field F and a set C ⊆ {0, 1}n, the interpolation degree of C, denoted by reg(C) is the minimum
d such that every function f : C → F can be expressed as a multilinear polynomial in F[x1, . . . , xn]
of degree at most d.

4



Recently, in [MR15], a very interesting connection between VC dimension and interpola-
tion degree was demonstrated. A simple characterization of sets with interpolation degree 1 was
provided. This naturally raised the question of whether a similar characterization exists for sets
with interpolation degree r, for arbitrary r. In this paper, we provide such a characterization, in
terms of the rank of a certain inclusion matrix, which will be defined precisely in §2.

Theorem 4. A set C ⊆ {0, 1}n has reg(C) = r if and only if r is the smallest positive integer such

that rankF2M(C,
([n]
≤r
)
) = |C|.

1.4 Organization of this Paper

We begin, in §2, by reviewing several key definitions and results from algebraic geometry that will
be used throughout this paper. In §3, we develop the concept of δ-versatile functions, a natural
generalization of the concept of versatile functions defined in [Kop11]. In §4, we exhibit an family of
extractors for algebraic sets. In §5, we consider the recursive Fourier sampling problem and present
new results concerning its polynomial degree and new partial results towards a circuit lower bound.
In §6, we use standard results from algebraic geometry to provide a simple answer to a question
raised in [MR15] concerning interpolation degree and VC-dimension.

2 Preliminaries

We begin by recalling several standard definitions from algebraic geometry. Let F denote a (not
necessarily algebraically closed) field and F[x1, . . . , xn] denote the ring of polynomials in n inde-
terminates. An algebraic set in Fn is the set of common zeros of a collection of polynomials in
F[x1, . . . , xn]. More precisely, given a set of polynomials f1, . . . , fk ∈ F[x1, . . . , xn], we denote their
set of common zeros by V (f1, . . . , fk) where

V (f1, . . . , fk) = {(x1, . . . , xn) ∈ Fn : fi(x1, . . . , xn) = 0 ∀i}.

Rather than working with an arbitrary set of polynomials, it will often be convenient to
consider an algebraically nicer object: an ideal. For I an ideal in F[x1, . . . , xn], let V (I) denote the
common zero set of all polynomials in I, that is to say

V (I) = {(x1, . . . , xn) ∈ Fn : f(x) = 0 ∀f ∈ I}.

Given a set of polynomials f1, . . . , fk ∈ F[x1, . . . , xn], let 〈f1, . . . , fk〉 denote the ideal which they
generate in F[x1, . . . , xn]. Clearly, V (〈f1, . . . , fk〉) = V (f1, . . . , fk). For an algebraic set V , let its
vanishing ideal I(V ) be the ideal of F[x1, . . . , xn] consisting of all polynomials which vanish on V
and let R(V ) = F[x1, . . . , xn]/I(V ) denote its coordinate ring.

For a polynomial f ∈ F[x1, . . . , xn], let deg(f) denote its total degree. Let F[x1, . . . , xn]≤d
denote the vector space of polynomials over F with degree at most d. For an ideal I, let I≤d =
I ∩ F[x1, . . . , xn]≤d denote the subspace consisting of all polynomials in I of degree at most d.
For an algebraic set V , with vanishing ideal I = I(V ) and coordinate ring R = R(V ), let R≤d =
F[x1, . . . , xn]≤d/I≤d. The affine Hilbert function ha(R, d) of R is then given by

ha(R, d) = dimF(R≤d).

By slight abuse of notation, we will use the term affine Hilbert function of an algebraic set V, which
we will denote ha(V, d), to simply be the affine Hilbert function of the coordinate ring R(V ).
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Throughout this paper, we consider only zero-dimensional algebraic sets V (that is to say,
V is finite). For such a V , we define its regularity reg(V ) to be the minimal value of d such that
ha(V, d) = |V |. Equivalently, reg(V ) is the minimal value of d such that every function V → F
can be realized as a polynomial of degree at most d. This quantity is frequently referred to as
interpolation degree. In the case of zero-dimensional algebraic sets, this quantity is equivalent to
the Castelnuovo-Mumford regularity of R(V ) (see, for instance [Eis02] Thm.4.1).

For α = (α1, . . . , αn) ∈ Nn, we define xα to be the monomial xα1
1 · · ·xαnn ∈ F[x1, . . . , xn].

For any J ⊆ [n] we define the (multilinear) monomial xJ by xJ =
∏
j∈J xj . A degree com-

patible term order < is a total order on the monomials xα which respects multiplication (xα <
xβ ⇒ xαxγ < xβxγ ∀xα, xβ, xγ ∈ F[x1, . . . , xn]) and is degree compatible (deg(xα) < deg(xβ) ⇒
xα < xβ ∀xα, xβ ∈ F[x1, . . . , xn]). For a degree compatible term order <, and polynomial
f ∈ F[x1, . . . , xn], we define its leading monomial lm(f) to be the largest monomial in f with
respect to <. Similarly, for an ideal I in F[x1, . . . , xn], we define its leading monomials to be

LM(I) = {lm(f) : f ∈ I}

and its standard monomials to be

SM(I) = {xα : α ∈ Nn} \ LM(I).

For an algebraic set V , we define LM(V ) = LM(I(V )) and SM(V ) = SM(I(V )). We also
define

SM(V, d) = {xα ∈ SM(V ) : deg(xα) = d}

and
LM(V, d) = {xα ∈ LM(V ) : deg(xα) = d}.

Standard monomials provide an extremely convenient tool for computing both the Hilbert
function of an algebraic set and its regularity, as illustracted in the following lemma (these are well
known facts in algebraic geometry; see, for instance [Fel07]).

Lemma 1. (a) ha(V, d) =
∑d

i=0 |SM(V, i)|

(b) reg(V ) = maxxα∈SM(V ) deg(xα)

(c) |SM(V )| = |V |

(d) V1 ⊆ V2 ⇒ SM(V1) ⊆ SM(V2)

(e) V1 ⊆ V2 ⇒ LM(V1) ⊇ LM(V2)

Let Mn denote the semigroup of all monomials in n indeterminates. That is to say, as a
set Mn = {xα : α ∈ Nn} with multiplication between monomials defined in the usual way. An
ideal U of Mn is simply an upwardly closed subset of Mn (xα ∈ U ⇒ xαxβ ∈ U ∀α, β). For an
algebraic set V ⊆ Fn, LM(V ) is an ideal of Mn. Similarly, SM(V ) is a dual ideal. In other words,
if xα ∈ LM(V ), then xαxβ ∈ LM(V ) and if xα ∈ SM(V ) then xβ ∈ SM(V ) for any divisor xβ of xα.

For I an ideal of F[x1, . . . , xn], let a(I) denote the minimal degree of any g ∈ I such that
g consists of only monomials from SM(Fn). For an algebraic set V = V (I), let a(V ) = a(I).
The following lemma, proven independently in [Fel07] and [PR08], provides an extremely useful
relationship between reg(V ) and a(V ), where V denotes the complement of V .

Lemma 2. [Fel07], [PR08]
If V ⊆ Fn is a nonempty zero-dimensional algebraic set, then a(V ) + reg(V ) = n.
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Lastly, we consider another useful tool for computing the Hilbert function: inclusion ma-
trices. Let F2 denote the finite field of two elements. Let 2[n] denote the collection of all subsets of
[n] = {1, . . . , n}, and let F ,G ⊆ 2[n] denote two families of subsets. The inclusion matrix M(F ,G)
is a |F| × |G| matrix, with entries in F2, where for any F ∈ F and G ∈ G the (F,G) entry is 1

precisely when G ⊆ F . Let
([n]
≤k
)

denote the family of all subsets of [n] of size at most k.
Given an algebraic set V ⊆ Fn2 , we associate it with a family of subsets in the natural way:

for each x = (x1, . . . , xn) ∈ V the subset {i : xi = 1} is included in the set family. By a slight abuse
of notation, we will also denote this set family by V . The following is immediate from definitions
(as a nontrivial linear combination of the columns corresponds to a polynomial in I(V ) and hence
a leading monomial).

Lemma 3. For any algebraic set V ⊆ Fn2 , we have

ha(V, d) = rankF2M
(
V,

(
[n]

≤ d

))
.

Throughout this paper, our key object of interest will be the affine Hilbert function of an
algebraic set. We briefly note that this is a slight departure from the typical situation in algebraic
geometry in which one considers the “ordinary” Hilbert function (which is defined similarly to
the affine Hilbert function, but in which one considers the space of homogeneous polynomials of
a particular degree, rather than arbitrary polynomials of a particular degree) of a variety (which
is an algebraic set in which the ground field F is algebraically closed). Much as was the case in
[Smo93], this is done in order to allow a better intuitive connection between the Hilbert function
and the questions from complexity theory that we consider. However, it should be noted that it
is very straightforward to convert between statements involving the affine Hilbert function of an
algebraic set and the Hilbert function of a variety as, firstly, one can harmlessly extend the ground
field (and, in particular, extend it to its algebraic closure), and, secondly, one can straightforwardly
express the value of the affine Hilbert function at degree d as the sum of values of the Hilbert
function of degree at most d. While it is true that certain basic statements that would hold over an
algebraically closed ground field do not necessarily hold over arbitrary fields, these statements are
either facts that we explicitly exploit in the proof (such as the number of roots a particular degree
d polynomial has in a particular algebraic set) or are statements that can easily be modified to
analagous statements when the ground field is a finite field (for example, Hilbert’s Nullstellensatz,
which establishes a bijection between varieties and radical ideals can be modified to a bijection
between algebraic sets and radical ideals that contain the field polynomials).

3 Generalization of Versatile Functions

In this section, we consider a certain natural generalization of the concept of versatile functions
(as defined in [Kop11], see also [Smo87] for the concept of UnF − complete elements) to promise
problems. We begin with a definition.

Definition 1. A function f : Fn2 → F2 is Versatile if, ∀g : Fn2 → F2, ∃u, v ∈ F2[x1, . . . , xn] where
deg(u), deg(v) ≤ n

2 and g(x) = u(x)f(x) + v(x) ∀x ∈ Fn2 .

Versatile functions admit a particularly simple characterization in terms of regularity (this
is essentially the same notion as “degree-m independent sets” as considered in [Smo93]), as shown
in the following lemma.

Lemma 4. For a function f : Fn2 → F2, let U0 = f−1(0) and U1 = f−1(1). Then f is versatile if
and only if reg(U0), reg(U1) ≤ n

2 .
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Proof. If f is versatile, then, by definition, ∀g : Fn2 → F2, ∃u, v ∈ F2[x1, . . . , xn] where deg(u), deg(v) ≤
n
2 and g(x) = u(x)f(x)+v(x) ∀x ∈ Fn2 , and so g(x) = v(x) ∀x ∈ U0 and g(x) = u(x)+v(x) ∀x ∈ U1.
Since deg(u+ v) ≤ max(deg(u), deg(v)), it immediately follows that reg(U0), reg(U1) ≤ n

2 .
If reg(U0), reg(U1) ≤ n

2 , then, by definition, ∀g : Fn2 → F2, ∃u′, v′ ∈ F2[x1, . . . , xn] where
deg(u′), deg(v′) ≤ n

2 such that g(x) = u′(x) ∀x ∈ U0 and g(x) = v′(x) ∀x ∈ U1. Therefore,
g(x) = u(x)f(x) + v(x) ∀x ∈ Fn2 , where u = u′ + v′ and v = v′. Since deg(u), deg(v) ≤ n

2 , f is
versatile.

As shown in [Kop11], the Majority function (the function MAJ : Fn2 → F2 where MAJ(x) =
1 when wt(x) ≥ n

2 and MAJ(x) = 0 when wt(x) < n
2 , where wt(x) denotes the number of 1s in

x) is versatile. As a first illustration of the utility of standard monomials, we present a new short
proof of this fact.

Lemma 5. The function MAJ : Fn2 → F2 is versatile.

Proof. Let U0 = {x ∈ Fn2 : MAJ(x) = 0}. Let S = {xα : α ∈ {0, 1}n, wt(α) < n
2 }. We will show

that SM(U0) = S. Since |S| = |U0| = |SM(U0)|, it suffices to show S ⊆ LM(U0). To see this, note
that for any J ⊆ [n], where |J | ≥ n

2 , we clearly have xJ ∈ I(U0) (because, for any x ∈ U0, a strict
majority of the xj are 0 and so any sufficiently large product xJ =

∏
j∈J must vanish on U0) and

so xJ ∈ LM(U0). Trivially, x2
j ∈ LM(U0) ∀j, as, of course, x2

j +xj ∈ I(U0) ∀j. Due to the fact that

LM(U0) is upwardly closed, the previous two facts immediately imply S ⊆ LM(U0), as desired.
Similarly, if U1 = {x ∈ Fn2 : MAJ(x) = 1}, then, by the same logic as above, SM(U1) =

{xα : α ∈ {0, 1}n, wt(α) ≤ n
2 }. Therefore, by definition, reg(U0), reg(U1) ≤ n

2 .

We now generalize the notion of versatility to functions of the form f : U → F2, for some
U ⊆ Fn2 . As shown above, a versatile function partitions the set Fn2 , which has regularity n, into
two pieces, the preimage of 0 and the preimage of 1, which each have regularity at most n

2 . We will
call a function f δ-versatile on U if the function f induces a partitioning of U with a regularity gap
of at least δ. This notion is formalized in the following definition.

Definition 2. For a function f : U → F2, let U0 = {x ∈ U : f(x) = 0} and U1 = {x ∈ U : f(x) =
1}. We say that f is δ-versatile on U if δ ≤ reg(U)− reg(U0), reg(U)− reg(U1).

Clearly, this notion generalizes the concept of versatility as a versatile function is n
2 -versatile

on Fn2 . We now prove several useful properties of δ-versatile functions which will be used throughout
the paper.

Lemma 6. If f : U → F2 is δ-versatile on U then, 6 ∃g ∈ F2[x1, . . . , xn] where deg(g) < δ and
g(x) = f(x) ∀x ∈ U .

Proof. Assume, for contradiction, that such a g exists. By the definition of regularity, there exists
at least one function h : U → F2 such that, ∀q ∈ F2[x1, . . . , xn] with deg(q) < reg(U), ∃x ∈ U such
that h(x) 6= q(x).

Let U0 = {x ∈ U : f(x) = 0} and U1 = {x ∈ U : f(x) = 1}. Due to the fact that
f is δ-versatile on U we have, by definition, reg(U0), reg(U1) ≤ reg(U) − δ. Therefore, ∃u, v ∈
F2[x1, . . . , xn] where deg(u), deg(v) ≤ reg(U) − δ and h(x) = u(x) ∀x ∈ U0, h(x) = v(x) ∀x ∈ U1.
If we then define q ∈ F2[x1, . . . , xn] by q = u(g + 1) + vg, we clearly have deg(q) ≤ max(deg(u) +
deg(g), deg(v)+deg(g)) ≤ (reg(U)−δ)+deg(g) < (reg(U)−δ)+δ = reg(U) and h(x) = u(x)(g(x)+
1) + v(x)g(x) = q(x) ∀x ∈ U , which is a contradiction.
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Next, we consider the behavior of δ-versatile functions f : U → F2 where the set U has a
certain special property. Given any U ⊆ Fn2 , there is, of course, a unique multilinear polynomial
(recall that a polynomial is multilinear if every monomial has degree at most 1 in each variable)
rU ∈ F2[x1, . . . , xn] such that rU (x) = 1 if and only if x ∈ U . Clearly, rU ∈ I(V ). Moreover, each
monomial of rU is in SM(Fn2 ) (due to the fact that the standard monomials of Fn2 are precisely
the multilinear monomials), and so we immediately conclude that a(V ) ≤ deg(rU ). We call an
algebraic set U critical if a(V ) = deg(rU ).

Lemma 7. Let U ⊆ Fn2 be a critical algebraic set, let f : U → F2 be δ-versatile on U , and let
U0 = {x ∈ U : f(x) = 0} and U1 = {x ∈ U : f(x) = 1}. Then, ∀q ∈ F2[x1, . . . , xn] such that
deg(q) < δ, q ∈ I(U0) if and only if q ∈ I(U1).

Proof. We show that,∀q ∈ F2[x1, . . . , xn], where deg(q) < δ, q ∈ I(U0) ⇒ q ∈ I(U1); the reverse
implication follows by symmetry. Assume, for contradiction that q ∈ I(U0) but q 6∈ I(U1). Let
Y = {x ∈ U : q(x) = 1}. Clearly Y ⊆ U1 and Y is nonempty. Let t ∈ F2[x1, . . . , xn] denote the
unique multilinear polynomial such that t(x) = rU (x)q(x) ∀x ∈ Fn2 , then t ∈ I(Y ) and deg(t) ≤
deg(rU ) + deg(q). Using Lemma 2, we have

reg(Y ) = n− a(Y )

≥ n− deg(t)

≥ n− deg(rU )− deg(q)

= reg(U)− deg(q)

> reg(U)− δ

≥ reg(U1).

However, we cannot possibly have reg(Y ) > reg(U1) because, as noted above, U1 ⊆ U , and
so, by Lemma 1(b,d) we must have reg(Y ) ≤ reg(U1).

The following lemma provides an extremely useful characterization of the behavior of a δ-
versatile f on the intersection of a critical U with a certain simple algebraic set, namely the union
of the vanishing sets of a collection of low degree polynomials.

Lemma 8. Let U ⊆ Fn2 be a critical algebraic set, let f : U → F2 be δ-versatile on U , and
let U0 = {x ∈ U : f(x) = 0} and U1 = {x ∈ U : f(x) = 1}. For any d < δ and for any
g1, . . . , gk ∈ F2[x1, . . . , xn] where deg(gi) < d ∀i, let G = ∪iV (gi). Then,

SM(U ∩G, j) = SM(U0 ∩G, j) = SM(U1 ∩G, j) ∀j ≤ δ − d

Proof. Clearly, U0∩G ⊆ U ∩G, U1∩G ⊆ U ∩G and so by Lemma 1(d), SM(U0∩G), SM(U1∩G) ⊆
SM(U ∩G), from which it immediately follows that SM(U0 ∩G, j), SM(U1 ∩G, j) ⊆ SM(U ∩G, j).

We will now show SM(U0 ∩ G, j),SM(U1 ∩ G, j) ⊇ SM(U ∩ G, j)∀j ≤ δ − d, which will
complete the proof. Consider any j ≤ δ − d. Due to the fact that, for any particular algebraic
set, every monomial is either a leading monomial or a standard monomial, if suffices to show
LM(U0 ∩G, j),LM(U1 ∩G, j) ⊆ LM(U ∩G, j).

To see that LM(U0 ∩G, j) ⊆ LM(U ∩G, j), assume, for contradiction, that this is not the
case. Then ∃xα ∈ LM(U0 ∩ G, j) ∩ SM(U ∩ G, j). Due to the fact that xα ∈ LM(U0 ∩ G, j) we
have, by definition, that ∃q ∈ F2[x1, . . . , xn] such that q ∈ I(U0 ∩ G) and lm(q) = xα. Clearly,
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deg(q) = j ≤ δ − d. Due to the fact that xα ∈ SM(U ∩G, j), we have, by definition q 6∈ I(U ∩G).
This immediately implies q 6∈ I(U1 ∩G) because U ∩G = (U0 ∪U1)∩G = (U0 ∩G)∪ (U1 ∩G), and
so if q did vanish on U1 ∩G, then it would vanish on U ∩G (because, by construction, it vanishes
on U0 ∩ G). Moreover, since U1 ∩ G = U1 ∩ (∪iV (gi)) = ∪i(U1 ∩ V (gi) we conclude ∃i such that
q 6∈ I(U1∩V (gi)). Fix such an i and consider the set Y = {x ∈ U : q(x) = 1 and gi(x) = 0}. Notice
that due to the requirements that x ∈ U and gi(x) = 0, we immediately have Y ⊆ U ∩ V (gi), and
since q vanishes on U0∩V (gi), we then have Y ⊆ U1∩V (gi). Let t ∈ F2[x1, . . . , xn] be the (unique)
multilinear polynomial equal to (rU )(q)(gi+ 1). By construction, t(x) = 1 if and only if x ∈ Y , and
so t ∈ I(Y ). We then have

a(Y ) ≤ deg(t)

≤ deg(rU ) + deg(q) + deg(gi + 1)

< a(U) + (δ − d) + d

= a(U) + δ.

Applying Lemma 2, we then have

reg(Y ) = n− a(Y )

> n− (a(U) + δ)

= (n− a(U))− δ

= reg(U)− δ

≥ reg(U1),

where the last inequality holds due to the fact that f is δ-versatile. However, we cannot possibly
have reg(Y ) > reg(U1) because, as noted above, U1 ⊆ U , and so, by Lemma 1(b,d) we must have
reg(Y ) ≤ reg(U1). This contradiction allows us to conclude LM(U0 ∩G, j) ⊆ LM(U ∩G, j). By a
precisely symmetric argument, LM(U1 ∩G, j) ⊆ LM(U ∩G, j), which completes the proof.

4 Extractors for Algebraic Sets

In this section, we exhibit a new construction for an extractor for algebraic sets with extremely
strong parameters. We begin with the following lemma, which provides a useful bound on the
Hilbert function.

Lemma 9. Let V ⊆ Fn2 satisfy reg(V ) ≥ n
2 −
√
n. Then, there is a constant c > 0 such that, for

any β > 0 and any k ≤ n
1
2
−β, we have

ha(V, reg(V ))− ha(V, reg(V )− k) ≤ ck√
n
|V |.

Proof. Let r = reg(V ) and set t to be the unique value r − k + 1 ≤ t ≤ n such that
(

t
r−k+1

)
≤

|SM(V, r − k + 1)| ≤
(

t+1
r−k+1

)
.

First, notice that |SM(V, i)| ≥
(
t
i

)
, ∀i ≤ r − k + 1. This follows by a straightforward

induction on j = r − k + 1 − i. The case in which j = 0 follows from the above definition of t. If
|SM(V, r− k + 1− j)| ≥

(
t

r−k+1−j
)
, then we immediately have a set S ⊆ SM(V, r− k + 1− j) such

10



that |S| =
(

t
r−k+1−j

)
. Define the set ∆S to consist of all monomials that lie immediately below

some monomial in S in the monomial order (this is frequently called the shadow of S),

∆(S) = {xα : deg(xα) = r − k + 1− (j + 1) and ∃xγ ∈ S such that xα < xγ}.

Due to the fact that SM(V ) is a dual ideal, we note that S ⊆ SM(V ) ⇒ ∆(S) ⊆ SM(V ), from
which we immediately conclude ∆(S) ⊆ SM(V, r − k + 1− (j + 1)). We then have

|SM(V, r − k + 1− (j + 1))| ≥ |∆(S)| ≥
(

t

r − k + 1− (j + 1)

)
,

where the last inequality follows immediately from Lovász’s version [Lov79] of the Kruskal-Katona
theorem.

By a precisely analogous argument, we also have |SM(V, i)| ≤
(
t+1
i

)
∀i ≥ r − k + 1. By

Lemma 1(a) and the above,

ha(V, r) ≥ ha(V, r − k) =
r−k∑
i=0

|SM(V, i)| ≥
r−k∑
i=0

(
t

i

)
≥ c12t,

for some constant c1 > 0 (where the last inequality follows from the fact that r−k > n
2−2
√
n ≥ t

2−
2
√
t combined with elementary bounds on the sum of binomial coefficients). Similarly, ∀i ≥ r−k+1,

we have, for some constant c2 > 0,

|SM(V, i)| ≤
(
h+ 1

i

)
≤
(
h+ 1

dh+1
2 e

)
≤ c22h√

h
.

We then have, for some constant c > 0,

ha(V, r)− ha(V, r − k)

|V |
=
ha(V, r)− ha(V, r − k)

ha(V, r)

=

∑r
i=r−k |SM(V, i)|
ha(V, r)

≤
(k + 1)(c2) 2t√

t

c12t

=
(k + 1) c2c1√

t

≤ ck√
n
.

Remark 1. The above bound can be seen to be essentially optimal, as shown by considering the
standard monomials of the function MAJORITY computed in the previous section.

We now show that any δ-versatile function, for appropriately chosen δ is an extractor.

Theorem 1. Let f : Fn2 → F2 be δ-versatile (on Fn2 ), where δ ≥ n
2 −n

γ for some 0 ≤ γ < 1
2 . Then,

there is a constant c > 0 such that, for any constants α, β such that 0 < α, β < 1
2 , and for any

d ≤ nα and ρ ≥ 2−n
β
, f is an extractor with bias

c
(
nγ+d log(

√
n
ρ

)
)

√
n

for algebraic sets of density at

least ρ that are the common zeros of a collection of polynomials each of degree at most d.
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Proof. Let U0 = f−1(0) and U1 = f−1(1). Due to the fact that f is (n2 − nγ)-versatile, we
immediately have reg(U0), reg(U1) ≤ n

2 + nγ . We also have reg(U0), reg(U1) ≥ n
2 − nγ because

2n = |U0| + |U1| = |SM(U0)| + |SM(U1)|, and the regularity of an algebraic set is the size of its
largest standard monomial(Lemma 1(b)).

Consider any algebraic set V = V (g1, . . . , gk) where gi ∈ F2[x1, . . . , xn] and deg(gi) ≤
d ∀i. Using the Razborov-Smolensky method [Raz87],[Smo87], we have a collection of polynomials
y1, . . . , yl ∈ F2[x1, . . . , xn] such that deg(yi) ≤ d, V (g1, . . . , gk) ⊆ V (y1, . . . , yl) and |V (y1, . . . , yl) \
V (g1, . . . , gk)| ≤ 2n−l. Setting y = 1 +

∏l
i=1(1 + yi), we then have deg(y) ≤ dl and V (y) =

V (y1, . . . , yl).
Consider U0 ∩ V (y) and U1 ∩ V (y). By Lemma 8, we have

SM(U0 ∩ V (y), i) = SM(U1 ∩ V (y), i) = SM(V (y)) ∀i ≤ n

2
− nγ − dl.

From this, and Lemma 1(a), we immediately conclude ha(U0 ∩ V (y), n2 − nγ − dl) = ha(U1 ∩
V (y), n2 − n

γ − dl). Clearly, U0 ∩ V (y) ⊆ U0 and U1 ∩ V (y) ⊆ U1, and so, by Lemma 1(d,b), we
have reg(U0 ∩ V (y)) ≤ reg(U0) ≤ n

2 + nγ , and reg(U1 ∩ V (y)) ≤ reg(U1) ≤ n
2 + nγ . Moreover,

reg(U0 ∩ V (y)), reg(U1 ∩ V (y)) ≥ n
2 − n

γ − dl. To see this, first notice that Lemma 2 allows us to
conclude reg(V (y)) ≥ n−dl (because y+1 vanishes on the complement of V (y)), which immediately
implies that SM(V (y)) consists of an element xκ of degree at least n − dl. As SM(V (y)) is a
dual ideal, we then also conclude that it consists of an element of degree precisely n

2 − n
γ − dl

(simply take any divisor of xκ of the appropriate degree). By the above relationship between
SM(V (y)), SM(U0 ∩ V (y)) and SM(U1 ∩ V (y)), we then conclude that both SM(U0 ∩ V (y)) and
SM(U1 ∩ V (y)) contain an element of degree n

2 − n
γ − dl, and so, by Lemma 1(b), the claimed

lower bound on regularity follows. In the following, for brevity, we write Hi(j) = ha(Ui ∩ V (y), j),
d1 = n

2 + nγ ,d2 = n
2 − n

γ − dl.
We then have

bias(f |V (g1,...,gk)) = |Ex∼V (g1,...,gk)[(−1)f(x)]|

=
||U0 ∩ V (g1, . . . , gk)| − |U0 ∩ V (g1, . . . , gk)||

|V (g1, . . . , gk)|

≤ ||U0 ∩ V (y)| − |U1 ∩ V (y)||+ |V (y) \ V (g1, . . . , gk)|
|V (g1, . . . , gk)|

≤ |H0(d1)−H1(d1)|+ 2n−l

|V (g1, . . . , gk)|

=
|H0(d2)−H1(d2) + (H0(d1)−H0(d2))− (H1(d1)−H1(d2)) + 2n−l

|V (g1, . . . , gk)|

=
|(H0(d1)−H0(d2)− (H1(d1)−H1(d2)) + 2n−l

|V (g1, . . . , gk)|

≤
c
′
(2nγ+dl)√

n
|V (g1, . . . , gk)|+ 2n−l

|V (g1, . . . , gk)|

=
c
′
(2nγ + dl)√

n
+

2n−l

|V (g1, . . . , gk)|

≤ c
′
(2nγ + dl)√

n
+

2n−l

ρ2n
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=
c
′
(2nγ + dl)√

n
+

1

ρ2l
.

Setting l = log(
√
n
ρ ) yields the claimed bound.

Next, as in [CT13], we consider a variant of the extractor model in which, rather than
explicitly considering algebraic sets which satisfy a certain density bound, we consider algebraic
sets defined by a limited number of polynomials. The following is immediate.

Corollary 1. Let f : Fn2 → F2 be δ-versatile (on Fn2 ), where δ ≥ n
2 −n

γ for some 0 ≤ γ < 1
2 . Then,

there is a constant c > 0 such that, for any constants α, β such that 0 < α ≤ β < 1
2 , and for any

d ≤ nα and k ≤ nβ−α, f is an extractor with bias
c(nγ+d(nβ+ 1

2
log(n))√

n
for algebraic sets that are the

common zeros of a collection of at most k polynomials each of degree at most d.

Proof. Consider any algebraic set V = V (g1, . . . , gk) where gi ∈ F2[x1, . . . , xn] and deg(gi) ≤ d ∀i.
Let g = 1 +

∏k
i=1 gi. Then deg(g) ≤ kd ≤ nβ and V = V (g). From Lemma 2 it immediately

follows that reg(V (g)) ≥ n − deg(g) ≥ n − nβ, and so, by definition ∃xκ ∈ SM(V (g)) such that
deg(xκ) = n − nβ. Due to the fact that SM(V (g)) is a dual ideal, every divisor of xκ is also a

member of SM(V (g)). As there are precisely 2n−n
β

such divisors we have

|V | = |V (g)| = |SM(V (g))| ≥ 2n−n
β
,

and so V has density ρ ≥ 2−n
β
. The result then follows immediately from Theorem 1.

5 Recursive Fourier Sampling

In this section, we consider the recursive Fourier sampling problem. Numerous variants of this
problem have been considered by many authors (see, for instance, [BV93], [BV97], [Aar03], [Aar10],
[Joh08]). The version considered in this paper, and the notation used, follows most closely [Joh08],
but essentially the same claims hold for all other standard variants. We begin by precisely defining
the problem.

5.1 Definition of the Problem

First, we define the Fourier sampling function. For every positive integer n, we define the partial
Boolean function FSn : {0, 1}2n+1 → {0, 1, ∗} as follows. We interpret the 2n+1 bit long input to
FSn as a pair of truth tables defining the functions f, g : {0, 1}n → {0, 1}. For x, s ∈ {0, 1}n, let
xi and si denote the ith bit of x and s, respectively. Let x · s =

∑
i xisi denote the usual Boolean

inner product (where of course the sum is evaluated modulo 2). Then

FSn(f, g) =

{
g(s), if ∃s ∈ {0, 1}n such that f(x) = x · s ∀x
∗, otherwise

This function can very naturally be interpreted as encoding a promise problem, called the
Fourier sampling problem, in which the promise is that f is a linear function (that is to say a
function of the form f(x) = x · s), and the value of FSn(f, g) (when the promise is satisfied) is
simply g(s). We will frequently refer to the value s as the secret encoded by f .
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Next, we define a slight variant of the above problem where the function g is fixed (that is
to say that it is not part of the input to the function). Formally, for any positive integer n and any
function g : {0, 1}n → {0, 1}, we define the function FSgn : {0, 1}2n → {0, 1} as follows. We now
interpret the input to the function as encoding the truth table of a single function f : {0, 1}n →
{0, 1}. We then define

FSgn(f) =

{
g(s), if ∃s ∈ {0, 1}n such that f(x) = x · s ∀x
∗, otherwise

We now define the recursive Fourier sampling function, which is a variant of the Fourier
sampling function in which each bit of f is produced, recursively, by a smaller instance of the
recursive Fourier sampling problem.

Formally, let RFSn,1 : {0, 1}n+2n → {0, 1} be the (total) Boolean function where the input
is interpreted as a pair (s, g) for a secret s ∈ {0, 1}n and a function g : {0, 1}n → {0, 1} given as a
2n bit long truth table, and

RFSn,1(s, g) = g(s).

For each h > 1, we define RFSn,h recursively in terms of RFSn,h−1 as follows. Let Mn,h =

n2n(h−1) +
∑h−1

j=1 2jn. Then RFSn,h : {0, 1}Mn,h → {0, 1, ∗} is the partial Boolean function defined
as follows. The input is interpreted as being of the form (R0, R1, . . . , R2n−1, g), where for each
σ ∈ {0, 1}n, Rσ is an instance of RFSn,h−1 and g is a funciton g : {0, 1}n → {0, 1} given as a 2n

bit long truth table. We then define

RFSn,h(R0, . . . , R2n−1, g) =

{
g(s), if ∃s ∈ {0, 1}n such that ∀σ ∈ {0, 1}n RFSn,h−1(Rσ) = σ · s
∗, otherwise

In a precisely analogous fashion, we define RFSgn,h where now there is a single fixed g used
throughout the problem, rather than a collection of functions provided as part of the input.

We very naturally interpret RFSn,h and RFSgn,h as encoding a particular promise problem,
where the promise is that, at every node in the tree, there exists some s ∈ {0, 1}n such that the
function f : {0, 1}n → {0, 1} defined at this node is of the form f(x) = x · s.

Fix the entire input to the recursive Fourier sampling function in any way such that every
promise is satisfied. For any node t in the tree, we define the value of the node, which we denote
by b(t) to be the output of the instance of recursive Fourier sampling corresponding to the subtree
rooted at t.

Notice that, due to the structure of the promise, in order to determine the value of node t,
it is only necessary to know the values of n linearly independent children of t. That is to say, if
the children of t are given by C(t) = {tσ : σ ∈ {0, 1}n}, then b(t) is completely determined by the
value of a subset of children C ′ for any C ′ ⊆ C such that C ′ = {tσ1 , . . . , tσn} where {σ1, . . . , σn}
are linearly independent (as vectors in {0, 1}n, in other words the σi form a basis of {0, 1}n).

For i ∈ [n], let χi ∈ {0, 1}n denote the ith elementary basis element. That is to say χi has
value 1 in position i and 0 elsewhere. Clearly, the set of χi form a basis of {0, 1}n, and so, for any
node t, the value of node t is completely determined by the values of these children. We call this
set of children the elementary children of t, which we denote by

Ce(t) = {tχi : i ∈ [n]}.

Therefore, given an instance (a particular single setting of the input) of RFSn,h or RFSgn,h
that is guaranteed to satisfy the promise, the answer (the value of the root of the tree) can be de-
termined by first determining the value of the n elementary children of t. The value of each of these
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children can be determined from their n elementary children. This process can be repeated until
the leaves of the tree are reached, at which point the value of each node is simply the output of an
instance of RFSn,1. We refer to this collection of leaves obtained by repeatedly finding elementary
children as the elementary leaves. For a tree of height h, there are clearly nh−1 elementary leaves.

5.2 Recursive Fourier Sampling is δ-versatile

In this section, we show that for certain natural choices of the function g, such as the majority
function or the generalized inner product function, RFSgn,h is δ-versatile, for suitably chosen δ.

Fix n, and let m denote the total length of the input to RFSgn,h. Clearly m = n2(h−1)n.

Let Ugp,h ⊆ Fm2 denote the set of all points at which all promises are satisfied (that is to say, the set
of all values of inputs to the recursive Fourier sampling function such that, at every node of the
tree, every linearity constraint is satisfied). We frequently refer to Ugp,h as the “promise”. On the
promise, the recursive Fourier sampling problem is, of course, a total function. By slight abuse of
notation, we also denote this induced total function as RFSgn,h : Ugp,h → F2. Similarly, we define

Ug0,h = (RFSgn,h)−1(0) and Ug1,h = (RFSgn,h)−1(1) as the points at which the recursive Fourier
sampling problem evaluates to 0 and 1, respectively. The superscript g will often be omitted when
the function is clear from context.

The first key result of this section, which holds for any g, is the following lower bound on
regularity of Ugp,h,Ug0,h, and Ug1,h.

Lemma 10. For any positive integers n, h and for any g ∈ F2[x1, . . . , xn], let d = deg(g) and let
RFSgn,h : Fm2 → F2 denote the recursive Fourier sampling function. Then

reg(Ugp,h) ≥ ndh−1 + (n− d)

h−1∑
j=1

2jndh−j−1

reg(Ug0,h), reg(Ug1,h) ≥ (n− d)
h−1∑
j=0

2jndh−j−1.

Proof. Let rUp,h ∈ F2[x1, . . . , xm] denote the unique squarefree polynomial such that rUp,h(x) = 1
if and only if x ∈ Up,h. By a straightforward counting of the number of promises of each degree,

we have deg(rUp,h) ≤ (2n − n)
∑h−1

j=1 2(j−1)ndh−j . By construction rUp,h vanishes on Up,h and so

a(Up,h) ≤ deg(rUp,h)

≤ (2n − n)

h−1∑
j=1

2(j−1)ndh−j

= 2n

h−1∑
j=1

2(j−1)ndh−j

− n
h−1∑
j=1

2(j−1)ndh−j


=

h−1∑
j=1

2jndh−j

− n
h−1∑
j=1

2(j−1)ndh−j


= d

 h∑
j=2

2(j−1)ndh−j

− n
h−1∑
j=1

2(j−1)ndh−j
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= d2(h−1)n − ndh−1 − (n− d)
h−1∑
j=2

2(j−1)ndh−j .

Applying Lemma 2, we then have

reg(Up,h) = n2(h−1)n − a(Up,h)

≥ (n− d)2(h−1)n + ndh−1 + (n− d)
h−1∑
j=2

2(j−1)ndh−j

= ndh−1 + (n− d)
h∑
j=2

2(j−1)ndh−j

= ndh−1 + (n− d)

h−1∑
j=1

2jndh−j−1.

Similarly, define rU0,h
, rU1,h

∈ F2[x1, . . . , xm] as the unique squarefree polynomials such that
rU0,h

(x) = 1 if and only if x ∈ U0,h and rU1,h
(x) = 1 if and only if x ∈ U1,h. We then immediately

have deg(rU0,h
), deg(rU1,h

) ≤ deg(rUp,h) + di, and so, by a precisely analogous argument as above

reg(U0,h), reg(U1,h) ≥ (n− d)dh−1 + (n− d)

h−1∑
j=1

2jndh−j−1

= (n− d)
h−1∑
j=0

2jndh−j−1.

We now exhibit certain functions for which the above lower bounds on regularity are exact.
The first such example is the majority function, for certain appropriately chosen input sizes. For
a x ∈ {0, 1}n, let x = (x1, . . . , xn) and let wt(x) = |{i : xi = 1}| denote the number of 1s
in x. Let MAJ : Fn2 → F2 be defined such that MAJ(x) = 1 if and only if wt(x) ≥ n

2 . We
begin by determining the unique squarefree polynomial in F2[x1, . . . , xn] that represents MAJ. Let
ei(x) =

∑
J⊆[n],|J |=i

∑
j∈J xj denote the ith elementary symmetric polynomial. For y, z ∈ {0, 1}l,

write y ≥b z if and only if yi ≥ zi ∀i.

Lemma 11. For any positive integer n, the unique squarefree polynomial in F2[x1, . . . , xn] that is
identically equal to MAJ : Fn2 → F2 on Fn2 is given by∑

l≥n
2

∑
j≥bl

ej(x).

Proof. Begin by noticing that

ei(x) =

(
wt(x)

i

)
mod 2.

By a straightforward application of Kummer’s lemma, we then conclude

ei(x) =

{
1, wt(x) ≥b i
0, otherwise

.
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Next, define functions Ei : Fn2 → F2 and Gi : Fn2 → F2 such that Ei(x) = 1 if and only if
wt(x) = i and Gi(x) = 1 if and only if wt(x) ≥ i. We then have

Ei(x) =
∑
j≥bi

ej(x).

To see this, simply notice that if Ei(x) = 1 then wt(x) = i and so ei(x) = 1, but ej(x) = 0 for
all other terms in the above sum. If Ei(x) = 0, then wt(x) = t 6= i. There are then two cases: if
i ≤b t, then the only terms in the above sum that evaluate to one are precisely all values j such
that i ≤b j ≤ t, of which there are an even number; if i 6≤b t, then ∀j such that j ≥b i, j 6≤b t, and
so every term in the above sum evaluates to zero.

We then have
Gi(x) =

∑
l≥i

El(x)

=
∑
l≥i

∑
j≥bl

ej(x),

and so

MAJ(X) = Gn
2
(x)

=
∑
l≥n

2

∑
j≥bl

ej(x).

We now consider RFSMAJ
n,h . We begin by demonstrating a useful symmetry in UMAJ

p,h . Define

the value 1̂h ∈ UMAJ
p,h as follows. Consider the recursive Fourier sampling tree. We define 1̂h by first

defining b(t) for every node t in the tree (that is to say, we define the value b(t) that node t has
with input 1̂h). First, assign the root of the tree the value 1. Then, for each node that has been
assigned a value, assign values to the children of that node as follows. If node t has value b(t), then
set b(tσ) = b(t) for each tσ ∈ Ce(t). Assign all other children the value forced by the promise: for
each tσ ∈ C(t) \ Ce(t), set b(tσ) =

∑
j∈[n],σj=1 b(tχj ). Equivalently, if a node has value 0, all of its

children have value 0; if a node has value 1, then each child tσ has value given by the parity of the
string σ. Once the entire tree has been labeled in such a fashion, define 1̂h by setting the portion
of the input corresponding to each leaf (that is to say, the n places of the input representing the
secret at that leaf) to the value of that leaf.

It is clear that the value 1̂h ∈ UMAJ
p,h as claimed, due to the fact that 1̂h was constructed in

a way such that the promise is satisfied at every node. Moreover, 1̂h ∈ UMAJ
1,h as, by construction,

the value of the root is 1. For any x ∈ UMAJ
p,h , let x̂ = x⊕ 1̂h (where ⊕ denotes bitwise parity). We

then have the following.

Lemma 12. For any odd positive integer n and any positive integer h, x ∈ UMAJ
0,h if and only if

x̂ ∈ UMAJ
1,h .

Proof. Given any x ∈ UMAJ
0,h , the root of the corresponding recursive Fourier sampling tree has

value 0. The key observation is that adding 1̂h flips the value at every elementary leaf of the tree.
That is to say, if on input x, a particular elementary leaf t has value b ∈ {0, 1}, then on input
x̂, that leaf has value b. This occurs because, by construction, 1̂h is 1 at every position in the
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elementary leaves. It is then straightforward to see that value of the root of the tree flips and that
every promise is preserved, which implies x̂ ∈ UMAJ

1,h . The reverse implication follows from the fact

that ˆ̂x = x and symmetry.

We now show that UMAJ
0,h and UMAJ

1,h have identical standard monomials.

Lemma 13. For any odd positive integer n and any positive integer h, SM(UMAJ
0,h ) = SM(UMAJ

1,h ).

Proof. For any algebraic set, every monomial is either a leading monomial or a standard monomial,
and so it suffices to show LM(UMAJ

0,h ) = LM(UMAJ
1,h ).

We first show LM(UMAJ
0,h ) ⊆ LM(UMAJ

1,h ). Consider any xα ∈ LM(UMAJ
0,h ). By definition,

∃qα ∈ F2[x1, . . . , xm] such that qα ∈ I(UMAJ
0,h ) and lm(qα) = xα. Define q̂α ∈ F2[x1, . . . , xm] such

that q̂α(x) = qα(x̂). Notice that
lm(q̂α) = lm(qα) = xα.

Moreover, for any x ∈ UMAJ
1,h , Lemma 12 implies that x̂ ∈ UMAJ

0,h and so

q̂α(x) = qα(x̂) = 0,

where the last follows from the fact that q vanishes on UMAJ
0,h . This implies that q̂α ∈ I(UMAJ

1,h ), and

so xα ∈ LM(UMAJ
1,h ). Therefore, LM(UMAJ

0,h ) ⊆ LM(UMAJ
1,h ).

A precisely symmetric argument implies LM(UMAJ
0,h ) ⊇ LM(UMAJ

1,h ).

Next, we provide upper bounds for the regularity of UMAJ
p,h , UMAJ

0,h , and UMAJ
1,h .

Lemma 14. For any odd positive integer n and any positive integer h, let RFSMAJ
n,h : Fm2 → F2

denote the recursive Fourier sampling function with majority. Then

reg(UMAJ
p,h ) ≤ n

(
n+ 1

2

)h−1

+

(
n− 1

2

) h−1∑
j=1

2jn
(
n+ 1

2

)h−j−1

reg(UMAJ
0,h ), reg(UMAJ

1,h ) ≤
(
n− 1

2

) h−1∑
j=0

2jn
(
n+ 1

2

)h−j−1

.

Proof. We show this by induction on h. First, consider the case in which h = 1. Clearly, UMAJ
p,1 = Fn2

and so reg(UMAJ
p,1 ) = n. Moreover, UMAJ

0,1 = (MAJ)−1(0) and UMAJ
1,1 = (MAJ)−1(1), and so, by

Lemma 5, we have reg(U0,1) = reg(U1,1) = n−1
2 .

We now consider the case in which h > 1. First, consider UMAJ
p,h . By the definition of

regularity, reg(Up,h) is the minimal value of d such that ha(Up,h, d) = |Up,h|. Therefore, if, for some
d, ha(Up,h, d) = |Up,h|, then reg(Up,h) ≤ d. In particular, let

d(h) = n

(
n+ 1

2

)h−1

+

(
n− 1

2

) h−1∑
j=1

2jn
(
n+ 1

2

)h−j−1

.

Then, in order to show reg(Up,h) ≤ d(h), it suffices to show ha(Up,h, d(h)) = |Up,h|.
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To show this, as before, let m = n2n(h−1) denote the total size of the input to RFSMAJ
n,h ,

and let

Md =M
(
Up,h,

(
[m]

≤ d

))
denote the inclusion matrix in which the rows are indexed by elements of Up,h and the columns are
indexed by all squarefree monomials of degree at most d. By Lemma 3, ha(Up,h, d) = rankF2(Md),
and so it suffices to show rankF2(Md(h)) = |Up,h|. Observe that |Up,h| is precisely the number of
rows of Md(h) (and is, of course, substantially smaller than the number of columns), and so this is
equivalent to showing that the matrix Md(h) is full rank.

To see that Md(h) is full rank, assume, for contradiction, that it is not. By definition, this
means that there exists some non-empty T ⊆ Up,h such that the sum of the rows of Md(h)) indexed
by T is 0 in every column. We now show that, for any T ⊆ Up,h, ∃α such that the rows indexed by
T have the sum 1 in the column indexed by the monomial xα, which is, of course, a contradiction.

Let xi denote the ith input variable. Let E ⊆ [m] denote the indices of all variables that are
inputs to the elementary leaves of the recursive Fourier sampling tree. Clearly, |E| = nh as there

are nh−1 elementary leaves, each of which have n input variables. Define σ : Up,h → {0, 1}n
h

such
that, for any x ∈ Up,h, σ(x) is the portion of x at indices E. We refer to this value as the signature
of x. Consider a partial ordering on the set of signatures given by the usual bitwise ordering. That
is to say, for any y, z ∈ {0, 1}nh , let yi and zi denote the ith bits of y and z, respectively. Define
y ≤ z if yi ≤ zi ∀i. Similarly, define y < z if y ≤ z and y 6= z. Let ST = {σ(x) : x ∈ T} and MT

denote an (arbitrary) maximal element of ST with respect to the partial order on signatures. That
is to say, MT is any single value that satisfies MT ∈ ST and 6 ∃y ∈ ST such that MT < y.

Recall that each column of Md(h) is indexed by a squarefree monomial xα = xα1
1 · · ·xαmm .

Consider any column of Md(h) that is indexed by some xα such that α agrees with MT (that is to
say, for each i ∈ E, αi is equal to the corresponding value of MT ). The key observation is that the
only rows x ∈ T that could possibly have value 1 in column xα are those such that σ(x) = MT . To
see this, notice that in order for a particular row x ∈ T to have entry 1 in column xα, it must be the
case that xi = 1 at every i ∈ E such that αi = 1, and so, by definition, σ(x) ≥MT . If σ(x) 6= MT ,
then σ(X) > MT , which contradicts the definition of MT , and so we must have σ(X) = MT , as
claimed.

Let Z ⊆ T be defined such that Z = {x ∈ T : σ(x) = MT }. Then, for any column indexed
by an xα such that α agrees with MT , the sum over all x ∈ T and the sum over only those x ∈ Z
must be equal. Therefore, it suffices to exhibit a column indexed by xα such that α agrees with
MT and the sum over all rows x ∈ Z in column xα is 1.

To do this, notice that the set Z is an algebraic set (as it is simply a set of elements in Fm2 )
where every x ∈ Z lies within a particular subspace, namely the subspace consisting of the set of x
that satisfy σ(x) = MT . We now consider Z̃, which is the induced algebraic set living within that
subspace. More formally, we partition the collection of variables into two pieces: E and [m] \ E.
For any x ∈ Fn2 , let xE and x[m]\E denote the portions of x indexed by E and [m] \E respectively.

We define the algebraic set Z̃ ⊆ Fm−n
h

2 where Z̃ = {x[m]\E : x ∈ Z}.
We now consider the inclusion matrix

M̃ =M
(
Z̃,

(
[m− nh]

d(h)− nh

))
,

where the rows are indexed by the x[m]\E ∈ Z̃ and the columns are indexed by the monomials

xβ[m]\E . The next key observation is that, in order to prove the existence of a column xα of the

desired form, it suffices to show rankF2M̃ = |Z̃|, in other words, that the matrix M̃ is full rank. To
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see this, notice that if M̃ is full rank then, by definition, for every non-empty set of rows R ⊆ Z̃,
there is some column xβ[m]\E such that the sum in that column over the rows R is equal to 1. In

particular, there is some column xβ[m]\E such that the sum of every row in the column xβ[m]\E is
equal to 1. Fix any such β, and define α such that αE = MT and α[m]\E = β. By construction,

the sum of the entries of Md(h) in column xα and rows Z is equal to the sum of the entries of M̃ in

column xβ[m]\E and rows Z̃. Therefore, the sum of the entries of Md(h) in column xα and rows Z is
1, as desired.

All that remains is to show rankF2M̃ = |Z̃|. By Lemma 3, this is equivalent to showing
reg(Z̃) ≤ d(h)−nh. Before providing the details of this regularity bound, we briefly state the main
idea which is that Z̃ ⊆ V1 × · · · × Vw where each Vi is (isomorphic to) either UMAJ

0,hi
or UMAJ

1,hi
where

each hi < h. The induction hypothesis bounds the regularity of each such Vi, which in turn provides
the required bound on the regularity of Z̃, because, by the definition of regularity, Z̃ ⊆ V1×· · ·×Vw
immediately implies

reg(Z̃) ≤ reg(V1 × · · · × Vw) =
∑
i

reg(Vi).

We now show the required bound on reg(Z̃). By construction Z̃ is the algebraic set consisting
of the elements of T which reside in the subspace defined by σ(x) = MT . We now consider how the
constraint σ(x) = MT interacts with the linearity promise of recursive Fourier sampling. Consider
the recursive Fourier sampling tree. The key observation is that the constraint σ(x) = MT fixes
the value of all of the elementary children, which in turn fixes the value of every “sibling” of an
elementary child. This, essentially, “decouples” the problem into the cartesian product of several
independent, smaller instances of the recursive Fourier sampling problem.

To be precise, begin by noting that requiring σ(x) = MT directly forces the value (that is to
say, the output) of each of the elementary leaves of the recursive Fourier sampling tree. By simply
propagating this constraint upward through the tree, the value of all of the elementary children is
also forced. To see this, simply notice that, by construction, if the value of all elementary children
of a particular node t is forced, then the value of t itself is forced. Since each elementary child
which is not an elementary leaf has its own collection of elementary children, the result immediately
follows.

We therefore conclude that the constraint σ(x) = MT forces the value of all nh−1 elementary
children. Of course, this is only a tiny portion of the θ(n2nh) nodes of the recursive Fourier sampling
tree. However, the linearity constraint imposed by the promise within recursive Fourier sampling
causes the constraint σ(x) = MT to constrain other portions of the recursive Fourier sampling tree.
In particular, begin by considering the root of the recursive Fourier sampling tree. As noted above,
the constraint σ(x) = MT directly forces the value of each of the n elementary children of the root.
Moreover, due to the linearity constraint, the value of the other 2n−n children of the root are also
forced. In particular, if we let t denote the root of the tree, ti denote its ith child, b(ti) denote the
value of node ti, ij denote the jth bit of i, and χj denote the element of {0, 1}n which has value 1
in position j and value 0 elsewhere, then

b(ti) =
∑
j:ij=1

b(tχj ).

Therefore, for any x that satisfies σ(x) = MT , if we consider the portion of x that lies under the
subtree rooted at ti, for any ti which is not an elementary child of the root node t, then this portion
of x must lie within an algebraic set isomorphic to UMAJ

b(ti),h−1.
Precisely the same logic applies if we consider any elementary child that is not an elementary

leaf. At l levels down from the root of the tree, there are nl elementary children, each of which have
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n elementary children and 2n − n non-elementary children. For any x that satisfies σ(x) = MT ,
the portion of x that lies under the subtree rooted at each of the non-elementary child t must lie
within an algebraic set isomorphic to UMAJ

b(t),h−l−1.
Next, notice that this process completely partitions the input of the recursive Fourier sam-

pling tree into a piece that lies beneath the elementary leaves and many other pieces which each
lie beneath the subtree rooted at a non-elementary sibling of some elementary child. To see this,
consider any particular input variable xi and consider its highest ancestor (other than the root of
the tree) which is not an elementary child. If such an ancestor does not exist, then this variable is
an input to an elementary leaf. If such an ancestor does exist, then it must be a non-elementary
child of an elementary child (or of the root of the tree), and so this ancestor will have elementary
children of its parent as siblings. We therefore conclude that Z̃ ⊆ V1 × · · · × Vw where each Vi
is (isomorphic to) either UMAJ

0,hi
or UMAJ

1,hi
where each hi < h, as claimed. Counting the number of

copies of each UMAJ
0,j and UMAJ

1,j , using Lemma 13 to conclude that reg(UMAJ
0,j ) = reg(UMAJ

1,j ), and

applying the induction hypothesis to bound the regularity of UMAJ
0,j and UMAJ

1,j yields the following.

reg(Z̃) ≤
h−1∑
i=1

ni−1(2n − n)reg(UMAJ
0,h−i)

≤
h−1∑
i=1

ni−1(2n − n)

(n− 1

2

) h−i−1∑
j=0

2jn
(
n+ 1

2

)h−i−j−1


=

(
n− 1

2

)h−1∑
i=1

ni−1
h−i−1∑
j=0

2(j+1)n

(
n+ 1

2

)h−i−j−1
−

h−1∑
i=1

ni
h−i−1∑
j=0

2jn
(
n+ 1

2

)h−i−j−1


=

(
n− 1

2

)h−2∑
i=0

ni
h−i−2∑
j=0

2(j+1)n

(
n+ 1

2

)h−i−j−2
−

h−1∑
i=1

ni
h−i−1∑
j=0

2jn
(
n+ 1

2

)h−i−j−1


=

(
n− 1

2

)h−2∑
i=0

ni
h−i−1∑
j=1

2jn
(
n+ 1

2

)h−i−j−1
−

h−1∑
i=1

ni
h−i−1∑
j=0

2jn
(
n+ 1

2

)h−i−j−1


=

(
n− 1

2

)h−1∑
j=1

2jn
(
n+ 1

2

)h−j−1
− nh−1 −

(
h−2∑
i=1

ni
(
n+ 1

2

)h−i−1
)

=

(
n− 1

2

)h−1∑
j=1

2jn
(
n+ 1

2

)h−j−1
−(h−1∑

i=1

ni
(
n+ 1

2

)h−i−1
)

=

(
n− 1

2

)h−1∑
j=1

2jn
(
n+ 1

2

)h−j−1
− (n− 1

2

)(h−1∑
i=1

ni
(
n+ 1

2

)h−i−1
)

=

(
n− 1

2

)h−1∑
j=1

2jn
(
n+ 1

2

)h−j−1
− (n− (n+ 1

2

))(h−1∑
i=1

ni
(
n+ 1

2

)h−i−1
)

=

(
n− 1

2

)h−1∑
j=1

2jn
(
n+ 1

2

)h−j−1
−(h−1∑

i=1

ni+1

(
n+ 1

2

)h−i−1
)

+

(
h−1∑
i=1

ni
(
n+ 1

2

)h−i)
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=

(
n− 1

2

)h−1∑
j=1

2jn
(
n+ 1

2

)h−j−1
−( h∑

i=2

ni+1

(
n+ 1

2

)h−i−1
)

+

(
h−1∑
i=1

ni
(
n+ 1

2

)h−i)

=

(
n− 1

2

)h−1∑
j=1

2jn
(
n+ 1

2

)h−j−1
+ n

(
n+ 1

2

)h−1

− nh

= d(h)− nh.

This immediately implies

reg(UMAJ
p,h ) ≤ d(h) = n

(
n+ 1

2

)h−1

+

(
n− 1

2

) h−1∑
j=1

2jn
(
n+ 1

2

)h−j−1

.

Essentially the same argument applies to bound reg(UMAJ
0,h ). More precisely, again consider

the case in which h > 1, we will show

reg(UMAJ
0,h ) ≤

(
n− 1

2

) h−1∑
j=0

2jn
(
n+ 1

2

)h−j−1

=

(
n− 1

2

)(
n+ 1

2

)h−1

+

(
n− 1

2

) h−1∑
j=1

2jn
(
n+ 1

2

)h−j−1

=

(
n−

(
n+ 1

2

))(
n+ 1

2

)h−1

+

(
n− 1

2

) h−1∑
j=1

2jn
(
n+ 1

2

)h−j−1

= n

(
n+ 1

2

)h−1

−
(
n+ 1

2

)h
+

(
n− 1

2

) h−1∑
j=1

2jn
(
n+ 1

2

)h−j−1

= d(h)−
(
n+ 1

2

)h
.

We perform precisely the same analysis used to bound reg(UMAJ
p,h ), with the only change

being the fact that when MT ∈ {0, 1}n
h

is now constructed, we can now conlude that wt(MT ) ≤
nh−

(
n+1

2

)h
, where wt(MT ) denotes the number of 1s (the weight) of MT . This follows because, for

any x ∈ T ⊆ U0,h the value of the root node must be 0, by definition. For any node to have value
0, the majority of the elementary children of that node must have value 0 (because the function
being evaluated at each node is MAJ). Due to the fact that each node has n elementary children,
this requires that any node with value 0 has at least n+1

2 (recall that, by assumption, n is odd)
elementary children with value 0. In particular, the majority of the elementary children of the root
node must have value 0. Moreover, for each elementary child of the root node that has value 0, the
majority of its children must have value 0. Continuing in this fashion until we reach the elementary

leaves, we conclude that at least
(
n+1

2

)h
variables that are inputs to the elementary leaves must

have value 0, and so at most nh−
(
n+1

2

)h
have value 1, which shows the claimed bound on wt(MT ).

Therefore, when we construct α by αE = MT and α[m]\E = β, we now have

reg(UMAJ
0,h ) ≤ wt(α)
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= wt(αE) + wt(α[m]\E)

= wt(MT ) + wt(β)

≤

(
nh −

(
n+ 1

2

)h)
+
(
d(h)− nh

)

= d(h)−
(
n+ 1

2

)h
.

Finally, to bound reg(UMAJ
1,h ), simply notice that by Lemma 13

SM(UMAJ
0,h ) = SM(UMAJ

1,h ) ∀h ≥ 1.

Lemma 1(b) then immediately implies

reg(UMAJ
1,h ) = reg(UMAJ

0,h ) ∀h ≥ 1.

We now conclude that, for appropriately chosen input size, RFSMAJ
n,h is versatile.

Lemma 15. Let n = 2k−1 for any positive integer k, then RFSMAJ
n,h is

(
n+1

2

)h
-versatile on UMAJ

p,h .

Moreover, UMAJ
p,h is a critical algebraic set.

Proof. By the assumed form of n, Lemma 11 immediately allows us to conclude

MAJ(x) = en+1
2

(x) ∀x ∈ Fn2 .

Clearly, deg(en+1
2

) = n+1
2 , and so Lemma 10 immediately implies

reg(Up,h) ≥ n
(
n+ 1

2

)h−1

+

(
n− 1

2

) h−1∑
j=1

2jn
(
n+ 1

2

)h−j−1

reg(U0,h), reg(U1,h) ≥
(
n− 1

2

) h−1∑
j=0

2jn
(
n+ 1

2

)h−j−1

.

By Lemma 14,

reg(Up,h) ≤ n
(
n+ 1

2

)h−1

+

(
n− 1

2

) h−1∑
j=1

2jn
(
n+ 1

2

)h−j−1

reg(U0,h), reg(U1,h) ≤
(
n− 1

2

) h−1∑
j=0

2jn
(
n+ 1

2

)h−j−1

.

Therefore,

reg(Up,h) = n

(
n+ 1

2

)h−1

+

(
n− 1

2

) h−1∑
j=1

2jn
(
n+ 1

2

)h−j−1
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reg(U0,h), reg(U1,h) =

(
n− 1

2

) h−1∑
j=0

2jn
(
n+ 1

2

)h−j−1

.

Finally,
reg(Up,h)− reg(U0,h) = reg(Up,h)− reg(U0,h)

= n

(
n+ 1

2

)h−1

+

(
n− 1

2

) h−1∑
j=1

2jn
(
n+ 1

2

)h−j−1

−
(
n− 1

2

) h−1∑
j=0

2jn
(
n+ 1

2

)h−j−1

= n

(
n+ 1

2

)h−1

−
(
n− 1

2

)(
n+ 1

2

)h−1

=

(
n−

(
n− 1

2

))(
n+ 1

2

)h−1

=

(
n+ 1

2

)h
.

Therefore, RFSMAJ
n,h is

(
n+1

2

)h
-versatile on UMAJ

p,h . To see that UMAJ
p,h is a critical algebraic

set, simply notice that, as shown in the proof of Lemma 10,

deg(rUMAJ
p,h

) ≤ (2n − n)
h−1∑
j=1

2(j−1)ndh−j ,

where d = n+1
2 .

By the above,

deg(rUMAJ
p,h

) ≥ (2n − n)
h−1∑
j=1

2(j−1)ndh−j = a(UMAJ
p,h ),

and so
deg(rUMAJ

p,h
) = a(UMAJ

p,h ),

which, by definition implies that UMAJ
p,h is a critical algebraic set.

Next, we exhibit another class of functions such that the lower bound on regularity in Lemma
10 is tight. Consider any g ∈ F2[x1, . . . , xn] and let d = deg(g). V0 = g−1(0) and V1 = g−1(1)
denote the preimages of 0 and 1, respectively. For any k × n matrix A with entries in F2, let
φA : Fn2 → Fk2 denote the linear map defined by A. We say a function g is well-mixed if, for every
n− d+ 1× n matrix A, V0

kerφA
6∼= Fn−d+1

2 and V1
kerφA

6∼= Fn−d+1
2 . We then have the following.

Lemma 16. For any positive integers n, h, let g ∈ F2[x1, . . . , xn] be well-mixed. Let d = deg(g)
and let RFSgn,h : Fm2 → F2 denote the recursive Fourier sampling function with g. Then

reg(Ugp,h) ≤ ndh−1 + (n− d)
h−1∑
j=1

2jndh−j−1

reg(Ug0,h), reg(Ug1,h) ≤ (n− d)
h−1∑
j=0

2jndh−j−1.
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Proof. Before proceeding with the proof, we briefly remark that this Lemma could be proven by use
of the inclusion matrix, in a similar manner to the proof of Lemma 14, shown above. We provide
an different proof to illustrate an alternate method of bounding regularity.

We show this claim by induction on h. First, consider the case in which h = 1. Clearly,
Ugp,1 = Fn2 , and so reg(Ugp,1) = n. We now show reg(Ug0,1), reg(Ug1,1) ≤ n−d. First, consider reg(Ug1,1).
Begin by noticing that, by Lemma 1(b), this is equivalent to showing that

xα ∈ LM(Ug1,1) ∀α such that deg(xα) > n− d.

Due to the fact that, for any algebraic set V , LM(V ) is an ideal (of the semigroup of monomials)
and because, for any V ⊆ Fn2 , x2

j ∈ LM(V ) ∀j, the above is equivalent to showing

xα ∈ LM(Ug1,1) ∀α such that deg(xα) = n− d+ 1 and xα is multilinear.

To see this, consider any multilinear monomial xα where deg(xα) = n−d+1. Let J = {j : αj = 1}.
For any x ∈ Fn2 , let xJ ∈ Fn−d+1

2 denote the substring at positions indexed by J . The key observation
is that, because g is well-mixed, there is a b ∈ Fn−d+1

2 such that for every x ∈ Ug1,1, xJ 6= b. To see

this, let φA : Fn2 → Fn−d+1
2 denote the unique linear map such that φA(x) = xJ ∀x ∈ Fn2 . Then,

because g is well-mixed, we have, by definition, that

Ug1,1
ker(φA)

6∼= Fn−d+1
2

and so ∃b ∈ Fn−d+1
2 such that, for every x ∈ Ug1,1, φA(x) 6= b, as claimed. Fix any such b.

For k ∈ [n− d+ 1], let Jk denote the kth element of J (in the natural order), and consider
the polynomial fα ∈ F2[x1, . . . , xn], where fα =

∏n−d+1
k=1 (xJk + bk + 1). We then have fα ∈ I(Ug1,1).

This holds because, for any x ∈ Ug1,1, xJ = φA(x) 6= b, and so ∃k ∈ [n− d+ 1] such that xJk 6= bk.
For each k, we have xJk , bk ∈ F2 and so if xJk 6= bk, then xJk = bk + 1. Therefore, for any x ∈ Ug1,1,
∃k ∈ [n− d+ 1] such that xJk = bk + 1, and so fα vanishes on Ug1,1. Clearly, lm(fα) = xα, and so

xα ∈ LM(Ug1,1) ∀α such that deg(xα) = n− d+ 1 and xα is multilinear,

as desired. Therefore, reg(Ug1,1) ≤ n− d. By a precisely symmetric argument, reg(Ug0,1) ≤ n− d.

Next, we consider the case in which h > 1. Consider Ug1,h. Let r(h) = (n−d)
∑h−1

j=0 2jndh−j−1.
We wish to show

reg(Ug1,h) ≤ r(h).

For the same reason as above, it is equivalent to show

xα ∈ LM(Ug1,h) ∀α such that deg(xα) = r(h) + 1 and xα is multilinear.

Consider any multilinear monomial xα, where deg(xα) = r(h) + 1. Let J = {j : αj = 1}. Consider
the recursive Fourier sampling tree. For each child t of the root of the tree, say that t is heavy if
at least r(h − 1) + 1 of the variables in the subtree rooted at t appear in J (that is to say, there
are at least r(h − 1) variables xj , such that j ∈ J and xj is a variable that appears at one of the
leaves of the subtree rooted at t). Moreover, say that t is very heavy, if at least r(h− 1) + dh−1 + 1
of the variables in the subtree rooted at t appear in J . Due to the fact that deg(xα) = r(h) + 1, it
must be the case that at least one of the following two statements is true:

(1):At least one of the children of the root is very-heavy.
(2):At least n− d+ 1 of the children of the root are heavy.
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To see this, assume, for contradiction, that neither of these statements are true. Then at
most n−d of the children of the root are heavy, and none of the children of the root are very heavy.
We then have

deg(xα) ≤ (n− d)(r(h− 1) + dh−1) + (2n − (n− d))(r(h− 1))

= (n− d)dh−1 + 2nr(h− 1)

= (n− d)dh−1 + 2n(n− d)

(h−1)−1∑
j=0

2jnd(h−1)−j−1

= (n− d)

dh−1 +
h−2∑
j=0

2(j+1)ndh−(j+1)−1


= (n− d)

dh−1 +

h−1∑
j=1

2jndh−j−1


= (n− d)

h−1∑
j=0

2jndh−j−1


= r(h)

< r(h) + 1

= deg(xα).

This contradiction immediately allows us to conclude that at least one of the above statements are
true.

We now conclude that xα ∈ LM(Ug1,h). We first consider the case in which statement (1)
holds. Let t denote an arbitrary very-heavy child of the root of the recursive Fourier sampling tree.
Let xβ denote the multilinear monomial consisting of the product of all variables that are in the
subtree rooted at t that appear in xα. Clearly, xβ|xα, and so it suffices to show that xβ ∈ LM(Ug1,h).
Due to the fact that t is very-heavy, we have,

deg(xβ) ≥ r(h− 1) + dh−1 + 1 ≥ reg(Up,h−1) + 1,

where the first inequality follows from the definition of a very-heavy child, and the second inequality
follows from the induction hypothesis. Let x̃ denote the portion of the input x within the subtree
rooted at t. The key observation is that, since the subtree rooted at t corresponds to an instance
of the recursive Fourier sampling problem of height h − 1, we must have x̃ ∈ Ṽ ∼= Up,h−1 (where

Ṽ is simply Up,h−1 with variables renamed x̃). Since deg(xβ) > reg(Up,h−1) = reg(Ṽ ), we have,

by the definition of regularity, that xβ ∈ LM(Ṽ ), and so ∃fβ (which only contains variables in x̃)

such that xβ = lm(fβ) and fβ ∈ I(Ṽ ). Therefore, fβ vanishes on every x̃ ∈ Ṽ , and so it must also

vanish on every x ∈ Ug1,h because, by construction, if x ∈ Ug1,h, then x̃ ∈ Ṽ and fβ only consists of

variables in x̃. Therefore, xβ ∈ LM(Ug1,h), which implies that xα ∈ LM(Ug1,h), as desired.

Next, we consider the case in which statement (2) holds. Let σ : Ug1,h → Fn2 be defined such

that, for any x ∈ Ug1,h, σ(x) is defined such that the ith position of σ(x) is equal to the value of the

ith elementary child of the root when the input to the recursive Fourier sampling problem is x. Let
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t1, . . . , tn−d+1 denote an arbitrary collection of (distinct) heavy children of the root of the recursive
Fourier sampling tree. Let σ̃ : Ug1,h → Fn−d+1

2 be defined such that, for any x ∈ Ug1,h, σ̃(x) is defined

such that the ith position of σ̃(x) is equal to the value of ti. In other words, the function σ simply
encodes the values of all elementary children and σ̃ encodes the values of the heavy children of
interest. The key observation is that, because g is well-mixed, there is a b ∈ Fn−d+1

2 , such that,
for every x ∈ Ug1,h, σ̃(x) 6= b. To see this, notice that, by definition, if x ∈ Ug1,h, then σ(x) ∈ Ug1,1.

Moreover, due to the linear structure of the promise, there is a linear map φ : Fn2 → Fn−d+1
2 such

that
φ(σ(x)) = σ̃(x) ∀x ∈ Ug1,h.

Due to the fact that g is well-mixed,

Ug1,1
ker(φA)

6∼= Fn−d+1
2 ,

and so the existence of b follows from an identical argument as in the h = 1 case above. Fix such
a b.

For i ∈ [n−d+1], let xβi denote the monomial consisting of all variables in the subtree rooted
at ti that appears in xα. Let xβ =

∏
i x

βi . Clearly xβ|xα and so it suffices to show xβ ∈ LM(Ug1,h).
Notice that, for each i,

deg(xβi) ≥ r(h− 1) + 1 ≥ reg(U1,h−1) + 1, reg(U0,h−1) + 1,

where the first inequality follows from the fact that ti is heavy, and the second inequality follows
from the induction hypothesis. By the same argument that applied in case (1) above, we conclude
that, for each i, there is a polynomial fβi such that lm(fβi) = xβi and fβi ∈ I(Ugbi+1,h−1). To be

clear, the bound on the degree of xβi implies that xβi is a leading monomial of both the algebraic set
isomorphic to Ug1,h−1 and the algebraic set isomorphic to Ug0,h−1 (where the isomorphism is simply

the trivial renaming of variables), we choose fβi ∈ I(Ugbi+1,h−1) specifically to make the next stage
of the construction work.

We now consider the polynomial fβ =
∏
i fβi . Clearly, lm(fβ) = xβ. Moreover, we have

fβ ∈ I(Ug1,h). To see this, notice that, for every x ∈ Ug1,h, σ̃(x) 6= b, and so, for every x ∈ Ug1,h, there
must be at least one i such that σ̃(x)i 6= bi. Since σ̃(x)i, bi ∈ F2, if σ̃(x)i 6= bi, then σ̃(x)i = bi + 1.
Therefore, for every x ∈ Ug1,h, there must be at least one i such that fβi vanishes at x (because fβi
vanishes whenever the portion of x in the subtree rooted at ti has value bi + 1 at node ti). Due to
the fact that fβ is the product of the fβi , if at least one of the fβi vanish, then fβ vanishes. This
implies that fβ ∈ I(Ug1,h), which in turn implies that xβ ∈ LM(Ug1,h) which in turn implies that

xα ∈ LM(Ug1,h).

The above argument shows that reg(Ug1,h) ≤ r(h) for any h > 1, given the induction

hypothesis. It is easy to see that this argument is precisely symmetric with respect to Ug1,h and Ug0,h
and so we immediately also conclude reg(Ug1,h) ≤ r(h). An essentially identical argument shows

reg(Ugp,h) ≤ r(h) + dh, with the only changes being the fact that statement (2) now becomes “At
Least n + 1 children of the root are heavy”, and the analysis of the case in which statement (2)
holds no longer relies on the fact that g is well-mixed, but instead the fact that, due to the linearity
constraint, given any collection of n + 1 children of the root, there is at least one tuple of values
that violates the promise.

This immediately allows us to conclude that, for any well-mixed g, RFSgn,h is versatile, as
shown in the following lemma.
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Lemma 17. For any positive integers n, h, let g ∈ F2[x1, . . . , xn] be well-mixed. Let d = deg(g)
and let RFSgn,h : Fm2 → F2 denote the recursive Fourier sampling function with g. Then RFSgn,h is

dh-versatile on Ugp,h and Ugp,h is a critical algebraic set.

Proof. Combining the bounds from Lemma 10 and Lemma 16, we have

reg(Ugp,h) = ndh−1 + (n− d)
h−1∑
j=1

2jndh−j−1

reg(Ug0,h), reg(Ug1,h) = (n− d)
h−1∑
j=0

2jndh−j−1.

Therefore,

reg(Ugp,h)−reg(Ug0,h) = reg(Ugp,h)−reg(Ug0,h) = ndh−1 +(n−d)

h−1∑
j=1

2jndh−j−1−(n−d)

h−1∑
j=0

2jndh−j−1

= ndh−1 + (n− d)dh−1

= dh.

To see that Ugp,h is a critical algebraic set, simply notice that, as shown in the proof of
Lemma 10,

deg(rUgp,h
) ≤ (2n − n)

h−1∑
j=1

2(j−1)ndh−j .

By the above,

deg(rUgp,h
) ≥ (2n − n)

h−1∑
j=1

2(j−1)ndh−j = a(Ugp,h),

and so
deg(rUgp,h

) = a(Ugp,h),

which, by definition implies that Ugp,h is a critical algebraic set.

We now show that a certain natural function, the generalized inner product function, is
well-mixed, and therefore the corresponding version of recursive Fourier sampling is versatile. For
any positive integer n and any d|n, let GIPn,d : Fn2 → F2 be defined such that

GIPn,d = x1 · · ·xd + xd+1 · · ·x2d + . . .+ xn−d+1 · · ·xn.

Notice that the ordinary inner product function simply corresponds to the case in which d = 2.

Lemma 18. For any positive integers d, n such that d|n, and n ≥ d(2d
2

+ d − 1), the function

GIPn,d : Fn2 → F2 is well-mixed. Moreover, the function RFS
GIPn,d
n,h is dh-versatile on U

GIPn,d
p,h and

U
GIPn,d
p,h is a critical algebraic set.
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Proof. We begin by showing that, for any positive integers d, n that satisfy the above requirements,
the function GIPn,d : Fn2 → F2 is well-mixed. To do this, it clearly suffices to show that, for any
(n − d + 1) × n matrix A, ∃t0, t1 ∈ Fn−d+1

2 such that, for x ∈ Fn2 , Ax = t0 ⇒ GIPn,d(x) = 0
and Ax = t1 ⇒ GIPn,d(x) = 1. We begin by noting that it suffices to show this claim only for
A of a certain very special form. Let φA : Fn2 → Fn−d+1

2 denote the linear map corresponding to
multiplication by the matrix A. Begin by noting that this claim trivially holds when A is not full
rank (simply set t0 and t1 to be any element not in the image of φA) and so it suffices to consider
only the case in which A is full rank. Next, it suffices to only consider the case in which A is in
reduced row echelon form, because, for any invertible (n − d + 1) × (n − d + 1) matrix L, Ax = t
if and only if (LA)x = Lt, and so if the claim holds for every A in reduced row echelon form,
then it holds for every A. Divide the n input variables x1, . . . , xn into blocks of size d, where each
block consists of the d variables that appear in a single term of the GIPn,d polynomial. Due to
the fact that rank(A) = n − d + 1 and that A is in reduced row echelon form, there are precisely
d − 1 columns of A that do not have a leading 1. It suffices to only consider the case in which
each of these d − 1 columns appear as one of the rightmost d(d − 1) columns of A, because, due
to the symmetry of the generalized inner product function, the variables can be relabled such that
these columns always correspond to variables that appear in the rightmost d− 1 blocks, and hence
rightmost d(d− 1) columns.

Therefore, in order to show that GIPn,d is well-mixed, it suffices to show that, for any
(n − d + 1) × n matrix A, where rank(A) = n − d + 1, A is in reduced row echelon form, and the
d− 1 columns of A that do not contain a leading 1 appear within the rightmost d(d− 1) columns,
∃t0, t1 ∈ Fn−d+1

2 such that, for x ∈ Fn2 , Ax = t0 ⇒ GIPn,d(x) = 0 and Ax = t1 ⇒ GIPn,d(x) = 1.
Consider such a matrix A. We now construct t0 and t1 with the required properties. Let

y1, . . . , yd−1 denote the xi that correspond to columns of A that do not have leading 1s, in the
natural order. Let r ≤ d denote the value such that y1 is in the rth block from the right; that is to
say, r is the minimal value such that all ym are in the rightmost r blocks. For i ∈ [n− d+ 1], and
j ∈ {0, 1}, let tji denote the value of the ith position of tj .

Begin by noticing that there is a setting of tjn−dr, . . . , t
j
n−d+1 such that, for any such tj and

any x ∈ Fn2 , Ax = tj ⇒ xn−dr+1 · · ·xn−d(r−1) + . . . + xn−d+1 · · ·xn = 0. In other words, there is a
way to set the last dr − d + 1 values of tj such that, for any x that satisfies Ax = tj , it must be
the case that the sum of the rightmost r terms of GIPn,d is 0. To show this, we will construct the
setting of the last dr−d+1 values of tj in a collection of stages, where the values set in the lth stage
will force the lth block (from the right) to evaluate to 0. Begin by considering the rightmost block
of variables. Let k denote the number of ym such that ym correspond to columns in the rightmost
block of variables; that is to say, yd−k, . . . , yd−1 are the variables that correspond to the columns
within the rightmost block that do not have leading 1s. There is a setting of the last d− k values
of tj such that, for any x that satisfies Ax = tj , we have xn−d+1 · · ·xn = 0. To see this, notice that,
due to the form of A, the only non-zero entries of A in the last d−k rows are in the last d columns,
which correspond precisely to the variables in the rightmost block. Therefore, the last d− k values
of Ax are completely determined by the last d values of x. In order to have xn−d+1 · · ·xn = 1, it
must be the case that xn−d+1 = . . . = xn = 1, and so there is only 1 setting of these rightmost
d variables such that xn−d+1 · · ·xn = 1. On the other hand, there are 2d−k ≥ 2d−(d−1) ≥ 2 > 1
distinct choices of the last d − k values of tj , from which it immediately follows that there is at
least some setting of the last d − k values of tj such that, for any x that satisfies Ax = tj , we do
not have xn−d+1 · · ·xn = 1, which then implies xn−d+1 · · ·xn = 0. Fix any such setting of the last
d− k values of tj .

In general, in the lth stage, for each l such that 1 < l ≤ r, we consider the lth block of
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variables (counting from the right). Within the first l − 1 stages, we have set every tji such that
row i of matrix A has a leading 1 in a column corresponding to a variable in one of the rightmost
l − 1 blocks. This setting forces each of these l − 1 blocks to evaluate to 0. We now force the lth

rightmost block to evaluate to 0 by appropriately setting all tji such that row i of matrix A has a
leading 1 in a column corresponding to a variable in block l. To be precise, let k denote the number
of ym that correspond to variables in block l, and let k′ denote the number of ym that appear in
the rightmost l− 1 blocks. Again, due to the form of A, the only non-zero entries in the d− k rows
in question are in the last dl columns, and so the corresponding d− k values of Ax are completely
determined by the last dl values of x. Again, there is only a single setting of the d values of x in
block l such that block l evaluates to 1. Moreover, there are only 2k

′
settings of the d(l− 1) values

of x in the rightmost l − 1 blocks which satisfy the constraint imposed by the tji fixed in earlier
stages. This follows from the fact that the (d(l− 1)− k′)× (d(l− 1)) submatrix of A corresponding
to these constraints has rank d(l − 1) − k′ and hence nullity k′. Therefore, there are precisely 2k

′

distinct settings of the last dl values of x that both satisfy all earlier constraints and cause block
l to evaluate to 1. Moreover, there are 2d−k choices of the portion of tj currently being set. Due
to the fact that k + k′ ≤ d− 1 (as there are only a total of d− 1 variables ym), we again conclude
that there is a setting of the relevant portion of tj such that, for any x that satisfies Ax = tj , the
lth block evaluates to 0, as required.

The above argument shows that all of the rightmost r blocks can be forced to evaluate to
0, by an appropriate setting of a portion of tj . Next, we show that, similarly, for any l > r, the lth

rightmost block can be forced to evaluate to 0 by an appropriate setting of another portion of tj .
To be precise, consider the lth rightmost block of variables, for any l > r. Due to the fact that every
column of A that does not have a leading 1 appears among the rightmost r blocks, we conclude
that every column corresponding to the lth block has a leading 1. Consider the submatrix of A
consiting of the d for which the leading 1 of that row appears in one of the columns corresponding
to block l. The only non-zero entries in this submatrix appear in two parts. First, in the columns
corresponding to block l, the submatrix is simply the d × d identity matrix. Secondly, there are
non-zero entries in certain columns indexed by the ym. In other words, this submatrix expresses
the constraint that the values of x in block l are some affine combination of the ym. To be precise,
let z1, . . . , zd denote the d values of x that appear in block l, and let v denote the d values of tj

that correspond to rows in the submatrix in question. Then there is a d × (d − 1) matrix B such
that z = By+ v. Let φB : Fd−1

2 → Fd2 denote the linear map corresponding to multiplication by B.
As before, the key observation is that there is only a single setting of z such that block l evaluates
to 0; however, there are 2d choices of v, and |Im(φB)| ≤ 2d−1, from which it immediately follows
that there is a choice of v such that, for any z that satisfies z = By + v, it must be the case that
block l evaluates to 0.

Therefore, to produce t0, we simply use the first construction above to set the last dr−d+1
values of t0 in such a way as to force the last r blocks to evaluate to 0, and then use the second
construction above to set the remaining values of t0 in such a way as to force all other blocks to
evaluate to 0.

To produce t1, slightly more work is needed. We next show that, given a collection of 2d
2

blocks, all of which are not among the rightmost r blocks, it is possible to set the appropriate
values of t1 is such a way as to assure that exactly one of these blocks evaluates to 1, and all other
blocks evaluate to 0. To see this, simply consider, as above, the constraint imposed by A on the
variables in each block l. To be precise, let zl = (zl1, . . . , z

l
d) denote the d values of x that appear

in block d, vl = (vl1, . . . , v
l
d) denote the d values of t1 that correspond to the rows of A that have a

leading one in a column corresponding to block l and Bl denote the d × (d − 1) matrix such that
zl = Bly + vl. As there are 2d

2
blocks in question, but only 2d(d−1) distinct d × (d − 1) matrices
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(with entries in F2), there must be some particular d× (d−1) matrix B such that at least 2d blocks
l have Bl = B. Fix any such B and let L denote a collection of precisely 2d blocks l such that
Bl = B. The key observation is that the portion of t1 corresponding to the collection of blocks L
can be set in such a way so that exactly one block in L evaluates to 1. This can be accomplished
by setting the collection of vl such that l ∈ L to the 2d elements of Fd2. This works because, for any
setting of y, the collection of zl, for l ∈ L will all be distinct (as each zl = By + vl and the vl are
distinct) and exactly one of the zl will be all 1s (as there are 2d possible setting of each zl, so each
appears exactly once).

Therefore, to produce t1, we then simply use the first construction above to set the last
dr − d+ 1 values of t0 in such a way as to force the last r blocks to evaluate to 0, then the second
construction above to set the portion of t1 that corresponds to every block not in L to force all
such blocks to evaluate to 0, and finally the third construction above to set the portion of t1 that
corresponds to the blocks in L to force exactly one block in L to evaluate to 1. Due to the fact that,
by assumption, n ≥ d(2d

2
+ d− 1), there are at least 2d

2
+ d− 1 blocks, and so this construction is

possible.
We have thus shown that, for any positive integers d, n that satisfy the above requirements,

the function GIPn,d : Fn2 → F2 is well-mixed. By Lemma 17, it immediately follows that the

function RFS
GIPn,d
n,h is dh-versatile on U

GIPn,d
p,h and U

GIPn,d
p,h is a critical algebraic set.

5.3 Polynomial Degree

Using the results of the previous section, we now prove very strong statements about the degree
of any polynomial that computes, or even one-sided agrees with, the recursive Fourier sampling
problem.

Theorem 2. For any positive integers k, h, Let n = 2k − 1 and let RFSMAJ
n,h denote the recursive

Fourier sampling function with majority. Then 6 ∃g ∈ F2[x1, . . . , xm] such that deg(g) <
(
n+1

2

)h
and

g(x) = RFSMAJ
n,h (x) ∀x ∈ UMAJ

p,h . Moreover, if any g ∈ F2[x1, . . . , xm] such that deg(g) <
(
n+1

2

)h
vanishes everywhere on UMAJ

0,h , it vanishes everywhere on UMAJ
1,h .

Proof. By Lemma 15, RFSMAJ
n,h is

(
n+1

2

)h
-versatile on UMAJ

p,h and UMAJ
p,h is a critical algebraic set.

The first claim of the theorem is an immediate consequence of Lemma 6 and the second claim is
an immediate consequence of Lemma 7.

Theorem 3. For any positive integers d, n, h such that d|n, and n ≥ d(2d
2

+d−1), Let RFS
GIPn,d
n,h

denote the recursive Fourier sampling function with generalized inner product. Then 6 ∃g ∈ F2[x1, . . . , xm]

such that deg(g) < dh and g(x) = RFS
GIPn,d
n,h (x) ∀x ∈ UGIPn,d

p,h . Moreover, if any g ∈ F2[x1, . . . , xm]

such that deg(g) < dh vanishes everywhere on U
GIPn,d
0,h , it vanishes everywhere on U

GIPn,d
1,h .

Proof. By Lemma 18, RFS
GIPn,d
n,h is dh-versatile on U

GIPn,d
p,h and U

GIPn,d
p,h is a critical algebraic set.

The first claim of the theorem is an immediate consequence of Lemma 6 and the second claim is
an immediate consequence of Lemma 7.
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5.4 Towards a Circuit Lower Bound

In the previous section, an extremely strong lower bound was given on the lowest degree polynomial
over F2 that computes (or even non-trivially one-sided agrees with) the recursive Fourier sampling
function on the promise. In this section, we discuss partial results towards a lower bound on the
size of a constant depth circuit that computes the recursive Fourier sampling function, as well as
what sort of additional results would allow these partial results to be extended to prove such a lower
bound. We begin by defining the circuit class of interest. Let n denote, as before, the size of the
secret at each node of the recursive Fourier sampling tree, and h denote the height of the recursive
Fourier sampling tree. We consider circuits that consist of AND, OR, and NOT gates, where the
fan-in of the AND and OR gates is unbounded, the size of the circuit (the total number of gates)
is at most 2O(poly(n)), and the depth of the circuit (the number of gates on the longest path from
the input to the output) is a constant (independent of n and h). This circuit class is of interest
due to the fact that proving a lower bound against it (that is to say, proving that no circuit of
this form can compute the recursive Fourier sampling function on its promise), would immediately
imply the existence of an oracle A such that BQPA 6⊂ PHA. This follows due to the relationship
between such circuits and the polynomial hierarchy ([FSS84],[Yao85]) and the fact that there is an
efficient quantum algorithm for the recursive Fourier sampling problem ([BV93],[Aar03],[Joh08]),
when h = O(log n). Such a bound is at least plausable as the trivial circuit (which simply computes
the recursive Fourier sampling in the brute force, level-by-level way, in which each subproblem is
solved by solving n subproblem one level down) has size 2θ(n

h), which, when h = θ(log n) is, of
course, not 2O(poly(n)).

One reasonable approach to proving such a lower bound would be to apply a variant of
the Razborov-Smolensky method [Raz87],[Smo87]. We begin by briefly sketching the main idea of
the Razborov-Smolensky method, specialized to F2. We consider a (total) function g : Fm2 → F2,
where m = 2O(poly(n)). We wish to show that no circuit C of the above form, of size at most
2O(poly(logm)) = 2O(poly(n)), can compute the function g. The key observation is that there is an
f ∈ F2[x1, . . . , xm] where deg(f) = O(poly(n)) such that f agrees with C almost everywhere, and
so if it can be shown that g is not well approximated by a low degree polynomial, it immediately
follows that g is not actually computed by C. To show that a particular g cannot agree almost
everywhere with a low degree polynomial, it suffices to show that g has the property that, on any
set R ⊆ Fn2 , if g is represented on R by a polynomial of degree at most d, then every function
q : R → F2 is represented on R by a polynomial of degree not much higher than d. This suffices
because if g agrees almost everywhere with a low degree polynomial f , then there is a very large set
R on which every function q : R→ F2 is represented by a low-degree polynomial; a straightforward
counting of the number of functions of that form and the number of low-degree polynomials shows
that this is impossible.

The main idea behind the lower bound on the polynomial degree of recursive Fourier sam-
pling, shown in the previous sections, is that there are functions g such that RFSgn,h has the property

that there is a large gap between the regularity of the promise, reg(Ugp,h), and the regularities of the

preimages of 0 and 1, reg(Ug0,h) and reg(Ug1,h). In other words, there are functions on Ugp,h which can

only be computed by relatively high degree polynomials, whereas every function on Ug0,h and Ug1,h
can be computed by relatively low degree polynomials. It then follows that RFSgn,h itself cannot

be computed on Ugp,h by a low degree polynomial, because if it were, then every function on Ugp,h
would be computable by a low degree polynomial.

While this is very similar to the observation made in the Razborov-Smolensky method,
there is one crucial difference: due to the fact that the promise Ugp,h is extremely small, one cannot
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conclude, via a straightforward counting argument, that there is a function on Ugp,h that requires a
high degree polynomial; instead, this fact was shown via an analysis of the structure of this algebraic
set. It is the very fact that such an analysis is possible that gives hope that this technique could be
extended to prove the desired circuit lower bound. To be precise, to prove the desired circuit lower
bound, it would suffice to show that, not merely is it the case that RFSgn,h is ω(poly(n))-versatile

on Ugp,h, as already shown, but in fact RFSgn,h is ω(poly(n))-versatile on R for any sufficiently large

R ⊆ Ugp,h. This would suffice because, if RFSgn,h had this property, then it could not be the case that

RFSgn,h is well approximated by a low degree polynomial on Ugp,h, from which it would then follow

that RFSgn,h is not computed by a small circuit on Ugp,h. In fact, something substantially weaker

would suffice: one only needs to consider the case in which R is of the form Ugp,h ∩ V (f1, . . . , fk)
where each fi ∈ F2[x1, . . . , xm] satisfies deg(fi) = O(poly(n)). In other words, one only needs to
consider the case in which R is a large subset of Ugp,h such that R is the intersection of Ugp,h with
an algebraic set that is the set of common zeros of a collection of low degree polynomials. This
suffices because, much as was done in Braverman’s proof of the Linial-Nisan conjecture [Bra09], one
can consider the structure of the set of points on which a small circuit agrees with the low degree
polynomial produced by the Razborov-Smolensky method. To be precise, consider applying the
Razborov-Smolensky method to a AND of a collection of polynomials p1, . . . , pk ∈ F2[x1, . . . , xm]
where deg(pi) = O(poly(n)) ∀i. This AND of low degree polynomials is well approximated by
a single p′ ∈ F2[x1, . . . , xm], given by the product of a collection of a small number of randomly
chosen sums of the pi. Moreover, the output of the AND of p1, . . . , pk agrees with p′ precisely on
V (p′(1 + p1), . . . , p′(1 + pk)). Repeating this process for every gate in the circuit, from the bottom
up, yields an algebraic set of the form V = V (f1, . . . , fk) where deg(fi) = O(poly(n)) ∀i, where,
on V , each gate individually agrees with its approximating polynomial. To be clear, this algebraic
set V is a (possibly proper) subset of the set of points on which the circuit agrees with the overall
approximating polynomial, due to the fact that a local mistake (that is to say, a point at which
an individual gate disagreeing with its approximating polynomial) may not propagate through the
entire circuit to yield a global mistake (that is to say, a point at which the circuit disagrees with
the approximating polynomial); however, the extremely simple form of V makes it a natural choice
for performing the required analysis of regularity.

While the current analysis falls short of being able to prove the type of circuit lower bound
needed for the desired relatived separation result, it does produce some interesting partial results.
For example, consider any circuit C consisting of an OR of a collection p1, . . . , pk ∈ F2[x1, . . . , xm]
where deg(pi) ≤ d = O(poly(n)) ∀i. Circuits of this type are interesting as it can easily be seen
that if one can prove that such a circuit cannot be a good approximator with one-sided error of the
recursive Fourier sampling problem on its promise (where we say C is a good approximator with
one-sided error if C outputs 1 everywhere on Ug1,h and outputs 0 almost everywhere on Ug0,h) this

would immediately yield the existance of an A such that BQPA 6⊂ AMA. The existing analysis does
provide some insight into the behavior of any such circuit on the promise, though it, unfortunately,
falls short of proving the required lower bound. To be precise, by noting that the set of points on
which C outputs one is given by V = ∪iV (1 + pi), and applying Lemma 8, one can immediately
conclude that, for any g such that RFSgn,h is δ-versatile on Ugp,h,

SM(Ugp,h ∩ V, j) = SM(Ug0,h ∩ V, j) = SM(Ug1,h ∩ V, j) ∀j ≤ δ − d.

This is, by itself, a very strong statement about the structure of the set of points on which any such
circuit C evaluates to 1. Moreover, due to the fact that, by Lemma 1(c), the size of any algebraic
set is equal to the size of the set of standard monomials of that set, the above claim also yields a
(weak) statement about the relationship between the sizes of Ug0,h ∩ V and Ug1,h ∩ V .
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6 VC Dimension

In this section, we answer an open question posed in [MR15]. We begin with a few definitions. We
begin by recalling several key results from that paper.

Lemma 19. [MR15](Thm.2.2) For any C ⊆ {0, 1}n, reg(C) ≤ VC(C).

It was shown that, if Cij denotes the value of the ith element of C in the jth position, then

Lemma 20. [MR15](Prop.6.1) For any C ⊆ {0, 1}n, reg(C) = 1 precisely when the matrix
1 C1,1 · · · C1,n

· · · · · ·
· · · · · ·
· · · · · ·
1 Cm,1 · · · Cm,n


has rank m = |C|.

They then asked if there was a similar simple characterization of when reg(C) = r, for
r > 1, which would be highly desirable as any such characterization would, by the above lemma,
provide a characterization of sets with VC dimension at least r. We show the following.

Theorem 4. A set C ⊆ {0, 1}n has reg(C) = r if and only if r is the smallest positive integer such

that rankF2M(C,
([n]
≤r
)
) = |C|.

Proof. By Lemma 3,

ha(C, d) = rankF2M(C,

(
[n]

≤ d

)
).

By definition, reg(C) is the minimum r such that ha(C, r) = |C|.

Remark 2. It is straightforward to see that [MR15](Prop.6.1) is a special case of the above theorem.
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