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Abstract

Secret sharing schemes allow a dealer to distribute a secret piece of information among several
parties such that only qualified subsets of parties can reconstruct the secret. The collection of
qualified subsets is called an access structure. The best known example is the k-threshold access
structure, where the qualified subsets are those of size at least k. When k = 2 and there are n
parties, there are schemes where the size of the share each party gets is roughly log n bits, and
this is tight even for secrets of 1 bit. In these schemes, the number of parties n must be given
in advance to the dealer.

In this work we consider the case where the set of parties is not known in advance and could
potentially be infinite. Our goal is to give the tth party arriving the smallest possible share as a
function of t. Our main result is such a scheme for the k-threshold access structure where the
share size of party t is (k − 1) · log t + poly(k) · o(log t). For k = 2 we observe an equivalence
to prefix codes and present matching upper and lower bounds of the form log t + log log t +
log log log t + O(1). Finally, we show that for any access structure there exists such a secret
sharing scheme with shares of size 2t−1.
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1 Introduction

640K ought to be enough for anybody

Misattributed to Bill Gates, 1981

Engineering scalable systems is a delicate business: important decisions have to be made regard-
ing balancing scalability and efficiency when fixing system parameters (such as the representation
size of a date, the number of clients the system can serve simultaneously, security parameters and
more). This inherent tradeoff between scalability and efficiency has had devastating consequences.
There are many Y2K [Wikb] style horror stories such as losing contact with the NASA space-
craft “Deep Impact” when its internal clock overflowed, triggering an endless series of computer
reboots [Geo], and the IPv4 address exhaustion problems caused by the limited allocation size for
numeric Internet addresses [Wika]. Can we design scalable systems without suffering a great deal
of efficiency costs? In this work we investigate methods that do not assume a fixed upper bound
on the number of participants in the area of secret sharing.

Secret sharing is a method by which a secret piece of information can be distributed among n
parties so that any qualified subset of parties can reconstruct the secret, while every unqualified
subset of parties learns nothing about the secret. The collection of qualified subsets is called
an access structure. Secret sharing schemes are a basic primitive and have found applications in
cryptography and distributed computing; see the extensive survey of Beimel [Bei11]. A significant
goal in secret sharing is to minimize the share size, namely, the amount of information distributed
to the parties.

Secret sharing schemes were introduced in the late 1970s by Shamir [Sha79] and Blakley [Bla79]
for the k-out-of-n threshold access structures that includes all subsets of cardinality at least k
for 1 ≤ k ≤ n. Their constructions are fairly efficient both in the size of the shares and in the
computation required for sharing and reconstruction. Ito, Saito, and Nishizeki [ISN93] showed
the existence of a secret sharing scheme for every (monotone) access structure. In their scheme
the size of the shares is proportional to the depth 2 complexity of the access structure when
viewed as a Boolean function (and hence shares are exponential for most structures). Benaloh and
Leichter [BL88] gave a scheme with share size polynomial in the monotone formula complexity of
the access structure. Karchmer and Wigderson [KW93] generalized this construction so that the
size is polynomial in the monotone span program complexity.

All of these schemes require that an upper bound on the number of participants is known in
advance. However, in many scenarios this is either unrealistic or prone to disaster. Moreover, even
if a crude upper bound n is known in advance, it is preferable to have shares as small as possible
if the eventual number of participants is much smaller than this bound on n.

In this work we consider the well motivated, yet almost unexplored1, case where the set of
parties is not known in advanced and could potentially be infinite. Our goal is to give the tth party
arriving the smallest possible share as a function of t. We require that in each round, as a new
party arrives, there is no communication to the parties that have already received shares, i.e. the
dealer distributes a share only to the new party. We call such access structures evolving: the parties
arrive one by one and, in the most general case, a qualified subset is revealed to the dealer only
when all parties in that subset are present (in special cases the dealer knows the access structure to
begin with, just does not have an upper bound on the number of parties). For this to make sense,

1But see the work of Csirmaz and Tardos [CT12] discussed below.
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we assume that the changes to the access structure are monotone, namely, parties are only added
and qualified sets remain qualified.

Our first result is a construction of a secret sharing scheme for any evolving access structure.

Theorem 1.1. For every evolving access structure there is a secret sharing scheme for a 1-bit
secret where the share size of the tth party is 2t−1.

Then, we construct more efficient schemes for specific access structures. We focus on the evolving
k-threshold access structure for k ∈ N, where at any point in time any k parties can reconstruct
the secret but no k − 1 parties can learn anything about the secret.

Theorem 1.2 (Informal). There is a secret sharing scheme for the evolving k-threshold access
structure and a 1-bit secret in which the share size of the tth party is (k−1) · log t+poly(k) ·o(log t).

For k = 2, we present a construction for the evolving 2-threshold access structure with slightly
better low order terms. In this scheme the share size of the tth party is log t+log log t+2 log log log t+
O(1).2 To complement this construction, we prove a matching lower bound showing that our scheme
is tight.

Theorem 1.3. For any constant c ∈ N, there is no secret sharing scheme for the evolving 2-
threshold access structure and a 1-bit secret in which the share size of the tth party is at most
log t+ log log t+ c.

Finally, we present a tight connection to prefix codes for the integers. A prefix code is a code
in which no codeword is a prefix of any other codeword. These codes are widely used, for example
in country calling codes, the UTF-8 system for encoding Unicode characters, and more.

Theorem 1.4. Let σ : N→ N. A prefix code for the integers in which the length of the tth codeword
is σ(t) exists if and only if a secret sharing scheme for the evolving 2-threshold access structure and
1-bit secret in which the share size of the tth party is σ(t).

1.1 Discussion

Schemes for general access structures. In the classical setting of secret sharing many schemes
are known for general access structures, depending on their representation [ISN93, BL88, KW93].
All of these schemes result with shares of exponential size for general access structures. One of the
most important open problems in the area of secret sharing is to prove the necessity of long shares,
namely, find an access structure (even a non-explicit one) that requires exponential size shares.

Our scheme for general evolving access structures also results with exponential size shares.
Since any access structure can be made evolving, we cannot hope to obtain anything better than
exponential in general (unless we have a major breakthrough in the classical setting).

Threshold schemes. In the classical setting there are several different schemes for the threshold
access structure. One of the best such schemes (in terms of the computation needed for sharing
and reconstruction and in terms of the share size) is due to Shamir [Sha79]. In this scheme, to
share a 1-bit secret among n parties, roughly log n bits have to be distributed to each party. It is
known that log n bits are essentially required, so Shamir’s scheme is optimal (see [CCX13] for the

2See Sections 4 and 5 for efficient generalizations that support larger domains of secrets.
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original proof of Kilian and Nisan [KN90], an improvement, and a discussion of the history; see
also [BGK16]).

Let us review Shamir’s scheme for the k-out-of-n threshold access structure. The dealer holding
a secret bit s, samples a random polynomial p(·) of degree k−1 with coefficients over GF(q), where
the free coefficient is fixed to be s, and gives party i ∈ [n] the field element p(i). q is chosen to
be the smallest prime (or a power of a prime) larger than n. Correctness of the scheme follows by
the fact that k points on a polynomial of degree k − 1 completely define the polynomial and allow
for computing p(0) = s. Security follows by a counting argument showing that given less than k
points, both possibilities for the free coefficient are equally likely. The share of each party is an
element in the field GF(q) that can be represented using log q ≈ log n bits. Notice that the share
size is independent of k.

As a first attempt one might try to adapt this procedure to the evolving setting. But since n
is not fixed, what q should we choose? A natural idea is to use an extension field. Roughly, we
would simulate the dealer for Shamir’s scheme, sample a random polynomial of degree k − 1 and
increase the field size from which we compute shares as more parties arrive. Ideally, for the share
of the tth party we will use a field of size O(t). This implies that the share size of party t would
be log(O(t))� log t+ log log t for large enough t. The lower bound in Theorem 1.3 means that no
such solution can work!

We take a different path for obtaining efficient schemes. For example, for k = 2, our scheme
results with essentially optimal share size for the tth party: the first two high order terms are
log t + log log t (without hidden constant factors) and there is an additional lower order term of
2 log log log t+ 6. See the simplified scheme in Section 4.

Linearity of our schemes. In a linear scheme the secret is viewed as an element of a finite field,
and the shares are obtained by applying a linear mapping to the secret and several independent
random field elements. Equivalently, a linear scheme is defined by requiring that each qualified
set reconstructs the secret by applying a linear function to its shares [Bei96, Section 4.1]. Most
of the known schemes are linear (see [BI01] for an exception). Linear schemes are very useful for
updating and manipulating secret shares (cf. proactive secret sharing [HJKY95]) and have many
applications, most notably for secure multi-party computation [BGW88, CDM00]. Our schemes
from Theorems 1.1 and 1.2 are linear (see Section 5.5 for details), whereas the scheme based on
prefix codes from Theorem 1.4 is non-linear.

1.2 Related work

Most similar to our setting is the notion of on-line secret sharing of Csirmaz and Tardos [CT12].
Csirmaz and Tardos present a scheme for any access structure in which every party participates in
at most d qualified sets, where d is an upper bound known in advance. The share size of every party
in this scheme is linear in d. In addition, Csirmaz and Tardos presented a scheme for the evolving
2-threshold access structure in which the share size of party t is linear in t. Our Theorem 1.2 is an
exponential improvement on the latter.

There are numerous areas where systems are designed to work without any fixed upper bound
on the size or the duration they will be used. A few examples include prefix codes of the integers
(a.k.a. prefix-free encodings), such as the Elias code [Eli75] or the online encoding of Dodis et
al. [DPT10], labeling nodes for testing adjacency in possibly infinite graphs [KNR92], forward-
secure signatures with an unbounded number of time periods [MMM02], and data structures for
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approximate set membership (Bloom filters) for sets of unknown size [PSW13].

1.3 Overview of our constructions and techniques

First, we overview our construction for general evolving access structures. Then, we describe our
construction for the evolving 2-threshold access structure. This serves as a warm-up for our more
general construction for k-threshold access structures. Lastly, we discuss the connection with prefix
codes.

General evolving access structures. Let A = A1,A2, . . . be any evolving access structure
with corresponding monotone characteristic functions f1, f2, . . ., where ft : {0, 1}t → {0, 1}. Note
that the dealer does not know A in advance but is only given At when the tth party arrives. Let
s ∈ {0, 1} be the secret to be shared. The share of party t ∈ N consists of 2t−1 bits, each denoted
by w(b1,...,bt−1,1), where b1, . . . , bt−1 ∈ {0, 1}. The w(b1,...,bt−1,1)’s are generated as follows: if party t
“completes” a minimal qualified set whose indicator vector is (b1, . . . , bt−1, 1), then the dealer gives
party t the bit w(b1,...,bt−1,1) = w(b1,...,bt−1) ⊕ . . .⊕ w(b1) ⊕ s (where w(b1,...,bi,0) = 0), so XORing the
appropriate shares will recover s. Otherwise, if (b1, . . . , bt−1, 1) is unqualified, then the dealer sets
w(b1,...,bt−1,1) ← {0, 1} to be a uniformly random bit. See Section 3 for the exact details.

Evolving 2-threshold access structure. The approach of [CT12] for the evolving 2-threshold
access structure is to give party t a random bit bt and all bits s ⊕ b1, . . . , s ⊕ bt−1. This clearly
allows for each pair of parties to reconstruct the secret and ensures that for every single party the
secret remains hidden. The share size of the tth party in this scheme is t. (Essentially the same
scheme also follows from our general construction in Section 3 with a simple efficiency improvement
described towards the end of that section.) Generalizing this idea to larger values of k results with
shares of size roughly tk−1.

Whereas the above approach is somewhat naive (and very inefficient in terms of share size), our
construction is more subtle and results with exponentially shorter shares. Our main building block
is a domain reduction technique which allows us to start with a naive solution and apply it only
on a small number of parties to get an overall improved construction. Details follow.

We assign each party a generation, where the gth generation consists of 2g parties (i.e. the
generations are of geometrically increasing size). Within each generation we execute a standard
secret sharing scheme for 2-threshold. Notice that here we know exactly how many parties are in
the same generation: party t is part of generation g = blog tc and the size of that generation is
size(g) ≤ t. A standard secret sharing scheme for 2-out-of-t costs roughly log t bits (using Shamir’s
scheme; see Claim 2.3). This solves the case in which both parties come from the same generation.

To handle the case where the two parties come from different generations we use a (possibly
naive) scheme for the evolving 2-threshold access structure. For each generation we generate one
share for the evolving scheme and give it to each party in that generation. Thus, if two parties
from different generations come together they hold two different shares for the evolving scheme
that allow them to reconstruct the secret. Since we generate one share of the evolving scheme per
generation, party t holds the share of the (g = log t)th party of the evolving scheme!

Summing up, if we start with a scheme in which the share size of the tth party is σ(t), then we
end up with a scheme with share size roughly σ′(t) = log t + σ(log t). To get our result we start
with a scheme in which σ(t) = t (described above) and iteratively apply this argument to get better
and better schemes.
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Evolving k-threshold access structure. There are several ideas underlying the generalization of
the 2-threshold scheme to work for any k. As before, we assign each party a generation, but now the
gth generation is roughly of size 2(k−1)·g. This means that party t is in generation g = b(log t)/(k−1)c
that includes size(g) = t · 2k−1 parties. Again, within a generation we apply a standard k-out-of-
size(g) secret sharing scheme. This costs us log(size(g)) ≤ log t + k bits using Shamir’s scheme.
This solves the problem if k parties come from the same generation.

We are left with the case where the k parties come from at least two different generations.
For this we use a (possibly naive) scheme for the evolving k-threshold access structure. For each
generation we generate k − 1 shares s1, . . . , sk−1 for the evolving scheme and share each si using a
standard i-out-of-size(g) secret sharing scheme. Thus, if ` ≤ k − 1 parties from some generation
come together, they can reconstruct s1, . . . , s` which are ` shares for the evolving scheme. Therefore,
any k parties (that come from at least two generations) can reconstruct k shares for the evolving
k-threshold scheme that enable them to reconstruct the secret. Since we generate k − 1 shares of
the evolving scheme per generation, party t holds (roughly) the share of the (log t+ k)th party of
the evolving scheme.

The share size needed to share each si is max{log(size(g)), |si|} ≤ max{log t+ k, σ(log t+ k)}
(using Shamir’s scheme; see Claim 2.3). Summing up, if we start with a scheme in which the
share size of the tth party is σ(t), then we end up with a scheme with share size roughly σ′(t) =
log t+ (k − 1) ·max{log t+ k, σ(log t+ k)}. A small optimization is that sharing s1 costs just |s1|,
as we can give s1 to each party (similarly to what we did in the k = 2 case).

We want to iteratively apply this domain reduction procedure. For this we have to specify the
initial scheme. If we start with the scheme that results from the construction in Theorem 1.1 which
has share size roughly 2t (or roughly tk with the optimization described above), then the resulting
scheme will have a factor that depends exponentially on k. This makes the scheme impractical even
for small values of k.
A formula for the future. To get around this we present a tailor-made construction for the
evolving k-threshold in which the share size of party t has almost linear dependence on t and k.
Specifically, the share size in this scheme is kt · log(kt). For this, we construct, at least intuitively,
a Boolean monotone formula for k-threshold that counts to k.3 For this counting to make sense in
the evolving setting we notice that counting to k can be done by summing up the number of 1’s so
far with the number of 1’s that will come in the future. Since we are counting to k, both of these
numbers can be bounded by k, so we have to prepare only k possibilities for the unknown future.
To make this construction efficient, we combine it with a generation-like mechanism. See Section 5
for the full details.

Prefix codes and evolving 2-threshold. There are several clues that point to a connection
with prefix codes: the construction with the repeated domain reduction is reminiscent of the Elias
code construction; the lower bound on schemes for the evolving 2-threshold access structure in
Theorem 1.3 uses what is identical to a Kraft inequality, which is a characterization of prefix codes.
We are able to formalize this tight relationship:

• Given any prefix code in which the length of the tth codeword is σ(t), we construct a secret
sharing scheme for the evolving 2-threshold access structure in which the share size of the tth

3Even though we can make our construction a monotone formula, our final construction is not phrased as a formula
since we want to optimize share size. To exemplify this gap notice that the secret sharing scheme that results from
the best formula for k-threshold on n parties has share size poly(k) · logn [Fri86, Bop86], while the scheme of Shamir
has size roughly logn, independently of k.
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party is σ(t). Using the best prefix code constructions we get a scheme in which the share size
is the same as in our direct construction described above (but it is less efficient for sharing
secrets longer than 1 bit). See Section 7 for the transformation.

• On the other hand, any secret sharing scheme for the evolving 2-threshold access structure
in which the share size of the tth party is σ(t), implies the existence of a prefix code in which
the length of the tth codeword is σ(t). This comes from the fact that the sufficient condition
of Kraft’s inequality yields prefix codes.

2 Model and Definitions

For an integer n ∈ N we denote by [n] the set {1, . . . , n}. We denote by log the base 2 logarithm
and assume that log 0 = 0. For a set X we denote by x ← X the process of sampling a value x
from the uniform distribution over X

We start by briefly recalling the standard setting of (perfect) secret sharing. Let Pn = {1, . . . , n}
be a set of n parties. A collection of subsets A ⊆ 2Pn is monotone if for every B ∈ A, and B ⊆ C
it holds that C ∈ A.

Definition 2.1 (Access structure). An access structure A ⊆ 2Pn is a monotone collection of subsets.
Subsets in A are called qualified and subsets not in A are called unqualified.

Definition 2.2 (Threshold access structure). For every n ∈ N and 1 ≤ k ≤ n, let (k, n)-thr be
the threshold access structure over n parties which contains all subsets of size at least k.

A (standard) secret sharing scheme involves a dealer who has a secret, a set of n parties, and
an access structure A. A secret sharing scheme for A is a method by which the dealer distributes
shares to the parties such that any subset in A can reconstruct the secret from its shares, while
any subset not in A cannot reveal any information on the secret.

More precisely, a secret sharing scheme for an access structureA consists of a pair of probabilistic
algorithms (SHARE,RECON). SHARE gets as input a secret s (from a domain of secrets S) and a

number n, and generates n shares Π
(s)
1 , . . . ,Π

(s)
n . RECON gets as input the shares of a subset B

and outputs a string. The requirements are:

1. For every secret s ∈ S and every qualified set B ∈ A, it holds that Pr[RECON({Π(s)
i }i∈B, B) =

s] = 1.

2. For every unqualified set B /∈ A and every two different secrets s1, s2 ∈ S, it holds that the

distributions ({Π(s1)
i }i∈B) and ({Π(s2)

i }i∈B) are identical.

The share size of a scheme is the maximum number of bits each party holds in the worst case
over all parties and all secrets.

The well known scheme of Shamir [Sha79] for the (k, n)-thr access structure (based on poly-
nomial interpolation) satisfies the following.

Claim 2.3 ([Sha79]). For every n ∈ N and 1 ≤ k ≤ n, there is a secret sharing scheme for secrets of
length m and the (k, n)-thr access structure in which the share size is `, where ` ≥ max{m, log q}
and q > n is a prime number (or a power of a prime). Moreover, if k = 1 or k = n, then ` = m.4

4Schemes in which the share size is equal to the secret size are known as ideal secret sharing schemes.
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2.1 Secret sharing for evolving access structures

We proceed with the definition of an evolving access structure. Roughly speaking, the parties arrive
one by one and, in the most general case, a qualified subset is revealed only when all parties in
that subset are present (in special cases the access structure is known to begin with, but there is
no upper bound on the number of parties). To make sense of sharing a secret with respect to such
a sequence of access structures, we require that the changes to the access structure are monotone,
namely, parties are only added and qualified sets remain qualified.

To define evolving access structures we need to define a restriction.

Definition 2.4 (Restriction). Let A be an access structure on n parties and let 0 < m < n. We
denote by A|m the restriction of A to the first m parties. That is,

A|m = {X ∈ A | {m+ 1, . . . , n} ∩X = ∅}.

Due to monotonicity of the access structure, we have the following claim.

Claim 2.5. If A is an access structure on n parties, then A|m is an access structure over m parties.

Proof. By definition of A|m, it contains only parties from the set {1, . . . ,m}. Thus, to prove the
claim it is enough to show that A|m is a monotone set, namely, that if B ∈ A|m then for any
B ⊆ C ⊆ Pm. Indeed, since A is an access structure, for B ∈ A|m and B ⊆ C ⊆ Pm ⊆ Pn, we
have that B,C ∈ A. By definition of A|m, it holds that C ∈ A|m.

Definition 2.6 (Evolving access structure). A (possibly infinite) sequence of access structures
{At}t∈N is called evolving if the following conditions hold:

1. For every t ∈ N, it holds that At is an access structure over t parties.

2. For every t ∈ N, it holds that At|t−1 is equal to At−1.5

This definition naturally gives rise to an evolving variant of threshold access structures (see
Definition 2.2). Here, we think of k as fixed, namely, independent of the number of parties.

Definition 2.7 (Evolving threshold access structure). For every k ∈ N, let evolving k-thr be
the evolving threshold access structure which contains for any access structure in the sequence all
subsets of size at least k.

We generalize the definition of a standard secret sharing scheme to apply for evolving access
structures. Intuitively, in this setting, at any point t ∈ N in time, there is an access structure At
which defines the qualifies and unqualified subsets of parties.

Definition 2.8 (Secret sharing for evolving access structures). Let A = {At}t∈N be an evolving
access structure. Let S be a domain of secrets, where |S| ≥ 2. A secret sharing scheme for A
and S consists of a pair of algorithms (SHARE,RECON). The sharing procedure SHARE and the
reconstruction procedure RECON satisfy the following requirements:

5Recall the definition of a restriction from Definition 2.4.
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1. SHARE(s, {Π(s)
1 , . . . ,Π

(s)
t−1}) gets as input a secret s ∈ S and the secret shares of parties

1, . . . , t − 1. It outputs a share for the tth party. For t ∈ N and secret shares Π
(s)
1 , . . . ,Π

(s)
t−1

generated for parties {1, . . . , t− 1}, respectively, we let

Π
(s)
t ← SHARE(s, {Π(s)

1 , . . . ,Π
(s)
t−1})

be the secret share of party t.

We abuse notation and sometimes denote by Π
(s)
t the random variable that corresponds to

the secret share of party t generated as above.

2. Correctness: For every secret s ∈ S and every t ∈ N, every qualified subset in At can
reconstruct the secret. That is, for s ∈ S, t ∈ N, and B ∈ At, it holds that

Pr
[
RECON({Π(s)

i }i∈B, B) = s
]

= 1,

where the probability is over the randomness of the sharing and reconstruction procedures.

3. Secrecy: For every t ∈ N, every unqualified subset B /∈ At, and every two secret s1, s2 ∈
S, the distribution of the secret shares of parties in B generated with secret s1 and the
distribution of the shares of parties in B generated with secret s2 are identical. Namely, the

distributions ({Π(s1)
i }i∈B) and ({Π(s2)

i }i∈B) are identical.

The share size of the tth party in a scheme for an evolving access structure is max |Πt|, namely
the number of bits party t holds in the worst case over all secrets and previous assignments.6

On choosing the access structure adaptively. One can also consider a stronger definition in
which At is chosen at time t (rather than ahead of time) as long as the sequence of access structures
A = {A1, . . . ,At} is evolving. In this variant, the RECON procedure gets the access structure At
as an additional parameter. Our construction of a secret sharing scheme for general evolving access
structures in Section 3 works for this notion as well.

On the domain of secrets. Unless otherwise stated, we usually assume that the secret is a single
bit (either 0 or 1). One can generalize any such scheme to support longer secrets by secret sharing
every bit of the secret independently, suffering a multiplicative factor in share size that depends
on the length of the secret. When we generalize our schemes to support long secrets, this naive
generalization will be our benchmark.

2.2 Warm-up: undirected s-t-connectivity

We start with a simple warm-up scheme. We show that the standard scheme for the st-connectivity
access structure can be easily adapted to the evolving setting.

In this access structure parties correspond to edges of an undirected graph G = (V,E). There
are two fixed vertices in the graph called s and t (where s, t ∈ V ). A set of parties (i.e. edges) is
qualified if and only if they include a path from s to t.

Around 1989 Benaloh and Rudich [BR89] constructed a (standard) secret sharing for this access
structure. The dealer, given a secret s ∈ {0, 1}, assigns with each vertex v ∈ V a label. For v = s

6This means that the share size is bounded, which is almost always the case. An exception is the scheme (for
rational secret sharing) of Kol and Naor [KN08] in which the share size does not have a fixed upper bound.
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the label is ws = s, for v = t the label is wt = 0 and for the rest of the vertices the label is chosen
independently uniformly at random wv ← {0, 1}. The share of a party e = (u, v) ∈ E is wu ⊕ wv.

For correctness (completeness) consider a set of parties that include a path s = v1v2 . . . vk = t
from s to t. To reconstruct the secret, the parties XOR their shares to get

(wv1 ⊕ wv2)⊕ (wv2 ⊕ wv3)⊕ · · · ⊕ (wvk−1
⊕ wvk) = wv1 ⊕ wvk = s.

For security, one can show that any subset of parties that do not form a path from s to t, hold
shares which are independent of the secret. One way to prove this is to show that the number of
ways to get to the shares of the parties given the secret 0 is equal to the number of ways to get to
these shares given the secret 1 (see [Bei11, §3.2]).

One can observe that this access structure and scheme naturally generalize to the evolving
setting. In this setting, we consider an evolving (possibly infinite) graph, where the set of nodes
and edges are unbounded. At any point in time an arbitrary set of vertices and edges can be added
to the graph. An addition of an edge corresponds to a new party added to the scheme. The special
vertices s and t are fixed ahead of time and cannot change (this is to ensure the access structure is
evolving).

Initially, the dealer assigns labels for the special vertices s and t, as before (i.e. it sets ws = s
and wt = 0). For the rest of the vertices the dealer assigns (uniformly random) labels only on
demand: When a new edge e = (u, v) is added to the graph (which corresponds to a new party),
the dealer gives the party corresponding to the edge e the XOR of the labels of the vertices u and
v. Correctness and security of this scheme follow similarly to the correctness and security of the
standard scheme. One can see that the share size of each party is exactly the size of the secret.

3 A Scheme for General Evolving Access Structures

We give a construction of a secret sharing scheme for every evolving access structure. We emphasize
that our construction also works in the scenario in which the access structure is chosen adaptively;
see remark after Definition 2.8. We focus on the case where the secret is a single bit.

Theorem 3.1 (Theorem 1.1 restated). For every evolving access structure there is a secret sharing
scheme where the share size of the tth party is at most 2t−1.

The fact that our construction results with shares of exponential size should come as no surprise,
as the best constructions known for standard secret sharing schemes for general access structures
have shares of exponential size (in the number of parties). Proving that shares of exponential size
are necessary to realize some evolving access structure is a very interesting open problem.

Proof of Theorem 3.1. Let A = {At}t∈N be an evolving access structure.7 Let {ft}t∈N be the
sequence of functions, where fi : {0, 1}i → {0, 1} is the (monotone) characteristic function of Ai.

Let s ∈ {0, 1} be the secret to be shared. We describe what the dealer stores and how it prepares
a share for an arriving party. At time t (before party t arrives) the dealer maintains a set of bits
we denote by w(b1,...,bi) for all i ∈ [t − 1] and b1, . . . , bi ∈ {0, 1}. These bits are defined iteratively.
First, the dealer sets w(1) = s if f1(1) = 1 and it is a uniformly random bit otherwise. Moreover,
for every i ≥ 1, the dealer sets w(b1,...,bi−1,0) = 0. The rest of the bits are defined as follows.

7As mentioned, our construction actually works in the setting where At itself is chosen at time t (and it is not
known at any time t′ < t).
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1. If ft(b1, . . . , bt−1, 1) = 1 and ft−1(b1, . . . , bt−1) = 0, then the dealer sets

w(b1,...,bt−1,1) = w(b1,...,bt−1) ⊕ . . .⊕ w(b1) ⊕ s.

2. If ft(b1, . . . , bt−1, 1) = 1 and ft−1(b1, . . . , bt−1) = 1, then the dealer sets

w(b1,...,bt−1,1) = 0.

3. If ft(b1, . . . , bt−1, 1) = 0, then the dealer sets

w(b1,...,bt−1,1) ← {0, 1}

to be a uniformly random bit.

The share of party t ∈ N consists of 2t−1 bits w(b1,...,bt−1,1) for all b1, . . . , bt−1 ∈ {0, 1}.

Correctness and security. We argue correctness and security at time t ∈ N. Let~b = (b1, . . . , bt) ∈
{0, 1}t be an indicator vector of a minimal qualified set of parties at time t. For every i ∈ [t − 1]
such that bi = 1, party i holds the bit w(b1,...,bi). Party t, by construction, holds the bit w(b1,...,bt−1)⊕
· · ·⊕w(b1)⊕s, where w(b1,...,bi,0) = 0 for 0 ≤ i ≤ t−2. Therefore, by XOR-ing all the shares, namely,
computing

t⊕
i=1

w(b1,...,bi),

the parties present can compute s.
For security it is instructive to give a simple example that illustrates how the scheme works

and why it is secure. Consider the access structure at time t = 4 that consists of the following
qualified sets {{1, 2}, {1, 3}, {1, 4}, {2, 4}} and we will argue security for the set {3, 4}. Party 1 is
unqualified so its share is w(1) is a uniformly random bit. Party 2 completes a qualified set with
party 1 and so it’s share consists of two bits w(0,1), w(1,1), where w(0,1) is a uniformly random bit and
w(1,1) = w(1)⊕s. Similarly, the share of party 3 consists of four bits w(0,0,1), w(0,1,1), w(1,0,1), w(1,1,1),
where w(0,0,1) and w(0,1,1), uniformly random, w(1,1,1) = 0 since {1, 2} is qualified as well, and
w(1,0,1) = w(1) ⊕ s. Finally, the share of party 4 consists of 8 bits most of which are either 0 or
uniformly random, and the interesting ones are w(1,0,0,1) = w(1) ⊕ s and w(0,1,0,1) = w(0,1) ⊕ s. Let
us assume that the shares given to parties {1, 2, 3} do not reveal s and show that the shares of
party 4 do not reveal it as well. Indeed, all its uniformly random bits and the zero bits do not help,
so we focus on w(1,0,0,1) and w(0,1,0,1). We observe that since parties 4 and 3 both complete party
1 to be a qualified set, they both have the same share w(1,0,0,1) = w(1,0,1) = w(1) ⊕ s, so we can
ignore w(1,0,0,1) as well and be left with w(0,1,0,1) = w(0,1) ⊕ s. Now, the point is that since party
3 does not complete party 2 to get a qualified set, the element w(0,1) completely masks the secret.
More generally, the formal vector space generated by the share w(0,1,0,1) is linearly independent of
all other shares.

We sketch security in the general case by induction. For t = 1 it is immediate and assume that
the scheme is secure for t − 1. For every (b1, . . . , bt) ∈ {0, 1}t, party t receives a bit w(b1,...,bt−1,1)

which is either a uniformly random bit or the bit w(b1,...,bt−1) ⊕ · · · ⊕ w(b1) ⊕ s, depending on the

value of ft(b1, . . . , bt−1, 1). Let ~b = (b1, . . . , bt) ∈ {0, 1}t be an indicator vector of an unqualified
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set of parties at time t. Assume that bt = 1, as the other case follows immediately from the
induction hypothesis. For every w(b1,...,bt−1,1), the uniformly random bits given to party t do not
give an unqualified set any additional information about the secret as they are independent of
everything else this set posses, so we can ignore them. Let us consider all the bit of the form
w(b′1,...,b

′
i)
⊕ · · · ⊕ w(b′1)

⊕ s held by parties in ~b. If there are two parties i, j such that bi = bj = 1
that complete the same set, then they posses the same bit so we can ignore one of them. We are
left with the case in which all parties complete different subsets. In this case, one can see that all
the shares are linearly independent and thus the secret remains hidden. Security follows by the
hypothesis.

Share size. The share size of party t is 2t−1 bits.

3.1 Efficiency improvements

In some cases, depending on the access structure, it is possible to reduce the share size by slightly
optimizing the above scheme. The 0 bits that occur due to Item 2, do not have to be remembered
as they can be inferred from the access structure.

At time t, the shares of party t will consists of:

1. A bit for each unqualified subset of [t] that party t participates in. For the case when the
access structure is known ahead of time, the only unqualified sets to consider our those that
can be expanded to a qualified subset using future parties.

2. A bit for each qualified subset of [t] that party t completes (i.e. is the last one).

This optimization is useful for access structures in which the number of unqualified sets is small.
For example, for the evolving 2-thr access structure, the fact that there are only t unqualified sets,
implies a scheme in which the share size of the tth party is exactly t (we use this fact in Section 4).
More generally, for the evolving k-thr access structure, there are

∑k−2
i=0

(
t−1
i

)
unqualified sets and(

t−1
k−1
)

qualified sets which t completes, implying a scheme with share size roughly tk−1.

4 An Efficient Scheme for Evolving 2-Threshold

We now describe the efficient construction for a secret sharing scheme for the evolving 2-thr access
structure. Recall that evolving 2-thr is the sequence of access structures (2, 1)-thr, (2, 2)-thr,
(2, 3)-thr, . . . which allow, at any point in time, for every pair of parties to learn the secret while
disallowing singletons to learn anything about it. We first focus on the case where the secret is a
single bit and discuss the more general case in Section 4.1.

Theorem 4.1. There is a secret sharing scheme for the evolving 2-thr access structure in which
the share size of the tth party is bounded by

log t+ log log t+ 2 log log log t+ 6.

Recall that in the classical setting of secret sharing, where an upper bound on the number of
parties is known, there is a very efficient scheme for (2, n)-thr in which the share size of each party
is roughly log n (see Claim 2.3). In Section 6 we show that in the evolving setting, for any c ∈ N, a
scheme in which the share size of the tth party is log t + log log t+ c cannot exist. Thus, up to an
additive log log log t term, our scheme is optimal.

Our main technical claim used to prove Theorem 4.1 is given in the following lemma.
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Lemma 4.2. Assume that there exists a secret sharing scheme for the evolving 2-thr access struc-
ture in which the share size of the tth party is σ(t). Then, there exists a secret sharing scheme for
the evolving 2-thr access structure in which the share size of the tth party is

log t+ σ(log t+ 1).

Proof of Theorem 4.1 assuming Lemma 4.2. Recall that in Section 3 we constructed a secret
sharing scheme for any evolving access structure that results with shares of size 2t−1. However,
using the efficiency improvements described in Section 3.1,8 we get a scheme in which the share
size of the tth party is

σ(0)(t) = t.

Using Lemma 4.2 this gives rise to a scheme Π(1) in which the share size of the tth party is

σ(1)(t) = log t+ σ(0)(log t+ 1)

= 2 log t+ 1.

Applying Lemma 4.2 again we get a scheme Π(2) in which the share size of the tth party is

σ(2)(t) = log t+ σ(1)(log t+ 1)

≤ log t+ 2 log (log t+ 1) + 1

≤ log t+ 2 log log t+ 3.

Applying Lemma 4.2 one last time we get a scheme Π(3) in which the share size of the tth party is

σ(3)(t) = log t+ σ(2)(log t+ 1)

≤ log t+ log(log t+ 1) + 2 log log(log t+ 1) + 3

≤ log t+ log log t+ 2 log log log t+ 6.

This proves the theorem.
We note that this bound is tight according to the lower bound in Theorem 1.3 up to the

low-order term log log log t.
We note that by applying Lemma 4.2 i times we can improve the share size for large enough t.

This will match the lower bound up to a low order term of log(i)(t) (See Remark 6.3). We choose
to stop after three applications of Lemma 4.2 due to aesthetic reasons (but see Section 7).

We are left to prove Lemma 4.2.

Proof of Lemma 4.2. Let Π be a construction of a secret sharing scheme for evolving 2-thr in
which the share size of the tth party is σ(t). We construct a scheme Π′ for the same access structure
in which the share size is log t+ σ(log t+ 1). We proceed with the description of the scheme.

Let s ∈ {0, 1} be the secret to be shared. Each party, when it arrives, is assigned to a generation.
The generations are growing in size: For g = 0, 1, 2 . . . the gth generation begins when the 2g-th
party arrives. Therefore, the size of the gth generation, namely, the number of parties that are part
of this generation, is size(g) = 2g and party t ∈ N is part of generation g = blog tc.

When a generation begins the dealer prepares shares for all parties that are part of that gener-
ation. Let us focus on the beginning of the gth generation and describe the dealer’s procedure:

8Alternatively, we can use the construction of [CT12] (see Section 1.3) which gives the tth party a share of size t.
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1. Split s using a secret sharing scheme for (2, size(g))-thr. Denote the resulting shares by

u
(g)
1 , . . . , u

(g)
size(g).

2. Generate one share using the secret sharing scheme Π given the secret s and previous shares
{v(i)}i∈{0,...,g−1}. Denote the resulting share by v(g).

3. Set the secret share of the jth party in the gth generation (i.e. j ∈ [size(g)]) to be(
u
(g)
j , v(g)

)
.

The output of the scheme is depicted in Figure 1.
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Figure 1: The shares of parties 1, . . . , 15 from generations 0, . . . , 3.

Correctness and security. Let t1, t2 ∈ N be any two different parties. We show that the
secret s can be computed from their shares. If t1 and t2 are from the same generation g (i.e. if
g = blog t1c = blog t2c), then they can reconstruct the secret s using the reconstruction procedure
of the (2, size(g))-thr scheme using the corresponding u(g) shares. If they are from different
generations g1 6= g2, then the parties can compute s using the reconstruction procedure of the
evolving 2-thr scheme and the two shares v(g1) and v(g2).

For security consider any single party t ∈ N from generation g. By the security of the
(2, size(g))-thr scheme, the security of the evolving 2-thr scheme, and the fact that both parts
of the share are generated independently, the shares cannot be used to learn anything about the
secret.

Share size analysis. We analyze the share size of parties in the scheme Π′. Denote by σ(t) the
share size of party t in the scheme Π. We bound the size of each component in the share of party

t. The share of party t that is the jth party of generation g = blog tc is (u
(g)
j , v(g)).
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1. u
(g)
j – generated by secret sharing s using a scheme for (2, size(g))-thr. Since size(g) = 2g

and using Claim 2.3 we get that

|u(g)j | ≤ log (size(g)) ≤ blog tc.

2. v(g) – generated by generating one share of a secret sharing scheme Π for evolving 2-thr.
Recall that g shares were generated for previous generations. Therefore,

|v(g)| = σ(g + 1) = σ(blog tc+ 1).

Thus, the total share size in the scheme Π′ is bounded by

log t+ σ(log t+ 1).

4.1 Generalization to larger domains of secrets

This scheme can be generalized to larger domains of secrets in an efficient way (in particular,
better than sharing each bit independently). Roughly speaking, this follows since Shamir’s thresh-
old scheme can be used to share a secret longer than 1 bit without increasing the share size;
see Claim 2.3. More generally, sharing a secret of `-bits long, requires shares of size roughly
max{log n, `}, where n is the number of parties in the scheme.

Let the secret be a string of length `. Using the above feature of Shamir’s scheme, a slight
variant of Lemma 4.2 still holds (following the same proof). Namely, given any secret sharing
scheme for the evolving 2-thr access structure and `-bit secrets in which the share size of the tth

party is σ(t). Then, there exists a secret sharing scheme for the evolving 2-thr access structure
and `-bit secrets in which the share size of the tth party is

max{log t, `}+ σ(log t+ 1).

We have to specify the initial scheme that supports `-bit secrets to start the recursive composition
with. We use our scheme for Theorem 4.1 by secret sharing every bit independently. The share size
will be σ(0)(t) ≤ ` · (log t+ log log t+ 2 log log log t+ 6). For large enough t it holds that σ(0)(t) ≤ t
and max{log t, `} = log t. Thus, one can follow the same outline of the proof of Theorem 4.1 and
obtain the same share size as in Theorem 4.1 for large enough t. (For smaller values of t one can
follow the analysis and obtain a bound as a function of t and `).

5 A Scheme for Evolving k-Threshold

In this section we give a construction for a secret sharing scheme for the evolving k-thr access
structure for general k. As in Section 4, we first focus on the case where the secret is a single bit
and discuss the more general case in Section 5.4.

Theorem 5.1 (Theorem 1.2 restated). There is a secret sharing scheme for the evolving k-thr
access structure in which the share size of the tth party is at most

(k − 1) · log t+ 6k3 · log log t · log log log t+ 7k4 · log k.

As in the case of k = 2 (see the discussion after Theorem 4.1), the best one could hope to
obtain is a scheme in which the share of the tth party is close to log t.9 Our construction has a

9Shamir’s scheme for (k, n)-thr results with shares of size roughly logn. In particular, independent of k.
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linear dependence on k and we leave open the question whether this can be improved.
We note that the bound in Theorem 5.1 applies for any t ∈ N and k ≥ 2. For specific values of

t and k it is possible to follow the analysis and obtain a better bound.
Our approach is to start with some basic scheme that has good dependency on k but high

dependency on t and use a domain reduction technique in order to obtain better dependency on t.
Our main technical lemma used to prove Theorem 5.1 is a general transformation where we take

any scheme for the evolving k-thr access structure (possibly with large share size), and convert it
into a different scheme with smaller share size. Formally we prove following lemma.

Lemma 5.2. Let k ∈ N. Assume that there exists a secret sharing scheme for the evolving k-thr
access structure in which the share size of the tth party is σ(t). Then, there exists a secret sharing
scheme for the evolving k-thr access structure in which the share size of the tth party is at most

(k − 1) · log t+ k · σ(log t+ k) + k2.

The proof of Theorem 5.1 is done via repeated applications of Lemma 5.2, somewhat similarly to
the proof of Theorem 4.1. However, naively the resulting parameters are not very good. Specifically,
if we start with the scheme for the evolving k-thr access structure in which the share size is
exponential in t or k (which is what we get using the scheme from Theorem 3.1; see Section 3.1),
then by applying Lemma 5.2, the share size will eventually depend exponentially on k.

To overcome this, we first present a tailor-made construction for the evolving k-thr access
structure in which the share size of party t has almost linear dependence on t and k. Using this
scheme as a basic building block, we repeatedly apply Lemma 5.2 to obtain Theorem 5.1. The
proof of the latter can be found in Section 5.3. The tailor-made construction for the evolving k-
thr access structure appears next in Section 5.1. Finally, the proof of Lemma 5.2 appears in
Section 5.2.

5.1 The basic scheme for evolving k-threshold

The main result of this subsection is a construction of a secret sharing scheme for the evolving k-
thr access structure and 1-bit secrets in which the share size of party t is almost linear in t and k.
This scheme will be used later as the basic building block in our final scheme for evolving k-thr
satisfying Theorem 5.1.

Lemma 5.3. There is a secret sharing scheme for the evolving k-thr access structure in which
the share size of the tth party is bounded by kt · log(kt).

In the construction used to prove Lemma 5.3 we will employ two secret sharing schemes: (1)
Shamir’s threshold scheme and (2) a secret sharing scheme for a new access structure. The latter
access structure C` over 2k parties, where ` ≤ k, is defined via its characteristic monotone function
that we denote by C` as well. Let (x, y) ∈ {0, 1}k × {0, 1}k be an inputs to C` : {0, 1}k × {0, 1}k →
{0, 1}, where we think of x and y as unary encoding of two numbers in {0, . . . , k}. Jumping ahead,
the variable x will represent the number of parties present so far and y will represent the number
of parties to come. The access structure contains all pairs whose sum is at least `. Formally, we
define C`(x, y) = 1 if and only if at least one of the following conditions hold:

1. ∃i, j ∈ [`− 1] such that xi = 1, yj = 1, and i+ j = `.

2. y` = 1 or x` = 1.
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Claim 5.4. Let `, k ∈ N such that ` ≤ k. There exists a secret sharing scheme for the access
structure C` in which the share size of each party is exactly the size of the shared secret.

Proof. The following monotone formula computes C`:

C`(x, y) =
`−1∨
i=1

(xi ∧ y`−i) ∨ (x` ∨ y`) .

Notice that this formula is a DNF and every input variable appears exactly once. This formula
gives rise to a simple secret sharing scheme for the access structure C` using the method of [BL88].
Since each variable appears at most once in the formula (x1, . . . , x` and y1, . . . , y` appear once, but
x`+1 . . . , xk and y`+1, . . . , yk do not appear), the share of each party is bounded by the length of
the secret. The theorem follows by padding all shares to be of the same length.

Intuition for the construction. Our goal is to allow any combination of k parties to learn
s. The main idea is not to consider all possible combinations of k parties, but to group parties
into generations, ignore the identities of the parties within a generation, and only focus on their
quantity. For simplicity, let us focus on the first and second generation. How many quantities
should we consider? Exactly k, since the presence of i ≤ k parties from the first generation requires
the presence of k − i parties from the second generation. Therefore, the idea is to generate 2k
strings x1, . . . , xk and y1, . . . , yk, such that only a proper combination of xi and yk−i will recover
the secret s (for this we use the scheme for the access structure Ck). These 2k strings are generated
when the first generation begins and the x’s (the values corresponding to the “present”) are shared
among the parties of that generation in a way that allows any i parties to learn xi. The y’s (the
values corresponding to the “future”) will be shared among the parties of the second generation in
a similar way allowing any k − i parties to learn yk−i. Together, they will be able to recover s.

To formalize the above intuition and extend it to more generation we need some notation. For
a generation g ≥ 0, we denote by [k]g = {1, . . . , k}g the set {1, . . . , k} × . . .× {1, . . . , k}︸ ︷︷ ︸

g times

. We will be

using vectors of the form ~z = (i1, . . . , ig) ∈ [k]g in our notation. For such a vector ~z and ig+1 ∈ [k],
we denote by (~z, ig+1) the vector (i1, . . . , ig, ig+1) ∈ [k]g+1.

Proof of Lemma 5.3. Let s ∈ {0, 1} be the secret to be shared. Each party, when it arrives, is
assigned to a generation. Party t ∈ N is assigned to generation g = blogk tc. The generations are
growing in size: For g = 0, 1, 2 . . . the gth generation begins when the kg-th party arrives. Therefore,
the size of the gth generation (i.e. the number of parties that are members of this generation), is

size(g) = kg+1 − kg = (k − 1) · kg.

When a generation g begins the dealer prepares shares for all parties that are members of

that generation, and in addition, it generates kg+1 strings {y(g+1)
~z }~z∈[k]g+1 which it remembers for

the next generation. Initially, the dealer sets y
(0)
∅ = s. Let us focus on the beginning of the gth

generation and describe the dealer’s procedure (for consistency of notation we define [k]0 = ∅):

1. (a) If g = 0: Split the string y
(0)
∅ = s using the secret sharing scheme for Ck of Claim 5.4.

Denote the resulting 2k shares by x
(0)
(1), . . . , x

(0)
(k), y

(1)
(1), . . . , y

(1)
(k).
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(b) If g ≥ 1: For all ~z = (i1, . . . , ig) ∈ [k]g split the string y
(g)
~z using the secret sharing scheme

for Cig of Claim 5.4. Denote the resulting 2k shares by x
(g)
(~z,1), . . . , x

(g)
(~z,k), y

(g+1)
(~z,1) , . . . , y

(g+1)
(~z,k) .

The x’s will be shared amongst the parties in the current (gth) generation, whereas the y’s
will be used to generate shares for parties in the next ((g + 1)th) generation.

2. For all ~z = (i1, . . . , ig+1) ∈ [k]g+1 secret share x
(g)
~z using a scheme for (ig+1, size(g))-thr.

Denote the resulting size(g) shares by u
(g)
~z,1, . . . , u

(g)
~z,size(g).

3. The secret share of the jth party in the gth generation (that is, the tth party where t = kg+j−1)

is composed of all the strings u
(g)
~z,j for any possible ~z. Namely, it is the sequence of strings

{u(g)~z,j}~z∈[k]g+1 .

Correctness and security.

Claim 5.5. Any c ≤ k parties from generation g can compute {x(g)(~z,i)}~z∈[k]g ,i∈[c].

Proof. Let j1, . . . , jc ∈ [size(g)] be the indices of parties present from that generation. Thus, the
parties can compute

{u(g)~z,j1 , . . . , u
(g)
~z,jc
}~z∈[k]g+1 .

Therefore, all the x values that were shared via a threshold scheme in which the threshold was at

most c can be reconstructed. Namely, the values {x(g)(~z,i)}~z∈[k]g ,i∈[c].

Claim 5.6. Fix a generation g ≥ 0, two numbers c1, c2 ∈ [k] and ~z = (i1, . . . , ig) ∈ [k]g. Then,

given x
(g)
(~z,c1)

and y
(g+1)
(~z,c2)

such that c1 + c2 ≥ ig, one can compute y
(g)
~z . Moreover, given x

(g)
(~z,c1)

such

that c1 ≥ ig, one can compute y
(g)
~z .

Proof. Follows from the correctness of the secret sharing scheme for C`.

Now, let us assume that k parties come together and try to reconstruct s. Assume that c0
parties come from generation 0, c1 come from generation 1 and so on. That is, for some generation
g it holds that

∑g
i=0 ci = k and without loss of generality cg > 0. We show that these parties can

learn y
(0)
(k) = s, as required. This is done by applying Claims 5.5 and 5.6 iteratively. Details follow.

By Claim 5.5, using the shares of the ci parties in generation i ∈ {0, . . . , g} we can compute

x
(0)
(c0)

, {x(1)(~z,c1)
}~z∈[k]1 , . . . , {x(g)(~z,cg)

}~z∈[k]g .

By the second part of Claim 5.6, using {x(g)(~z,cg)
}~z∈[k]g we can reconstruct

{y(g)~z }~z∈[k]g−1×{cg}.
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By the first part of Claim 5.6, using {x(g−1)(~z,cg−1)
}~z∈[k]g−1 with {y(g)~z }~z∈[k]g−1×{cg} we can reconstruct

{y(g−1)~z }~z∈[k]g−2×{cg+cg−1}.

Using the first part of Claim 5.6 iteratively as above, one can eventually compute y
(1)

(
∑g

i=1 ci)
. Com-

bining with x
(0)
(c0)

, one can compute y
(0)
∅ = s, as required.

To argue security, fix any set of parties as above where
∑g

i=0 ci < k. We claim that these parties

cannot learn the value y
(0)
∅ = s. From the security of the scheme for C`, it is enough to show that

they cannot learn any value in y
(1)
(k−c0). Applying this logic once again, it is enough to show that

they cannot learn any value in {y(2)(~z,k−c0−c1)}~z∈[k]. Applying this argument g times, we get that s

cannot be learned if and only if {y(g+1)

(~z,k−
∑g

i=0 ci)
}~z∈[k]g cannot be learned. Indeed, these values are

independent of the shares of parties up to generation g.

Share size analysis. We analyze the share size of parties in the scheme Πk described above.
The share of party t from generation g is composed of kg+1 shares generated via standard thresh-
old schemes over size(g) parties. Thus, in total, the share size of party t is bounded by kg+1 ·
log(size(g)). Recall that g = blogk tc and size(g) = (k − 1) · kg. Therefore, the share size is
bounded by

k · t · log((k − 1) · t) ≤ kt · log(kt).

5.2 Recursive composition: proof of Lemma 5.2

Let Πk be a construction of a secret sharing scheme for evolving k-thr in which the share size of
the tth party is σk(t). We construct a scheme Π′k for the same access structure in which the share
size is σ′k(t) = log t+ (k − 1) + σ(log t+ (k − 1)) + (k − 2) ·max{log t+ (k − 1), σ(log t+ (k − 1))}.

Let s ∈ {0, 1} be the secret to be shared. Each party is assigned to a generation. The generations
are growing in size: For g = 0, 1, 2 . . . the gth generation begins when the 2(k−1)·g-th party arrives.
Thus, party t ∈ N is part of generation g = b(log t)/(k − 1)c, and the number of parties that are
part of generation g, is

size(g) = 2(k−1)·(g+1) − 2(k−1)·g = 2(k−1)·g · (2k−1 − 1) ≤ t · 2k−1.

As in Section 5.1, when a generation begins the dealer prepares shares for all parties that are
members of that generation. We focus on the beginning of generation g and describe the dealer’s
procedure:

1. Split s using a secret sharing scheme for (k, size(g))-thr. Denote the resulting shares by

u
(g)
1 , . . . , u

(g)
size(g).

2. Generate k − 1 shares using the secret sharing scheme Πk given the secret s and previous

shares {v(i)j }i∈[g−1],j∈[k−1]. Denote the resulting shares by v
(g)
1 , . . . , v

(g)
k−1.

3. For i ∈ [k − 1], split v
(g)
i using a secret sharing scheme for (i, size(g))-thr. Denote the

resulting shares by {w(g)
i,1 , . . . , w

(g)
i,size(g)}i∈[k−1].
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4. Set the secret share of the jth party in the gth generation (i.e. j ∈ [size(g)]) to be(
u
(g)
j , w

(g)
1,j , . . . , w

(g)
k−1,j

)
.

Correctness and security. We show that any k parties can learn the secret. If all the parties
come from the same generation g, then they can use their u(g) in order to run the reconstruction
procedure of the (k, size(g))-thr scheme and learn s. For k parties that come from at least two
generations we show that they can jointly learn k shares for the evolving k-thr scheme Πk. By
correctness of Πk, using these shares they can reconstruct s. Indeed, assume that c0 parties come
from generation 0, c1 come from generation 1 and so on, where there is some generation g where∑g

i=0 ci = k and for all i it holds that ci ≤ k − 1.

Claim 5.7. Any c ∈ [size(g)] parties from generation g can compute v
(g)
c .

Proof. The c parties hold c shares for (1, size(g))-thr scheme that give v
(g)
1 , c shares for the

(2, size(g))-thr scheme that give v
(g)
2 and so on.

Using this claim we get that the k parties can learn
∑g

i=0 ci = k shares of the evolving k-thr
scheme, as required.

For security consider any set of k− 1 parties. First, the u shares of the (k, size(g))-thr scheme
are independent of the secret. Thus, to complete the proof we need to show that the parties
cannot learn any k shares of the evolving k-thr scheme Πk. Indeed, any c parties from generation

g cannot learn more than c shares v
(g)
1 , . . . , v

(g)
c ; this follows from the security of the schemes

(c + 1, size(g))-thr, . . . , (k − 1, size(g))-thr. Therefore, in total, the parties can learn at most∑g
i=0 ci < k shares.

Share size analysis. We bound the size of each component in the share of party t in the scheme
Π′k. The share of party t that is the jth party of generation g = b(log t)/(k − 1)c is composed of

u
(g)
j and w

(g)
1,j , . . . , w

(g)
k−1,j :

1. u
(g)
j – generated by secret sharing s using a scheme for (k, size(g))-thr. By Claim 2.3 it

holds that

|u(g)j | ≤ log(size(g)) ≤ log t+ (k − 1)

2. w
(g)
i,j – generated by secret sharing v

(g)
i using a scheme for (i, size(g))-thr. By Claim 2.3 for

1 < i ≤ k − 1 it holds that

|w(g)
i,j | ≤ max{log(size(g)), |v(g)i |} ≤ max{log t+ (k − 1), |v(g)i |}

and for i = 1 it holds that

|w(g)
1,j | = |v

(g)
i |.

• v(g)i – generated by generating a share of a sharing scheme Πk for evolving k-thr. Recall
that g·(k−1) ≤ log t+(k−1) shares were generated for previous g generations. Therefore,
for all i ∈ [k − 1]

|v(g)i | ≤ σ(log t+ (k − 1)).
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Therefore, for 1 < i ≤ k − 1

|w(g)
i,j | ≤ max {log t+ (k − 1), σ(log t+ (k − 1))}

and for i = 1

|w(g)
1,j | ≤ σ(log t+ (k − 1)).

Thus, the total share size in the scheme Π′k is bounded by:

log t+ (k − 1) + σ(log t+ (k − 1)) + (k − 2) ·max{log t+ (k − 1), σ(log t+ (k − 1))} (5.1)

≤ log t+ (k − 1) + σ(log t+ (k − 1)) + (k − 2)(log t+ (k − 1) + σ(log t+ (k − 1)))

≤ (k − 1) log t+ k · σ(log t+ k) + k2.

5.3 Proof of Theorem 5.1 assuming Lemma 5.2

Let k ∈ N be such that k ≥ 2. We use the scheme for evolving k-thr constructed in Section 5.1 in

which the share size of the tth party is σ
(0)
k (t) = kt · log(kt). Using Lemma 5.2 this gives rise to a

scheme Π
(1)
k for evolving k-thr in which the share size of the tth party is:

σ
(1)
k (t) =(k − 1) · log t+ k · σ(0)k (log t+ k) + k2. (5.2)

We bound σ
(0)
k (log t+ k). If k > log t, then

σ
(0)
k (log t+ k) ≤ σ(0)k (2k) ≤ 2k2 · log

(
2k2
)
≤ 4k2 · log (2k)

If k ≤ log t then

σ
(0)
k (log t+ k) ≤ σ(0)k (2 log t)

≤ k · 2 log t · log (k · 2 log t)

≤ 2k · log t · log log t+ 2k · log t · log (2k)

≤ 4k · log t · log log t+ 4k2 · log (2k) ,

where the last inequality follows since 2k · log t · log (2k) ≤ 2k · log t · log log t+4k2 · log(2k). Together
we get that

σ
(0)
k (log t+ k) ≤ max{σ(0)k (2 log t), σ

(0)
k (2k)} ≤ 4k · log t · log log t+ 4k2 · log (2k) .

Plugging this in Equation (5.2), we get that

σ
(1)
k (t) = (k − 1) · log t+ k · σ(0)k (log t+ k) + k2

≤ (k − 1) · log t+ 4k2 · log t · log log t+ 4k3 · log (2k) + k2

≤ 5k2 · log t · log log t+ 5k3 · log k.

Using Lemma 5.2 again, we get a scheme Π
(2)
k in which the share size of the tth party is

σ
(2)
k (t) =(k − 1) · log t+ k · σ(1)k (log t+ k) + k2. (5.3)
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We bound σ
(1)
k (log t+ k) as follows.

σ
(1)
k (log t+ k) ≤max{σ(1)k (2 log t), σ

(1)
k (2k)}

≤5k2 · log (2 log t) · log log (2 log t) + 5k2 · log (2k) · log log (2k) +

5k3 · log k

≤6k2 · log log t · log log log t+ 6k3 · log k.

Plugging this back in Equation (5.3), we get that

σ
(2)
k (t) = (k − 1) · log t+ k · σ(1)k (log t+ k) + k2

≤ (k − 1) · log t+ 6k3 · log log t · log log log t+ 6k4 · log k + k2

≤ (k − 1) · log t+ 6k3 · log log t · log log log t+ 7k4 · log k.

Remark. As in the proof of Theorem 4.1, one can iteratively apply Lemma 5.2 again and again
to decrease the dependence on log log t · log log log t. However, the dependence on log t cannot be
improved using this method.

5.4 Generalization to larger domains of secrets

Similarly to the generalization of the scheme from Section 4 to support larger domains of secrets
(see Section 5.4), we generalize the above scheme. Let the secret be of length `. Following the
proof of Lemma 5.2, we obtain that given a scheme for the evolving k-thr access structure that
supports secrets of length ` in which the share size of the tth party is σ(t), there exists a scheme
for the same access structure and same length of secrets in which the share size of the tth party is
bounded by (cf. Equation (5.1))

max{log t+ (k − 1), `}+ σ(log t+ (k − 1)) + (k − 2) ·max{log t+ (k − 1), σ(log t+ (k − 1))}

Notice that for large enough t ∈ N the above bound is the same as the bound we had in Equa-
tion (5.1). For the recursive composition step (cf. Section 5.2) we start with the naive generalization
of the scheme from Theorem 5.1 to support several input bits (i.e. bit by bit). This gives a scheme
in which the share size is σ(0)(t) ≤ ` · ((k − 1) · log t + k · σ(log t + k) + k2). For large enough t it
holds that σ(0)(t) ≤ kt · log(kt). Thus, one can follow the same outline of the proof of Theorem 5.1
(see Section 5.3) and obtain the same share size as in Theorem 5.1 for large enough t. (For smaller
values of t one can follow the analysis and obtain a bound as a function of t and `).

5.5 Linearity of the scheme

The scheme from Theorem 3.1 is linear over GF(2). In the scheme from this section the shares are
composed of several different parts each being an element coming from a different scheme. Consider

the scheme from Section 5.1 (denoted by Π
(0)
k in Section 5.3). Each share there is a composition of

several linear schemes (the threshold scheme of Shamir and the scheme of Benaloh and Leichter).
Since composition of linear schemes results with a linear scheme, the scheme is linear. Next, for

the basic construction Π
(1)
k in Section 5.3, each share is composed of several parts each being either

a share of a linear scheme (Shamir’s scheme) or a composition of linear schemes (Shamir’s scheme

and the scheme Π
(0)
k ), resulting with a linear scheme. The same argument applies for the recursive

composition which eventually gives that the final construction is linear.

22



6 A Lower Bound

For general access structures the best standard secret sharing schemes require exponential-size
shares. Instantiating our scheme for n parties, results with the nth party holding a share of size
2n−1. Thus, any improvement in the share size on our scheme for general access structures, will
imply a non-trivial improvement for general access structures in the standard setting.

In the case of k-threshold access structures, we do not know if our scheme is tight. Specifically,
for k > 2, using our scheme to implement a standard secret sharing scheme for k-out-of-n is not
tight. Indeed, the most significant term in the share size in our scheme depends linearly on k − 1,
while the best schemes in the standard setting are independent of k (see Claim 2.3).

Thus, one may ask whether there exists a secret sharing scheme for the evolving k-thr in which
the share size of the tth party is roughly log t. We show that such a scheme cannot exist.

Theorem 6.1 (Theorem 1.3 restated). For any constant c ∈ N, there is no secret sharing scheme
for the evolving 2-thr access structure in which the share size of the tth party is at most

log t+ log log t+ c.

Proof. Assume (towards contradiction) that there is a secret sharing scheme for the evolving 2-
thr access structure in which the share size of the tth party is at most log t + log log t + c for
a constant c ∈ N. We can use this scheme to implement a standard secret sharing scheme for
(2, n)-thr in which the share size of party t ∈ [n] is mt ≤ log t+ log log t+ c.

We use the following claim that underlies the lower bound of Kilian and Nisan. This inequality
is the same as Kraft’s (see [CT06, Chapter 5.2]), a fact that we use in Section 7.

Claim 6.2 ([KN90] and [CCX13, Appendix A]). For any n ∈ N, in any secret sharing scheme for
(2, n)-thr, it holds that

n∑
t=1

1

2mt
≤ 1,

where mt is the share size of the tth party.

Using this claim we get that

1 ≥
n∑
t=1

1

2mt
≥

n∑
t=2

1

2log t+log log t+c
=

1

2c
·
n∑
t=2

1

t · log t
.

To get a contradiction we need to show that
∑n

t=2
1

t·log t > 2c for large enough n. Indeed, letting
n→∞, we have that

∞∑
t=2

1

t · log t
≥
∫ ∞
2

1

t · log t
dt = log log t

∣∣∣∞
2
→∞.

This completes the proof.
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Remark 6.3 (A stronger lower bound). We note that the lower bound can be strengthened to
show that even schemes in which the share size is

∑`
t=1 log(i)(t) + c cannot exist for any ` ∈ N and

where log(i)(t) is the i-times repeated log of t (letting log(0)(t) = t). This follows similarly to the
above argument noting that for every ` ∈ N0 it holds that

∫∞
1

1∏`
i=0 log

(i)(t)
dt = log(`+1) t and using

that log(`+1) t ≥ 2c for any constant c ∈ N and large enough t.
This is reminiscent of bounds in the literature on prefix codes [BY76, ER78]. This is not

surprising given the equivalence (in terms of complexity) between prefix codes and secret sharing
for the evolving 2-thr access structures developed in Section 7.

7 The Equivalence Between Evolving 2-Threshold and Prefix Codes

We now show the very tight connection between schemes for the evolving 2-thr access structure
and prefix codes.

Theorem 7.1 (Theorem 1.4 restated). Let σ : N → N. A prefix code for the integers in which
the length of the tth codeword is σ(t) exists if and only if a secret sharing scheme for the evolving
2-threshold access structure and 1-bit secret in which the share size of the tth party is σ(t).

Proof of the “if” part of Theorem 7.1. Kraft’s inequality (see [CT06, Theorem 5.2.2]) gives
a necessary and sufficient condition for the existence of a prefix code for a given set of codeword
lengths. The proof of the sufficient direction is constructive: given the collection of lengths of
codewords it is possible to construct the code. Furthermore, we do not need to know the collection
of lengths in advance, i.e. we can create the code on the fly, as long as the demand (

∑
t

1
2mt ) does

not exceed 1. This inequality is the same as the one given in Claim 6.2 that must be satisfied by
any secret sharing scheme for the evolving 2-thr access structure. Thus, any secret sharing scheme
for the evolving 2-thr access structure in which the share size of the tth party is σ(t), implies the
existence of a prefix code in which the length of the tth codeword is σ(t).

Proof of the “only if” part of Theorem 7.1. Let Σ: N → {0, 1}∗ be a prefix code for the
integers. That is, for any t1, t2 ∈ N such that t1 6= t2, it holds that Σ(t1) is not a prefix of Σ(t2).
For t ∈ N denote by σ(t) the length of the codeword Σ(t).

The scheme. Let s ∈ {0, 1} be the secret to be shared. Let w be an infinite random binary string.
The dealer generates the string as needed: at time t ∈ N the dealer holds the prefix of length σ(t)
of the string w, denoted by w[σ(t)] (for simplicity we assume that σ(t) is monotonically increasing,
but this is not necessary). The share of party t is a string ut such that:

1. If s = 0, then ut = w[σ(t)].

2. If s = 1, then ut = Σ(t)⊕ w[σ(t)] (bit-wise XOR).

Reconstruction. Any two different parties t1 and t2, holding shares u1 and u2, respectively,
where |u1| ≤ |u2|, should check if u1 is a prefix of u2. If it is a prefix, then they output s = 0 and
otherwise, they output s = 1.

Correctness and security. If s = 0, then since u1 and u2 are both prefixes of the same string
w it holds that u1 is a prefix of u2. On the other hand, if s = 1 then u1 = Σ(t1) ⊕ w[σ(t1)] and
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u2 = Σ(t2) ⊕ w[σ(t2)], where w[σ(t1)] is a prefix of w[σ(t2)]. Since Σ is a prefix code, Σ(t1) is not a
prefix of Σ(t2), and thus u1 is not a prefix of u2.

Security follows since for both s = 0 and for s = 1 each single party t holds a single string ut
which is uniformly distributed over {0, 1}σ(t). In case s = 0 this is true by construction, and in case
s = 1 this is true since all the party sees is the codeword Σ(t) XORed with w[σ(t)] which is uniform.

Share size. The share size of the tth player in this scheme is σ(t). Using the best constructions of
prefix codes [BY76, ER78], we get the share size of Theorem 4.1.

Generalization to larger domains of secrets. One can support sharing of longer secrets by
sharing every bit independently. Our direct construction presented in Section 4 is more efficient
for sharing longer secrets (see Section 4.1 for more details).

Efficiency preservation. Note that the transformation from the prefix code to secret sharing
preserves the efficiency of the code, i.e. dealing a share to party t is as easy as computing Σ(t).
However, the other direction, with the construction based on Kraft’s inequality, does not preserve
the efficiency. That is, we cannot say that encoding the number t, i.e. computing Σ(t), is as easy
as dealing a secret to party t.

8 Further Work and Open Problems

This work suggests several research directions. The most evident one is to investigate the necessity
of the linear dependence on k in the most significant term in our scheme for the evolving k-thr
access structure. In particular, are more algebraic-oriented constructions possible?

There are several interesting access structures for which we do not have efficient constructions.
For example, a very natural evolving access structure is the one in which qualified subsets are
the ones which form a majority of the present parties at some point in time. The only scheme
that realized this access structure we are aware of stems from our construction for general access
structures from Section 3 which results with very long shares.

When k = 2, we show a tight connection between evolving secret sharing and prefix codes (see
Section 7). Is there a generalization of prefix codes that is related to the evolving k-thr access
structure for k > 2?

Secret sharing has had many applications in cryptography and distributed computing. One
of the most notable examples is multi-party computation (MPC). Can secret sharing for evolving
access structures be useful for MPC?

We focused on schemes in which correctness and security are perfect. One can relax correctness
to work with high probability and to allow small statistical error in security. Can these relax-
ations be used to obtain more interesting and efficient schemes? Another variant of secret sharing
schemes is the computational one. In these schemes security is required only against computa-
tionally bounded adversaries. Efficient computational schemes for much richer classes of access
structures are known [Yao, Kra93, VNS+03, KNY14]. Is there a meaningful way to define compu-
tationally secure secret sharing schemes for evolving access structures? Can this be used to obtain
efficient schemes for more classes of evolving access structures? Cachin [Cac95] studied a similar
question in a model in which there is a large public bulletin board.

Other natural variants of secret sharing can be adapted to the evolving setting. For example,
verifiable, robust and visual secret sharing. We leave these as interesting directions for future
exploration.
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A A Simpler Scheme for Evolving 3-Threshold

In this section we give a slighly simpler construction for a secret sharing scheme for the evolving 3-
thr access structure than the construction that follows from Section 5. However, the share size of
parties in this scheme are slighly worse for large enough t. One nice property of this construction is
the use of the fact that secret sharing several 1-bit secrets via Shamir’s scheme can be packed into
a single secret sharing scheme with short shares. As before, without loss of generality, we focus on
the case where the secret is a single bit.

Theorem A.1. There is a secret sharing scheme for the evolving 3-thr access structure in which
the share size of the tth party is bounded by

3 log t+ 4 log(log t+ 1) + 3 log(log(log t+ 1) + 1) + 3.

Our main technical claim used to prove Theorem A.1 is given in the following lemma.

Lemma A.2. Assume that there exists a secret sharing scheme for the evolving 3-thr access
structure in which the share size of the tth party is σ(t). Then, there exists a secret sharing scheme
for the evolving 3-thr access structure in which the share size of the tth party is

3 log t+ σ(log t+ 1) + 1.

Proof of Theorem A.1 assuming Lemma A.2. The scheme given in Section 3 can be used to
obtain a scheme Π(0) for evolving 3-thr in which the share size of the tth party is

σ(0)(t) = 2t−1.

Applying Lemma A.2 this gives rise to a scheme Π(1) for evolving 3-thr in which the share size of
the tth party is

σ(1)(t) = 3 log t+ σ(0)(log t+ 1) + 1

≤ 3 log t+ t+ 1.

Applying Lemma A.2 again we get a scheme Π(2) for evolving 3-thr in which the share size of the
tth party is

σ(2)(t) = 3 log t+ σ(1)(log t+ 1) + 1

≤ 3 log t+ 3 log(log t+ 1) + log t+ 1 + 1

= 4 log t+ 3 log(log t+ 1) + 2.
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Applying Lemma A.2 again we get a scheme Π(3) for evolving 3-thr in which the share size of the
tth party is

σ(3)(t) =3 log t+ σ(2)(log t+ 1) + 1

≤3 log t+ 4 log(log t+ 1) + 3 log(log(log t+ 1) + 1) + 2 + 1

≤3 log t+ 4 log(log t+ 1) + 3 log(log(log t+ 1) + 1) + 3.

This proves the theorem.

We proceed with the proof of Lemma A.2.

Proof of Lemma A.2. Let Π be a secret sharing scheme for evolving 3-thr in which the share
size of the tth party is σ(t). We construct a scheme Π′ for the same access structure in which the
share size is 3 log t+ σ(log t+ 1) + 1.

Let s ∈ {0, 1} be the secret to be shared. As in the previous schemes, we assign parties with
generations that correspond to the time in which they arrive. The generations are growing in size:
For g = 0, 1, 2 . . . the gth generation begins when the 2g-th party arrives. Therefore, the number of
parties that are part of generation g is size(g) = 2g and party t ∈ N is part of generation g = blog tc.

When a generation begins the dealer prepares shares for all parties that are part of that gener-
ation. Let us focus on the beginning of the gth generation and describe the dealer’s procedure:

1. Split s using a secret sharing scheme for (3, size(g))-thr. Denote the resulting shares by

u
(g)
1 , . . . , u

(g)
size(g).

2. Generate one share using the evolving scheme Π given the secret s and previous shares
{v(i)}i∈{0,...,g−1}. Denote the resulting share by v(g).

3. Sample two random bits b
(g)
1 , b

(g)
2 ∈ {0, 1}.

4. Split the length g + 1 string b
(g)
2 ||s ⊕ b

(0)
1 || . . . ||s ⊕ b

(g−1)
1 using (2, size(g))-thr. Denote the

resulting shares by w
(g)
1 , . . . , w

(g)
size(g).

5. Set the secret share of the jth party in the gth generation (i.e. j ∈ [size(g)]) to be(
u
(g)
j , v(g), b

(g)
1 , w

(g)
j , {s⊕ b(i)2 }i∈{0,...,g−1}

)
.

Correctness and security. Let t1, t2, t3 ∈ N be any two different parties. We show that the secret
s can be computed from their shares. There are four cases to consider (without loss of generality)
depending on the generations of t1, t2 and t3 that we denote by g1, g2 and g3 respectively: (1)
g1 = g2 = g3, (2) g1 = g2 < g3, (3) g1 < g2 = g3, and (4) g1 < g2 < g3. In case (1) the parties
can use the u(g1) part of the share to execute the reconstruction procedure of the (3, size(g1))-thr

scheme. In case (2) t1 and t2 can use their w(g) share to learn b
(g)
2 and XOR with the share s⊕ b(g1)2

that t3 holds. In case (3) t2 and t3 can use their w(g) shares to compute s ⊕ b(g1)1 and then XOR

with the bit b
(g1)
1 that t1 posses. Finally, in case (4) the parties posses three shares v(g1), v(g2) and

v(g3) for the evolving 3-thr scheme Π that can be used to learn s.
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For security we consider any two parties t1 and t2 from generations g1 and g2, respectively, and
the following two cases (without loss of generality): (1) g1 = g2, and (2) g1 < g2. In both cases one
can verify that both players do not have enough information to learn anything about the secret s.

Share size analysis. Denote by σ(t) the share size of party t in the scheme Π. We bound the size
of each component in the share of party t. The share of party t that is the jth party of generation

g = blog tc is (u
(g)
j , v(g)).

1. u
(g)
j – generated by secret sharing s using a scheme for (3, size(g))-thr. Since size(g) = 2g

and using Claim 2.3 we get that

|u(g)j | ≤ log (size(g)) ≤ blog tc.

2. v(g) – generated by generating one share of a secret sharing scheme Π for evolving 2-thr.
Recall that g shares were generated for previous generations. Therefore,

|v(g)| = σ(g + 1) = σ(blog tc+ 1).

3. b
(g)
1 – a single bit.

4. w
(g)
j – generated by secret sharing a string of length g + 1 using (2, size(g))-thr. Since

size(g) = 2g and using Claim 2.3 we get that

|w(g)
j | ≤ log (size(g)) ≤ blog tc.

5. {s⊕ b(i)2 }i∈{0,...,g−1} – g = blog tc bits.

Thus, the total share size in the scheme Π′ is bounded by

3 log t+ σ(log t+ 1) + 1.
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