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Abstract

Most of the known lower bounds for binary Boolean circuits with unrestricted depth are
proved by the gate elimination method. The most efficient known algorithms for the #SAT
problem on binary Boolean circuits use similar case analyses to the ones in gate elimination.
Chen and Kabanets recently showed that the known case analyses can also be used to prove
average case circuit lower bounds, that is, lower bounds on the size of approximations of an
explicit function.

In this paper, we refine the approach by Chen and Kabanets and provide a general framework
for proving worst/average case lower bounds for circuits and upper bounds for #SAT. A proof
in such a framework goes as follows. One starts by fixing three parameters: a class of circuits,
a circuit complexity measure, and a set of allowed substitutions. The main technical ingredient
of a proof goes as follows: by going through a number of cases, one shows that for any circuit
from the given class, one can find an allowed substitution such that the given measure of the
circuit reduces by a sufficient amount. This case analysis immediately implies an upper bound
for #SAT. To obtain worst/average case circuit complexity lower bounds one needs to present
an explicit construction of a function that is a disperser/extractor for the class of sources defined
by the set of substitutions under consideration.

We show that many known proofs (of circuit size lower bounds and upper bounds for #SAT)
fall into this framework. Using this framework, we prove the following new bounds: average
case lower bounds of 3.24n and 2.59n for circuits over U2 and B2, respectively (though the
lower bound for the basis B2 is given for a quadratic disperser whose explicit construction is
not currently known), and faster than 2n #SAT-algorithms for circuits over U2 and B2 of size
at most 3.24n and 2.99n, respectively.
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1 Introduction

1.1 Background

In this paper, we study binary Boolean circuits with no restriction on the depth. This is a natural
model for computing Boolean functions that can be viewed as a simple program where each instruc-
tion is just a binary Boolean operation. Shannon [56] showed that for almost all Boolean functions
of n variables the size of a smallest circuit (equivalently, the minimal number of instructions) com-
puting this function is Ω(2n/n). The proof is based on a counting argument (the number 22n of all
functions of n variables is larger than the number of circuits of size o(2n/n)) and, for this reason,
does not give an explicit function of high circuit complexity. By saying “explicit” one usually means
a function from NP. Showing a superpolynomial lower bound for an explicit function would imply
P 6= NP. However, despite of many efforts [53, 47, 57, 9, 20, 26, 66, 31, 4], currently we have only
small linear lower bounds: (3 + 1/86)n for the full binary basis B2 consisting of all binary Boolean
functions [25] and 5n− o(n) for the basis U2 consisting of parity and its complement [37, 31].

Going to larger complexity classes, it is known that the classes MA/1 [50], Op
2 [11], and

PprMA [12] require circuits of superlinear size and the class MAEXP [10] has superpolynomial
circuit complexity. Proving a superlinear lower bound on the circuit complexity of ENP remains to
be a major open problem.

Recently, Williams [60, 64] presented the following approach to prove circuit size lower bounds
against ENP or NE using SAT-algorithms: a super-polynomially faster than 2n algorithm for the
circuit satisfiability problem of a “reasonable” circuit class C implies either ENP * C or NE * C,
depending on C and the running time of the algorithm. The approach has been strengthened and
simplified by subsequent work [59, 61, 63, 8, 32], see also excellent surveys [52, 45, 62] on this topic.

Williams’ result inspired lots of work on satisfiability algorithms for various circuit classes
[29, 63, 16, 3, 2, 43, 17, 49, 58]. In addition to satisfiability algorithms, several papers [51, 28, 5, 54,
15, 13] also obtained average-case lower bounds (also known as correlation bounds, see [34, 35, 27])
by investigating the analysis of algorithms instead of just applying Williams’ result that yields
worst-case lower bounds. In particular, Chen and Kabanets [14] presented algorithms that count
the number of satisfying assignments of circuits over U2 and B2 and run in time exponentially
faster than 2n if input instances have at most 2.99n and 2.49n gates, respectively (improving also
the previously best known #SAT-algorithm by Nurk [44]). At the same time, they showed that
2.99n sized circuits over U2 and 2.49n sized circuits over B2 have exponentially small correlations
with the parity function and affine extractors having “good” parameters, respectively.

1.2 Our Techniques and Results

The main qualitative contribution of the paper is a refinement of the approach by Chen and
Kabanets [14]. We show that many known (worst case and average case) circuit lower bounds and
#SAT upper bounds are immediate consequences of the underlying case analysis (the case analysis
is intended to show that for any circuit one can find a substitution that reduces the complexity of
a given circuit by a sufficient amount). In particular, the bounds in [14] are obtained by using the
case analysis of [53] and [20]. We make this transition explicit by establishing a framework that
allows to derive lower bounds for circuits and upper bounds for #SAT as few lines corollaries from
the corresponding case analysis. We use new circuit complexity measures and substitution types
to improve known bounds for circuits size and #SAT in this framework.

1



The main quantitative contribution of the paper is the following new bounds (improving the
bounds from [14]):

• average case lower bounds of 3.24n and 2.59n for circuits over U2 and B2 (though the lower
bound for the basis B2 is given for a quadratic disperser whose explicit construction is not
currently known), respectively;

• faster than 2n #SAT-algorithms for circuits over U2 and B2 of size at most 3.24n and 2.99n,
respectively.

We also show that obtaining non-linear lower bounds through a weak version of this framework is
unlikely as it would violate the Exponential Time Hypothesis [30] that states the following: The
satisfiability problem of 3-CNF formulas with n variables cannot be solved in time 2o(n). ETH
is widely used as a hardness assumption to prove the optimality of many algorithms, see, e.g.,
[40, 41].

1.3 Framework

We prove circuit lower bounds (both in the worst case and in the average case) and upper bounds
for #SAT using the following four step framework.

Initial setting We start by specifying the three main parameters: a class of circuits C, a set S
of allowed substitutions, and a circuit complexity measure µ. A set of allowed substitutions
naturally defines a class of “sources”. For the circuit lower bounds we consider functions
that are non-constant (dispersers) or close to uniform (extractors) on corresponding sets of
sources. In this paper we focus on the following four sets of substitutions where each set
extends the previous one:

1. Bit fixing substitutions, {xi ← c}: substitute variables by constants.

2. Projections, {xi ← c, xi ← xj⊕ c}: substitute variables by constants and other variables
and their negations.

3. Affine substitutions, {xi ←
⊕

j∈J xj ⊕ c}: substitute variables by affine functions of
other variables.

4. Quadratic substitutions, {xi ← p : deg(p) ≤ 2}: substitute variables by degree two
polynomials of other variables.

Case analysis We then prove the main technical result stating that for any circuit from the class
C there exists (and can be constructed efficiently) an allowed substitution xi ← f ∈ S such
that the measure µ is reduced by a sufficient amount under both substitutions xi ← f and
xi ← f ⊕ 1.

#SAT upper bounds As an immediate consequence, we obtain an upper bound on the running
time of an algorithm solving #SAT for circuits from C. The corresponding algorithm takes
as input a circuit, branches into two cases xi ← f and xi ← f ⊕ 1, and proceeds recursively.
When applying a substitution xi ← f ⊕ c, it replaces all occurrences of xi by a subcircuit
computing f ⊕ c. The case analysis provides an upper bound on the size of the resulting
recursion tree.
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Circuit size lower bounds Then, by taking a function that survives under sufficiently many
allowed substitutions, we obtain lower bounds on the average case and worst case circuit
complexity of the function. Below, we describe such functions, i.e., dispersers and extractors
for the classes of sources under consideration.

1. The class of bit fixing substitutions generates the class of bit-fixing sources [18]. Extrac-
tors for bit-fixing sources find many applications in cryptography (see [22] for an excellent
survey of the topic). The standard function that is a good disperser and extractor for
such sources is the parity function x1 ⊕ · · · ⊕ xn.

2. Projections define the class of projection sources [46]. Dispersers for projections are used
to prove lower bounds for depth-three circuits [46]. It is shown [46] that a binary BCH
code with appropriate parameters is a disperser for n− o(n) substitutions. See [48] for
an example of extractor with good parameters for projection sources.

3. Affine substitutions give rise to the class of affine sources. Dispersers for affine sources
find applications in curcuit lower bounds [19, 20, 25]. There are several known construc-
tions of dispersers [7, 55] and extractors [65, 38, 6, 39] that are resistant to n − o(n)
substitutions.

4. The class of quadratic substitutions generates a special case of polynomial sources [24, 6]
and quadratic varieties sources [23]. An explicit construction of disperser for quadratic
varieties sources would imply new circuit lower bounds [26]. Although an explicit con-
struction of a function resistant to sufficiently many quadratic substitutions is not cur-
rently known, it is easy to show that a random function is resistant to any n − o(n)
quadratic substitutions.

2 Preliminaries

2.1 Boolean functions

We denote by Bn the set of all n-variate Boolean functions and define U2 = B2 \ {⊕,≡} as the set
of all binary Boolean functions except for parity and its complement.

The set of all sixteen binary Boolean functions f(x, y) ∈ B2 can be classified as follows: 1) two
constant functions: 0 and 1; we also call them trivial; 2) four functions that depend essentially on
one of the arguments only: x, x⊕ 1, y, y⊕ 1; we call them degenerate; 3) eight and-type functions:
(x⊕ a) · (y ⊕ b)⊕ c where a, b, c ∈ {0, 1}; 4) two xor-type functions: x⊕ y ⊕ a, where a ∈ {0, 1}.

Hence U2 consists of all binary functions except for xor-type functions. An important property
of binary and-type functions (x⊕ a) · (y ⊕ b)⊕ c, useful for case analyses, is the following: one can
turn this function into a constant c by assigning x← a or y ← b.

2.2 Dispersers and Extractors

Let x1, . . . , xn be Boolean variables, and f ∈ Bn−1 be a function of n − 1 variables. We say that
xi ← f(x1, . . . , xi−1, xi+1, . . . , xn) is a substitution to the variable xi.

Let g ∈ Bn be a function, then the restriction of g under the substitution f is a function h =
(g|xi ← f) of n−1 variables, such that h(x1, . . . , xi−1, xi+1, . . . , xn) = g(x1, . . . , xi−1, xi, xi+1, . . . , xn),
where xi = f(x1, . . . , xi−1, xi+1, . . . , xn). Similarly, if K ⊆ {0, 1}n is a subset of the Boolean cube,
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then the restriction of K under this substitution is K ′ = (K|xi ← f), such that (x1, . . . , xn) ∈ K ′
if and only if (x1, . . . , xn) ∈ K and xi = f(x1, . . . , xi−1, xi+1, . . . , xn).

For a family of functions F = {f : {0, 1}∗ → {0, 1}} we define a set of corresponding substi-
tutions S(F) that contains the following substitutions: for every 1 ≤ i ≤ n, c ∈ {0, 1}, f ∈ F , S
contains the substitution xi ← f(x1, . . . , xi−1, xi+1, . . . , xn)⊕ c.

Let S be a set of substitutions. We say that a set K ⊆ {0, 1}n is an (S, n, r)-source1 if it can
be obtained from {0, 1}n by applying at most r substitutions from S.

A function f ∈ Bn is called an (S, n, r)-disperser2 if it is not constant on every (S, n, r)-source.
A function f ∈ Bn is called an (S, n, r, ε)-extractor if |Prx←K [f(x) = 1] − 1/2| ≤ ε for every
(S, n, r)-source K.

2.3 Circuits

A circuit over the basis Ω ⊆ B2 is a directed acyclic graph with the following properties: 1) the
indegree of each node is either zero or two; 2) each node of zero indegree is labeled by a variable and
is called an input or an input gate; 3) each node of indegree two is labeled with a binary Boolean
function from Ω called an operation of this gate; the node itself is called an internal gate or just a
gate; 4) there is a unique node of outdegree zero and it is called an output. Such a circuit computes
in a natural way a function from Bn, where n is the number of input gates of the circuit. In this
paper, we consider circuits over the bases Ω = B2 and Ω = U2.

An xor-gate (and-gate) is a gate computing an xor-type (and-type, respectively) operation.
A k-gate (k+-gate) is a gate of outdegree exactly k (at least k, respectively).

For a circuit C, by s(C) we denote the size of C, that is, the number of internal gates of C. By
i(C) and i1(C) we denote the total number of input gates of C and the number of input 1-gates,
respectively. For a function f ∈ Bn, by CΩ(f) we denote the minimal size of a circuit over Ω
computing f .

For two Boolean functions f, g ∈ Bn, the correlation between them is defined as

Cor(f, g) =

∣∣∣∣ Pr
x←{0,1}n

[f(x) = g(x)]− Pr
x←{0,1}n

[f(x) 6= g(x)]

∣∣∣∣ = 2

∣∣∣∣12 − Pr
x←{0,1}n

[f(x) 6= g(x)]

∣∣∣∣ .
For a function f ∈ Bn, and 0 ≤ ε ≤ 1, by CΩ(f, ε) we denote the minimal size of a circuit over Ω
computing function g such that Cor(f, g) ≥ ε.

2.4 Circuit normalization

A gate is called useless if it is a 1-gate and is fed by a predecessor of its predecessor:

A B

D
1

E

A B

E

In this case E actually computes a binary operation of A and B and this operation can be computed
in the gate E directly. This might require to change an operation at E (if this circuit is over U2

1Usually in the literature a source corresponds to a distribution over a subset of {0, 1}n. In this paper, we focus
only on uniform distributions, so we associate a source with its support.

2In this paper, we consider only dispersers and extractors with one bit outputs.
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then E still computes an and-type operation of A and B as an xor-type binary function requires
three gates in U2).

By normalizing a circuit we mean removing all gates that compute trivial or degenerate op-
erations and removing all useless gates. Note that normalization does not change the function
computed by a circuit. It might however change the operations at some gates and outdegrees of
some gates (in particular, input gates).

In the proofs of the paper we implicitly assume that if two gate are fed by the same variable
then either there is no wire between them or each of the gates feed also some other gate (otherwise,
one of the gates would be useless) and hence we do not care about this wire between the gates.

2.5 Circuit complexity measures

A function µ mapping circuits to non-negative real values is called a circuit complexity measure if
for any circuit C,

• normalization of C does not increase its measure, and

• if µ(C) = 0 then C has no gates.

For a fixed circuit complexity measure µ, and function f ∈ Bn, we define µ(f) to be the minimum
value of µ(C) over circuits C computing f . Similarly, we define µ(f, ε) to be the minimum value
of µ(C) over circuits C computing g such that Cor(f, g) ≥ ε.

In this paper, we focus on the following two circuit complexity measures:

• µ(C) = s(C) + α · i(C) where α ≥ 0 is a constant;

• µ(C) = s(C) + α · i(C)− σ · i1(C) where α ≥ 0, σ ≤ 1 are constants.

It is not difficult to see that these two functions are indeed circuit complexity measures if α ≥ 0
and σ ≤ 1. The condition σ ≤ 1 is needed to guarantee that if by removing a degenerate gate we
increase the outdegree of a variable, the measure does not increase (an example is given below).

Intuitively we include the term i(C) into the measure to handle cases like the one below
(throughout the paper, we use labels above the gates to indicate their outdegree):

xi
1+

xj
1

∧ A

In this case, by assigning xi ← 0 we make the circuit independent of xj , so the measure is reduced
by at least 2α. Usually, our goal is to show that we can find a substitution to a variable that
eliminates at least some constant number k of gates, that is, to show a complexity decrease of at
least k+α. Thus, by choosing a large enough value of α we can always guarantee that 2α ≥ α+ k.
Thus, in the case above we do not even need to count the number of gates eliminated under the
substitution.

The measure µ(C) = s(C) +α · i(C)−σ · i1(C) allows us to get an advantage of new 1-variables
that are introduced during splitting.
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xi
2

xj
2

∧ AB

C

xi
2

xj
2

∧ AB

∨ C

D1 D2

xk
1

For example, by assigning xi ← 0 in a situation like the one in the left picture we reduce the
measure by at least 3 + α + σ. As usual, the advantage comes with a related disadvantage. If,
for example, a closer look at the circuit from the left part reveals that it actually looks like as
shown on the right, then by assigning xi ← 0 we introduce a new 1-variable xj , but also loose one
1-variable (namely, xk is now a 2-variable). Hence, in this case µ is reduced only by (3 + α) rather
than (3 + α + σ). That is, our initial estimate was too optimistic. For this reason, when use a
measure with i1(C) we check carefully for each eliminated gate if this gate increases the degree of
a 1-variable.

2.6 Splitting numbers and splitting vectors

Let µ be a circuit complexity measure and C be a circuit. Consider a recursive algorithm solving
#SAT on C by repeated substitutions. Assume that at the current step the algorithm chooses k
variables x1, . . . , xk and k functions f1, . . . , fk to substitute these variables and branches into 2k

possible situations: x1 ← f1 ⊕ c1, . . . , xk ← fk ⊕ ck for all possible c1, . . . , ck ∈ {0, 1} (in other
words, it partitions the Boolean hypercube {0, 1}n into 2k subsets).3 For each substitution, we
normalize the resulting circuit. Let us call the 2k circuits C1, . . . , C2k . We say that the current step
has a splitting vector v = (a1, . . . , a2k) w.r.t. µ if for all i ∈ [2k], µ(C)−µ(Ci) ≥ ai > 0. That is, the
splitting vector gives a lower bound on the complexity decrease under the considered substitution.
The splitting number τ(v) is the unique positive root of the equation

∑
i∈[2k] x

−ai = 1.
Splitting vectors and numbers are heavily used to estimate the running time of recursive algo-

rithms. Below we assume that k is bounded by a constant. In all the proofs of this paper either
k = 1 or k = 2, that is, we always estimate the effect of assigning either one or two variables. If an
algorithm always splits with a splitting number at most β then its running time is bounded by
O∗(βµ(C)).4 To show this one notes that the recursion tree of this algorithm is 2k-ary and k = O(1)
so it suffices to estimate the number of leaves. The number of leaves T (µ) satisfies the recurrence
T (µ) ≤

∑
i∈[2k] T (µ − ai) which implies that T (µ) = O(τ(v)µ) (we assume also that T (µ) = O(1)

when µ = O(1)). See, e.g., [36] for a formal proof.
For a splitting vector v = (a1, . . . , a2k) we define the following related quantities:

τmax(v) = max
i∈[2k]

{ai
k

}
, τmin(v) = min

i∈[2k]

{ai
k

}
, τavg(v) =

∑
i∈[2k] ai

k2k
.

Intuitively, τmax(v) (τmin(v), τavg(v)) is a (lower bound for) the maximum (minimum, average,
respectively) complexity decrease per single substitution.

3Sometimes it is easier to consider vectors of length that is not a power of 2 too. For example, we can have a
branching into three cases: one with one substituted variable, and two with two substituted variables. All the results
from this paper can be naturally generalized to this case. For simplicity, we state the results for splitting vectors of
length 2k only.

4O∗ suppresses factors polynomial in the input length.
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We will need the following estimates for the splitting numbers. It is known that a balanced
binary splitting vector is better than an unbalanced one: 21/a = τ(a, a) < τ(a + b, a − b) for
0 < b < a (see, e.g., [36]). There is a known upper bound on τ(a, b).

Lemma 1 (Lemma 5.8 in [36]). τ(a, b) ≤ 21/
√
ab.

In the following lemma we provide an asymptotic estimate of their difference (the proof is given
in Appendix on p. 25).

Lemma 2 (Gap between τ(a1 + b, a2 + b) and τ((a1 +a2)/2+ b, (a1 +a2)/2+ b) = 2
1

(a1+a2)/2+b ). Let

a1 > a2 > 0, a′ = (a1 + a2)/2 and δ(b) = τ(a1 + b, a2 + b)− 2
1

a′+b . Then, δ(b) = O((a1 − a2)2/b3)
as b→∞.

2.7 Azuma’s inequality

Following the approach from [14], we use a variant of Azuma’s inequality with one-sided boundness
condition in order to obtain average case lower bounds. The standard version of Azuma’s inequality
requires the difference between two consecutive variables to be bounded, [14] considers the case when
the difference takes on only two values but is bounded only from one side. For our results, we need
a slightly more general variant of the inequality: the difference between two consecutive variables
takes on up to k values and is bounded from one side. We provide a proof of this inequality, which
is just an adjustment of proofs from [42, 1, 14] (the proof is given in Appendix on page 25).

A sequence X0, . . . , Xm of random variables is a supermartingale if for every 0 ≤ i < m,
E[Xi+1|Xi, . . . , X0] ≤ Xi.

Lemma 3. Let X0, . . . , Xm be a supermartingale, let Yi = Xi−Xi−1. If Yi ≤ c and for fixed values
of (X0, . . . , Xi−1), the random variable Yi is distributed uniformly over at most k (not necessarily
distinct) values, then for every λ ≥ 0:

Pr[Xm −X0 ≥ λ] ≤ exp

(
−λ2

2mc2(k − 1)2

)
.

Note that we have an extra factor of (k−1)2 comparing with the normal form of Azuma’s inequality,
but we do not assume that Xi −Xi−1 is bounded from below.

3 Toolkit

3.1 Main theorem

In this subsection we prove the main technical theorem that allows us to get circuit complexity
lower bounds and #SAT upper bounds.

Definition 3.1. For a class of circuits Ω (e.g., Ω = B2 or Ω = U2), a set of substitutions S, and
a circuit complexity measure µ, we write

Splitting(Ω,S, µ) � {v1, . . . , vm}5

5Note that each vi is a splitting vector of length 2ti ≥ 2.
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as a shortcut for the following statement: For any normalized circuit C from the class Ω one can
find in time poly(|C|) either a substitution6 from S whose splitting vector with respect to µ belongs
to the set {v1, . . . , vm} or a substitution that trivializes the output gate of C. A substitution always
trivializes at least one gate (in particular, when we assign a constant to a variable we trivialize an
input gate) and eliminates at least one variable.

Theorem 4. If Splitting(Ω,S, µ) � {v1, . . . , vm} and the longest splitting vector has length 2k, then

1. There exists an algorithm solving #SAT for circuits over Ω in time O∗(γµ(C)), where

γ = max
i∈[m]
{τ(vi)} .

2. If f ∈ Bn is an (S, n, r)-disperser, then

µ(f) ≥ βw · (r − k + 1) , where βw = min
i∈[m]
{τmax(vi)} .

3. If f ∈ Bn is an (S, n, r, ε)-extractor, then for every µ < βa · r,

µ (f, δ) ≥ µ, where βa = min
i∈[m]

{τavg(vi)} and βm = min
i∈[m]
{τmin(vi)} ,

δ = ε+ exp

(
−(r · βa − µ)2

2r(βa − βm)2(2k − 1)2

)
.

Proof. We present a proof for a special case when all splitting vectors have length 2 (i.e., k = 1):
{v1, . . . , vm} = {(a1, b1), . . . , (am, bm)}. This makes the exposition simpler, and it is easy to see
that the general statement follows by the same argument. In this case,

βw = min
i∈[m]
{max{ai, bi}}, βa = min

i∈[m]

{
ai + bi

2

}
, βm = min

i∈[m]
{min{ai, bi}}.

1. Consider the following branching algorithm for #SAT. We describe the algorithm as a branch-
ing tree, each node of which contains a Boolean circuit and a set of currently made substitu-
tions. The root of the tree is (C, ∅) — the input circuit and an empty set of substitutions.
The nodes where the circuit is trivialized are called leaves. At each internal node (a node
that is not a leaf) the algorithm finds in polynomial time substitutions xi ← f and xi ← f⊕1
guaranted by the theorem statement. Then the algorithm recursively calls itself on two cir-
cuits obtained from the current one by substituting xi ← f and xi ← f ⊕ 1. That is,
the algorithm adds to the current node (C, S) two children (C|xi ← f, S ∪ {xi ← f}) and
(C|xi ← f ⊕ 1, S ∪ {xi ← f ⊕ 1}). Note that the statement guarantees that the substitutions
xi ← f and xi ← f⊕1 either give us an (ai, bi)-splitting for some i (i.e., decrease the measure
µ by at least ai in one branch, and bi in the other one), or trivialize the circuit and produce
two leaves.

At each leaf the algorithm counts the number V of satisfying assignments: If the formula is
constant zero, then V = 0, otherwise, V = 2v, where v is the number of variables in the current

6Here we assume that the circuit obtained from C by the substitution and normalization belongs to Ω too.
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formula. Indeed, for each assignment to the v variables, there exists a unique assignment to
the rest of the variables (via the substitutions at the leaf), and the circuit remains constant 1.
Since substitutions xi ← f and xi ← f⊕1 lead to different assignments to the input variables,
the leaves of the branching tree correspond to disjoint sets of assignments. Therefore, the total
number of satisfying assignments of the original circuit is the sum of satisfying assignments
at the leaves of the tree. Since the running time of the algorithm at each node is polynomial,
the total running time is bounded from above by O∗

(
γµ(C)

)
, where γ = max

i∈[m]
{τ(ai, bi)}.

2. For every pair of integers (n, r) such that n ≥ r ≥ 0, let Fn,r ⊆ Bn denote the class of
functions from {0, 1}n to {0, 1} that are not constant after any r substitutions from S. We
show that for every f ∈ Fn,r, µ(f) ≥ βw ·(r−k+1). This claim implies the theorem statement,
since we start with a function of n variables that is not constant after r(n) substitutions.

The proof of the claim proceeds by induction on r. For r < k the statement is trivial. Now
assume that r ≥ k. Consider substitutions xi ← f and xi ← f ⊕ 1 guaranteed by the lemma
statement. Now select a value of c ∈ {0, 1} in such a way that the substitution xi ← f ⊕ c
reduces the measure by at least βw. Consider the function g of n − 1 variables which is f
restricted to xi ← f . By the theorem statement, µ(f) ≥ βw + µ(g), and by the induction
hypothesis, µ(g) ≥ βw · (r − 1). Therefore, µ(f) ≥ βw · r.

3. Let us consider a circuit C such that µ(C) ≤ βa · r. Consider the branching tree from the
1st part of the proof. At each node of the branching tree let us uniformly at random choose
a child we proceed to. Let δi be the random variable that equals to the measure decrease at
ith step (ith level of the branching tree, where 0 corresponds to the root). For i ≥ 0, define
the random variable

Xi = (i+ 1) · βa −
i∑

j=0

δj .

Let us show that the variable Xi is a supermartingale:

E[Xi|Xi−1, . . . , X0] = i · βa−
i−1∑
j=0

δj + (βa−E[δi|Xi−1, . . . , X0]) = Xi−1 + (βa−E[δi]) ≤ Xi−1.

Let Yi = Xi−Xi−1. Then Yi is distributed uniformly over at most 2k values, and Yi ≤ βa−βm.
Now let λ = βa · r − µ(C). Then, by Lemma 3:

Pr[Xr −X0 ≥ λ] ≤ exp

(
−λ2

2r(βa − βm)2(2k − 1)2

)
.

Now we want to bound from above the correlation between f and the function given by the
branching tree. Note that all leaves of the tree that have depth smaller than r altogether
give correlation at most ε with the extractor f (since each of these leaves defines an (S, n, r)
source). Now let us count the number of leaves at the depth at least r. There are at
most 2r possible leaves, but each of them survives till the rth level only with probability
Pr[Xr−X0 ≥ λ]. Indeed, if Xr−X0 < λ, then

∑r
j=1 δj > µ(C), which means that the function

becomes constant before the rth level. Therefore, there are at most 2r ·Pr[Xr−X0 ≥ λ] leaves
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at the depth at least r. Since each leaf at the depth r has r inputs fixed, it covers at most
2n−r points of the Boolean cube. Therefore, the total correlation is bounded from above by:

Cor(f, C) ≤ ε+ exp

(
−λ2

2r(βa − βm)2(2k − 1)2

)
= ε+ exp

(
−(r · βa − µ(C))2

2r(βa − βm)2(2k − 1)2

)
.

3.2 Discussion

Many known lower bounds for circuits with unrestricted depth can be proved using this framework,
in particular, strongest known lower bounds over B2 and U2. Schnorr [53] proved a 2n − Θ(1) on
CB2 for a wide class of functions using µ(C) = s(C) and bit fixing substitutions. Stockmeyer [57]
proved a 2.5n − Θ(1) lower bound for symmetric functions using µ(C) = s(C) and a special case
of projections: {xi ← c, {xi ← f, xj ← f ⊕ 1}} (the latter “double” substitution essentially fixes
the sum of xi + xj to 1; by applying such a substitution to, say, the majority function one gets the
majority function of fewer inputs). Kojevnikov and Kulikov [33] improved the bound by Schnorr to
7n/3−Θ(1) using the measure µ(C) = 3x(C) + 2a(C) assigning different weights to xor-gates and
and-gates. Demenkov and Kulikov [20] proved a 3n− o(n) lower bound for an affine disperser for
sublinear dimension using µ(C) = s(C) + i(C) and affine substitutions. Recently, Find et al. [25]
extended this approach to get a (3 + 1/86)n lower bound for the same function (while the measure
and the set of allowed substitutions are not easy to describe).

For the basis U2, Schnorr [53] proved that the circuit size of parity is 3n − 3 using bit fixing
substitutions. Zwick [66] proved a 4n−Θ(1) lower bound for symmetric functions using bit-fixing
substitutions and µ(C) = s(C) − i1(C). His measure was then used by Lachish and Raz [37] and
by Iwama and Morizumi [31] to prove 4.5n − o(n) and 5n − o(n) lower bounds for strongly two-
dependent functions. Recently, Demenkov et al. [21] gave a simpler proof of a 5n−o(n) lower bound
for a linear function with o(n) outputs. All these proofs use bit fixing substitutions only, however
the case analysis can be simplified using also projections and a measure of the form µ = s+ α · i.

At the same time, there are known lower bound proofs that use additional tricks. E.g., Blum [9]
to prove a 3n−o(n) lower bound over B2 first considers a few cases when it is easy to remove three
gates, and for all the remaining circuits shows a lower bound directly by counting the number of
gates using some particular properties of the function under consideration.

Also, upper bounds for SAT and #SAT for various circuits classes (and for many other NP-hard
problems) are proved by making substitutions recursively and using a carefully chosen measure to
estimate the complexity decrease after substitutions.

The whole framework is a formalization of the following simple idea. To prove a lower bound
cn on circuit size one usually shows that there always exists a substitution xi ← f eliminating at
least c gates from the circuit. By analyzing also the complexity decrease under the substitution
xi ← f ⊕ 1 one gets an upper bound for #SAT and an average case lower bound. Below we show
an easy consequence of this: if one gets a very strong lower bound via short splitting vectors in this
framework, then the corresponding #SAT-algorithm is also quite fast. That is, a superlinear circuit
lower bound that uses only short splitting vectors in the framework implies a subexponential time
(with respect to the size) algorithm for #SAT, which contradicts the Exponential Time Hypothesis.
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Theorem 5. If for some set of substitutions S,

Splitting(Ω,S, s+ αi) � {(a1, b1), . . . , (am, bm)} ,

such that βw = mini∈[m] max{ai, bi} = ω(1) then #SAT can be solved in time O∗(2o(s)).

Proof. Since we consider substitutions that trivialize at least one gate and eliminate at least one
variable, we may assume w.l.o.g. that ai ≥ 1 + α and bi ≥ ω(1) for all i ∈ [m]. Then, any splitting
(guaranteed by the theorem statement) w.r.t. to s(C) is at most τ(1, ω(1)). From Lemma 1,

τ(1, x) ≤ 2
1√
x . We conclude that the corresponding algorithm for #SAT always splits with a

splitting number at most 2
1

ω(1) and hence has running time 2o(s).

Note that due to the Sparsification Lemma [30] such an algorithm even over the basis U2

contradicts the Exponential Time Hypothesis.
Although our “positive” results from Theorem 4 hold for splitting vectors of any length, this

“negative” result from Theorem 5 holds only for splitting vectors of length 2. The authors do not
know how to generalize this result to longer splitting vectors, and leave it as an open question.

4 Bounds for the basis U2

In this and the following sections, we prove known and new circuit lower bounds and upper bounds
for #SAT. As discussed already, the main ingredient of all proofs is the case analysis showing the
existence of a substitution reducing the measure by a sufficient amount. Usually, in such proofs we
argue as follows: take a gate A and make a substitution trivializing A; this eliminates A and all
its successors. However it might be the case that A is the output gate and so does not have any
successors. This means that we are at the end of the gate elimination process or at the leaf of a
recursion tree. This, in turn, means that we do not need to estimate the current measure decrease.
For this reason, in all the proofs below we assume implicitly that if we trivialize a gate then it is
not the output gate.

4.1 Bit fixing substitutions: substituting variables by constants

We start with a well-known case analysis of a 3n − 3 lower bound for the parity function over U2

due to Schnorr [53]. Using this case analysis we reprove the bounds given recently by Chen and
Kabanets [14] in our framework. The analysis is basically the same though the measure is slightly
different. We provide these results mostly as a simple illustration of using the framework. The
proof of the following case analysis is given in Appendix on page 26.

Lemma 6. Splitting(U2, {xi ← c}, s+ αi) � {(α, 2α), (3 + α, 3 + α), (2 + α, 4 + α)} .
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Corollary 7. 1. For any ε > 0 there exists δ = δ(ε) > 0 such that #SAT for circuits over U2

of size at most (3− ε)n can be solved in time (2− δ)n.

2. CU2(x1 ⊕ · · · ⊕ xn ⊕ c) ≥ 3n− 6 .

3. CU2

(
x1 ⊕ · · · ⊕ xn ⊕ c, exp

(
−(t−9)2

18(n−1)

))
≥ 3n − t . This, in particular, implies that Cor(x1 ⊕

· · · ⊕ xn ⊕ c, C) is negligible for any circuit C of size 3n− ω(
√
n log n).

Proof. 1. First note that for large enough α, we have τ(α, 2α) < τ(3 + α, 3 + α) = 2
1

3+α <

τ(2 +α, 4 +α). Let γ(α) = τ(2 +α, 4 +α)− 2
1

3+α . By Lemma 2, γ(α) = O(1/α3) holds. The
running time of the algorithm is at most

(τ(2 + α, 4 + α))s+αn ≤
(
2

1
3+α (1 + γ(α))

)s+αn ≤ 2
s+αn
3+α 2(s+αn)γ(α) log2 e

≤ 2
(3−ε)n+αn

3+α
+O(n/α2) ≤ (2− δ)n

for some δ > 0 if we set α = c/ε for large enough c > 0.

2. The parity function does not become constant under any n − 1 substitutions of variables to
constants. Lemma 6 guarantees that for α = 3 we can always assign a constant to a variable
so that s + 3i is reduced by at least 6. Hence for any circuit C over U2 computing parity,
s(C) + 3n ≥ 6(n − 1) implying s(C) ≥ 3n − 6. (In fact, it can be shown by a slightly more
careful analysis that CU2(x1 ⊕ · · · ⊕ xn) = 3n− 3.)

3. Let us consider a circuit C of size at most 3n− t, that is, µ(C) ≤ (3n− t) + αn. Now we fix
α = 6, then βa = min{9, 9, 9} = 9, βm = min{6, 9, 8} = 6.

We use the third item of Theorem 4 with k = 1, r = n− 1, ε = 0, µ = (3n− t+ 6n), which
gives us

δ = exp

(
−(9(n− 1)− (3n− t+ 6n))2

18(n− 1)

)
= exp

(
−(t− 9)2

18(n− 1)

)
.

4.2 Projections: substituting variables by constants and other variables

In this subsection, we prove new bounds for the basis U2. The two main ideas leading to improved
bounds are using projections to handle the Case 3 below and using 1-variables to get better estimates
for complexity decrease (this trick was used by Zwick [66] and then by [37, 31]).

Lemma 8. For 0 ≤ σ ≤ 1/2,

Splitting(U2, {xi ← c, xi ← xj ⊕ c}, s+ αi− σi1) �
{(α, 2α), (2α, 2α, 2α, 3α), (3 + α+ σ, 3 + α), (4 + α+ σ, 2 + α)} .

Proof. Note that for every eliminated gate we decrease the measure by at least 1−σ ≥ 1/2, if some
gate becomes constant we decrease the measure by at least 1.

12



xi
1+

xj
1

A

xi
3+

A B C

xi
2

xj
2

A B

Case 1 Case 2 Case 3

Case 1. There is a top gate A fed by 1-variable xj . Assigning xi a constant we trivialize the gate A
in one of the branches and loose the dependence on xj . Thus, we get at least (α, 2α) splitting.

Case 2. There is a variable xi of degree at least 3. Neither of A, B, C is fed by a 1-variable
otherwise we would be in the Case 1. When we assign xi a constant, gates A, B, and C
become constant in one of the branches. Hence in one of the branches we eliminate also at
least one extra gate. Thus, we get at least (4 +α−σ, 3 +α) splitting vector which dominates
(3 + α+ σ, 3 + α) (since σ ≤ 1/2).

Case 3. There are two 2-variables that feed the same two top gates. Let the gates A and B compute
Boolean functions fA(xi, xj) = (xi⊕aA)(xj⊕bA)⊕cA and fB(xi, xj) = (xi⊕aB)(xj⊕bB)⊕cB
respectively. If aA = aB or bA = bB then we assign xi ← aA or xj ← bA respectively and
make both gates constant. Otherwise, fB(xi, xj) = (xi⊕ aA⊕ 1)(xj ⊕ bA⊕ 1)⊕ cB. It is easy
to see that if xi⊕ aA⊕xj ⊕ bA = 1 then both functions are constant. Hence, the substitution
xi ← aA ⊕ xj ⊕ bA ⊕ 1 makes A and B constant as well. In both cases there is a substitution
that makes A and B constant and therefore eliminates the dependence on xj , so we get at
least (α, 2α) splitting vector.

Case 4. There are three gates that are fed by two 2-variables.

xi
2

xj
2

xk
1

AB

C

xi
2

xj
2

xk
1

AB

C

xi
2

xj
2

xk
1

AB

C

D

Case 4.1 Case 4.2 Case 4.3

Case 4.1. Gate B is a 1-gate with a successor C that is a 2+-gate fed by the 1-variable xk. If
we assign constants to xj and xk we eliminate the dependence on xj as well in one of
the branches, so we get (2α, 2α, 2α, 3α) splitting.

Case 4.2. Gate A is a 1-gate with a successor C that is a 2+-gate fed by 1-variable xk. Analogous
to the previous case if we assign constants to xi and xj we eliminate the dependence on
xk in one of the branches, so we get again (2α, 2α, 2α, 3α) splitting.

Case 4.3. Gates A and B and its common successor C are 1-gates and the only successor of
C is a 2-gate fed by 1-variable xk. When we assign constants to xk gate D becomes
constant in one of the branches, hence, gates A, B, C become unnecessary and we loose
the dependence on variable xi. So we have at least (α, 2α) splitting.
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Case 4.4. None of three previous cases apply.

xi
2

xj
2

AB

Previous cases ruled out the possibility that A or B has the only successor that con-
tributes only 1− σ to the measure decrease: we know that each of A and B is either a
2+-gate and its successors contribute at least 2(1− σ) ≥ 1 or a 1-gate with a successor
which is not a 2+-gate fed by a 1-variable and it contributes at least 1. We also know,
that when A and B are 1-gates with a common successor, this successor is not a 2+-gate
fed by a 1-variable, and hence it contributes at least 1.

Therefore, if we assign xi a constant each of A and B becomes constant in one of the
branches, so the successors of A and B either contribute at least 1 in both branches or
contribute at least 2 in one of the branches. In addition, xj becomes a 1-variable in the
branch where A trivializes. Thus, we get either (3 + α+ σ, 3 + α) or (4 + α+ σ, 2 + α).

Corollary 9. 1. For any ε > 0 there exists δ = δ(ε) > 0 such that #SAT for circuits over U2

of size at most (3.25− ε)n can be solved in time (2− δ)n.

2. Let f ∈ Bn be an
(
n, r(n) = n− logO(1)(n)

)
-projections disperser from [39]. Then CU2(f) ≥

3.5n− logO(1)(n).

3. Let f ∈ Bn be an
(
n, r(n) = n−

√
n, ε(n) = 2−n

Ω(1)
)

-projections extractor from [48]. Then

CU2(f, δ) ≥ 3.25n − t, where δ = 2−n
Ω(1)

+ exp
(
−(t−10.25

√
n)2

190.125(n−
√
n)

)
. This, in particular, implies

that Cor(f, C) is negligible for any circuit C of size 3.25n− ω(
√
n log n).

Proof. 1. Let σ = 1/2. First note that for large enough α, we have

τ(α, 2α) < τ(2α, 2α, 2α, 3α) < τ(3.25+α, 3.25+α) = 2
1

3.25+α < τ(3.5+α, 3+α) < τ(4.5+α, 2+α).

Let γ(α) = τ(4.5 + α, 2 + α) − 2
1

3.25+α . By Lemma 2, γ(α) = O(1/α3) holds. The running
time of the algorithm is at most

(τ(4.5 + α, 2 + α))s+αn ≤
(
2

1
3.25+α (1 + γ(α))

)s+αn ≤ 2
s+αn

3.25+α 2(s+αn)γ(α) log2 e

≤ 2
(3.25−ε)n+αn

3.25+α
+O(n/α2) ≤ (2− δ)n

for some δ > 0 if we set α = c/ε for large enough c > 0.

2. Lemma 8 guarantees that for α = 7, σ = 0.5 one can always make an affine substitution
reducing s+ 7i by at least 10.5. The function f is resistant to r(n) such substitutions. Hence
for a circuit C computing f , s(C) + 7n ≥ 10.5r(n).
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3. Let us consider a circuit C of size at most 3.25n−t, that is, µ(C) ≤ (3.25n−t)+αn. Now we fix
α = 7, σ = 0.5, then βa = min{10.5, 15.75, 10.25, 10.25} = 10.25, βm = min{7, 7, 10, 9} = 7.

We use the third item of Theorem 4 with k = 2, r = n−
√
n, ε = 2−n

Ω(1)
, µ = (3.25n−t+7n),

which gives us

δ = 2−n
Ω(1)

+exp

(
−(10.25(n−

√
n)− (10.25n− t))2

2(n−
√
n) · 3.252 · 32

)
= 2−n

Ω(1)
+exp

(
−(t− 10.25

√
n)2

190.125(n−
√
n)

)
.

5 Bounds for the basis B2

5.1 Affine substitutions: substituting variables by linear sums of other variables

Here, we again start by reproving the bounds for B2 by Chen and Kabanets [14] by using the case
analysis by Demenkov and Kulikov [20]. The proof of the following lemma is given in Appendix on
page 26.

Lemma 10. Splitting(B2, {xi ← ⊕j∈Jxj ⊕ c}, µ = s+ αi) � {(α, 2α), (2 + α, 3 + α)} .

Corollary 11. 1. For any ε > 0 there exists δ = δ(ε) > 0 such that #SAT for circuits over B2

of size at most (2.5− ε)n can be solved in time (2− δ)n.

2. Let f ∈ Bn be an
(
n, r(n) = n− logO(1)(n)

)
-affine disperser from [39]. Then CB2(f) ≥

3n− logO(1)(n).

3. Let f ∈ Bn be an
(
n, r(n) = n−O(n/ log log n), ε(n) = 2−n

Ω(1)
)

-affine extractor from [38].

Then CB2(f, δ) ≥ 2.5n− t, where δ = 2−n
Ω(1)

+ exp
(
−(t−O(n/ log logn))2

O(n)

)
. This, in particular,

implies that Cor(f, C) is negligible for any circuit C of size 2.5n− ω(n/ log log n).

Proof. 1. First note that for large enough α, we have

τ(α, 2α) < τ(2.5 + α, 2.5 + α) = 2
1

2.5+α < τ(2 + α, 3 + α).

Let γ(α) = τ(2 + α, 3 + α)− 2
1

2.5+α . By Lemma 2, γ(α) = O(1/α3) holds. The running time
of the algorithm is at most

(τ(2 + α, 3 + α))s+αn ≤
(
2

1
2.5+α (1 + γ(α))

)s+αn ≤ 2
s+αn
2.5+α 2(s+αn)γ(α) log2 e

≤ 2
(2.5−ε)n+αn

2.5+α
+O(n/α2) ≤ (2− δ)n

for some δ > 0 if we set α = c/ε for large enough c > 0.

2. Lemma 10 guarantees that for α = 3 one can always make an affine substitution reducing
s+ 3i by at least 6. The function f is resistant to r(n) such substitutions. Hence for a circuit
C computing f , s(C) + 3n ≥ 6r(n).
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3. Let us consider a circuit C of size at most 2.5n− t, that is, µ(C) ≤ (2.5n− t) + αn. Now we
fix α = 5, then βa = min{7.5, 7.5} = 7.5, βm = min{5, 7} = 5.

We use the third item of Theorem 4 with k = 1, r = r(n), ε = ε(n), µ = (2.5n − t + 5n),
which gives us

δ = ε(n) + exp

(
−(7.5r(n)− (7.5n− t))2

12.5r(n)

)
= ε(n) + exp

(
−(t− 7.5(n− r(n)))2

12.5r(n)

)
.

5.2 Quadratic substitutions: substituting variables by degree 2 polynomials of
other variables

Lemma 12. For 0 ≤ σ ≤ 1/5,

Splitting(B2, {xi ← p : deg(p) ≤ 2}, s+ αi− σi1) �
{(α, 2α), (2α, 2α, 2α, 3α), (3 + α− 2σ, 3 + α− 2σ), (3 + α+ σ, 2 + α)} .

Proof. Fix any topological order of a given circuit C and let A be the first gate in this ordering
which is not a 1-xor (if there is no such gate then all the gates in C are 1-xors hence C computes
an affine function and we can trivialize it with a single affine substitution). Then each input of A
is a tree of xors, that is, a subcircuit consisting of 1-xors only. When we do an affine substitution
to some variable that feed an xor-tree, we rebuild the tree and reduce the number of gates in it by
at least one (it is explained in details in the proof of Lemma 10).

xi
1

xj
1+

∧A

xi
3+

B C D

⊕ ⊕

⊕A
2+

Case 1 Case 2 Case 3

(In all the pictures of this proof we show only the type of the gates but not the actual functions
computed at them.)

Case 1. A is a top and-gate fed by a 1-variable xi. Similarly to the Case 1 of Lemma 8 we get
(α, 2α).

Case 2. There is a variable xi of degree at least 3. Neither of B, C, D is an and-gate fed by a 1-
variable otherwise we would be in the Case 1. If, say, B is an xor 2+-gate fed by the 1-variable
xk we can trivialize it by an affine substitution xi ← xk ⊕ c and eliminate two variables in
both branches, so we get (2α, 2α). Otherwise we assign xi a constant and eliminate three
gates in every branch, all the gates contribute 1 to the measure decrease. Thus, we get at
least (3 + α, 3 + α) which dominates (3 + α− 2σ, 3 + α− 2σ).

Case 3. A is 2+-xor. Let A compute cA ⊕
⊕

i∈I xi and I ⊆ {1, . . . , n}, |I| ≥ 2. If all xi, i ∈ I, are
1-variables then for any j ∈ I a substitution xj ← c⊕

⊕
i∈I\{j} xi eliminates the dependence

on at least one 1-variable, so we get (2α, 2α). Otherwise, there is at least one 2-variable xi,
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i ∈ I. Substituting xi ← c ⊕
⊕

k∈I\{i} xk we eliminate three gates in both branches, so we
get at least (3 + α− 2σ, 3 + α− 2σ).

Case 4. A is an and-gate which is not a top gate.

⊕I ⊕ J

∧ A

Let I, J ⊂ {1, . . . , n} be the sets of indices of variables in the left and in the right xor-trees
respectively. W.l.o.g., we assume that |I| > 1, i.e. there is at least one gate in the left xor-tree
feeding A.

Case 4.1. There is a 1-variable xi in the left tree. An affine substitution xj ← c⊕
⊕

k∈J\{j} xk
for some j ∈ J eliminates two variables in one of the branches: the variable xi becomes
unnecessary in the branch where A becomes constant. The splitting is at least (α, 2α).

Case 4.2. There is at least one gate in the right tree, i.e. |J | ≥ 2. We apply an affine substitution
xi ← c⊕

⊕
k∈I\{i} xk for some i ∈ I and eliminate four gates in one branch and two in

the other one. This gives (4 + α− σ, 2 + α) which dominates (3 + α+ σ, 2 + α).

Case 4.3. The right tree consists of only one variable xj .

⊕I xj
1

∧ A

⊕I xj
2

∧ A B

Case 4.3.1 Case 4.3.2

Case 4.3.1. xj is a 1-variable. An affine substitution xi ← c ⊕
⊕

k∈I\{i} xk for some i ∈ I
eliminates xj in the branch where A becomes constant, so we get at least (α, 2α).

Case 4.3.2. xj is a 2-variable. Assigning xj a constant we eliminate four gates in one branch
and two in the other one. Gate B do not introduce new an 1-variable: if B is a
2+-gate fed by 1-variable we would be either in the Case 1 or in the Case 3. The
splitting on xj gives at least (4 + α− σ, 2 + α) which dominates (3 + α+ σ, 2 + α).

Case 5. A is a top and-gate fed by 2-variables xi and xj .

Case 5.1. Variables xi and xj feed the same two gates.

xi xj

∧A ⊕B

xi xj

∧A ∧ B
Case 5.1.1 Case 5.1.2

Case 5.1.1. B is an xor-gate. An affine substitution xi ← xj ⊕ c eliminates the dependence
on xj in the branch where A becomes constant, so we get at least (α, 2α).

Case 5.1.2. B is an and-gate. Similarly to the Case 3 of the proof of Lemma 8 we get (α, 2α).

Case 5.2. Variables xi and xj feed three gates: A, B, and C.

Note that in the following cases eliminating gates B and C we can not kill a 1-variable,
otherwise we would be either in the Case 1 of in the Case 3.
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Case 5.2.1. xi and xj feed two and-gates. W.l.o.g., B is an and-gate.

xi xj

∧A∧B C

Assigning a constant to xi we trivialize gates A and B in one of the branches, so we
eliminate either four gates in one branch and two in the other one, or three gates in
both branches. This gives either (4 +α− 2σ, 2 +α) or (3 +α− σ, 3 +α− σ), which
dominate (3 + α+ σ, 2 + α) and (3 + α− 2σ, 3 + α− 2σ) respectively.

Case 5.2.2. Both B and C are xor-gates.

xi xj

xk
1∧A⊕B ⊕C

∧D

xi xj

xk
1∧A

⊕D

⊕B ⊕C

xi xj

∧A

D

⊕B ⊕C

Case 5.2.2.1 Case 5.2.2.2 Case 5.2.2.3

Case 5.2.2.1. A is a 1-gate and its only successor D is an and-gate fed by the 1-variable xk.
Assigning constants to xi and xj we eliminate also the dependence on xk in one
of the branches. We get at least (2α, 2α, 2α, 3α).

Case 5.2.2.2. A is a 1-gate and its only successor D is an xor-gate fed by the 1-variable xk.
Let gate A computes function (xi ⊕ aA)(xj ⊕ bA) ⊕ cA. An affine substitution
xk ← (xi ⊕ aA)(xj ⊕ bA) ⊕ c makes D constant and eliminates at least three
gates in each branch; in addition xi and xj become 1-variables. So, we get at
least (3 + α + σ, 3 + α + σ) which dominates (3 + α + σ, 2 + α). Note that xk
only feeds gate D which is now constant so we do not need to replace xk by a
subcircuit computing (xi ⊕ aA)(xj ⊕ bA)⊕ c.

Case 5.2.2.3. A is either a 2+-gate or a 1-gate with the only successor D which is not fed by
a 1-variable. Assigning xi a constant we eliminate three gates in one branch and
two in the other one, in addition xj becomes a 1-variable in the branch where
A becomes constant. Gate D do not introduce new 1-variables, otherwise we
would be in one of the previous two cases. Thus, we get (3 + α+ σ, 2 + α).

Corollary 13. 1. For any ε > 0 there exists δ = δ(ε) > 0 such that #SAT for circuits over B2

of size at most (2.6− ε)n can be solved in time (2− δ)n.

2. Let f ∈ Bn be an (n, r(n) = n− o(n))-quadratic disperser. Then CB2(f) ≥ 3n− o(n).

3. Let f ∈ Bn be an
(
n, r(n) = n− o(n), ε(n) = 2−ω(logn)

)
-quadratic extractor. Then

CB2(f, δ) ≥ 2.6n− t, where δ = 2−n
Ω(1)

+ exp
(
−(t−7.8(n−r(n)))2

121.68r(n)

)
. This, in particular, implies

that Cor(f, C) is negligible for any circuit C of size 2.6n− g(n) for some g(n) = o(n).

Proof. 1. Let σ = 1/5. First note that for large enough α, we have

τ(α, 2α) < τ(2α, 2α, 2α, 3α) < τ(2.6+α, 2.6+α) = 2
1

2.6+α < τ(3.5+α, 3+α) < τ(3.2+α, 2+α).
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Let γ(α) = τ(3.2 + α, 2 + α) − 2
1

2.6+α . By Lemma 2, γ(α) = O(1/α3) holds. The running
time of the algorithm is at most

(τ(3.2 + α, 2 + α))s+αn ≤
(
2

1
2.6+α (1 + γ(α))

)s+αn ≤ 2
s+αn
2.6+α 2(s+αn)γ(α) log2 e

≤ 2
(2.6−ε)n+αn

2.6+α
+O(n/α2) ≤ (2− δ)n

for some δ > 0 if we set α = c/ε for large enough c > 0.

2. Lemma 12 guarantees that for α = 6, σ = 0 one can always make an affine substitution
reducing s + 6i by at least 9. The function f is resistant to r(n) such substitutions. Hence
for a circuit C computing f , s(C) + 6n ≥ 9r(n).

3. Let us consider a circuit C of size at most 2.6n−t, that is, µ(C) ≤ (2.6n−t)+αn. Now we fix
α = 5.2, σ = 0.2, then βa = min{7.8, 11.7, 7.8, 7.8} = 7.8, βm = min{5.2, 5.2, 7.8, 7.2} = 5.2.

We use the third item of Theorem 4 with k = 2, r = r(n), ε = ε(n), µ = (2.6n − t + 5.2n),
which gives us

δ = ε(n) + exp

(
−(7.8r(n)− (7.8n− t))2

2r(n) · 2.62 · 32

)
= ε(n) + exp

(
−(t− 7.8(n− r(n)))2

121.68r(n)

)
.

Remark 1. Note that it is an open problem to find an explicit construction of quadratic disperser
or extractor over F2 with r = n − o(n). Any disperser for a slightly more general definition of
quadratic varieties would also imply a new worst case lower bound [26].

Remark 2. Note that the upper bound for #SAT can be improved using the following “forbidden
trick”, that is, a simplification rule that reduces the size of a circuit without changing the number
of its satisfying assignments, but changes the function computed by the circuit.

In the proof of Lemma 12 set σ = 0 (that is, do not account for 1-variables). The set of splitting
vectors then turn into

{(α, 2α), (2α, 2α, 2α, 3α), (3 + α, 3 + α), (3 + α, 2 + α)} .

By inspecting all the cases, we see that the splitting vector (3 + α, 2 + α) only appears in the the
Case 5.2.2. We can handle this case differently. Split on xi. When A is trivialized, xj becomes
a 1-variable feeding an xor-gate. It is not difficult to show that by replacing this gate with a new
variable x′j one gets a circuit with the same number of satisfying assignments.

xi xj

∧A⊕B ⊕C

G

D E

xi ← 0

xj

⊕C

G

D E
simplify

x′j

G

D E

This additional trick gives us the following set of splitting vectors:

{(α, 2α), (2α, 2α, 2α, 3α), (3 + α, 3 + α), (4 + α, 2 + α)} .
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These splitting numbers give an algorithm solving #SAT in (2 − δ(ε))n for B2-circuits of size at
most (3− ε)n for ε > 0.

Note that such a simplification rule does not fit into our framework since it changes the function
computed by a circuit. It would be interesting to adjust the framework to allow such kind of
simplifications (probably, by incorporating some new parameter to the measure).

6 Open problems

There are three natural questions left open in this paper.

1. Prove that a superlinear circuit lower bound in this framework violates the Exponential Time
Hypothesis.

2. Give an explicit construction of quadratic dispersers (see Remark 1).

3. Adjust the framework to allow using natural simplification rules like replacing an xor gate
fed by a 1-variable for both upper bounds for #SAT and lower bounds for circuit size (see
Remark 2).
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Appendix

Here we provide omitted proofs of technical lemmas.

Lemma 2 (Gap between τ(a1 + b, a2 + b) and τ((a1 +a2)/2+ b, (a1 +a2)/2+ b) = 2
1

(a1+a2)/2+b ). Let

a1 > a2 > 0, a′ = (a1 + a2)/2 and δ(b) = τ(a1 + b, a2 + b)− 2
1

a′+b . Then, δ(b) = O((a1 − a2)2/b3)
as b→∞.
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Proof. Let x = τ(a1 + b, a2 + b), then by definition we have

1 =
1

xa1+b
+

1

xa2+b
=
x−(a1−a2)/2 + x(a1−a2)/2

xa′+b
.

Since

x = 2
1

a′+b + δ(b) = 1 +
ln 2

a′ + b
+ δ(b) +O

(
1

(a′ + b)2

)
and

(1 + ε)(a1−a2)/2 = 1 + (a1 − a2)ε/2 + (a1 − a2)(a1 − a2 − 1)ε2/4 +O(ε3),

we have

x−(a1−a2)/2 + x(a1−a2)/2 = 2 +
(a1 − a2)2

2

(
ln 2

a′ + b
+ δ(b)

)2

+O

((
ln 2

a′ + b
+ δ(b)

)3
)
.

We also have

xa
′+b = 2

(
1 + δ(b)/2

1
a′+b

)a′+b
= 2

(
1 + (a′ + b)δ(b)/2

1
a′+b +O(δ(b)2)

)
.

By the definition of x, we have

lim
b→∞

(a1 − a2)2 ln2 2

2b2
/(2bδ(b)) = 1.

This implies

δ(b) =
(a1 − a2)2 ln2 2

4b3
+ o(1/b3).

Lemma 3. Let X0, . . . , Xm be a supermartingale, let Yi = Xi−Xi−1. If Yi ≤ c and for fixed values
of (X0, . . . , Xi−1), the random variable Yi is distributed uniformly over at most k (not necessarily
distinct) values, then for every λ ≥ 0:

Pr[Xm −X0 ≥ λ] ≤ exp

(
−λ2

2mc2(k − 1)2

)
.

Proof. For any t > 0,

Pr [Xm −X0 ≥ λ] = Pr

[
m∑
i=1

Yi ≥ λ

]
= Pr

[
exp

(
t ·

m∑
i=1

Yi

)
≥ eλt

]
≤ e−λt · E

[
exp

(
t ·

m∑
i=1

Yi

)]
.

First we show that for any t > 0, E[etYi ] ≤ exp
(
t2c2(k − 1)2/2

)
. Since {Xi} is a supermartin-

gale, E[Yi|Xi−1, . . . , X0] ≤ 0. W.l.o.g., assume that E[Yi|Xi−1, . . . , X0] = 0, otherwise we can
increase the values of negative Yi’s which only increases the objective function E[etYi ]. Note that
E[Yi] = 0, Yi ≤ c and Y being uniform over k values imply that |Yi| ≤ c(k − 1). Let

h(y) =
etc(k−1) + e−tc(k−1)

2
+
etc(k−1) − e−tc(k−1)

2
· y
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be the line going through points (−c(k − 1), h(−c(k − 1))) and (c(k − 1), h(c(k − 1))). From con-
vexity of etY , etY ≤ h(y) for |y| ≤ c(k − 1). Thus,

E[etYi ] ≤ E[h(Yi)] = h (E[Yi]) = h(0) = cosh(tc(k − 1)) ≤ exp
(
t2c2(k − 1)2/2

)
,

where the last inequality cosh(x) ≤ exp
(
x2/2

)
for x > 0 can be proven by comparing the Taylor

series of the two functions.
Now,

E

[
exp

(
t ·

m∑
i=1

Yi

)]
= E

[
exp

(
t ·

m−1∑
i=1

Yi

)
· E [exp (Ym|Xm−1, . . . , X0)]

]
≤

E

[
exp

(
t ·

m−1∑
i=1

Yi

)]
· exp

(
t2c2(k − 1)2/2

)
≤ exp

(
mt2c2(k − 1)2/2

)
,

which for t = λ/mc2(k − 1)2 implies Pr[Xm −X0 ≥ λ] ≤ exp
(

−λ2

2mc2(k−1)2

)
.

Lemma 6. Splitting(U2, {xi ← c}, s+ αi) � {(α, 2α), (3 + α, 3 + α), (2 + α, 4 + α)} .

Proof. Let A be a top-gate computing (xi ⊕ a)(xj ⊕ b) ⊕ c where xi, xj are input variables and
a, b, c ∈ {0, 1} are constants. If out(xi) = out(xj) = 1 we split on xi. When xi ← a the gate
A trivializes and the resulting circuit becomes independent on xj . This gives (α, 2α). Assume
now that out(xi) ≥ 2. Denote by B the other successor of xi and let C,D be successors of A,B,
respectively. Note that B 6= C since the circuit is normalized but it might be the case that C = D.
We then split on xi. Both A and B trivialize in at least one of the branches and their successors
are also eliminated. This gives us either (3 +α, 3 +α) or (2 +α, 4 +α). (Note if A and B trivialize
in the same branch and C = D then we counted C twice in the analysis above. However in this
case C also trivializes so all its successors are also eliminated.)

Lemma 10. Splitting(B2, {xi ← ⊕j∈Jxj ⊕ c}, µ = s+ αi) � {(α, 2α), (2 + α, 3 + α)} .

Proof. Fix any topological ordering of a given circuit C and let A be the first gate in this ordering
which is not a 1-xor (if there is no such gate then all the gates in C are 1-xors hence C computes
an affine function and we can trivialize it with a single affine substitution). Let P and Q be inputs
to A. Each of P and Q is computed by a tree of xors, that is, a subcircuit consisting of 1-xors only.
Since each gate in such a tree has outdegree 1, it is not used in any other part of the circuit. Also,
both P and Q might as well be input gates.

⊕ ⊕

⊕A

In any case, we can trivialize, say, P by an affine substitution. If P is an input gate this can be
done simply by assigning the corresponding variable a constant. If P is an internal gate then it
computes a sum

⊕
j∈J xj ⊕ c. To trivialize it, we select any variable i ∈ J and make a substitution

xi ←
⊕

j∈J\{i} xj ⊕ c′. This clearly makes P constant. To remove xi from the circuit we replace
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the whole tree for P by a new tree computing
⊕

j∈J\{i} xj ⊕ c′ (at this point, we use essentially
the fact that all the gates in the tree computing P were needed to compute P only; hence when
P is trivialized all these gates may be removed safely). We then replace all occurrences of xi by
this new tree. The new tree has one gate less than the old one. So when P is an internal gate, by
trivializing it we eliminate a variable and the gate P itself.

Case 1. A is a 2+-xor. Then A itself is computed by a tree of 1-xors. Trivializing it gives (3 +
α, 3 + α).

Case 2. A is an and-gate and one of its inputs (say, P ) is an internal gate. We trivialize P . In
both branches we eliminate A and P , but in one of them A is trivialized so we eliminate also
its successors. This gives (2 + α, 3 + α).

Case 3. A is an and-gate fed by two variables xi and xj .

Case 3.1. The outdegree of one of them (say, xi) is at least 2. Then splitting on xi gives
(2 + α, 3 + α).

Case 3.2. out(xi) = out(xj) = 1. Then splitting on xi is (α, 2α).
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